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Abstract

Distributed parameter systems constitute an important class of modern industrial pro-
cesses. However, in many practical applications the engineers still tend to adapt some classi-
cal control techniques developed for lumped systems totally neglecting the spatial dynamics
of investigated process. In a view of increasing demands imposed on system accuracy and per-
formance such conventional control algorithms simply become insufficient and there is a great
necessity for novel identification and control methods taking into account both the temporal
and spatial dynamics. This work reports a dedicated approach to control design for repeti-
tive thermal process consisting of the extension of the existing feedback control scheme with
intelligent data-driven component using the iterative learning control technique. Although
this is a method which emerged in the context of time-invariant systems, it become adapted
to more complex systems due to its flexibility and inherent robustness. The characterization
of the resulting control scheme is discussed together with control design and implementation
details. In order to compare the quality of the regulation, the approach is illustrated with
simulation on the realistic model of wafer heating in industrial vacuum furnace.

1 Introduction

Designing a controller for accurate reference tracking is one of the typical control tasks encountered
in industrial applications. Knowledge of the accurate system model is helpful and provide impor-
tant insight into understanding the process under consideration, if not a ready-to-use inverse model.
Closed-form formulas are used as the gold standard of control. On the other hand, most real-world
processes have very complicated dynamics (heating processes, fluid dynamics, elastic materials
etc.) which evolves not only in time but also in space and cannot be neglected. Such systems are
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known as distributed parameter systems (DPSs) and stimulate the researchers to use of increas-
ingly complex models, such as partial differential equations (PDEs) [3,6,7,10,11,22,26,30,34,35].
Although such sophisticated descriptions usually increase the computational effort, they signifi-
cantly increase the accuracy of the process modeling. Therefore, the solutions are sought that
minimize computational complexity but in the same time are relatively simple to implement in the
existing automation systems.

Feedback controllers have been an indispensable control tool throughout their long history.
In the literature, there are many types and modifications of the selection of settings for this
control method [8, 21, 23, 31, 32]. Despite many advantages, including performance and resistance
to uncertainty, unfortunately, it is usually not able to provide the desired performance with non-
linearity, as well as for systems with a very complex structure. Hence, given the complexity
of the model, the feedback controller alone cannot achieve the assumed qualitative indicators.
Surprisingly, due to the simplicity of implementation, the engineers still are using this approach
as a fundamental part of the control system in numerous industrial applications regarding DPSs.
Therefore, a hybrid of the feedback regulator and other supporting control algorithms has been
observed with many contributions, cf. [17, 25,33].

One distinct strategy for solving this problem is iterative learning control (ILC) which emerged
in the 80s of 20c [4] in the context of machine learning in robotic applications. This method is
classified as an intelligent control scheme and become popular due to the simplicity of the concept
and robustness to model uncertainty. This control scheme tracks the reference signal at each
successive repetition of process, called a trial. For the last 40 years, ILC research focused mainly
on time-invariant systems and can be considered as mature and with vast of contributions for
different practical situations [1, 2, 4, 9, 13, 14, 24, 25]. However, in the last 10 years some valuable
results on the synthesis of this method for distributed parameter systems emerged proving its
flexibility. However, these scarce approaches are related to one spatial dimension and are dedicated
to a specific class of linear PDEs [12, 15, 16] or steady state [18]. Recently, an approach has been
presented that allows for optimal tracking of the reference signal, using the so-called distributed
sensing and actuation [20,27,28] with applications in elastic materials and heat transfer, provided
that the process is inherently repeatable. Here, we extend this approach assuming a strict task-
specific constraints: identical initial conditions and finite execution time, yielding e.g. theoretical
bounds inapplicable in practice. As the requirement of the industrial application of thermal process
the feedback controller is applied as primary but it exhibit the same behavior as the trials go on.
To assure a near-perfect tracking, ILC comes to perspective as a promising candidate to allow
for nonrepeating disturbance rejection and is incorporated in forward loop. In tandem, possibly
noncausal repeating disturbances are rejected via ILC. It is expected that system response is
gradually improved providing a tracking error norm convergence.

The main contribution of the research is a development of an effective ILC scheme dedicated
for realistic thermal process being the generalization of the approach reported in [28] toward
simultaneous feedback and feedforward control. Also, the proper characterization of the design of
iterative learning supporting control is discussed for various types of feedback controller. Finally,
the proposed approach is verified using a nontrivial simulation benchmark based on the model of
industrial vacuum furnace.



2 System description

Consider a thermal spatio-temporal process representing a heat treatment in vacuum furnace
whose geometry can be generally represented by bounded domain Ω ⊂ R3 with boundary ∂Ω.
Let T = (0, tf ] be a bounded time interval, where tf < ∞ denotes finite process duration. The
evolution of the normalized temperature y(x, t) at spatial point x ∈ Ω and time t ∈ T can be
described by the following PDE

ρCp
∂y(x, t)

∂t
+ ∇ ·

(
− κ∇y(x, t)

)
= q(x, t) (1)

subject to the boundary and initial conditions:
∂y(x, t)

∂n
= α

(
J0 − σ · y4(x, t)

)
, (x, t) ∈ ∂ΩI × T,

∂y(x, t)

∂n
= h

(
yext − y(x, t)

)
, (x, t) ∈ ∂ΩE × T,

y(x, 0) = y0, x ∈ Ω × {t = 0},

(2)

where α = ε
1−ε

is a function of surface emissivity ε (dependent on material) and σ is the Stefan–
Boltzmann constant. Contact flux with medium of temperature yext is dictated by convective heat
transfer coefficient h. Quantity J0 = ρdGε denotes a surface radiosity, ρd being surface reflectivity
and G the incoming radiative flux. The y0 is an initial temperature and ∂y/∂n stands for the
partial derivative of y with respect to the outward normal vector n⃗ to the boundary. Conductive
heat transfer is determined by thermal conductivity κ and heat capacity Cp, ρ being the material
density. The total heat power rate q(x, t) is described by a scalar function and plays a role of
actuation. Boundary ∂ΩE denotes the exterior surface of the furnace chassis, while ∂ΩE denotes
all interior surfaces. The entire system is based on the construction of a vacuum furnace, consisting
of three main elements: the chassis (chamber walls and insulation), the actuator - a heater lamp
and the heated element, e.g. a wafer (cf. Fig. 1).
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Figure 1: Scheme of vacuum furnace

The constant temperature yext = const for surrounding environment was assumed. Outline
scheme of energy transport, interaction directions and physical laws is included in Fig. 2.
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Figure 2: Energy transfer diagram

3 Iterative control scheme

3.1 Baseline controllers

The system is actuated via the source term

q(x, t) =

{
u(t), x ∈ Ωa,

0, elsewhere,
(3)

where Ωa ⊂ Ω is a part of spatial domain representing actuator. The control signal u(t) ∈ [0, Pmax]
is bounded to account for the physical characteristics of available actuators. The step-response
of the plant (u(t) = const = Pmax) has been simulated and it’s characteristics computed. With
such an information, controller gains were made subject to Cohen-Coon tuning method. Only the
proportional part has been increased afterwards, such that the error between the initial condition
and steady-state drives the control signal to 100% saturation. In the early stages of heating process,
it is expected to drive input as much as possible. Despite the upper limit imposed on the input,
the shape of the reference signal is later designed in such a way, that the existence of feasible u
is guaranteed. That is, the time constant of yref was chosen to be smaller than the one of the
system.

At the k-th trial, the system response yk(x, t) is assumed to be observed in a continuous manner
over the interval T with the thermocouples, which locations xth in practical setting are arbitrarily
chosen as to provide the sufficient information about system dynamics. Here, for simplicity of
considerations we reduce our attention to one sensor as the generalization for many sensors can be
done without major difficulties. The typical characteristics of thermocouple is that the measure-
ment of temperature is an average on some small spatial region surrounding the probe. Let Ωth be
a ball with center at xth and radius rth. Hence, a single observation of the system output at each
time instant t, for k-th repetition of the process takes the following form

zk(t) =

∫
Ωth

p(x)yk(x, t)dx, t ∈ T (4)

where uk(t) is the control input vector at k-th trial and yk(x, t) = y(x, t;uk(t)). In the following,
the measurement made by a single sensor is presented as a uniform spatial distribution p(x) = p
defined on the domain Ωth with

∫
Ωth

p(x)dx = 1.



3.2 Control update

To achieve the control objective, it is proposed to enhance online feedback control with an ILC
calculated offline and stored. The control scheme is presented in Fig. 3. It follows that control
signal was a sum of feedback ufb

k (t) and iteratively updated uILC
k (t):

uk(t) = ufb
k (t) + uILC

k (t) (5)

As mentioned, in order to satisfy practical settings, control signal uk(t) has been subjected to
actuator saturation, i.e. uk(t) ∈ [0, Pmax].

As the feedback controller the PID was used as its a typical solution used in industrial vacuum
furnaces. The goal is to adapt the input signal vector uk(t) (via uILC

k (t)) in each subsequent trial in
such a way, as to make the measurement output zk(t) follows some arbitrarily chosen differentiable
trajectory zref(t) as accurately as possible. Thus, it is desired to iteratively improve the tracking
error norm in the trial domain:

∥ek(t)∥ = ∥zref(t) − zk(t)∥

i.e. to converge uniformly with tracking error approaching zero when k → ∞.
For sake of simplicity, a adopted scheme was feedforward ILC. Where data recorded during

the previous trial is used to design a new control input with an update based on the tracking
error [4]. In the following, taking into account the relatively high time constant of thermal systems
described by dynamics (1)–(2), a noncausal learning rule was derived with some arbitrarily chosen
delay time δ ≥ 0 [s]:

uILC
k+1 (t) = uILC

k (t) + λek(t + δ) (6)

where λ is a learning gain coefficient. The conditions for the convergence of the update rule (6)
can be obtained as a generalization of the results presented in [28]. The shift parameter δ > 0
give some additional degree of freedom allowing for faster convergence, cf. [19] for a comprehensive
substantiation.
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Figure 3: Feedforward ILC scheme

3.3 Implementation

In practical setting the solution of the system (1)–(2) in closed-form is unavailable, therefore it has
to be effectively solved numerically. This is achieved by application of the Finite Element Method
(FEM). For a detailed treatment of this numerical scheme see [20,27,29]. Finally, the PDEs in such
form are especially suited to being directly embedded and effectively solved in numerous efficient



FEM-based solvers. These include the Matlab PDE Toolbox or the Comsol environment [5],
which in particular were applied here.

One of the key issues which has to be addressed when calculating the control update is deter-
mination of appropriate learning gain λ. Aware of the fact, that there is no clear guideline for the
qualitative choice, a test simulation has been carried out. Using pure P controller in the feedback
channel the root-mean-square (RMS) values of the first order signal derivatives were computed
(RMS ratio for other controllers was similar). In order to estimate the magnitude of system input
to output, substituting to (6) the upper bound for learning gain has been calculated:

λmax
def
=
uk+1 − uk

ek
=

∆u

∆y

≈rms(∆u)

rms(∆y)
= 58.8 ≈ 60

(7)

For the sake of simplicity of the update rule, the optimal gain λ⋆ was assumed to be time
and trial independent. The maximum number of trials was set to kmax = 30. Then, the λ⋆ was
determined by sampling interval (0, λmax] and choosing:

λ⋆ = arg min
λ

∥ekmax∥ (8)

Final gains for feedback controllers of P, PI and PID type were found as λ⋆
P = 8.00, λ⋆

PI =
6.25, λ⋆

PID = 5.00, respectively.

4 Numerical example

In the COMSOL model of furnace, both heat emitter and heated object (wafer) are disks of
identical diameters (D = 1[m]) and positioned in parallel with respect to each other inside the
furnace chamber, cf. Fig. ??. Wafer height is hw = 0.004[m], and IR lamp height is hIR = 0.01[m].
Chassis is a cylindrical shell with outer and inner radii of Ro = 1.01[m] and Ri = 1[m], respectively.
The height of cylindrical chamber is 1.5[m] and the thickness of its base walls is equal to 0.01[m].
Table 1 summarize values of material parameters in system (1)-(2). It is assumed that each part
of furnace is composed of homogenous material.
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Figure 4: Created system geometry with marked energy transfer BCs



Table 1: Material parameters
Parameter Chassis IR lamp Wafer
ρ [kg/m3] 20000 8700 1000
Cp [J/(kg·K)] 120 10 300
ε [] 0.19 0.99 0.15
κ [W/(m·K)] 75 400 130

Energy is dispersed from the system by convective cooling to outside medium (air) under
normal conditions (i.e. yext = 293.15[K] and pressure of 1 atm). Heat transfer coefficient h was
set to 1[W/(m2·K)] accounting for realistic insulation. At each trial of ILC it is assumed that
chassis, heater and wafer initial temperature are set to y0 = 20[◦C]. Since, measurement domain
was composed of one sensor probe located at the center xth = [0, 0, hw/2] and rth = 0.001[m],
control process can be considered as a SISO problem. The reference temperature was a smooth
step–like shaped function:

zref(t) = 28 · tanh((t− 100)/50) + 47, t ∈ (0, tf ]. (9)

With respective initial value of z(0) = y0 and steady-state z(tf ) = 75[◦C], where tf = 600[s].
The proposed ILC scheme was programmed using Comsol Multiphysics 5.5 and Mat-

lab 2018b. It was run on a PC with the following specification: Intel Core i7 2.20 GHz processor
and 24 GB RAM with Windows 10. The finite element method was applied to the spatial mesh
consisting of 3480 nodes and 1004 triangular prisms. The implicit family (BDF) solver was used
with maximum time step of 6[s].

Tracking error evolution is visualized in Fig. 5, allowing to compare the convergence rate for all
feedback controllers. Well defined behavior of norm convergence occurs in the case of proportional
feedback only. For the other two types of fusions, the convergence rate is quite slow (but still the
value of norm lower compared to P type), what is an direct effect of an assumption of constant λ⋆.
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Figure 5: Comparison of error convergence

4.1 P controller

In Fig. 6 it can be seen that proportional controller suffers from steady–state error with distinct
lag–time. Just after 10 trials, overshoot occurs and is not compensated even until last iteration.



At final iteration, feedback controller did not contribute significant part to control signal, as shown
in figure 7. It would be expected to reach better performance by training for additional iterations.
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Figure 6: Time responses, P controller
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Figure 7: Input signal composition, P controller

4.2 PI controller

Distinguishing feature of PI controllers is, that they respond with quadratic signal, to linearly
growing error. Thus as the reference signal reached constant value, the system response reached
an characteristic overshoot – figure 8. After a sequence of iterations, control signal was modified in
such a way, that aforementioned issue has been noticeably damped. It is important, that uILC was
negative at some interval, showing the effect non–causal action. The accompanying oscillations
were shifted in phase, with respect to different trials. Magnitude of one ”control peak” has dropped
and was shifted back in time by 100[s].

4.3 PID controller

Looking at figure 10 it can be observed that derivative action in the controller did not provide
superior tracking. Although initial decrease in overshoot and oscillation magnitude, there was still
room for improvement. Just in k = 20 iterations, steady–state tracking error was insignificantly
small (dashed line). Tracking of the initial rapid growth for t ≤ 100 was not achieved, for any of
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Figure 8: Time responses, PI controller
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Figure 9: Input signal composition, PI controller

the studied setups, which would suggest modifying learning law for transient changes. Peaks in
the uk signal were shifted ahead in time, with uILC driving mostly the negative direction. Control
signal was linearly (visibly) decreasing at interval T ∈ [80, 220], just as the reference approached
constant value.

5 Concluding remarks

The dedicated approach to fusion control with feedback and iterative learning with the application
to the vacuum heat treatment systems is reported. The characterization of control design is
provided leading to relatively simple numerical iterative learning scheme. Modeling the dynamics
of a real thermal process has been performed to a satisfying degree with closed loop performance
improved in each case. There is still room for the important extensions. One is toward an adaptive
time and trial dependent learning gain which will constitute the next future research step. Other
tangible problem is an optimal location of sensors and actuators providing best system performance.
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Figure 10: Time responses, PID controller
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Figure 11: Input signal composition, PID controller
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