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In the optimization process, changes in the construction parameters value influence the behaviour of functions 
depending on time. Weighting logical coefficients for the stabilisation time are taken into consideration here, i.e., 
a shorter (better) stabilisation time has a more important (bigger) value of the weighting coefficient. An example 
of applying weighting logical functions in the analysis of a degree of importance of construction parameters of a 
hydraulic valve is presented in the paper. 

 
 Key words: optimization process, weighting logical coefficients, hydraulic valves, pomps. 

 
1. Introduction  

 
 Among tools supporting decision making processes, it is possible to differentiate decision tables 
and trees, dendrites, tree classifiers as well as graphs. These tools are included in the so-called decision 
support methods based on graphs. A set of decisions (and relations between them) is written in a graphic 
way out of a mathematical model which is the main basis of the decision process realisation which a 
decision-maker can use in order to solve problems of any kind. Modelling of the whole process is 
necessary in the case of supporting decision-making processes in the optimization of mechanical systems. 
A lot of different feedbacks between elements of internal structure can be differentiated in the objects 
being analysed (e.g., mechanical systems). It is necessary to use an appropriate graphic model where the 
cause and effect relationship, which takes place inside an analysed object, occurs. Fluid-flow machines 
form a vast group of sets used in industry (Francis and Betts, 1997; Giergiel, 1990; Kurowski, 2001). 
Decision tables and logical functions (Deptuła, 2014; Stępniewski, 1994) can be applied in the issues of 
modelling machine systems with differential equations (ordinary and partial ones). It results from the fact 
that non-linear elements can be divided into a finite number of linear elements (parts) what leads to getting 
several linear systems. Discrete optimization of fluid-flow machines (Suzuki and Urata, 2003; Żak and 
Stefanowski, 1994) is based on indicating the degree of importance of construction and exploitation 
parameters. Guidelines concerning the sequence of making decisions result from multi-valued decision 
trees and taking into consideration the realisation of the assumed purpose function (e.g., the system 
stabilisation). 

 
2. Multi-valued logical functions with weighting coefficients  

 
 Graphs of output data with the indicated stabilisation time as modelling results (e.g., in the programs 
such as: Matlab, Fluent ) depend on given data of construction parameters. Changes in such values (e.g., 
decreasing, increasing, remaining unchanged), in the process of designing the set for different work 
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conditions can be written in the form of a code in multi-valued logic, whereas the set of design guidelines 
can be presented as a sum of multi-valued logical products. 
 
2.1. Weighting coefficients 
 

 In the partial multi-valued logical function of n variables  ,...,1 nm m - valued, the weighting 

coefficient iw  before the canonical product has the value within this scope ,...,w1 nw , if 

...j j 1 j 2 1w w w w     , where ,...,j 2 n . Therefore, function weights in the graph in Fig.1 can be 

described by the following set of logical equations: : ( , , )2 2f w 0 1 2 , which means that the 0f  stabilisation is 

obtained the fastest and the 2f  stabilisation is obtained the latest, which means 0 1 2w w w   (Deptuła, 2011; 

Deptuła and Partyka, 2010), that is if  and jf , i jw w , if t jt t . 

 

 
 

Fig.1.  Graphs of the functions , ,0 1 2f f f  depending on time for the coded version of multi-valued decision 

variables , ,1 2 3x 0 x 1 x 2   . 
 

 Then, an alternative, multi-valued normal form is created where a bigger logical weighting 
coefficient means a shorter stabilisation time (Deptuła and Partyka, 2012). 

 It is possible to apply the Quine – McCluskey algorithm of multi-valued functions minimization in 
multi-valued logical functions with weighting products (Deptuła, 2014).  
 
3. Sets of multi-valued logical equations with weighting products 
 
 In the case of flow rate calculations (e.g., in positive-displacement pumps or centrifugal pumps) 
many characteristics are taken into account at the same time and they form the set of functions  
f1, f2, f3,..., fn. 

 The set of equations can be defined as R
SY  

 

      

... ,

: ... ,

... .

i i i j n
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S i 1 i i j n

m i i j n
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Y R r r r

R r r r
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 
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    

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

    

                                                                                         (3.1) 
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where: R- the set of logical equations-  1: , , ...,i i mR R R R ,  S- the set of canonical products as elements- 

 S : , ,...,i i 1 nr r r , if: S R , ,...,i i i 1 nR r r r    .                                                                                    

 The set of multi-valued logical equations is presented in the form of a morphological table where the 
number of verses is equal to the number of equations jR , j=1, ..., m. 

 The set of multi-valued logical equations can be solved using combinatorics in view of 
morphological analysis with maintaining postulates of the Rosser-Turguette system (Deptuła, 2014; 
2011). 
 
Example 1. 
 
 Logically presented theoretical possibilities of changes in the numbers of construction parameters 
have the following form: x1=0, 1, x2=0, 1, 2, x3=0, 1, (where the sign “_” means “to be kept unchanged” and 
it was obtained out of modelling of the set of two multi-valued logical equations for output data (Deptuła and 
Partyka, 2012) 

 

                 

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

1

2

y t 1 001 1 011 2 021 1 000

y t 1 001 2 011 3 021 1 000

   


    

                                                           (3.2) 

 
 After minimization, the real solution can be written in the following form 
  

  y 1 001 1 011 2 021 1 000        ,    what results in:    ( ) ( ) ( ).1 00 1 0 1 2 021        

 
4.  Weighting multi-valued logical functions in the analysis of a degree of importance of 

construction parameters of the overflow valve 
 
 The overflow valve is applied in the systems in order to let the excess of fluid flow to 
container where the pump efficacy is bigger than the need. An example of a drive system of an 
actuator with an overflow valve is presented in Fig.2 (Deptuła, 2014; Żak and Stefanowski, 1994; 
Smith, 2003). 
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Fig.2. A scheme of an actuator with an overflow valve. 
  

   The equation of forces acting on the closing component of a valve is presented in the following way 
(Deptuła, 2014) 
 

  cos( )
2 2

p p
2 ap p2

1

Q dQ dx d x
A l G S k x f m 2 v Q p

A dt dt dt
             ,          (4.1) 

 
whereas equations of flows have the following form 

 

  1
dx V dp

Q K x p A
dt B dt

      ,                                                            (4.2) 

 

  p 1
dx

Q K x p A
dt

                                                                        (4.3) 

 
where 

 

  m
2

K d 


.                                                                          (4.4) 

 
 Equations of the valve work in a dimensionless form used to make simulation are presented in the 

following form 
 

  

cos( ) ,

22 2
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               (4.5) 

 

  wA
w w

o w w

dpT dx
Q x p

T d t d t
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4.1. Weighting coefficients  
 

 In order to make a discrete optimization, changes in parameters have been coded in the following 
way: 0- large decrease, 1- small decrease, 2- without changes, 3- increase, 4- large increase (for m and k ) 
and : 0- small decrease, 1- without changes, 2- increase (for d). For example, a combination of changes 122 
means a small decrease in mass m, leaving the  spring constant without changes k and an increase of the 
diameter d. On the other hand, the combination 402 means a large increase in mass m, a large decrease of the 
spring constant k and an increase of the diameter d in relation to the adopted arithmetic values in the early 
stage of designing. Depending on the adopted combinations of code changes in parameters m, k and d in 
canonical products, the behaviour of functions which depend on time is different.  

 When we look at the behaviour of the functions x, Q and p at the time of stabilization 

w ot 200t (strict condition), if there are products of code changes of parameters m, k and d the following 
values of weighting parameters have been adopted:  

 
– iw =4, w ot 50t ; iw =3, o w o50t t 100t  ; iw =2, o w o100t t 150t  ; iw =1, o w o150t t 200t  .  

 
When we increase the stabilisation time to w ot 800t  (liberal work conditions), it has been assumed 
that:  
 

– iw =4, w ot 200t ; iw =3, o w o200t t 400t  ; iw =2, o w o400t t 600t  ; iw =1, o w o600t t 800t  .  
 

 The weighting coefficient iw   in the case of code indications depends on the stabilisation time t ,  but 
li  <  lj  if ti  > tj. Figure 3 shows exemplary plots of functions x, Q and p, when appropriate changes of code 
combinations m, k and d occur. Appropriate products of combinations in code changes have the following 
weighting coefficients: 
 - in the case of a limitation w ot 200t : x: ( ) ( ) ( )2 222 1 212 1 121     ; Q: ( ) ( )2 222 3 212   ;  

p: ( ) ( )2 222 2 212   ; 

 - in the case of a limitation w ot 800t : x: ( ) ( ) ( )4 222 4 212 4 121     ; Q: 

( ) ( ) ( )4 222 4 212 3 212     ; p: ( ) ( ) ( )4 222 4 212 3 212     . 
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Fig.3.  Time function plots x, Q, p with the indicated stabilisation time and weighting coefficients in the 

case of limitations: tw <200 to                and tw <800 to                   of code changes in parameters: m, k and 
d:  222; 212, 121 (Deptuła, 2014). 

 

Table 1. KAPN of changes in parameter values m, k and d(tw<200 to,  
m ax

.stab

w

w
<3.6). 

 
m k d m k d m k d 
2 2 2 1 0 2 0 1 2 
2 1 2 0 2 1 0 0 1 
1 2 1 0 2 2 0 0 2 
1 2 2 0 1 1 0 3 2 
1 1 1 1 1 2 1 3 2 
2 0 2       
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 In the case of the overflow valve, a set of three multi-valued logical equations of output data x, Q, p 
was obtained out of modelling (Deptuła, 2014) respectively for a limiting condition 
 
a) w ot 200t             

 t 200tw o

x 2 222 1 212 1 121 2 122 1 111 2 112 1 132 2 202 2 102

2 021 3 022 3 032 2 011 3 012 1 001 3 002

Q 2 222 3 212 3 122 1 111 4 112 3 132 3 202 4 102 3 021 4 022
Y

3 032 4 011 4 012 4 001 4 002


                  
             

                    


          2 312 3 300 3 101 2 000 2 100

p 2 222 2 212 3 122 1 111 3 112 2 132 2 202 3 102

2 021 3 022 3 032 2 011 3 012 1 001 3 002 1 101







          



                
               

 

b) w ot 800t  
   

 t 800tw o

x 4 222 4 212 4 121 4 122 4 111 4 112 4 132

4 202 4 102 4 021 4 022 4 032 4 011 4 012 4 001

4 002 3 322 3 312 3 031 3 010 3 232 3 300 3 020

2 221 2 332 1 211 1 201 3 101 1 422 3 000

Q 4 222

Y 

              
                
                
             

  4 212 3 121 4 122 4 111 4 112 4 132

4 202 4 102 4 021 4 022 4 032 4 011 4 012 4 001

4 002 3 322 3 312 3 031 3 010 3 232 3 300 3 020

2 221 2 332 1 211 1 201 4 101 1 422 3 000 1 402

p 4 222 4 212 3 1

            
                
                
               

      21 4 122 4 111 4 112 4 132

4 202 4 102 4 021 4 022 4 032 4 011 4 012 4 001

4 002 3 322 4 312 3 031 3 010 3 232 4 300 3 020

2 221 2 332 2 211 2 201 4 101 1 422 1 412 4 000 1 100 3 402















        
                
                
                   










 

  
 A solution of the set of equations 200t tw o

Y   is 5120 (16(x) 20(Q) 16(p)) of theoretical versions of 

solutions. A solution true for the set 200t tw o
Y   obtains the following form 

 

   , , w ot 200t
f x Q p 2 222 1 212 2 122 1 111 2 112 1 132 2 202

2 102 2 021 3 022 3 032 2 011 3 012 1 001 3 002

               

                
 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

1 001 3 0 2 2 011 2 021 1 1 2 2 122

2 112 2 102 1 111 2 202 1 212 2 222

              
            

 

 
 In the case of the limiting condition w ot 800t , there are 30690 (30(x) 33(Q) 31(p)) real versions of 

solutions. Solutions can be obtained in the following form 
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 , , w ot 800t
f x Q p 4 222 4 212 3 121 4 122 4 111 4 112 4 132

4 202 4 102 4 021 4 022 4 032 4 011 4 012

4 001 4 002 3 322 3 312 3 031 3 010 3 232 3 300

3 020 2 221 2 332 1 211 1 201 3 101 1 422 3 000

               

              
                
                

 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 00 4 001 4 002 3 01 4 011 4 012 3 02

4 021 4 022 3 0 1 4 001 4 011 4 021 4 0 2

4 1 2 1 22 3 322 4 222 4 122 4 022 4 032

3 101 4 111 3 121 1 201 1 211 4 212 2 221

          
         
         
       

( ) ( ) ( ) ( ).3 232 3 300 3 312 2 332   

 

 
 If we adopted a very strict condition in the graph of functions x, Q and p: stabilisation time 

100w ot t  and weighting coefficients values: iw =4, w ot 25t ; iw =3, o w o25t t 50t  ; iw =2, 

o w o50t t 75t  ; iw =1, o w o75t t 100t  , then a weighting multi-valued set of equations for x, Q and p 
would have the following form 
 

  
,

.

t 100tw o

x 1 022 1 032 1 012 1 002

Q 1 222 1 212 1 122 3 112 2 132 1 202 3 102 1 021 3 022 1 032
Y

3 011 4 012 4 001 4 002 1 312 1 300 1 101 1 000 1 100

p 1 122 1 112 1 102 1 022 1 032 1 012 1 002



       
                      

                 

             




 

 
 The real solution would have the following form 
 

( , , ) ( ).w ot 100tf x Q p 1 022 1 032 1 012 1 002 1 0 2             

 
Conclusions 
 

The article is about a procedure of combinatorial solving of weighting multi-valued sets of logical 
equations describing guidelines of designing in view of the morphological analysis with keeping Rosser- 
Turguette’s postulates.  
 Weighting multi-valued set of logical equations describing guidelines of designing can be minimized 
separately or together with keeping the logical equivalence. In this way, we can also keep individual 
properties of each function.  
 It has been proved that in a general case, minimization of logical functions with weighting 
coefficients can be the same as without weighting coefficients. However, a better reflection of physical 
models of hydraulic sweep systems has been obtained in their mathematical models for example in overflow 
valves or proportional ones.  
 Increasing, decreasing or keeping such values unchanged in the readjusting process of the system to 
different work conditions can be coded in the multi-valued logic, whereas designing guidelines can be 
presented as a sum of multi-valued logical products. Solutions to the system of weighting multi-valued 
logical equations are versions of code changes in parameters m, k and d of all functions x, Q and p depending 
on time t. In the case of such assumptions, it is also possible to introduce conditions of uncertainty for 
appropriate logical products of designing guidelines, which means a partly described function in the 
automata theory. 
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Nomenclature 
 
 d – the valve diameter [m] 

 1d  – inlet manifold diameter [m] 

 2d  – valve seat diameter [m] 

 F  – hydrodynamic reaction force [N] 
 K – spring constant,  /N m  

 m – valve head mass [kg] 

  ,...,1 nm m  – multi-valued logical function of n variables  ,...,1 nm m - valued 
 n – the number of different letters in the Boolean function, 
 P – flow intensity [m3/s] 

 .otwp
 

– valve opening pressure [MPa] 

 pp
 

– pressure in the inlet part in a particular position [MPa] 

 zp  – pressure over the valve in a particular position [MPa] 

 1Q  – flow rate of the pumped liquid [m3/s] 

 2Q  – flow rate of the liquid coming out of the valve [m3/s] 

 m1Q
 

– massive flow rate of the liquid going into the valve [m3/s] 

 m2Q
 

– massive flow rate of the liquid coming out of the valve [m3/s] 

 S – spring bias force [N] 
 t – time [s] 

 V  – the valve volume 3m 
   

 x – spring deflection [m] 

 ox
 

– free vibrations amplitude [m] 

  , ,1 2 3x x x  – decision variables 

 p  
– coefficient of compressibility [m3/s] 

   – viscous friction coefficient [ / ]Ns m  

   – liquid density / 3kg m 
    
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