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The study is focused on determining the errors in output kinematic parameters (position, velocity, 
acceleration, jerk) of entire links or their selected points in complex planar mechanisms. The number of DOFs of 
the kinematic system is assumed to be equal to the number of drives and the rigid links are assumed to be 
connected by ideal, clearance-free geometric constraints. Input data include basic parameters of the mechanism 
with the involved errors as well as kinematic parameters of driving links and the involved errors. Output errors in 
kinematic parameters are determined basing on the linear theory of errors. 
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1. Introduction 

 
 Determining kinematic errors in complex mechanisms is a most difficult task. The sources of 

errors in kinematic parameters include manufacturing errors (when handling linear or angular dimensions), 
shape and positioning errors, clearances in kinematic pairs, deformations under the force or thermal loads 
(volumetric or contact strains) and errors associated with drive control. Engineering design of kinematic 
systems becomes a mutli-stage iterative process, starting from simple (sometimes static) models with 
simplifying assumptions, moving to more complex ones and finally reaching the model well 
approximating the behaviour of a real object. While expanding the model, we more accurately define the 
properties of the investigated system. Nowadays most investigations of complex kinematic models involve 
the virtual model testing using the FEM approach, MBS (Multibody Simulations) and other simulation 
programs. The scope of testing is usually defined by the requirements imposed upon the final product and 
its kinematic systems.  

 Literature on the subject abounds in works on high-precision kinematic systems, such as 
manipulators used in surgery (Mavroidis et al., 1998), however most researchers tend to focus on positioning 
errors (Fenton et al., 1989). This study investigates the position, velocity, acceleration and jerk errors in 
planar kinematic systems assumed to have rigid links connected by ideal, clearance-free geometric 
constraints. The investigated system can have any number of drives, but its degree of mobility should be 
equal to the number of drives. Two drive options are possible: the internal drive or the  drive located next to 
the fixed link. It is further assumed that time in the equations of constraints should not appear explicitly. This 
assumption does not impose the limit on generality of the analysis because errors due to time variance can be 
taken into account when analysing errors in kinematic parameters of the driving links. The system has no 
passive parameters of kinematic constraints or apparent degrees of mobility. Kinematic systems can 
comprise any number of kinematic units of any class. Bearing in mind that undesired singular positions 
should not occur in well- designed mechanisms, a further assumption was made that particular error types are 
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not interrelated. For brevity of the paper, the example considered in the study is a class II kinematic unit 
(according to the structural classification by Artobolevsky). 

 
2. Determining the errors in output kinematic parameters- general case 

 
2.1. Position errors 

 
 For a kinematic system whose motion is defined, the equations of position constraints can be given 

as 
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where 
 
wi=1..m – basic (linear or angular) dimensions of the kinematic system known beforehand, these dimensions 
are independent of time and are included in the set of input data,  
xj=1..n – time-dependent  geometric dimensions of the kinematic system (drives), included in the set of input 
data and referred to as independent variables  
yk=1..p – time-dependent link positions (referred to as dependent variables or output quantities), mostly 
unknown, 
 The number of equations in the system (2.1) needs to be equal to the number of output quantities. 
Using the notation 
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the system of Eqs (2.1) can be rewritten in an abbreviated form (Gronowicz, 2003) 
 
   , F W X,Y 0 . (2.2) 

 
 In the case of a class II kinematic unit, the nonlinear system of Eqs (2.1) can be solved explicitly. For 

higher class mechanisms, the system of Eqs (2.1) can be solved by other methods: the Newton-Raphson 
numerical method or the modification method (Kotulski and Szczepiński, 2004). Solving nonlinear equations 
is beyond the scope of the present paper, though one has to bear in mind that the choice of the calculation 
procedures and of the positioning configuration may impact on the adequacy of the solution. Recalling the 
linear theory of errors, the positioning error equations can be written as 



Determining the errors in output kinematic parameters of planar …. 785 

  

,

,

...

.

pm n
1 1 1

i j k
i j ki 1 j 1 k 1

pm n
2 2 2

i j k
i j ki 1 j 1 k 1

pm n
p p p

i j k
i j ki 1 j 1 k 1

f f f
w x y 0

w x y

f f f
w x y 0

w x y

f f f
w x y 0

w x y

  

  

  

   
     

  


        

  


   
     

  

  

  

  

 (2.3) 

 
where: Ap0, Bp0, Cp0 - Jacobian matrixes (in further sections these matrixes will not be written in the full form 
as already defined), ΔW- column matrix of errors in dimensions W, ΔX- column matrix of errors in 
dimensions X and ΔY- column matrix of errors in output quantities Y. 
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 The system of Eqs (2.3) can be rewritten in the matrix form 
 
  Δ Δ Δ     p0 p0 p0A W B X C Y 0 . (2.4) 

 
 Rearranging Eq.(2.4) yields  the output position errors 
 

   Δ Δ Δ     1
p0 p0 p0Y C A W B X . (2.5) 

 
 It can be easily demonstrated that the matrix equation yielding the output velocity will have the form 
 

      1
p0 p0Y C B X  . (2.6) 

 
2.2. Velocity errors 
 

 The system of equations needed to determine the velocity errors is obtained by  differentiating the 
system of Eqs (2.1) with respect to time, which gives 
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   , , , , F W X X Y Y 0   . (2.7) 

 
 The velocity error equations can be written as 
 

  Δ Δ Δ Δ Δ         v0 v0 v1 v0 v1A W B X B X C Y C Y 0  . (2.8) 
 

where: Av0, Bv0, Bv1, Cv0, Cv1 - denote respective Jacobian matrixes, 
 

 Δ ...
T

1 2 nx x x   X    - column matrix of errors in input velocities, 

 

Δ ...
T

1 2 py y y     Y    - column matrix of errors in output velocities. 

 
 Finally, the velocity errors (output kinematic parameters) are derived from the formula 
 

   Δ Δ Δ Δ Δ         1
v1 v0 v0 v1 v0Y C A W B X B X C Y  . (2.9) 

 
 Accordingly, the matrix equation used to find the output accelerations can be written in the form 
 

          1
v1 v0 v1 v0Y C B X B X C Y    . (2.10) 

 
2.3. Acceleration errors 
 

 The system of equations needed to determine the acceleration errors is obtained by  differentiating 
the system of Eq.(2.7) with respect to time, yielding 

 
    F W, X, X, X,Y,Y,Y 0     . (2.11) 

 
 The matrix equation can be written as 
 
  Δ Δ Δ Δ Δ Δ Δ             a0 a0 a1 a2 a0 a1 a2A W B X B X B X C Y C Y C Y 0    . (2.12) 
 
where: Aa0, Ba0, Ba1, Ba2, Ca0, Ca1, Ca2 - respective Jacobian matrixes, 
 

 Δ ...
T

1 2 nx x x   X    - column matrix of errors in input accelerations, 

 

 Δ ...
T

1 2 ny y y   Y    - column matrix of errors in output accelerations. 

 
 Rearranging Eq.(2.12), we get the errors in output accelerations 
 
   Δ Δ Δ Δ Δ Δ Δ            1

a2 a0 a0 a1 a2 a0 a1Y C A W B X B X B X C Y C Y    . (2.13) 

 
 Matrix equations to find the jerk errors  (output quantities) can be written as 
 
             1

a2 a0 a1 a2 a0 a1Y C B X B X B X C Y C Y      . (2.14) 
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2.4. Jerk errors 
 

 The system of equations needed to determine the jerk errors is obtained by differentiating the system 
of Eqs (2.11) with respect to time, yielding 

 

    F W, X, X, X, X,Y,Y,Y,Y 0       . (2.15) 

 
 Jerk error equations can be written as 
 

  
Δ Δ Δ Δ Δ

Δ Δ Δ Δ

         

        
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  
    (2.16) 

 
where: Au0, Bu0, Bu1, Bu2, Bu3, Cu0, Cu1, Cu2, Cu3 - respective Jacobian matrixes, 
 

 Δ ...
T

1 2 nx x x   X     - column matrix of errors in input jerks, 

 

Δ ...
T

1 2 py y y     Y    - column matrix of errors in output jerks. 

 
  Rearranging Eq.(2.16) yields  errors in output jerks 
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  It is readily apparent that 
 
    p0 v1 a2 u3B B B B         and         p0 v1 a2 u3C C C C . (2.18) 

 
3. Determining the errors in kinematic parameters using the kinematic software library 
 

 When investigating mechanisms incorporating a number of kinematic units, the recommended 
method is that using the kinematic software library (Młynarski, 1994), expanded accordingly to handle the 
errors of kinematic parameters. Figure 1 shows a kinematic diagram of an aerial device. The operator’s 
comfort in this machine is affected by the error of the basket floor’s angular position (2.8) and acceleration 
of the basket floor. The extreme deviations of acceleration are of particular interest. Obviously, the answer 
to some of these problems will be available after creating and testing the dynamic models taking into 
account the behaviour of the machine as a whole (with all implements) as well as ground flexibility. 
Nevertheless, the relationships provided in this work can be most useful in further calculations, for example 
in calculating the static positioning errors. The kinematic system shown in Fig.1 comprises four class II 
kinematic units numbered in accordance with the sequence applied in the calculation procedure, though in 
the case considered here the units 2 and 3 can be handled in any order. The drive system incorporates two 
actuators (2, 6). Errors in kinematic parameters of the link 8 (basket) can be determined by performing 
calculations for individual kinematic units whilst the output kinematic parameters and involved errors in one 
kinematic unit can become the inputs to the kinematic units to be handled next. Errors in kinematic 
parameters of particular units are determined using the same procedure as in the general case. The kinematic 
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software library can handle other methods of link dimensioning than that shown in Fig.1. Solving the task 
illustrated in Fig.1 requires two types of class II kinematic units, as demonstrated below. 

 

 
 

Fig.1. Schematic diagram of an aerial device. 
 

 Figure 2 shows a class II kinematic unit with indicated attachment points D and E, link and point 
designations do not coincide with those in Fig.1. Equations of attachment points’ positions can be 
incorporated into the system of Eqs (2.1) however, it seems an unjustified procedure because the number of 
equations will increase. Alternatively, the kinematic unit can be handled separately and kinematic 
parameters of attachment points and the involved errors should be determined in the next step. 
Input data include 
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 Output quantities to be determined are 
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Fig.2. Class II kinematic unit. 
 

 Equations governing the position of the kinematic unit become 
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 Solving the system of Eqs (3.1) yields Y and differentiating the system of Eqs (3.1) with respect to 
time, we get 
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 Differentiating the system of Eqs (3.4) with respect to time we get 
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 To find the position errors (output parameters), the respective matrixes need to be determined 
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 Position errors ΔY are obtained from Eq.(2.5). The procedure to determine the position errors of 
attachment points is shown using the example of the point D whose co-ordinates can be derived from the 
equations below 
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 Recalling the linear theory of errors, we get xD, yD. It is worthwhile to mention that all quantities 
on the right-hand side of the equation are known beforehand and so are the involved errors. 
 To find the errors in output velocities, the respective matrixes are derived 
 

  

cos( ) cos( )sin( ) sin( )
, ,

sin( ) sin( )cos( ) cos( )

, , .

AB 1 1 BC 2 21 1 2 2

AB 1 1 BC 2 21 1 2 2

l l

l l

           
              

  

v0 v0

v0 v1 p0 v1 p0

A C

B 0 B B C C

  
  

 

 
 Velocity errors Y  are derived from formula (2.9). In the case of point D, Eqs (3.5) must be 

differentiated with respect to time and ,D Dx y   can be obtained. 
 To determine the errors in output accelerations, the relevant matrixes are written as follows 
 
  , , , , , , .a a a1 a 2 a a1 a 2 0 0 p0 0 p0A B B B B C C C C  

 
 Acceleration errors Y  are derived from formula (2.13). When handling point D, Eqs (3.5) should 

be differentiated twice with respect to time and ,D Dx y    can be obtained accordingly. 
 Figure 3 illustrates a class II kinematic unit with an internal drive (actuator). 
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Fig.3. A class II kinematic unit with an actuator. 
 

 Input data include 
 

  

 

 

, , ,

, , , , , , .

T
AB AB A A B B BC

T
A A B B BC

l l x y x y s

x y x y s

    

         

W W X

X X X X X X X     
  

 
 The quantities to be determined are 
 

     , , , , , , , .
T T

1 2 1 2         Y Y Y Y Y Y Y Y       

  
 The equations of the kinematic links’ positions can be written as 
 

  

cos( ) cos( ) ,

sin( ) sin( ) .

1 A C AB 1 BC 2

2 A C AB 1 BC 2

f x x l s 0

f y y l s 0

      


       

 (3.6) 

 
 The procedure to be adopted in further calculations has been outlined in previous sections. 
 
4. Conclusion 
 

 In many cases the actual values of input quantities are unknown and only their deviations are 
available. The upper and lower limit of admissible errors in output kinematic parameters can be determined 
using the procedure outlined in Kotulski and Szczepiński (2004), however it is required that the impact 
factors expressing how the given error type affects the final result should be first established. It is achieved 
by multiplying the relevant matrixes in Eqs (2.5), (2.9), (2.13), (2.17). 

 Recalling Eqs (2.18), it appears that to determine all errors in output kinematic parameters it suffices 
that the inverse matrix to only one matrix Cp0 should be computed, which requires a numerical procedure. In 
the case of matrices with small dimensions this problem can be solved using symbols (for example for class 
II mechanisms). 

 In the case of cam and lift mechanisms, the kinematic analysis of mechanical systems typically 
involves the jerk analysis as well, whilst theoretical works addressing those aspects are rather scarce. Hence, 

x 

2y 

B

A

C 

D

1 
2 1

1
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the study of errors in kinematic parameters also includes the jerk analysis. When handling the regions in the 
neighbourhood of undesired singular positions, it is recommended to replace the linear error analysis with a 
non-linear theory, to account for the effects that particular errors have on other error types.  In certain cases 
the assumption that links are non- deformed has to be abandoned (as in the case of a mechanism in the 
knuckle joint press).  

 The choice of the link dimensioning method can affect the final results, too. When formulating the 
equations of constraints, the minimal path principle should be adopted. Determining the errors in kinematic 
parameters of driving links may prove to be a time-consuming task. Errors in input parameters can be 
determined by theoretical analyses, from testing of virtual models and through measurements of real-life 
objects. 
 
Nomenclature 
 

, ,

, ,

, ,

,

, ,

, ,

, ,

l l
a a

i jl i l j

l l
a1 a2

j jl j l j

l l
a a1

k kl k l k

l
a2

k l k

f f

w x

f f

x x

f f

y y

f

y

   
         

    
    

       

    
        

 
   

0 0

0

A B

B B

C C

C

 

 

 

 







 – Jacobian matrices in the matrix equation of acceleration errors (2.12) 

, ,

,

.. ,

..

, ,

,

,  .. , ..

l l

i jl i l j

l

k l k

i 1 m

j 1

f f

w x

f

n k 1 p l 1 p

y

   
         

 
  



 







p0 p0

p0

A B

C  – Jacobian matrices in the matrix equation of position errors (2.4) 

, ,

, ,

,,

, ,

, ,

, ,

, ,

,

l l
u u

i jl i l j

l l
u1 u2

j jl j l j

l l
u3 u

j k l kl j

l l
u1 u2

k kl k l k

f f

w x

f f

x x

f f

x y

f f

y y

   
         

    
    

       

    
         

    
        

0 0

0

A B

B B

B C

C C

 

 

 

 



 

 

,

,

l
u3

k l k

f

y

 
   

C




 – Jacobian Matrices in the matrix equation of jerk errors (2.16) 

, ,

,,

,

, ,

, ,

l l
v v

i jl i l j

l l
v1 v

j k l kl j

l
v1

k l k

f f

w x

f f

x y

f

y

   
         

    
         

 
   

0 0

0

A B

B C

C

 

 







 – Jacobian matrices in the matrix equation of velocity errors (2.8) 
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 F,F,F,F    – column matrix of geometric constraint equations and its time derivatives 

 t – time 
 W – column matrix of (time –independent) basic geometric dimensions 
 X, X, X, X    – column matrices of (time-dependent) input kinematic parameters 

 Y,Y,Y,Y    – column matrices of (time-dependent) output kinematic parameters 

 W – column matrix of errors in basic geometric dimensions 
 X, X, X, X  Δ Δ Δ Δ  – column matrices of errors in respective input parameters X, X, X, X    
 Y, Y, Y, Y  Δ Δ Δ Δ  – column matrices of errors in respective output parameters Y,Y,Y,Y    
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