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The paper presents a simple method of avoiding singular configurations of contemporary industrial robot 

manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. 
To determine the singular configurations of these manipulators a global form of description of the end-effector 
kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian 
was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. 
From the formula, singular configurations, where the determinant’s value equals zero, were determined. 
Additionally, geometric interpretations of these configurations were given and they were illustrated. For the 
exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were 
suggested. An analysis of positional errors, caused by these corrections, was presented.  
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1. Introduction 

 
The controllers of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, 

COMAU and KUKA make possible movement programming in joint space or the Cartesian space. The 
following commands PTP, LIN, and CIRC can be applied to programming in the Cartesian space. The 
mentioned commands require a start point and end point. For programming in the Cartesian space these 
points must be described in Cartesian coordinates, relative to the base frame, connected to the base of a 
manipulator. These coordinates can be obtained by a vision system. During the realization of such 
programmed movement the robot happens to stop before reaching the border area, and before reaching the 
start or the end point. The entrapment takes place when the manipulator reaches the singular configurations. 
It is without doubt the major problem of modern industrial robots, which makes it impossible for the robots 
with a vision system to cooperate with the cameras properly. 

The linear system of ordinary differential equations that describes the kinematics can be applied to 
programming the robots in the Cartesian space. In this system a manipulator Jacobian is present. For the 
succesive via points interpolating trajectory programmed in the Cartesian space, joint variables of these 
points can be computed. To these calculations, the standard algorithm for solving the system of linear 
equations which is one of the elements of a computer software library, can be applied. The lack of 
protection in software against the reduction of the Jacobian rank in this algorithm can cause the 
interruption of the calculations and  the robot can stop performing its operations. This rank decreases in 
singular configuration. 

The problem of the inverse kinematics solutions in a differential form for the singular configuration 
is presented in Chiacchio (1996), Kozłowski (2003), Nakamura (2009), Siciliano (2010), Spong (1997), 
Tchoń (1997). In Chiacchio (1996), Kozłowski (2003), Nakamura (2009), Siciliano (2010) for a singular 
configuration it is proposed to use: singular value decomposition techniques SVD of the Jacobian, the 
damped least-squares inverse of the Jacobian DLS or singularity robust inverse of the Jacobian. In the work 
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(Tchoń, 1997) a method of avoiding singularities by using of dynamical systems of the own motion is 
presented. The same work presents a solution of the inverse kinematics in singular configurations, obtained 
using: the method a normal form, Jacobian attached, the zero and the Jacobian space. A common feature of 
kinematic singularity avoidance methods presented in Chiacchio (1996), Kozłowski (2003), Nakamura 
(2009), Siciliano (2010), Tchoń (2000) is their high computational complexity.  

A very simple approach to the problem of determining the kinematic singularities based on the 
differential description is presented in Spong (1997), on the examples of manipulators with three degrees of 
freedom. Simple, because based on closed forms of the determinants of manipulators Jacobian, allowing a 
very simple determination of joint variables, describing singular configurations. Simple rules of linear 
algebra are recommended in Spong (1997) for solving the inverse kinematics in the field of speed. 

Only the methods which do not require a large number of calculations can be of practical use. 
This paper presents a very simple method of correction, allowing to avoidance of the singular 

configuration of modern industrial robots. In this method, the values of third and fifth joint variables are 
corrected. These values were determined from the closed form of the Jacobian determinant of modern 
industrial robots, (Spong, 1997). The closed form of formulas describing the third and fifth joint variables for 
the singular configurations of manipulators was determined. On the basis of these formulas, one is able to 
determine whether in the next step of the numerical calculations the freezing of the program, caused by a 
reduction of the Jacobian rank, will take place. These corrections prevent the reduction of the Jacobian rank 
and allow the use of any method of solving the inverse kinematics, including the methods described in the 
aforementioned works (Chiacchio, 1996; Nakamura, 2009; Siciliano, 2010; Tchoń, 2000). 

In the second chapter the kinematic structure and a description of the end-effector kinematics in 
relation to the other links, including the base of the manipulator are presented. The formulas constituting the 
differential description of the kinematics are presented in the third chapter. A general description of singular 
configurations including their illustration and the examples of the calculations of joint variables corrections, 
preventing the reduction of the Jacobian rank, are presented in the fourth chapter. The fifth chapter 
summarizes the paper. 

 
2. The global description of the kinematics 

 
Figure1 illustrates the robot manipulators of the majority of modern robots, with numbered links. 

The link 0 is attached to the ground, other links 1-6 are movable. The link 0 will be called a base link, the 
last link with number 6 will be called an end-effector. The gripper, or another tool, is attached to this link. 
Neighboring links are connected by revolute joints. Figure 2 illustrates the manipulator kinematics schema 
with the co-ordinate systems (frames) associated with links according to a Denavit-Hartenberg notation 
(Jezierski, 2006; Kozłowski, 2003; Szkodny, 2013a; 2013b). The x7y7z7 frame is associated with the 
gripper. The position and orientation of the links and tool are described by homogenous transform matrices. 
Matrix Ai describes the position and orientation of the i-th link frame in relation to i-1-st. T6 is a matrix that 
describes the position and the orientation of the end-effector frame in relation to the base link. Matrix E 
describes the gripper frame in relation to the end-effector frame. Matrix X describes the position and the 
orientation of the gripper frame in relation to the base link. Parameters i , i , il , i  are used in the 

Denavit-Hartenberg notation. For further description of the kinematics, joint variables i  will be used. 

Variables ,
i i   for i=1, 3, 4, 5, 6 and ,

22 90     . To simplify, the following denotations will be used: 
,sini iS   , ,cosi iC   , ,sinij ijS   , ,cosij ijC   , , , ,

ij i j   . Matrices Ai are described by Eq.(2.1a).  
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Fig.1. The manipulator. 
 
 

 
 

Fig.2. Kinematic scheme of the manipulator, Denavit-Hartenberg parameters, joint variables and joint 
frames. 
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 Matrix E is described by Eq.(2.1b). 
 

  
7
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 
 
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E .  (2.1b) 

 
 Matrix i-1T6 describes the end-effector frame kinematics in relation to i-1-st frame. Equation (2.2a) 
(Szkodny, 2013a) describes these matrices. 
 

  ,
6

i 1
6 j

j i

1 i 6



  T A .  (2.2a) 

 
From Eqs (2.1a) and (2.2a) one obtains 
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 These matrices are necessary to the differential description of the end-effector kinematics, in relation 
to the base frame. The description is presented in the next chapter. 

 
3. The differential description of the kinematics 

 
To make the description of the manipulator kinematics independent of the shape of the gripper, the 

required position and orientation of the gripper frame x7y7z7 (described by the matrix reqX ) are converted 

to the end-effector frame x6y6z6. Correlation 6 req req
 1T X E  makes the conversion possible. Therefore, in 

further considerations, we will focus on the end-effector kinematics. 
The movement of the x7y7z7 frame in relation to the x0y0z0 frame will be described by using 

displacement differentials 7
7dx , 7

7dy , 7
7dz  of origin O7, and x-y-z current angle differentials 7

7 xd , 
7

7 yd , 7
7 zd  (Craig, 1993; Szkodny, 2012). These differentials are described in the x7y7z7 frame. 
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Similarly, the movement of the x6y6z6 frame in relation to the x0y0z0 frame will be described by using the 

displacement differentials 6
6dx , 6

6dy , 6
6dz  of the origin O6, and x-y-z current angle differentials 6

6 xd , 
6

6 yd , 6
6 zd . These differentials are described in the x6y6z6 frame. Further, we will focus on the 

movement description of the end-effector and therefore one it is necessary to convert the gripper 

differentials to end-effector differentials. The differential equation 
6

6 7
6 7T E X  , which connects 

end-effector and gripper differentials, results from the work (Szkodny, 2013a). In this equation, 6
6  and 

7
7  are differential transformation matrices, respectively, of the end-effector and gripper frame. These 

matrices have the following forms 
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 From the above Eq.(3.1) results 
 
  6 1 7 1 7 1

6 6 7 7
   T X E E E   . (3.1) 

 
 From Eqs (3.1) and (2.1b) results Eq.(3.2), which makes it possible to compute the end-effector 
differentials from gripper differentials.  
 
  6 7

6 x 7 xd d   ,                     6 7
y 7 yd d   ,                    6 7

6 z 7 zd d   , 

   (3.2) 

         6 7 7
6 7 7 7 ydx dx d    ,      6 7 7

6 7 7 7 xdy dy d    ,       6 7
6 7dz dx .  

 
To describe the end-effector kinematics one will apply the Cartesian differential matrix  

T6 6 6 6 6 6 6
6 6 6 6 6 x 6 y 6 zdx dy dz d d d     D  and the joint differential matrix , , ,

1 2 3d d d d   q  

, , , T

4 5 6d d d      (Szkodny, 2012). Equation (3.3) connecting these matrices is a differential description 

of the end-effector kinematics.  
 

  6 6
6 6 dD J q .  (3.3) 

 
 In this equation, an end-effector Jacobian 6

6J  is present, described in the x6y6z6 frame, which has 
the form of Eq.(3.4). 
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 Figure 3 illustrates the differential displacement and the rotation of the end-effector, caused by the 

differential displacement and the rotation of the xiyizi frame. The vectors i 1
id r  and i 1

id  , respectively, 
describe the displacement and rotation of the x’y’z’ frame in relation to the xi-1yi-1zi-1 frame, caused by a 

differential increase of the joint variable ,
id . The x’y’z’ frame is connected with the i-th link, and coincides 

with xi-1yi-1zi-1 frame for ,
id 0  . The displacement of ,

i 1
6 id r  of x6y6z6 frame is caused by the displacement 

of i 1
id r  and rotation of vector i 1

6
 d  by an angle i 1

id  . Therefore 
 
 

                                             
 

 
Fig.3. Differential displacements and rotations of i-th and 6-th frames. 
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 This movement will be recalculated in relation to the x6y6z6 frame, using Eq.(3.6). 
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which is a vector i 1
id  . This vector can be recalculated in relation to the x6y6z6 frame by the following Eqs 

(3.7) 
 

  ,
6 i 1 i 1

6 x i 6 id d   a  ,         ,
6 i 1 i 1

6 y i 6 id d   b  ,         ,
6 i 1 i 1

6 z i 6 id d   c  . (3.7) 

 

 In Fig.2 one can see that all links are connected by revolute joints. Therefore, the angles i 1
id   are 

vectors directed along the zi-1 axis, having a length equal to the differential ,
id . Therefore 

 

  ,i 1 i 1
i i 1 id d 

 k .  (3.8) 
 
i 1

i 1


k  is the versor of the zi-1 axis, described in the xi-1yi-1zi-1 frame. For such joints, no displacement of the 

coordinate system x’y’z’ in relation to the xi-1yi-1zi-1 frame takes place, therefore i 1
id 0 r . Thus, from Eqs 

(3.5) and (3.8) one obtains the following 
 

    ,
,

i 1 i 1 i 1 i 1 i 1 i 1 i 1
6 i 6 i 1 6 y i 1 6 x id d d d d      

      r d i j . (3.9) 

 

           The vectors i 1
i 1


i  and i 1

i 1


j  are versors of the xi-1 and yi-1 axes, respectively, described in xi-1yi-1zi-1 

frame. i 1
6 xd  and i 1

6 yd  are the x and y - coordinates of the vector i 1
6

 d  in the xi-1yi-1zi-1 frame. After taking 

into account Eqs (3.9) and (3.6) one obtains the following 
 

   ,
,

6 i 1 i 1 i 1 i 1
6 i 6 x 6 y 6 y 6 x idx a d a d d         , 

 

   ,
,

6 i 1 i 1 i 1 i 1
6 i 6 x 6 y 6 y 6 x idy b d b d d         ,  (3.10) 

      

  ,
,

6 i 1 i 1 i 1 i 1
6 i 6 x 6 y 6 y 6 x idz c d c d d         .  

 
i 1

6 xa , i 1
6 ya  are the x and y - coordinates of the versor i 1

6
 a  in xi-1yi-1zi-1 frame. The coordinates of the 

versors i 1
6

 b  and i 1
6

 c  were marked in a similar way. 
 From Eqs (3.7) and (3.8) one obtains the following correlations 
 

  ,
,

6 i 1
6 x i 6 z id a d    ,        ,

,
6 i 1

6 y i 6 z id b d    ,        ,
,

6 i 1
6 z i 6 z id c d    . (3.11) 

 

 The differential of each coordinate in the Cartesian matrix 6
6D  is the sum of the corresponding 

coordinate differentials caused by differential changes in joint variables ,
id . For example, 

,

6
6 6

6 6 i
i 1

dx dx


 . In the Jacobian matrix 6
6J  the derivatives of Cartesian coordinates of the x6y6z6 end-

effector frame with respect to the joint variables are present. The derivative ,
, ,

6
6 i6

i i

xx 


 
 only because the 



Differential kinematics of contemporary industrial robots 

 

651

differential idx ,6
6  depends on the value of ,

id . The situation is similar with other derivatives in this matrix. 

Therefore, the elements of matrix 6
6J  can be presented in the form of Eqs (3.12) and (3.13), taking into 

account the relations (3.10) and (3.11).  
 

  ,
, ,

6
6 i6

i i

xx 
 

 
i 1 i 1 i 1 i 1

6 x 6 y 6 y 6 xa d a d       ,  

 

  ,
, ,

6
6 i6

i i

yy 
 

 
i 1 i 1 i 1 i 1

6 x 6 y 6 y 6 xb d b d       , 

   (3.12) 

  ,
, ,

6
6 i6

i i

zz 
 

 
i 1 i 1 i 1 i 1

6 x 6 y 6 y 6 xc d c d       ,  

 

  ,
, ,

6
6 x i6 x

i i


 

 
i 1

6 za ,  

    (3.13) 

  ,
, ,

6
6 y 6 y i

i i

 
 

 
i 1

6 zb ,         ,
, ,

6
6 z i6 z

i i


 

 
i 1

6 zc .  

 
 Matrices i-1T6, described by Eq.(2.2b) can be presented in the form Eq.(3.14). 
 

  

i 1 i 1 i 1 i 1
6 x 6 x 6 x 6 x

i 1 i 1 i 1 i 1
i 1 6 y 6 y 6 y 6 y

6
i 1 i 1 i 1 i 1

6 z 6 z 6 z 6 z

a b c d

a b c d

a b c d

0 0 0 1

   

   


   

 
 
 

  
 
 
 

T . (3.14) 

 
 Quantities appearing in formulas (3.12) and (3.13) can be replaced by the corresponding elements of 
the matrix i-1T6, resulting from the form Eq.(2.2b) and corresponding to the form Eq.(3.14). It is easy to 

notice that the index i in Eqs (3.12)-(3.14) is the number of column in the matrix 6
6J . After using Eqs 

(2.2b), (3.12)-(3.14) and simplifications, one obtains the following elements of the end-effector Jacobian 
6

6J  
 

  
,

6
6

1

x



l1(−S4C5C6−C4S6)+l2S2(S4C5C6+C4S6)+l3S23(S4C5C6+C4S6)+ 

  -λ4C23(S4C5C6+C4S6)+λ6(−C6C23S4−C4S6C23C5+S23S6S5), 
 

  
,

6
6

1

y



l1(S4C5S6−C4C6)−l2S2(S4C5S6−C4C6)−l3S23(S4C5S6 −C4C6)+ 

  +λ4C23(S4C5S6 −C4C6)+λ6(C6S23S5+S6C23S4 −C4C6C23C5), 
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,

6
6

1

z



−l1S4S5+l2S4S5S2+l3S4S5S23−λ4S4S5C23, 

 

  
,

6
6 x

1





−C6S23S5−S6C23S4+C4C6C23C5,       ,

6
6 y

1





−C23S4C6−C23C4S6C5+S23S6S5, 

 

  
,

6
6 z

1





C23C4S5+S23C5; 

 

 
,

6
6

2

x



l2(−C23C4C5C6+C23S4S6+C6S23S5)S2+(S23C4C5C6−S23S4S6+C6C23S5)C2)+ 

  +l3C6S5+λ4(C4C5C6−S4S6)−λ6(S4S6C5−C6C4), 
 

  
,

6
6

2

y



l2(C23C4C5S6+C23S4C6−S6S23S5)S2−(S23C4C5S6+S23S4C6+S6C23S5)C2)+ 

  -l3S6S5+λ4(−C4C5S6−S4C6)−λ6(S4C5C6+C4S6), 
 

  
,

6
6

2

z



l2((S23C4S5−C23C5)C2−(C23C4S5+S23C5)S2)−l3C5+λ4C4S5, 

 

  
,

6
6 x

2





S4C5C6+C4S6,           ,

6
6 y

2





−S4S6C5+C6C4,           ,

6
6 z

2





S4S5; 

 

  
,

6
6

3

x



l3C6S5+λ4(C4C5C6−S4S6)+λ6(−S4S6C5+C6C4), 

 

  
,

6
6

3

y



−l3S6S5+λ4(−C4C5S6−S4C6)+λ6(−C4S6−S4C5C6),             ,

6
6

3

z



−l3C5+λ4C4S5, 

 

  
,

6
6 x

3





S4C5C6+C4S6,           ,

6
6 y

3





−S4S6C5+C6C4,           ,

6
6 z

3





S4S5; 

 

  
,

6
6

4

x



λ6S5S6,       ,

6
6

4

y



λ6S5C6,       ,

6
6

4

z



0,       

,

6
6 x

4





−S5C6,       ,

6
6 y

4





S5S6, 

 

  
,

6
6 z

4





C5; 
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,

6
6

5

x



λ6C6,       ,

6
6

5

y



−λ6S6,       ,

6
6

5

z



0,       

,

6
6 x

5





S6,       ,

6
6 y

5





C6,        

 

  
,

6
6 z

5





0;          

,

6
6

6

x



0,              

,

6
6

6

y



0,        

,

6
6

6

z



0,          

,

6
6 x

6





0,        

 

  
,

6
6 y

6





0,         

,

6
6 z

6





1.   (3.15) 

 
 Equation (3.3) with dependencies (3.15) is a differential description of the end-effector kinematics. 
 
4. The singular configurations 
 

For the singular configurations of manipulators the 6
6J  determinant equals zero. Thus, to determine 

such configurations one needs to calculate the determinant. The closed form of the determinant was obtained 
by Symbolic Math Toolbox library of Matlab. It is described by Eq.(4.1). 
 
  det 6J6=−l2S5(λ4C3−l3S3)(−l2S2−l3S23+λ4C23+l1). (4.1) 
 

O3 

O2 

3

4
5

O4 

 
Fig.4. Configuration at which ,

5 0  . The z3 and z6 axes are collinear. 

 
 

4

O1 

3

2
O2 

O3 ,*
3

O2O3=l3 

O3O4=λ4 

O4 

 
 

Fig.5. Configuration at which 4 3 3 3C l S 0   . Points O1, O2 and O4 are situated on a straight line. 
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 The singular configurations appear in zero values of the factors on the right side of Eq.(4.1). The 
joint variables at which it will take place, are described by Eq.(4.2). 
 

  ,*
5 5S 0 0   ,           ,* arc tg4 3 3 3 4 33C l S 0 l      , 

 

  2 2 3 23 4 23 1l S l S C l 0      
 ,** ,

( , ) arc tg
22 2

3 3 4 2 2 1
23 1 2

4 2 2 1

l l l S l
2

l S l

             
 

 (4.2) 

 

l1 

 
O3 

z0 

O2 

O1 

O4 

,
2  

*,*
)(123  

1 

2 

3 
4 

O4 

*,*
)( 223  

O3 

z0 

O2 

O1 

,
2  

1

2
O1O2=l2 

O2O3=l3 

O3O4=λ4 

*,*
)(

,*,*
)( 132123   

3 

4 
*,*

)(
,*,*

)( 232223   

 

 
Fig.6.  Configuration at which 2 2 3 23 4 23 1l S l S C l 0      . Point O4 is placed on the line passing through  

the z0 axis. 
 
Figures 4, 5 and 6 illustrate these configurations. 

For example, let us analyze kinematic singularities of the manipulator IRB-1400. The manipulator 
has the following parameters (Szkodny, 2009) 1l 150 mm , 2l 600 mm , 3l 120 mm , 1 475 mm  , 

4 720 mm  , 6 85 mm  . The ranges of angle changes ,
3  and ,

5  are the following: ,
370 65     , 

,
5115 115     . The calculations below were mode in Matlab on a PC from an Intel Pentium processor 

with a frequency of 2 GHz. 

 Let us assume that , , ,,41 6 0      for the configuration from Fig.4. For this configuration 
,*
5 0   . In this case the det6J6=0 and the rank6J6=5. The rank of the Jacobian 6J6 is less than 6 and 

therefore, a standard numerical solution algorithm of Eq.(3.3) will interrupt the calculations. One can avoid 

zeroing the determinant by increasing or decreasing the angle ,
5  by a minimum increment ,

min5 , 

resulting from the resolution of the encoder and the gear ratio. Let us assume that a typical resolution of 
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encoders is the following / . .32 4096 1 5 10 rad   , and the value of the gear ratio equals 100. For such 

data ,
min . .5

5 1 5340 10 rad    After the corrections , ,
min5 5   , one obtains det 6

6 J . 35 7653 10  

and rank6J6=6. Let us estimate the gripper position error caused by this correction. The kinematic scheme in 

Fig.2 results in the error not greater than  ,
min 6 75     . Let us assume that a typical value of the 

parameter gripper is the following .7 150 mm   For such a gripper, ,
min5  causes a change of the gripper 

position not greater than . .33 6 10 mm   

 For the configuration from Fig.5 the joint variable ,*
3  .80 5376778 . The manipulator IRB-1400 

cannot reach this variable, because it is outside the range of its changes.  

 Let us assume that ,
1 0   , ,

2 45   , ,
4 0   , ,

5 90   , ,
6 0    for a configuration from Fig.6. 

For these joint variables one obtains ,**
( ) .3 1 13 4676545   , ,**

( ) .3 2 122 3922989    . The joint variable ,**
( )3 2  

is outside the range of its changes. For the joint variable ,**
( )3 1  det6J6 . 82 2918 10   and rank6J6=5. The 

rank of the Jacobian 6J6 is less than 6 and therefore, a standard numerical solution algorithm of Eq.(3.3) will 
interrupt the calculations. In order to prevent a decrease in the rank of the Jacobian 6J6 one will increase and 

reduce the joint variable ,**
( )3 1  by a minimum increment ,

min3 , equal to ,
min5 . After corrections 

,
min3  of the joint variable ,**

( )3 1 , one obtains det 6
6 J . 34 1854 10   and rank6J6=6. The change in 

,
min3  causes an error of the gripper position, which equals max. . .314 7 10 mm  

 
5. Summary 

 
 A differential description of the manipulator kinematics, presented in this paper, is the basis for 
design of contemporary software drivers of industrial robots, independent of the software manufacturers 
robots. 
 This description can be applied in IRB manipulators series 1000, 2000, 3000, 4000, 6000; in Fanuc 
manipulators M6, M16, M710, M10, M900; in a KUKA manipulators KR5, KR6, KR15, KR16; in a 
Mitsubishi manipulators RV-1A, RV-2A, RV-3S, RV-6S, RV12S; in Adept manipulators s300, s650, s850, 
s1700; in Kawasaki manipulators series M, FS300N, ZHE100U, KF121. 
 For KUKA KRC3, Adept s300 and Mitsubishi RV-2AJ manipulators the origin of second and third 
link frame is at the same point O2=O3 (see Fig.2). Therefore for these manipulators one has to assume that 

3l 0 .  

 In modern industrial robot controllers actuator variables calculation is realized in two stages in 
master-level of control, and in a single stage in the slave-level control. In the first step, in the master-level 
the trajectory generator calculates the Cartesian coordinates of the trajectory via-points. The trajectory is 
specified by a suitable Cartesian programming command (for example, LIN). The calculated via-points in 
the Cartesian space are pre-assigned times. The times resulting from the speed in the Cartesian space, 
declared in a suitable command parameter are assigned to the points. In the second stage joint variables are 
determined (Craig, 1993; Szkodny, 2012) for the earlier computed via-points in the Cartesian space. To 
determine these variables the iterative calculation algorithm of solutions Eq.(3.3) is used. Next actuator 
variables are calculated for joint variables of these via-points. Such calculated actuator variables are sent 
from the master level into the slave level of control, with constant frequency. The actuator variables of the 
via-points are calculated at the time of the robot motion to the previously calculated via-points. If a via point 
determined by the trajectory generator in the Cartesian space is singular, calculating joint variables using the 
iterative algorithm, without a protection against the Jacobian rank reduction results in an undesirable 
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interruption of the calculations and stopping the robot. The robot stops before the a singular via-point when 
approaching the previously calculated nonsingular via-points.  

It may happen that the via-point obtained in the first stage of the calculation is near a singular via-
point. In this case the iterative calculation algorithm of joint variables may be convergent, but the resulting 
actuator variables will be very different from the corresponding variables of the previous via-point. For 
large increments of joint variables and already pre-declared times of the previous and current via-points, it 
may happen that the average rate of change of actuator variables is much greater than the maximum 
actuator speed. Furthermore, in this case, the actuator variables accelerations may occur above the 
maximum acceleration that can be reached by the actuators. The problem of these exceedances is solved 
by the trajectory generator in the slave-layer of control. Command motion parameters (e.g., LIN) are sent 
from the master level into the slave level control. These are, among others, the declared translational 
movement speed and acceleration. In general, the acceleration is declared in percent of the maximum 
permissible values. These parameters are the basis for the generation of actuator variables in the slave 
level of control. Waveforms of actuator variables are generated at a constant speed sections connected 
with fixed segments accelerations. If the movement command, e.g., LIN, declares translational movement 
speed and acceleration at the level of 10% of their maximum values, the result is that the in slave level of 
control the waveforms with speed and acceleration rates of not more than 10% of the maximum actuator 
speed and acceleration will be generated.  

In the controllers of contemporary industrial robots one can write his/her own applications. These 

applications can be written using Eq.(3.3) derived from this work. In this equation, differentials ,
id  should 

be replaced by the increments ,
i , and differentials 6

6dx , 6
6dy , 6

6dz , 6
6 xd , 6

6 yd  and 6
6 zd  by 

corresponding increments 6
6x , 6

6y , 6
6z , 6

6 x , 6
6 y  and 6

6 z . Such discretized Eq.(3.3) is the 

basis for the second stage of the calculation at master level of control. During this stage, the joint variables of 
the via-pints are iteratively calculated from the discretized Eq.(3.3). Recall that at this level of control in the 
first stage the Cartesian coordinates of the via-points are calculated.  

Assume that the joint variables of the previous via-point of trajectory were calculated iteratively and 

denote them by ,( )
i
 . For the calculation of the joint variables of the current via-point, we will also apply 

the iterative calculation algorithm. In the next for example the k-th iteration of calculations, the initial values 

of the link variables ,( )
( )i start k

  are equal to the end values ,( )
( )i end k 1


  from the previous iteration. We 

calculate the Jacobian  ,( )
( )

6
6 i start k

J  and increases ,( )
( )i k
  from the discretized Eq.(3.3). The end values of 

the joint variables in the k-th iteration ,( )
( )i end k

  are the sum ,( )
( )i start k

 + ,( )
( )i k
 . Subsequent iterative 

calculations cause that the end values ,( )
( )i end k

  of iteration approach values ,
i  representing the solution of 

the inverse kinematics of the current via-point. If the current via-point is singular, the approaching it gives 

rise to the risk of a reduction of the Jacobian  ,( )
( )

6
6 i start k

J  rank. These protection measures are presented 

in the fourth chapter by using the example of the IRB-1400 manipulator. They consist in the correction of the 

angles ,
3  and ,

5  by minimum increments ,
min3  and ,

min5 , seen by the servos.  

If during the iterative calculations ,( )
( )3start k

  satisfies the inequality ,( ) ,* ,
( ) min33 start k 3

    , we 

assume: )(,
)(3

 kend = ,*
3  ,( ) ,

( ) minsign 3 k 1 3

   . If ,( ) ,**

( ) ( , )3 start k 3 1 2
   ,

min3  , we substitute 

)(,
)(3

 kend = ,**
( , )3 1 2   ,( ) ,

( ) minsign 3 k 1 3

   . Also, for the angle ,( )

( )5 start k
  satisfying the inequality 
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,( ) ,( ),* ,
( ) ( ) min55 start k 5 start k 5

       , we assume: )(,
)(5

 kend =  ,( )
( )sign 5 k 1

  ,

min5 . For the other 

variables )(,
)( 

 kendi = ,( )
( )i start k

 . 

Using such protection measures one should check the range of the changes in the gripper position 
caused by above angles corrections. For the sample IRB-1400 manipulator suggested corrections can at most 

result in changes of the position which is the sum of errors, i.e., . .33 6 10 mm + . .314 7 10 mm  

. .318 3 10 mm   The typical positioning accuracy of industrial robots are of the order .110 mm  Thus, the 

errors caused by such corrections are acceptable.  
 If the gripper position errors caused by such corrections were equal to or greater than the required 
positioning accuracy, inverse kinematics equations in a global form, presented in Szkodny (2010) would 
need to be used. For these equations, we can apply simple criteria for selecting solutions at the joint 
variables. Such criteria are much simpler and faster to implement than the criteria proposed in the Jacobian 
methods (Chiacchio, 1996; Nakamura, 2009; Siciliano, 2010; Tchoń, 2000).  

The differential description of the kinematics, including corrections to prevent the loss of the 
Jacobian rank, presented in this paper, constitutes the basis for the creation of our own software, free from 
the basic defect, namely, undesired stopping in singular positions. 
 
Nomenclature 
 
 iA  – homogeneous matrix describing the i-th link frame in relation to the i-1-st link 

 i 1
6

 a  – versor of x6 axis described in i-1-st frame  

, ,i 1 i 1 i 1
6 x 6 y 6 za a a    – coordinates of versor i 1

6
 a  in i-1-st frame 

 i 1
6

 b  – versor of y6 axis described in i-1-st frame  

 , ,i 1 i 1 i 1
6 x 6 y 6 zb b b    – coordinates of versor i 1

6
 b  in i-1-st frame 

 i 1
6

 c  – versor of z6 axis described in i-1-st frame  

  , ,i 1 i 1 i 1
6 x 6 y 6 zc c c    – coordinates of versor i 1

6
 c  in i-1-st frame  

  6
6D  – Cartesian differential matrix 

  i 1
6

 d  – vector describes the position of the 6-th link frame origin in relation to i-1-st frame, 

     described in i-1-st frame 

, ,i 1 i 1 i 1
6 x 6 y 6 zd d d    – the coordinates of the vectors i 1

6
 d  in i-1-st frame 

 i 1
id r  – differential displacement of the x’y’z’ frame origin in relation to the xi-1yi-1zi-1 frame,  

               caused by a differential increase of the joint variable ,
id  

 i 1
6d r  – differential displacement of the 6-th link frame origin in relation to the xi-1yi-1zi-1 frame,  

               caused by a differential increase of the joint variable ,
id  

 i 1
id   – differential rotation of the x’y’z’ frame in relation to xi-1yi-1zi-1 frame,  

               caused by a differential increase of the joint variable ,
id  

 ,
i 1

6 id   – differential rotation of the 6-th link frame in relation to xi-1yi-1zi-1 frame,  

                caused by a differential increase of the joint variable ,
id  

  dq  – joint differential matrix  
  E  – homogeneous matrix describing the gripper frame in relation to the end-effector frame 

 
 



T.Szkodny 

 

658

 
 i 1

i 1


i  – versor of xi-1 axis described in i-1-st frame  

 6
6J  – end-effector Jacobian 6

6J , described in the 6-th link frame 

 i 1
i 1


j  – versor of yi-1 axis described in i-1-st frame  

 i 1
i 1


k  – versor of zi-1 axis described in i-1-st frame  

  il  – displacement along ix  axis 

 6T  – homogeneous matrix describing the end-effector frame in relation to base frame 

 6reqT  – required matrix 6T  

 i 1
6

 T  – homogeneous matrix describing the end-effector frame in relation to i-1-st frame 

 X  – homogeneous matrix describing the gripper frame in relation to base frame 
 reqX  – required matrix X  

 0 0 0x y z  – base frame 

  iii zyx  – i-th link frame  

  ' ' 'x y z  – frame connected with i-th link, coinciding with i-1-st frame for ,
id 0   

  i  – rotation angle of the i-th link frame in relation to i-1-st frame about the i 1x   axis 

  6
6Δ  – differential transformation matrices of the end-effector described in the 6-th frame 

  7
7Δ  – differential transformation matrices of the gripper described in the7-th frame 

  i  – rotation angle of the i-th link frame in relation to the i-1-st frame about i 1z   axis 

 ,
i   – the i-th link variable  

  i  – displacement along iz  axis 

 
References 
 
Chiacchio P., Chiaverini S. and Siciliano B. (1996): Direct and inverse kinematics for coordinated motion tasks of 

two – manipulator system. – Journ. of Dynamics Systems, Measurement, and Control., vol.118, No.4, pp.691-
697. 

Craig J.J. (1989): Introduction to Robotics. – New York: Addison-Weseley Publ. Comp. charter 4. 

Jezierski E. (2006): Dynamics and Control of Robots. – Warsaw: WNT 2006, ch.2, (in Polish). 

Kozłowski K., Dutkiewicz P. and Wróblewski W. (2003): Modeling and Control of Robots. – Warsaw: PWN, ch 1, (in 
Polish). 

Nakamura Y. and Hanafusa H.(2009): Inverse kinematic solutions with singularity robustness for manipulator control. 
– Journ. of Dynamics Systems, Measurement, and Control., vol.108, No.3, pp.163-171. 

Siciliano B., Sciavicco L. Villiani L. and Oriolo G. (2010): Robotics, Modelling, Planning and Control. – Springer 
Verlag Berlin 2010, chapter 3.5.2 

Spong M.W. and Vidyasagar M. (1997): Robot Dynamics and Control. – Warsaw: WNT, chapter. 5.3-5.4, (in 
Polish). 

Szkodny T. (2009): Basic component of computational intelligence for IRB-1400 robots. – Man-Machine Interactions. 
Berlin Heidelberg: Springer-Verlag, part.XI, pp.637-646. 

Szkodny T. (2010): Inverse Kinematics Problem of IRB, Fanuc, Mitsubishi, Adept and Kuka Series Manipulators. – J. 
of Applied Mechanics and Engineering. Zielona Góra. University Press, vol.15, No.3, pp.847-854. 

 

 

 



Differential kinematics of contemporary industrial robots 

 

659

Szkodny T. (2012): Foundation of Robotics. – Gliwice. Silesian University of Technology Publ. Company, ch.2.4 (in 
Polish). 

Szkodny T. (2013a): Kinematics of Industrial Robots. – Gliwice. Silesian University of Technology Publ. Company, 
ch.2,3,4,8.3 (in Polish).  

Szkodny T. (2013b): Foundation of Robotics Problems Set. – Gliwice. Silesian University of Technology Publ. 
Company, ch.2 (in Polish). 

Tchoń K., Mazur A., Dulęba I., Hossa R. and Muszyński R. (2000): Mobile Manipulators and Robots. – Academic 
Publ. Company PLJ 2000, chapter.3.2 (in Polish). 

 

 

Received: May 15, 2014 

Revised:   June 18, 2014 


