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Plane-strain vibrations in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid are investigated 
employing Biot’s theory of wave propagation in poroelastic media. The poroelastic hollow cylinder is 
homogeneous and isotropic, while the inner and outer fluids are homogeneous, isotropic and inviscid. The 
frequency equation of the fluid-loaded poroelastic cylinder surrounded by a fluid is obtained along with several 
particular cases, namely, fluid-loaded poroelastic cylinder, fluid-loaded bore, poroelastic cylinder surrounded by 
a fluid and poroelastic solid cylinder submerged in a fluid. The frequency equations are obtained for axially 
symmetric, flexural and anti-symmetric vibrations each for a pervious and an impervious surface. Non-
dimensional frequency for propagating modes is computed as a function of the ratio of thickness to the inner 
radius of the core. The results are presented graphically for two types of poroelastic cylinders and then discussed.  
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1. Introduction 

 
 Plane-strain vibrations in thick-walled hollow elastic cylinders of infinite extent are analyzed by 
Gazis (1958). Ram Kumar (1966; 1971; 1972) investigated dispersion of various vibrations in empty and 
fluid-filled hollow cylinders. Sharma and Gogna (1990) studied elastic wave propagation in a cylindrical 
bore in a liquid saturated poroelastic solid. Plona et al. (1992) studied axially symmetric wave propagation in 
a fluid-loaded hollow cylinder. Wave propagation in fluid-loaded, transversely isotropic cylinders is studied 
by Berliner and Solecki (1966). Cui et al. (1997) and Abousleiman and Cui (1998) obtained solutions in an 
inclined borehole and transversely isotropic well-bore cylinders.          
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 Employing Biot’s (1956) theory, Malla Reddy and Tajuddin (2000; 2010) analyzed plane-strain axial 
symmetric vibrations of a thick-walled hollow poroelastic cylinder and of a poroelastic composite solid 
cylinder in which they compared the results with those of rule of mixtures. Ahmed Shah (2008) investigated 
axially symmetric vibrations of fluid-filled poroelastic hollow cylinders in the absence of dissipation. In his 
investigation, he concluded that the phase velocity of an empty poroelastic hollow cylinder is higher than 
that of a fluid-filled poroelastic hollow cylinder and the phase velocity of a fluid-filled bore is higher than 
that of an empty poroelastic bore. Ahmed Shah and Tajuddin (2010) studied flexural vibrations of 
poroelastic circular hollow cylinders of various wall thicknesses and infinite extent immersed in an acoustic 
medium. Their study stated that the frequency equation of longitudinal shear vibrations is independent of the 
nature of surface and the presence of fluid within and around the poroelastic hollow cylinder; also they 
concluded that there is no significant effect on the phase velocity for a pervious surface with the increase of 
thickness for the considered materials. They obtained frequency equations of flexural vibrations of a 
poroelastic solid cylinder as a limiting case. In addition, cutoff frequencies are obtained for both pervious 
and impervious surfaces when the wavenumber is zero and it is concluded that for zero wavenumber the 
frequency equation of longitudinal shear vibrations is independent of the nature of the surface. Tajuddin et 
al. (2011) discussed axial-shear vibrations of an infinitely long poroelastic composite circular cylinder. 
Nageswara Nath et al. (2011) developed a parametric model of loose bonding between poroelastic half-
spaces.  
 In the present investigation, vibrations in a fluid-loaded poroelastic cylinder surrounded by a fluid 
are investigated employing Biot’s theory of wave propagation in poroelastic media in plane-strain form. The 
poroelastic hollow cylinder is homogeneous and isotropic, while the inner and outer fluids are homogeneous, 
isotropic and inviscid. The frequency equation of the fluid-loaded poroelastic cylinder surrounded by a fluid 
is obtained along with several particular cases, namely, fluid-loaded poroelastic cylinder, fluid-loaded bore, 
poroelastic cylinder surrounded by a fluid and poroelastic solid cylinder submerged in a fluid. The frequency 
equations are obtained for axially symmetric, flexural and anti-symmetric vibrations for each pervious and 
impervious surface. It is observed that shear and dilatational vibrations are uncoupled in the case of axially 
symmetric vibrations. Non-dimensional frequency for propagating modes is computed as a function of the 
ratio of thickness to the inner radius of the core for both pervious and impervious surfaces. The results are 
presented graphically for two types of poroelastic cylinders, namely, sandstone saturated with water and 
sandstone saturated with kerosene, and then discussed. 
 
2. Governing equations, formulation and solution of the problem 

 
 The cylindrical polar coordinates are taken as r,  and z. The model under consideration consists of 
an infinitely long, homogeneous, isotropic poroelastic hollow cylinder with the inner radius r1 and outer 
radius r2, so that the wall thickness of the hollow cylinder is h [= (r2  r1)]. The axis of the poroelastic hollow 
cylinder is in the direction of the z-axis. The poroelastic hollow cylinder is loaded internally and externally 
by inviscid fluids. The physical parameters of the two fluids are denoted by a superscript  j (1, 2) enclosed in 
parentheses. The parameters with superscript (1) and (2) refer to the inner and outer fluids, respectively. The 
parameters of the poroelastic hollow cylinder are without any superscript. The geometry of the problem is 
shown in Fig.1 and the boundaries of the system are as follows: 
 
For the poroelastic hollow cylinder:  r1 r  r2, - < z < , 
 
For the inner fluid (1):                      0 r  r1, - < z < , 
 
For the outer fluid (2):                     r2 r <,  - < z < .  
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            Fig.1 Fluid-loaded poroelastic hollow cylinder surrounded by a fluid. 
 
2.1. Poroelastic hollow cylinder 
 
 The equations of motion of a homogeneous, isotropic poroelastic solid (Biot, 1956) in the presence 
of dissipation b are 
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where 2 is the Laplacian operator, u ( , , )u v w  and U ( , , )U V W  are displacements of the solid and liquid 

media, respectively, while e  and   are dilatations of the solid and liquid, respectively; A, N, Q, R are all 
poroelastic constants and 11, 12, 22 are the mass coefficients following Biot (1956). The poroelastic 
constants A and N correspond to familiar Lam’e constants in a purely elastic solid. The coefficient N 
represents the shear modulus of the solid. The coefficient R is a measure of the pressure required on the 
liquid to force a certain amount of the liquid into the aggregate while the total volume remains constant. The 
coefficient Q represents the coupling between the volume changes of solid to that of liquid. The stresses σkl 
and the liquid pressure s of the poroelastic solid are 
 
    ,kl kl kl2Ne Ae Q                   (k, l = r, , z), 

   (2.2) 
  ,s Qe R                           
 
where δkl is the well-known Kronecker delta function. 
 The displacements of solid u ( , , ),u v w  which can readily be evaluated from field Eq.(2.1) are 
 

   Inner fluid   

Outer fluid

Z 
 r1  r2 
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where C1, C2, C3, C4, A1, and B1 are constants,  is the circular frequency, n is the angular wavenumber, 

( , , );i
i
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V


    V1, V2 are dilatational wave velocities of the first and second kind, respectively, and V3 is 

the shear wave velocity. 
 By substituting the displacements solutions from Eq.(2.3) into the Eq.(2.2), the relevant stresses are 
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In Eq.(2.4),  
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where P=A+2N is a poroelastic constant and ,1
11 11M ib      

 

   and  .1 1
12 12 22 22M ib M ib               (2.5) 

 
2.2. Inviscid elastic fluid 
 
 The equation of motion for a homogeneous, isotropic, inviscid elastic fluid is  
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where ( )j  is the displacement potential function and ( )j
fV is the velocity of sound in fluid.   

 The fluid pressure ( )j
fP is given by 
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where ( )j
f  is the density of the fluid. The superscripts j= 1, 2 represent the inner and outer fluids, 

respectively. 

 Using the displacement potential function, the displacement  ( ) ( ) ( ), ,1 1 1
f f fu v 0u  and fluid pressure 

( )1
fP  of the inner fluid are obtained as 

 

  ( ) ( ) ( ) ( )( )cos  ,1 1 1 1 i t
nf f f fu A J r n e      

 

  

( ) ( ) ( )

( ) ( ) ( ) ( )

( )sin  ,

( )cos  .

1 1 1 i t
nf f f

1 1 1 12 i t
nf f f f

1
v A J r n e

r

p A J r n e





   

    

      (2.8) 
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 In Eqs (2.7) and (2.8), ( )
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3. Boundary conditions and frequency equation 
 

 For a perfect contact between the poroelastic hollow cylinder and the fluids, we assume that the 
normal stresses and displacements are continuous at r = r1 and r = r2. Thus, the boundary conditions in the 
case of a pervious surface are 
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 The boundary conditions in the case of an impervious surface are  
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 Equations (3.1) result in a system of eight homogeneous equations with eight constants 
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By eliminating these constants, the frequency equation of vibrations of the fluid-loaded poroelastic hollow 
cylinder surrounded by a fluid for a pervious surface is 
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 Proceeding on similar lines, by employing the boundary conditions (3.2), the frequency equation of 
vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for an impervious surface is 
obtained as 
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Axially symmetric vibrations (n=0) 
 
 For axially symmetric vibrations, the frequency Eq.(3.3) of vibrations of the fluid-loaded poroelastic 
hollow cylinder surrounded by a fluid for a pervious surface reduces to  
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where the elements Cij are defined in Eq.(3.4). 
 From Eq.(3.7) we obtain A1=0 or A2=0. On simplification, the equation 
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which is independent of fluid parameters and dilatational vibrations, hence this is the frequency equation of 
axially symmetric shear vibrations of the poroelastic hollow cylinder for a pervious surface obtained by 
Malla Reddy and Tajuddin (2000). 
 The equation  
 

  A2 = 0,                 (3.10) 
 

is the frequency equation of dilatational vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by 
a fluid for a pervious surface. Equation (3.7) shows that the axially symmetric shear and dilatational vibrations of 
the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for a pervious surface are uncoupled. 
 Similarly, the frequency Eq.(3.5) of vibrations of the fluid-loaded poroelastic hollow cylinder 
surrounded by a fluid for an impervious surface reduces to 
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where the elements Dij are defined in Eq.(3.6). 
 From Eq.(3.11), it is clear that B1=0 or B2=0. On simplification, the equation 
 

  B1 = 0,      (3.13) 
 

reduces to ( ) ( ) ( ) ( ) ,2 3 1 2 3 2 2 3 2 2 3 1J r Y r J r Y r 0          (3.13a) 
 

which is same as Eq.(3.9a). 
 The equation  
 

  B2 = 0,                 (3.14) 
 

is the frequency equation of axially symmetric dilatational vibrations of the fluid-loaded poroelastic hollow 
cylinder surrounded by a fluid for an impervious surface. Equation (4.11) shows that the axially symmetric 
shear and dilatational vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for an 
impervious surface are uncoupled. 
 From Eqs (3.9a) and (3.13a), it is clear that the frequency equation of axially symmetric shear 
vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid is same for a pervious and an 
impervious surface. Hence, axially symmetric shear vibrations of the fluid-loaded poroelastic hollow 
cylinder surrounded by a fluid are independent of the nature of the surface. 
 
4. Particular cases 

 
Under suitable conditions the fluid-loaded poroelastic hollow cylinder surrounded by a fluid reduces 

to the following particular cases 
4.1. Fluid-loaded poroelastic hollow cylinder, 
 4.1.1. Fluid-loaded poroelastic bore, 
        4.1.1a. Poroelastic bore, 
4.2. Poroelastic hollow cylinder surrounded by a fluid, 
 4.2.1. Poroelastic solid cylinder submerged in a fluid. 
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4.1. Fluid-loaded poroelastic hollow cylinder 
 

 When the fluid density ( )2
f of the outer fluid is zero, then the fluid-loaded poroelastic hollow cylinder 

surrounded by a fluid reduces to the fluid-loaded poroelastic hollow cylinder. In this case, the frequency 
Eq.(3.3) of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for a pervious surface reduces to  
 

  ,

11 12 13 14 15 16 17

21 22 23 24 25 26

31 32 33 34 35 36 37

41 42 43 44 47

51 52 53 54 55 56

61 62 63 64 65 66

81 82 83 84

C C C C C C C

C C C C C C 0

C C C C C C C

C C C C 0 0 C 0

C C C C C C 0

C C C C C C 0

C C C C 0 0 0

       (4.1) 

 

where the elements Cij are defined in Eq.(3.4). 
 This is the frequency equation of the fluid-loaded poroelastic hollow cylinder for a pervious surface. 
 In a similar way, the frequency Eq.(3.5) of the fluid-loaded poroelastic hollow cylinder surrounded 
by fluid for an impervious surface reduces to  
 

   ,

11 12 13 14 15 16 17

21 22 23 24 25 26

31 32 33 34 35 36 37

41 42 43 44 47

51 52 53 54 55 56

61 62 63 64 65 66

81 82 83 84

D D D D D D D

D D D D D D 0

D D D D D D D

D D D D 0 0 D 0

D D D D D D 0

D D D D D D 0

D D D D 0 0 0

       (4.2) 

 

where the elements Dij are defined in Eq.(3.6).  
This is the frequency equation of the fluid-loaded poroelastic hollow cylinder for an impervious surface. 
 

Axially symmetric vibrations (n=0) 
 

 For axially symmetric vibrations, the frequency Eq.(4.1) of vibrations of the fluid-loaded poroelastic 
hollow cylindrical for a pervious surface reduces to  
 

  E1E2 = 0,      (4.3) 

with       ,   ,

11 12 13 14 17

31 32 33 34 37
25 26

41 42 43 44 471 2
65 66

51 52 53 54

81 82 83 84

C C C C C

C C C C C
C C

C C C C CE E
C C

C C C C 0

C C C C 0

        (4.4) 

 

where the elements Cij are defined in Eq.(3.4). 
 From Eq.(4.3) we obtain E1=0 or E2=0. In particular, the equation 
 

  E1 = 0,      (4.5) 
 

is the frequency equation of axially symmetric shear vibrations of the poroelastic hollow cylinder for a 
pervious surface and is same as the equation A1=0 obtained in Eq.(3.9). 
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 The equation  
 

  E2 = 0,      (4.6) 
 

is the frequency equation of axially symmetric dilatational vibrations of the fluid-loaded poroelastic hollow 
cylinder for a pervious surface. Equation (4.3) shows that the shear and dilatational vibrations of the fluid-
loaded poroelastic hollow cylinder for a pervious surface are uncoupled. 
 Similarly, the frequency Eq.(4.2) of vibrations of the fluid-loaded poroelastic hollow cylinder for an 
impervious surface reduces to 
 

  E3 E4 = 0,      (4.7) 

with     ,   ,

11 12 13 14 17

31 32 33 34 37
25 26

41 42 43 44 473 4
65 66

51 52 53 54

81 82 83 84

D D D D D

D D D D D
D D

D D D D DE E
D D

D D D D 0

D D D D 0

        (4.8) 

 

where the elements Dij are defined in Eq.(3.6). 
 From Eq.(4.7), it is clear that E3=0 or E4=0. In particular, the equation 
 

  E3= 0,      (4.9) 
 

is the frequency equation of axially symmetric shear vibrations of the fluid-loaded poroelastic hollow 
cylinder for an impervious surface and is same as the equation B1=0 obtained in Eq.(3.13). The equation  
 

  E4= 0,                 (4.10) 
 

is the frequency equation of axially symmetric dilatational vibrations of the fluid-loaded poroelastic hollow 
cylinder for an impervious surface. Equation (4.7) shows that the shear and dilatational vibrations of the 
fluid-loaded poroelastic hollow cylinder surrounded by a fluid for an impervious surface are uncoupled. 
 From Eqs (4.5) and (4.9), it is clear that the frequency equation of axially symmetric shear vibrations 
of the fluid-loaded poroelastic hollow cylinder is same for a pervious and impervious surface. Hence, axially 
symmetric shear vibrations of the fluid-loaded poroelastic hollow cylinder are independent of the nature of 
the surface. 
 
4.1.1. Fluid-loaded poroelastic bore 

 
 When the outer radius of the hollow poroelastic cylinder tends to infinity i.e., r2, then the fluid-
loaded poroelastic hollow cylinder reduces to a fluid-loaded poroelastic bore. In this case, the frequency 
Eq.(4.1) of the fluid-loaded poroelastic hollow cylinder for a pervious surface reduces to     
 

  ,

12 14 16 17

22 24 26

32 34 36 37

42 44 47

C C C C

C C C 0
0

C C C C

C C 0 C

      (4.11) 

 
where the elements Cij are defined in Eq.(3.4). 
 This is the frequency equation of the fluid-loaded poroelastic bore for a pervious surface. 
 Similarly, the frequency Eq.(4.2) of the fluid-loaded poroelastic hollow cylinder for an impervious 
surface reduces to     
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  ,

12 14 16 17

22 24 26

32 34 36 37

42 44 47

D D D D

D D D 0
0

D D D D

D D 0 D

      (4.12) 

 

where the elements Dij are defined in Eq.(3.6). 
 This is the frequency equation of the fluid-loaded poroelastic bore for an impervious surface. 
 
Axially symmetric vibrations (n=0) 
 
 For axially symmetric vibrations, the frequency Eq.(4.11) of vibrations of the fluid-loaded 
poroelastic bore for a pervious surface reduces to  
 

  G1G2 = 0,     (4.13) 

with   ,   ,
12 14 17

1 26 2 32 34 37

42 44 47

C C C

G C G C C C

C C C

       (4.14) 

 

where the elements Cij are defined in Eq.(3.4). 
 From Eq.(4.13) we obtain G1=0 or G2=0. On simplification, the equation 
 

  G1 = 0,     (4.15) 
 

reduces to    ,0 3 1Y r 0      (4.15a) 
 

which is independent of fluid parameters and dilatational vibrations, hence this the frequency equation of 
axially symmetric shear vibrations of the poroelastic bore for a pervious surface. The equation  
 

  G2 = 0,     (4.16) 
 

is the frequency equation of axially symmetric dilatational vibrations of the fluid-loaded poroelastic bore for 
a pervious surface. Equation (4.13) shows that the axially symmetric shear and dilatational vibrations of the 
fluid-loaded poroelastic bore for a pervious surface are uncoupled. 
 Similarly, the frequency Eq.(4.12) of vibrations of the fluid-loaded poroelastic bore for an 
impervious surface reduces to 
 

  G3 G4 = 0,     (4.17) 

with  ,   
12 14 17

3 26 4 32 34 37

42 44 47

D D D

G D G D D D

D D D

       (4.18) 

 

where the elements Dij are defined in Eq.(3.6).  
 From Eq.(4.17) we obtain G3=0 or G4=0. On simplification, the equation 
 

  G3 = 0,     (4.19) 
 

reduces to   ,0 3 1Y r 0      (4.19a) 
 

which is independent of fluid parameters and dilatational vibrations, hence this the frequency equation of 
axially symmetric shear vibrations of the poroelastic bore for an impervious surface. The equation  
 

  G4 = 0,     (4.20) 
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is the frequency equation of axially symmetric dilatational vibrations of the fluid-loaded poroelastic bore for 
an impervious surface. Equation (4.17) shows that the axially symmetric shear and dilatational vibrations of 
the fluid-loaded poroelastic bore for a pervious surface are uncoupled. 
 From Eqs (4.15a) and (4.17), it is clear that the frequency equation of axially symmetric shear 
vibrations of the fluid-loaded poroelastic bore is same for a pervious and an impervious surface. Hence, axially 
symmetric shear vibrations of the fluid-loaded poroelastic bore are independent of the nature of the surface. 
 
4.1.1a. Poroelastic bore 
 

 When the fluid density ( )1
f of the inner fluid is zero, then the fluid-loaded poroelastic bore reduces to 

a poroelastic bore of radius r1. In this case, the frequency Eq.(4.11) of the fluid-loaded poroelastic bore for a 
pervious surface reduces to 
 

   
12 14 16

22 24 26

42 44

C C C

C C C 0

C C 0

      (4.21) 

 

where the elements Cij are defined in Eq.(3.4). 
 This is the frequency equation of the poroelastic bore for a pervious surface. 
Similarly, the frequency Eq.(4.12) of the fluid-loaded poroelastic bore for an impervious surface reduces to 
 

  
12 14 16

22 24 26

42 44

D D D

D D D 0

D D 0

      (4.22) 

 

where the elements Dij are defined in Eq.(3.6). 
 This is the frequency equation of the poroelastic bore for an impervious surface. 
 
Axially symmetric vibrations (n=0) 
 
 For axially symmetric vibrations, the frequency Eq.(4.21) of vibrations of the poroelastic bore for a 
pervious surface reduces to  
 

  I1I2 = 0,    (4.23) 
 

with   ,   12 14
1 26 2

42 42

C C
I C I

C C
      (4.24) 

 

where the elements Cij are defined in Eq(3.4). 
 From Eq.(4.23) we obtain I1=0 or I2=0. In particular, the equation 
 

  I1 = 0,    (4.25) 
 

is the frequency equation of axially symmetric shear vibrations of the poroelastic bore for a pervious surface 
and is same as the equation G1=0 obtained in Eq.(4.15). The equation  
 

  I2 = 0,    (4.26) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic bore for a pervious 
surface. Equation (4.23) shows that axially symmetric shear and dilatational vibrations of the poroelastic 
bore for a pervious surface are uncoupled. 
Similarly, the frequency Eq.(4.22) of vibrations of the poroelastic bore for an impervious surface reduces to  
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  I3 I4 = 0,     (4.27) 
 

with   ,   12 14
3 26 4

42 42

D D
I D I

D D
       (4.28) 

 

where the elements Dij are defined in Eq.(3.6). 
 From Eq.(4.27) we obtain I3=0 or I4=0. In particular, the equation 
 

  I3 = 0,     (4.29) 
 

is the frequency equation of axially symmetric shear vibrations of the poroelastic bore for an impervious 
surface and is same as the equation G3=0 obtained in Eq.(4.19). The equation  
 

  I4= 0,     (4.30) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic bore for an 
impervious surface. Equation (4.27) shows that axially symmetric shear and dilatational vibrations of the 
poroelastic bore for a pervious surface are uncoupled. From Eqs (4.25) and (4.29), it is clear that the 
frequency equation of axially symmetric shear vibrations of the poroelastic bore is same for a pervious and 
an impervious surface. Hence, axially symmetric shear vibrations of the poroelastic bore are independent of 
the the nature of surface. 
 
4.2. Poroelastic hollow cylinder surrounded by fluid 

 

 When the fluid density ( )1
f of the inner fluid is zero, then the fluid-loaded poroelastic hollow 

cylinder surrounded by a fluid reduces to a poroelastic hollow cylinder surrounded by a fluid. In this case, 
the frequency Eq.(3.3) of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for a pervious 
surface reduces to  
 

  

11 12 13 14 15 16

21 22 23 24 25 26

41 42 43 44

51 52 53 54 55 56 58

61 62 63 64 65 66
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C C C C C C C 0

C C C C C C 0

C C C C C C C

C C C C 0 0 C

       (4.31) 

 

where the elements Cij are defined in Eq.(3.4). 
This is the frequency equation of the poroelastic hollow cylinder surrounded by a fluid for a pervious surface. 
 In a similar way, the frequency Eq.(3.5) of the fluid-loaded poroelastic hollow cylinder surrounded 
by fluid for an impervious surface reduces to  
 

  

11 12 13 14 15 16

21 22 23 24 25 26

41 42 43 44

51 52 53 54 55 56 58

61 62 63 64 65 66

71 72 73 74 75 76 78

81 82 83 84 88

D D D D D D 0

D D D D D D 0
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D D D D D D D 0

D D D D D D 0

D D D D D D D

D D D D 0 0 D

       (4.32) 
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where the elements Dij are defined in Eq.(3.6).  
 This is the frequency equation of the poroelastic hollow cylinder surrounded by a fluid for an 
impervious surface. 
 
Axially symmetric vibrations (n=0) 
 
 For axially symmetric vibrations, the frequency Eq.(4.31) of vibrations of the poroelastic hollow 
cylinder surrounded by a fluid for a pervious surface reduces to  
 

  M1M2 = 0,      (4.33) 

with  ,   

11 12 13 14
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25 26
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        (4.34) 

 

where the elements Cij are defined in Eq.(3.4). 
 From Eq.(4.33) we obtain M1=0 or M2=0. In particular, the equation 
 

  M1 = 0,      (4.35) 
 

is the frequency equation of axially symmetric shear vibrations of the poroelastic hollow cylinder for a 
pervious surface and is same as the equation A1=0 obtained in Eq.(3.9). The equation   
 

  M2 = 0,      (4.36) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic hollow cylinder 
surrounded by a fluid for a pervious surface. Equation (4.33) shows that the shear and dilatational vibrations 
of the fluid-loaded poroelastic hollow cylinder for a pervious surface are uncoupled. 
 Similarly, the frequency Eq.(4.32) of vibrations of the poroelastic hollow cylinder surrounded by a 
fluid for an impervious surface reduces to 
 

  M3 M4 = 0,      (4.37) 

with   ,    
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41 42 43 44
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        (4.38) 

 

where the elements Dij are defined in Eq.(3.6). 
 From Eq.(4.37), it is clear that M3=0 or M4=0. In particular, the equation 
 

  M3 = 0,      (4.39) 
 

is the frequency equation of axially symmetric shear vibrations of the poroelastic hollow cylinder surrounded 
by a fluid for an impervious surface and is same as the equation B1=0 obtained in Eq.(3.13). The equation  
 

  M4 = 0,                 (4.40) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic hollow cylinder 
surrounded by a fluid for an impervious surface. Equation (4.37) shows that the shear and dilatational 
vibrations of the poroelastic hollow cylinder surrounded by a fluid for an impervious surface are uncoupled. 
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From Eqs (4.35) and (4.39), it is clear that the frequency equation of axially symmetric shear vibrations of 
the poroelastic hollow cylinder surrounded by a fluid is same for a pervious and an impervious surface. 
Hence, axially symmetric shear vibrations of the poroelastic hollow cylinder surrounded by a fluid are 
independent of the nature of the surface. 
 
4.2.1. Poroelastic solid cylinder submerged in a fluid 

 

      When the inner radius of the hollow poroelastic cylinder tends to zero i.e., r10 then the poroelastic hollow 
cylinder surrounded by a fluid reduces to a poroelastic solid cylinder submerged in fluid. In this case, the 
frequency Eq.(4.31) of the poroelastic hollow cylinder surrounded by a fluid for a pervious surface reduces to 
 

  

51 53 55 58

61 63 65

71 73 75 78

81 83 88

C C C C

C C C 0
0

C C C C

C C 0 C

      (4.41) 

 

where the elements Cij are defined in Eq.(3.4). 
 This is the frequency equation of vibrations of the poroelastic solid cylinder submerged in a fluid for 
a pervious surface. 
 Similarly, the frequency Eq.(4.32) of the poroelastic hollow cylinder surrounded by a fluid for an 
impervious surface reduces to     
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      (4.42) 

 

where the elements Dij are defined in Eq.(3.6). 
 This is the frequency equation of vibrations of the poroelastic solid cylinder submerged in a fluid for 
an impervious surface. 
 
Axially symmetric vibrations (n=0) 
 
 For axially symmetric vibrations, the frequency Eq.(4.41) of vibrations of the poroelastic solid 
cylinder submerged in a fluid for a pervious surface reduces to  
 

  P1P2 = 0,     (4.43) 
 

with    ,   
51 53 58

1 65 2 71 73 78

81 83 88

C C C

P C P C C C

C C C

       (4.44) 

 

where the elements Cij are defined in Eq.(3.4). 
 From Eq.(4.43) we obtain P1=0 or P2=0. On simplification, the equation 
 

  P1 = 0,     (4.45) 
 

reduces to   ,0 3 2J r 0      (4.45a) 
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which is independent of fluid parameters and dilatational vibrations, hence this is the frequency equation of 
axially symmetric shear vibrations of the poroelastic solid cylinder for a pervious surface. The equation  
 
  P2 = 0,     (4.46) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic solid cylinder submerged 
in a fluid for a pervious surface. Equation (4.43) shows that the axially symmetric shear and dilatational 
vibrations of the poroelastic solid cylinder submerged in a fluid for a pervious surface are uncoupled. 
 Similarly, the frequency Eq.(4.42) of vibrations of the poroelastic solid cylinder submerged in a fluid 
for an impervious surface reduces to 
 

  P3 P4 = 0,     (4.47) 
 

with  ,   
51 53 58

3 65 4 71 73 78

81 83 88

D D D

P D P D D D

D D D

       (4.48) 

 

where the elements Dij are defined in Eq.(3.6).  
 From Eq.(4.47) we obtain P3=0 or P4=0. On simplification, the equation 
 

  P3= 0,    (4.49) 
 

reduces to   ,0 3 2J r 0      (4.49a) 
 

which is independent of fluid parameters and dilatational vibrations, hence this the frequency equation of 
axially symmetric shear vibrations of the poroelastic solid cylinder for an impervious surface. The equation  
 

  P4 = 0,     (4.50) 
 

is the frequency equation of axially symmetric dilatational vibrations of the poroelastic solid cylinder submerged 
in a fluid for an impervious surface. Equation (4.47) shows that the axially symmetric shear and dilatational 
vibrations of the poroelastic solid cylinder submerged in a fluid for a pervious surface are uncoupled. 
 From Eqs (4.45a) and (4.49a), it is clear that the frequency equation of axially symmetric shear 
vibrations of the poroelastic solid cylinder submerged in a fluid is same for a pervious and an impervious 
surface. Hence, axially symmetric shear vibrations of the poroelastic solid cylinder submerged in a fluid are 
independent of the nature of the surface. 
 

5. Nondimensionalization of the frequency equation 
 

 To analyze the frequency equations obtained above, it is convenient to introduce the following non-
dimensional parameters 
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 In Eq.(5.1),   is the non-dimensional frequency, C is phase velocity, m is non-dimensional phase 

velocity, C0 and V0 are reference velocities  ,  2 1 2 1
0 0C N V H     , H P 2Q R    and  

 

   .11 12 222                                (5.2) 
 
6. Results and discussion  

 
 Two types of poroelastic cylinders are considered to carry out the computational work, one is 
sandstone saturated with water, say, cylinder I (Yew and Jogi, 1976), the other one is sandstone saturated 
with kerosene, say, cylinder II (Fatt, 1959), whose non-dimensional physical parameters are given in Tab.1. 
 
Table.1.     
 

Material 
Parameters 

a1 a2 a3 a4 d1 d2 d3 x1 y1 z1 

Cylinder I 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

Cylinder II 0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

 
 For given poroelastic materials, the above obtained frequency equations, when non-dimensionalized 
using Eq.(5.1), constitute a relation between the frequency and the ratio of thickness to the inner radius or a 
relation between phase velocity and wavenumber. Non-dimensional frequency is determined each for a 
pervious and an impervious surface in the case of axially symmetric, flexural and anti-symmetric vibrations. 
The non-dimensional frequency is computed for different values of the ratio of wall thickness to the inner 
radius h/r1. The values of h/r1 lie in [0.1  1.2] that represent a thin and moderately thick poroelastic cylinder. 
For the fluid-loaded poroelastic cylinder surrounded by a fluid, the internal fluid parameters are taken as 
m1=0.4, t1=2.5, while the external fluid parameters are taken as m2=0.9, and t2=1.5. In all other particular 
cases where only one fluid is involved, the fluid parameters m1 or m2=0.4 and t1 or t2=2.5 are taken.  
 The frequency of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid for axially 
symmetric dilatational, flexural and anti-symmetric vibrations is presented in Figs 2, 3 and 4, respectively, 
for both cylinders I and II each for a pervious and an impervious surface. From Fig.2 it is clear that the 
variation of frequency for cylinder I is more than that of cylinder II for a pervious surface and the frequency 
of cylinder II is higher than that of cylinder I for an impervious surface beyond the point h/r1 =0.7. In 
addition, the frequency of cylinder II is steady beyond h/r1 =0.6 for a pervious surface. The frequency of 
both cylinders I and II each for a pervious and an impervious surface is steady for h/r1 >0.6 in the case of 
flexural vibrations as shown in Fig.3. In addition, the frequency for an impervious surface is slightly higher 
than that of a pervious surface for cylinder I, while in the case of cylinder II, the frequency for an impervious 
surface is slightly less than that of a pervious surface beyond h/r1=0.6. Frequency of the fluid-loaded 
poroelastic cylinder surrounded by a fluid for anti-symmetric vibrations is presented in Fig.4. It is observed 
that the frequency of both the cylinders I and II each for a pervious and an impervious surface is almost 
steady for h/r1 >1. 
 The variation of frequency for the fluid-loaded poroelastic hollow cylinder is shown in Figs 5-7 for 
axially symmetric dilatational, flexural and anti-symmetric vibrations, respectively. From Fig.5 it is clear that 
the frequency of the fluid-loaded poroelastic cylinder I for an impervious surface is slightly higher than that 
of a pervious surface in 0.2< h/r1 <0.7 and much higher beyond h/r1 =0.7. In addition, the frequency for both 
pervious and impervious surfaces is steady beyond h/r1 =0.2. The frequency of the fluid-loaded poroelastic 
cylinder II for a pervious and an impervious surface is nearly same and increasing steadily in the case of 
axially symmetric dilatational vibrations. Figure 6 shows that the frequency of the fluid-loaded poroelastic 
cylinder I for an impervious surface is higher than that of a pervious surface when h/r1 >0.6, while a reverse 
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phenomenon is observed for poroelastic cylinder II in the case of flexural vibrations. Also, the frequency for 
both the cylinders I and II is steady and increasing beyond h/r1 >0.7. From Fig.7, it is observed that the 
variation in frequency for the fluid-loaded poroelastic cylinder II is more than that of cylinder I and the 
frequency for a pervious surface is same as that of an impervious surface beyond the point h/r1 =0.5 for the 
fluid-loaded poroelastic cylinder I in the case of anti-symmetric vibrations.     
 

 
 
Fig.2.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder surrounded by a fluid – axially symmetric dilatational vibrations (n=0). 
 

 
 
Fig.3.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder surrounded by a fluid – flexural vibrations (n=1). 
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Fig.4.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder surrounded by a fluid – anti symmetric vibrations (n=2). 
 
 

 
 
Fig.5.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder – axially symmetric dilatational vibrations (n=0). 
 



208  B.Shanker, C.N.Nath, S.A.Shah and P.M.Reddy 

 
 
Fig.6.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder – flexural vibrations (n=1). 
 

 
 
Fig.7.  Frequency as a function of ratio of thickness to inner radius – fluid-loaded poroelastic hollow 

cylinder – anti symmetric vibrations (n=2).  
 
 The phase velocity of the fluid-loaded poroelastic bore for axially symmetric dilatational vibrations 
is presented in Fig.8, for both cylinders I and II each for a pervious and an impervious surface. Figure 8 
shows that the phase velocity of fluid-loaded poroelastic bore I is steadily decreasing for a pervious surface 
in case of axially symmetric dilatational vibrations. The phase velocity for a pervious surface is higher than 
that of impervious surface for the fluid-loaded poroelastic bore II. In addition, the variation of phase velocity 
for the the fluid-loaded poroelastic bore II is more when compared to the fluid-loaded poroelastic bore I.  
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Fig.8.  Phase velocity as a function of wavenumber – fluid-loaded poroelastic bore – axially symmetric 

dilatational vibrations (n=0).  
 
 The variation of phase velocity for the poroelastic bore is depicted in Fig.9 for axially symmetric 
dilatational vibrations. From Fig.9, it is observed that phase velocity of the poroelastic bore I is more when 
compared to the poroelastic bore II in the case of axially symmetric dilatational vibrations. Figures 10-12 
depict the frequency of the poroelastic hollow cylinder surrounded by a fluid in the case of axially 
symmetric, flexural and anti-symmetric vibrations, respectively. From Fig.10, it is observed that the 
frequency of the poroelastic hollow cylinder I surrounded by a fluid for an impervious surface is higher than 
that of pervious surface in 0.1< h/r1 < 0.5 and is lower beyond h/r1 =0.5 in the case of axially symmetric 
vibrations. For the poroelastic hollow cylinder II surrounded by a fluid, the frequency for a pervious surface 
is slightly higher than that of an impervious surface for h/r1 >0.3. The frequency of poroelastic cylinders I 
and II surrounded by a fluid is steady each for a pervious and an impervious surface beyond h/r1 = 0.5. 
Figure 11 shows that the variation of frequency of the poroelastic hollow cylinder I surrounded by a fluid for 
a pervious surface is more when compared to an impervious surface, in addition the frequency is steady for 
the latter. The frequency of the poroelastic hollow cylinder II for a pervious surface is steady and less when 
compared to the frequency for an impervious surface in 0.15< h/r1 <0.57 in the case of flexural vibrations. 
The variation of frequency for an impervious surface is more when compared to the frequency of a pervious 
surface for both poroelastic hollow cylinders I and II surrounded by a fluid in the case of anti-symmetric 
vibrations as shown in Fig.12. In addition, the frequency of the poroelastic hollow cylinder I and II 
surrounded by a fluid for a pervious surface is steady and almost same beyond h/r1 =0.3. 
 Figures 13-15 depict the frequency of the poroelastic hollow cylinder in the case of axially 
symmetric dilatational, flexural and anti-symmetric vibrations, respectively. From Fig.13 it is clear that the 
frequency of both poroelastic hollow cylinders I and II is steady and increasing and the frequency of the 
poroelastic hollow cylinder I is same for a pervious and an impervious surface, whereas for cylinder II, the 
frequency for an impervious surface is slightly higher than that for a pervious surface. Thus, the variation of 
frequency of the poroelastic hollow cylinder I is independent of the surface. In addition, the frequency for the 
poroelastic hollow cylinder II is higher than that of cylinder I. Figure 14 shows that the frequencies of the 
poroelastic hollow cylinder I for an impervious surface and poroelastic hollow cylinder II for a pervious 
surface are same, steady and increasing in the case of flexural vibrations. The variation of frequency for a 
pervious surface is more compared to an impervious surface for both poroelastic hollow cylinders I and II in 
the case of anti-symmetric vibrations as shown in Fig.15. Further, the frequency of the poroelastic hollow 
cylinder I is same for a pervious and impervious surface beyond h/r1 =0.5. 
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Fig.9.  Phase velocity as a function of wavenumber – poroelastic bore – axially symmetric dilataional 

vibrations (n=0). 
 
 

 
 
Fig.10.  Frequency as a function of ratio of thickness to inner radius – poroelastic hollow cylinder 

surrounded by a fluid – axially symmetric dilatational vibrations (n=0). 
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Fig.11.  Frequency as a function of ratio of thickness to inner radius – poroelastic hollow cylinder 

surrounded by a fluid – flexural vibrations (n=1). 
 
 

 
 
Fig.12.  Frequency as a function of ratio of thickness to inner radius – poroelastic hollow cylinder 

surrounded by a fluid – anti symmetric vibrations (n=2). 
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Fig.13.  Frequency as a function of ratio of thickness to inner radius – poroelastic hollow cylinder – axially 

symmetric dilatational vibrations (n=0). 
 
 

 
 
Fig.14.  Frequency as a function of ratio of thickness to inner radius – poroelastic hollow cylinder – flexural 

vibrations (n=1). 
 



Vibrations in a fluid-loaded poroelastic hollow cylinder surrounded … 213 

 
 

Fig.15.  Frequency as a function of ratio of thickness to inner radius – poroelasti hollow cylinder – anti 
symmetric vibrations (n=2). 

 

 The effect of fluid presence in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid for the 
axially symmetric dilatational, flexural and anti-symmetric can be observed by comparing Figs 2-4 with Figs 
13-15, respectively. In the case of axially symmetric dilatational vibrations, the variation of frequency is more 
in the fluid-loaded poroelastic hollow cylinder surrounded by a fluid compared to the poroelastic hollow 
cylinder. Hence, the presence of internal and external fluids increases the variation of frequency of the 
poroelastic hollow cylinder in the case of axially symmetric dilatational vibrations. The frequency of the fluid-
loaded poroelastic hollow cylinder surrounded by a fluid is same as that of the poroelastic hollow cylinder 
beyond h/r1 =0.6 in the case of flexural vibrations. Hence, the presence of internal and external fluids does not 
affect the frequency of the poroelastic hollow cylinder beyond h/r1=0.6 in the case of flexural vibrations. In the 
case of anti symmetric vibrations, the frequency of the fluid-loaded poroelastic hollow cylinder surrounded by a 
fluid for a pervious surface is less than that of the poroelastic hollow cylinder for both cylinders I and II, 
whereas the phenomenon is reverse for an impervious surface. Thus, the presence of internal and external fluids 
decreases the frequency of the poroelastic hollow cylinder for a pervious surface and increases the frequency 
for an impervious surface for both cylinders I and II in the case of anti-symmetric vibrations.  
 On comparing Figs 5 and 13, it is observed that the frequency of the fluid-loaded poroelastic hollow 
cylinder is higher than that of the poroelastic hollow cylinder in the case of axially symmetric dilatational 
vibrations. Hence, the presence of an internal fluid increases the frequency of the poroelastic hollow cylinder in 
the case of axially symmetric vibrations. From Figs 6 and 14, it is clear that the frequency of the fluid-loaded 
poroelastic hollow cylinder is higher than that of the poroelastic hollow cylinder below h/r1 =0.7 and the 
frequencies are same for other values of h/r1 in the case of flexural vibrations. Hence, the presence of the internal 
fluid does not affect the frequency of the poroelastic hollow cylinder beyond h/r1=0.7 in the case of flexural 
vibrations. In the case of anti- symmetric vibrations, the frequency of the fluid-loaded poroelastic hollow 
cylinder for a pervious surface is less than that of the poroelastic hollow cylinder for both cylinders I and II as 
shown in Figs 7 and 15. Thus, the presence of the internal fluid decreases the frequency of the poroelastic hollow 
cylinder for a pervious surface for both cylinders I and II in the case of anti-symmetric vibrations.    
 From Figs 10 and 13, it is clear that the variation of frequency in the poroelastic cylinder surrounded 
by a fluid is more compared to the frequency of the poroelastic hollow cylinder below h/r1=0.5 and the 
frequencies are same for other values of h/r1 in the case of axially symmetric dilatational vibrations. Hence, the 
presence of the external fluid does not affect the frequency of the poroelastic hollow cylinder beyond h/r1=0.5 
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in the case of axial symmetric dilatational vibrations. From Figs 11 and 14, it is clear that the frequency of the 
poroelastic hollow cylinder surrounded by a fluid is same as that of the poroelastic hollow cylinder beyond h/r1 

=0.6 in the case of flexural vibrations. Hence, the presence of the internal fluid does not affect the frequency of 
the poroelastic hollow cylinder beyond h/r1=0.6 in the case of flexural vibrations. In the case of anti- symmetric 
vibrations, the frequency of the poroelastic hollow cylinder surrounded by a fluid for a pervious surface is less 
than that of the poroelastic hollow cylinder for both cylinders I and II, whereas for an impervious surface a 
reverse phenomenon is observed as shown in Figs 12 and 15. Thus, the presence of the external fluid decreases 
the frequency of the poroelastic hollow cylinder for a pervious surface and increases the frequency for an 
impervious surface for both cylinders I and II in the case of anti-symmetric vibrations.  
 The effect of fluid presence in a fluid-loaded poroelastic bore for the cases of axially symmetric 
dilatational vibrations can be observed by comparing Figs 8 and 9, which show that the phase velocity of the 
fluid-loaded poroelastic bore is higher than that of the poroelastic empty bore for cylinder II. Thus, the presence of 
a fluid increases the phase velocity of the poroelastic bore II in the case of axially symmetric dilatational 
vibrations.  
 
7. Conclusion 

 
 The analysis of vibrations of a fluid-loaded poroelastic hollow cylinder surrounded by a fluid has 
lead to the following conclusions:     
(i) The shear and dilatational vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by a 

fluid are uncoupled in the case of axially symmetric vibrations. 
(ii) Axially symmetric shear vibrations are independent of the nature of the surface. 
(iii) The variation of frequency in the fluid-loaded poroelastic hollow cylinder surrounded by a fluid is more 

in the case of anti-symmetric vibrations than axially symmetric dilatational and flexural vibrations. 
(iv) In general, the frequency of the fluid-loaded poroelastic hollow cylinder is increasing in the case of 

axially symmetric dilatational vibrations. 
(v) The frequency is steady and increasing for a moderately thick poroelastic cylinder in the case of 

flexural vibrations. 
(vi) In general, the phase velocity of the fluid-loaded bore I for a pervious surface is decreasing. 
(vii) In general, the phase velocity of bore II is less than that of bore I. 
(viii) The frequency is steady and increasing for a moderately thick poroelastic hollow cylinder surrounded 

by a fluid in the case of axially symmetric dilatational and flexural vibrations. 
(ix) In general, the variation of frequency of the poroelastic hollow cylinder surrounded by a fluid is more in 

the case of anti-symmetric vibrations compared to axially symmetric dilatational and flexural vibrations.  
(x) The presence of both internal and external fluids increases the variation of frequency of a the 

poroelastic hollow cylinder in the case of axially symmetric dilatational vibrations.  
(xi) The presence of both internal and external fluids decreases the variation of frequency of the 

poroelastic hollow cylinder in the case of anti-symmetric vibrations. 
(xii) The presence of the internal fluid increases the frequency of the poroelastic hollow cylinder in the case 

of axially symmetric vibrations. 
(xiii) The presence of the external fluid decreases the frequency of the poroelastic hollow cylinder for a pervious 

surface and increases the frequency for an impervious surface in the case of anti-symmetric vibrations. 
(xiv) The presence of fluid increases the phase velocity of poroelastic bore II.   
(xv) There is no effect of fluid presence on phase velocity of poroelastic bore I. 
 
Nomenclature 
 
 , , ,A N Q R  – poroelastic constants   
 b – dissipation coefficient 
 C – phase velocity 
 e – dilatation of solid 
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 ( )1
nH  – Hankel function of first kind of order n 

 Jn – Bessel function of first kind of order n    

 ( )j
fP  – fluid pressure 

 r1 – inner radius of cylinder 
 r2 – outer radius of cylinder 
 s – liquid pressure 
 t – time 
 U – liquid displacement 
 u – solid displacement 
 1V  – dilatational wave velocity of first kind  

 2V  – dilatational wave velocity of second kind     

 3V  – shear wave velocitiy 

 ( )j
fV  – velocity of sound in fluid 

 Yn  – Bessel function of second kind of order n 
   – dilatation of liquid  
 , ,11 12 22    – mass coefficients       

 ( )j
f  – density of the fluid 

 kl  – stresses in poroelastic solid 

   – circular frequency 

 2  – Laplacian operator        
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