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An analysis is made on a steady flow of an incompressible visco-elastic fluid (of small memory) past a porous 
plate subject to uniform suction or blowing. The fluid and the plate rotate in unison with uniform angular velocity 
about an axis perpendicular to the plate. It is shown that for a visco-elastic fluid of small memory, a boundary 
layer is formed for uniform suction or blowing at the plate. It is found that the primary velocity increases whereas 
the secondary velocity increases near the plate and decreases away from the plate with an increase in the elastic 
parameter. The secondary flow shows flow reversal for a large elastic parameter. It is found that both primary and 
secondary velocities increase near the plate and decrease away from the plate with an increase in the rotation 
parameter. It is also found that the shear stress due to primary flow increases with an increase in either the elastic 
parameter or rotation parameter. On the other hand, the shear stress due to secondary flow decreases with an 
increase in the elastic parameter while it increases with an increase in the rotation parameter. The temperature 
distribution in the boundary layer is also determined. It is shown that elasticity leads to an increase in heat 
transfer at the plate. 

 
 Key words: visco-elastic, relaxation, back flow, elasticity. 

 
1. Introduction 

 
 It is known that liquids respond like elastic solids to impulses, which are very rapid compared to the 
time, it takes for the molecular order associated with short-range forces in the liquid to relax. For liquids with 
small molecules this time of relaxation is estimated as 10-13 or 10-10 seconds depending on the fluids. Waves 
associated with such liquids move with speeds of 105 cm/s or even faster (Joseph, 1990). There also exist 
liquids which have much longer times of relaxation. Polymers mixed in Newtonian solvents, polymer melts 
like molten plastics or high viscosity silicone oils are examples. These types of fluids are known as visco-
elastic fluids. The longest times of relaxation for these fluids are of practical interest. Such fluids have 
become important industrially, particularly in polymer processing applications as well as in chemical 
industries, one deals with flow of visco-elastic fluids. The fluctuating flow of a visco-elastic fluid past an 
infinite porous plate subject to uniform suction was studied by Kaloni (1966). The steady flow of an 
incompressible second order fluid past an infinite porous plate subject to suction or blowing was investigated 
by Rajagopal and Gupta (1984). 
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 In this paper, we investigate momentum and heat transfer in the steady flow of a visco-elastic fluid 
(obeying Walter’s liquid B' model (1964)) past an infinite porous flat plate in a rotating system subject to 
uniform suction or blowing. 
 
2. Formulation of the problem 

 
 Consider a steady flow of an incompressible visco-elastic fluid past an infinite porous flat plate 
subject to uniform suction. The fluid and the plate rotate in unison with a constant angular velocity   about 
an axis perpendicular to the plate [Fig.1].  
 
 
 

 
Fig.1. Geometry of the problem. 

 
 The constitutive equations characterizing the visco-elastic fluid (obeying Walter’s liquid B  model 
(1964)) are  
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where ikp  is the stress tensor, p is an arbitrary isotropic pressure, ikg  is the metric tensor, ( )1 mke  is the rate 
of strain tensor and  
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where ( )N   is the distribution function of the relaxation time  . Beard and Walters (196) showed that in the 
case of liquids with short memories (i.e., a short relaxation time) the above equation gives 
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where iv  is the velocity vector.    
  We take the x – axis along the direction of the flow, the z – axis is perpendicular to the xy – plane and 
the y – axis is normal to it [Fig.1]. Since the plate is infinite, in the steady state all the physical variables 
except pressure depend on y only. 
 We assume the velocity field of the form 
 

  ( ) ( ) ( )( ), ( ), ( ),1 2 3v u y v v y v w y    (2.6) 
 
 The equation of continuity 0 q  gives  
 
  0v v  , (2.7) 
 
where 0v  is the constant velocity at the plate, 0v 0  for suction and 0v 0  for blowing. 
 The equations of momentum for a visco-elastic fluid, in a rotating frame of reference along the 

,x y  and z  axes are given by 
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where p is the pressure,   is the density of the fluid.   is the kinematic coefficient  of viscosity. 
 The boundary conditions are 
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  at , , asu w 0 y 0 u U w 0 y      .            (2.11) 
 
 Using infinity conditions, Eqs (2.8) and (2.10) become 
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 Introducing, the non-dimensional variables 
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equations (2.12) and (2.13) become 
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where 0S v U  is the suction parameter, 2 2
0k U    is the visco-elastic parameter, and 2 2K 2 U   

is the rotation parameter. 
 The boundary conditions (2.11) become 
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 Following, Ray Mahapatra and Gupta (2004), we seek a solution of the form  
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which are valid for a sufficiently small  . Substituting Eqs (2.18) in Eqs (2.15) and (2.16) and equating the 
term independent of   and coefficient of  , we get 
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 The corresponding boundary conditions are  
 
  10 10 11 11u w u w 0       at   0     and   10u 1 , , as10 11 11w 0 u w 0    .  (2.23) 
 
 The solutions of Eqs (2.19)-(2.22), subject to the boundary conditions (2.23) are 
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 Hence the velocity distributions, up to order ( )O  , are  
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 In the case of blowing at the plate  S 0  an asymptotic solution is also possible and the solution 

for blowing is obtained by letting 1S S   with  1S 0  in Eqs (2.28)-(2.30). 

 In the absence of rotation  2K 0 , the above Eqs (2.29) and (2.30) become 
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  ( ) and ( )S 3 S
1 1u 1 e 2S e w 0          .       (2.31) 

 
 In this case no steady distributions exist for uniform blowing at the plate. 
 
3. Results and discussion 

 
 To study flow situations for different values of the elastic parameter  , rotation parameter K2 and 
the suction parameter S, the velocity profiles are examined numerically and plotted in Figs 2-4. Figure 2 
shows the variations of the primary and the secondary velocity profiles for different values of the elastic 

parameter   for .2K 4 0  and .S 1 0 . It is found that the primary velocity increases whereas the secondary 
velocity increases near the plate and decreases away from the plate with an increase in the elastic parameter 
 . The secondary flow shows flow reversal for a large elastic parameter. The variation of velocity profiles 

for different values of the rotation parameter 2K  is shown in Fig.3 for . , .0 01 S 1 0   . It is evident from 
Fig.3 that both the primary and the secondary velocities increase near the plate and decrease away from the 
plate with an increase in the rotation parameter K2 while a back flow appears in the secondary flow for high 
rotation. Thus rotation exerts a stabilizing influence on the primary and secondary flows near the plate.  Fig. 

4 shows the velocity distributions 1u  and 1w  for several values of S  with . , .20 01 K 4 0   . It is observed 
that the primary velocity increases near the plate and decreases away from the plate with an increase in the 
suction parameter S . On the other hand, the secondary flow decreases with an increase in the suction 
parameter S  while a back flow occurs for large suction. 

 
 

Fig.2. Variations of velocity profiles u1 and w1 K2=4.0, S=1.0. 
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Fig.3. Variations of velocity profiles u1 and w1 .0 01  , S=1.0 
 

 
 

Fig.4. Variations of velocity profiles u1 and w1 .0 01  , .2K 4 0 . 
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 The velocity profiles 1u  and 1w  are plotted in Fig.5 for different values of the blowing parameter 

with . , .20 01 K 4 0   . It is seen that the primary velocity decreases near the plate and increases away from 

the plate and then decreases and ultimately reaches a steady state. On the other hand, 1w  increases near the 
plate and decreases away from the plate with an increase in the blowing parameter. 
 

 
 

Fig.5. Variations of velocity profiles u1 and w1 .0 01  , .2K 4 0 . 
 
 The shear stresses due to the primary and the secondary velocities at the plate y 0  are given by 
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 In a non-dimensional form the shear stress due to primary and secondary flows at the plate 0   can 
be obtained as 
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 The non-dimensional shear stress components x  and y  are given in Tabs 1 and 2 for different 

values of the rotation parameter 2K  and elastic parameter  . It is seen that at a fixed instant both x  and y  

increase with an increase in the rotation parameter 2K . These results have a physical interpretation. At a 

fixed instant, an increase in 2K  causes a gradual thinning of the boundary layer which develops on the plate.  
 
Table.1. Shear stress due to primary flow for .S 1 0 . 
 
                                    x 

K2              σ   0.001                    0.01                    0.03                               0.05 

4.0 

6.0 

8.0 

10.0 

 2.53306              2.54920               2.59804                            2.66476 

 2.97694              2.99751              3.07077                             3.18202 

 3.35263              3.37786              3.47906                             3.64250 

 3.68432              3.71446              3.84672                            4.06901 

 

 On the other hand, for a fixed value of 2K , x  increases whereas y  decreases with an increase in 

 . This shows that the wall shear stress due to secondary flow decreases with an increase in elasticity of the 
fluid. 
 
Table.2. Shear stress due to secondary flow for .S 1 0 . 
 
                                                 y  

K2          σ        0.001                    0.01                       0.03                           0.05 

4.0 

6.0 

8.0 

10.0 

     1.96988                    1.96139                   1.93338                         1.83827 

    2.42517                 2.42439                 2.35543                     2.19379 

    2.80763                 2.80372                 2.69933                     2.46293 

    3.14390                 3.13626                 2.99268                     2.67449 

 
4. Temperature distribution 
 
 Consider the heat transfer equation in the flow of a visco-elastic fluid. To this end it is necessary to 
establish the energy balance for a fluid element in motion and to consider it in conjunction with the equation 
of motion. It is to be noted that during the motion of a visco-elastic fluid, a certain amount of energy is stored 
up in the fluid as strain energy and some energy is lost due to viscous dissipation. Thus for such a fluid, the 
energy balance is determined by the internal energy, the conduction of heat, the convection of heat with the 
flow, the generation of heat through viscous dissipation and the strain (or deformation) energy stored in the 
fluid due to its elastic properties. 
 The transfer of heat in the steady flow of visco-elastic fluid past a flat porous plate can be expressed 
in the form of the energy equation given by 
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where ,T   and pC  denote the temperature, the thermal diffusivity and the specific heat of the fluid, 

respectively. The second and third terms on the right hand side of Eq.(4.1) are due to viscous dissipation and 
strain energy, respectively. 
 The boundary conditions are 
 
  wT T         at        ,y 0 T T         as       y       (4.2) 
 
where wT  and  wT T T   are the temperature at the plate and at infinity, respectively. Introducing the 
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and on using Eq.(2.9), Eq.(4.1) becomes  
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 Using Eq.(4.3), the boundary conditions (4.2) become 
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 The solution of Eq.(4.4) subject to the boundary conditions (4.5) is 
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             
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  
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      

   
Pr Pr

Pr

2 2

9 2 2

S 2 S S 2 S 2 S S 2
a

S 2 S 2 S

           


    
, 

 
     10 2 5 8 5 6 9 4 7a a Sa a a Sa 2a a Sa      ,  
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a a Sa
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  
   

   
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   4 7

14 3 6
a Sa 1

a a Sa
S 2 2

 
  

 
,           15 4 7

1
a a Sa

3
   .  (4.8) 

 
 Finally, we point out that no steady temperature distribution exists for blowing at the plate. From a 
physical point of view, this is due to the fact that the temperature at a given point continually increases due to 
conduction of heat away from the plate and convection of heat away from the plate due to blowing. 
 It is seen from Eqs (4.6) and (4.7) that the temperature distribution depends on the following 
dimensionless parameters (i) the elastic parameter (ii) the Prandtl number (iii) the Eckert number (which 
characterizes viscous dissipation in the flow) (iv) the suction parameter and (v) the rotation parameter. 
 Figure 6 shows the temperature distribution for various values of the elastic parameter   and 

rotation parameter 2K  with Pr . , Ec . , .5 0 2 0 S 2 0   . It is observed that the temperature at a point 

increases with an increase in either   or 2K . The variations of temperature distribution   for different 
values of the Eckert number Ec and suction parameter S  are shown in Fig.7. It is found that the temperature 
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at a point increases with an increase in the Eckert number whereas it decreases with an increase in the 
suction parameter. 
 

 
 

Fig.6. Variations of temperature profile   for Pr=5.0, S=2.0, Ec=2.0. 
 

 
 

Fig.7. Variations of temperature profile   for Pr=5.0, .0 01  , .2K 4 0 . 
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The non-dimensional rate of heat transfer at the plate 0   is given by 
 

  ,w
0

d
q

d 

 
   

 

 

  
 
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S 2 S 2 S

        
    

,         for         PrS 2 S   ,              (4.9) 

 

and        
 
Pr Ec

Pr 13
w

a
q S

S 2
  

 
,           for          S 2 SP   .    (4.10) 

 

 The values of wq  are given in Tab.3 for various values of   and 2K  with Ec . ,1 0  
. and Pr .S 2 0 5 0  . It is seen that the rate of heat transfer increases with an increase in either the elastic 

parameter   or rotation parameter 2K . 
 
Table.3. Rate of heat transfer wq  for Ec . ,Pr . , .1 0 5 0 S 2 0   . 
 
                                   wq   

2K         σ   0.001                    0.01                    0.03                               0.05 

4.0 

6.0 

8.0 

10.0 

 4.31434              5.99896               9.54853                          14.77307 

12.26702            15.49967             15.24312                          22.42388 

24.09315            29.69641             40.45284                          55.74079 

44.19298           53.67467             70.63224                           94.01682 

 
 It follows from Eqs (4.9) and (4.10) that when Ec critE  where 
 

  
  
 

Pr
,

Prcrit
10 11

S S 2 S 2 S
E

S 2 S a a

    


   
         for         PrS 2 S   , (4.11) 

 
and 
 

  
 

crit
13

S 2
E

a

 
          for          PrS 2 S   , (4.12) 

 
then there is no flow of heat either from the plate to the fluid or from the fluid to the plate. We calculated the 

critical Eckert number critE  for different values of   and 2K which  are given in Tab.4. 
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Table.4. Critical Eckert number for . ,Pr .S 2 0 5 0  . 
 
                                    critE  

2K         σ             0.001                    0.01                    0.02                               0.03 

4.0 

6.0 

8.0 

10.0 

          0.69860                0.62504                 0.51154                     0.40366 

          0.44909                0.39216                 0.31214                     0.24086 

          0.29331                0.25191                 0.19820                     0.15211 

          0.18452                0.15704                 0.12401                     0.09613 

 
 It follows from Eqs (4.9) and (4.11) that heat will flow from the plate to the fluid if Ec critE , while 

heat will flow from the fluid to the plate if Ec critE . It is found that the critical Eckert number decreases 

with an increase in the elastic parameter  . It is also found that critE  is always smaller in the presence of 
rotation than without rotation. Hence, heat will flow from the fluid to the plate at a smaller value of the 
Eckert number than the corresponding value of it in the absence of rotation. 
 
Nomenclature 
 

 
 cE

2

p w

U

c T T

 
   

 – Eckert number 

 critE  – critical Eckert number 

  /2 2K 2 U   – rotation parameter 

 0k  – short memory coefficient 

  N   – distribution function of relaxation time   

  Pr /pc    – Prandtl number 

 wq  – rate of heat transfer 

  /0S v U  – suction parameter 

 T  – fluid temperature 
 wT  – plate temperature 

 T  – temperature at infinity 

 t  – time 
 , ,u v w  – velocity components in ,x y  and z  directions respectively 

  , / , /1 1u w u U w U  – non-dimensional velocity components 

 0v  – suction velocity 

 , , ,1 1     – are defined in Eq.(2.28) 

  /Uy    – non-dimensional normal coordinate axis 

 0  – limiting viscosity at small rate of shear 

 
w

T T

T T




 
  

 
 – non-dimensional temperature 

   – thermal diffusivity 
   – coefficient of viscosity 
   – kinematic viscosity 
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   – fluid density 

 
2

0
2

k U 
    

 – visco-elastic parameter 

   – angular velocity 
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