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The present investigation is concerned with the effect of two temperatures on reflection coefficients in a 
micropolar thermoelastic solid half space. With two relaxation times, reflection of plane waves impinging 
obliquely at a plane interface of the micropolar generalized thermoelastic solid half space with two temperatures 
is investigated. The incident wave is assumed to be striking at the plane surface after propagating through the 
micropolar generalized thermoelastic solid with two temperatures. Amplitude ratios of the various reflected 
waves are obtained in closed form and it is found that these are functions of angle of incidence, frequency and are 
affected by the elastic properties of the media. The effect of  two temperatures is shown on these amplitude ratios 
for a specific model.  
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1. Introduction 

 
 The theory of micropolar elasticity introduced and developed by Eringen (1966), has aroused much 
interest in recent years because of its possible utility in investigating the deformation properties of solids for 
which the classical theory is inadequate. The micropolar theory is believed to be particularly useful in 
investigating materials consisting of bar like molecules,which exhibit microrotational effects and can support 
body and surface couples. A micropolar continuum is a collection of interconnected particles in the form of 
small rigid bodies undergoing both translational and rotational motions. The force at a point of the surface 
element of bodies is completely characterized by the stress vector at that point. 
 The linear theory of micropolar thermoelasticity was developed by extending the theory of 
micropolar continua to include the thermal effect. The comprehensive review on the subject was given by 
Eringen (1970; 1999) and Nowacki (1986). Touchert et al. (1968) also derived the basic equations of the 
linear theory of micropolar coupled thermoelasticity. Dost and Taborrok (1978) presented the generalized 
thermoelasticity by using Green and Lindsay theory. Chandrasekharaiah (1986) developed a heat flux 
dependent micropolar thermoelsticity. Boschi and Iesan (1973) extended a generalized theory of micropolar 
thermoelasticity that permits the transmission of heat as thermal waves at finite speed. 
 Thermoelasticity with two temperatures is one of the non-classical theories of thermoelasticity of 
elastic solids. The main difference of this theory with respect to the classical one is the thermal dependence. 
Chen et al. (1968; 1969) formulated a theory of heat conduction in deformable bodies. Conduction depends 
on two distinct temperatures, the conductive temperature   and thermodynamic temperature  . Chen et al. 
(1969) suggested that the difference between these two temperatures is proportional to the heat supply. These 
two temperatures may be equal under certain conditions for time independent cases. However for time 
dependent problems, relating to wave propagation, these two temperatures are in general different, regardless 
of the presence of heat supply. The two temperatures and the strain are found to have representation in the 
form of a travelling wave pulse, a response which occurs instantaneously throughout the body (Boley, 1956). 
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Warren and Chen (1973) investigated the wave propagation in the two temperature theory of 
thermoelasticity. 
 Youssef (2005) presented a new theory of generalized thermoelasticity by taking into account the 
theory of heat conduction in deformable bodies, which depends on distinct conductive and thermodynamics 
temperatures. He also established a uniqueness theorem for the equation of two temperature generalized 
linear thermoelasticity for a homogeneous and isotropic body. Different authors, Puri and Jordan (2006), 
Youssef and Al-Lehaibi (2007), Youssef and Al-Harby (2007), Magana and Quintanilla (2008), 
Mukhopadhyay and Kumar (2009), Roushan and Santwana (2010), Kaushal et al. (2010) and Kaushal et al. 
(2011) studied different problems in thermoelastic media with two temperatures.  
 Different authors (Parfitt and Eringen, 1969; Kumar and Singh, 1998a; Singh and Kumar, 1998b; 
Tomar et al., 1998; Kumar, 2000; Kumar and Sharma, 2005; Hsia and Cheng, 2006; Hsia et al., 2007; Singh, 
2007; Kumar and Rupender, 2008; 2009) investigated the problems of reflection at the free surface of a 
micropolar elastic half space and micropolar thermoelastic half space.  
 In this paper, we study the problem of reflection of plane waves at free surface of a micropolar 
thermoelastic solid half space with two temperatures. The effect of two temperatures is depicted graphically 
on the amplitude ratios for incidence of various plane waves, i.e., Longitudinal displacement wave (LD 
wave), Thermal wave (T wave), Coupled transverse wave (CD-I wave and CD-II wave). 
 
2. Basic equations  

 
 Following Ezzat and Aiwad (2010) and Green and Lindsay (1972), the field equations in an 
isotropic, homogeneous, micropolar elastic medium in the context of generalized theory of thermoelasticity 
with two temperatures, without body forces, body couples and heat sources, are given by 
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and the constitutive relations are 
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  , , ,ij r r ij i j j im       ,                 , , , ,i j r 1 2 3  (2.5) 

 
where λ and μ are Lame’s constants. K, α, β and γ are micropolar constants. ijt  are the components of the 

stress tensor and ijm  	are the components of the couple stress tensor. u and   are the displacement and 

microrotation vectors, ij  is the Kronecker delta,   is the density, ijr  is the alternating symbol, 	ଔ ̂ is the 
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microinertia, K  is the thermal conductivity, c  	is the specific heat at constant strain, 0T  is the uniform 

temperature, T is the temperature change,   T3 2 K       , where T  is the coefficient of linear 

thermal expansion.  
                                    
3. Formulation of the problem 

 
 We consider a homogeneous, isotropic, micropolar, thermoelastic solid half space with two 
temperatures. The rectangular Cartesian co-ordinate system 1 2 3Ox x x  having origin on the surface 3x 0  

with the 3x -axis pointing vertically into the solid medium is introduced. 

 We consider a two dimensional problem in the 1 3x x -plane, where the displacement vector u and 

microrotation vector   	for the solid medium M are taken as 
 

      , , , ,1 1 3 3 1 3u x x 0 u x xu ,             , , ,2 1 30 x x 0  . (3.1) 

 
 For convenience, the following non dimensional quantities are introduced  
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 The expressions relating the displacement components ,1 3u u  	to the potential functions ,   in 
dimensionless form are taken as 
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 Making use of Eqs (3.3) in Eqs (2.1)-(2.3) and with the aid of Eqs (3.1) and (3.2); (after suppressing 
the primes), we obtain  
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 
 is the Laplacian operator. 

 
4. Boundary conditions 
 
 The boundary conditions at the free surface 3x 0  are such that normal stress, tangential stress, 
tangential couple stress and temperature gradient vanish. Mathematically, these can be written as   
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3
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x


   


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5. Reflection  
 

 We consider the Longitudinal displacement wave (LD-wave), Thermal wave (T-wave), Coupled 
transverse and microrotational waves (CD-I wave and CD-II wave) propagating through the medium M and 
incident at the plane 3x 0  with its direction of propagation with angle 0  normal to the surface. 
Corresponding to each incident wave, we get reflected LD-wave, T-wave, CD-I and CD-II waves in medium 
M as shown in Fig.1. 
 

 
 

Fig.1. Geometry of the problem. 
 

 In order to solve Eqs (3.4)-(3.7), we assume the solutions of the form 
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where k is the wave number and   is the angular frequency and , , , , 2T     are arbitrary constants. 
 The use of Eq.(5.1) in Eqs (3.4)-(3.7), yield 
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 Equations (5.2) and (5.3) are quadratic in 2V , therefore the roots of these equations give four values 

of 2V . Corresponding to each value of 2V  in Eq.(5.2), there exist two types of waves in the solid medium in 
a decreasing order of their velocities, namely an LD-wave, T-wave. Similarly, corresponding to each value 

of 2V  in Eq.(5.3), there exist two types of waves in the solid medium, namely a CD-I wave, CD-II wave. Let 
,1 2V V 	 be the velocities of the reflected LD-wave, T-wave and ,3 4V V  the velocities of the reflected CD-I 

wave, CD-II wave in medium M.  
In view of Eq.(5.1), the appropriate solutions of Eqs (3.4)-(3.7) for medium M is assumed in the form 
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and ,0i 0 jS T  are the amplitudes of incident (LD-wave, T-wave) and (CD-I, CD-II) waves respectively. iS  

and jT  are the amplitudes of the reflected (LD-wave, T-wave) and (CD-I, CD-II) waves. 

 In order to satisfy the boundary conditions, we use the following extension of Snell’s law 
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 Making use of the values of , ,    and 2  from Eqs (5.4) and (5.5) in the boundary conditions 
(4.1) and with the aid of Eqs (2.4)-(3.3) and using Eqs (5.6) and (5.7), we obtain a system of four non-
homogeneous equations which can be written as 
 

   ; , , ,
4

ij j ij 1
a Z Y i 1 2 3 4


   (5.8) 

 

where  
 

   sin
2 2 2

2i i i
1i 1 2 0 1 i2 2 2

0

V V V
a d d 1 1 1 a f

V

    
                      

, 

 

   sin sin , sin sin
3 2 3 2
j j 2 2i i

1 j 0 0 2i 4 5 0 02 2 2 2
0 0 0 0

V V V V
a 1 a 2d d 1

V V V V
         
 

, 

 

  sin sin
2 2 4
j j j2 2

2 j 4 0 5 0 5 j2 2 2 2
0 0

V V V
a 2d 1 d d f

V V

  
       

     
, 

 

  , sin , sin ,
2 2 2

j j 2 2i i i
3i 3 j 0 j 4i 0 i 4 j2 2 2

0 0

V V V V V
a 0 a 1 f a 1 a 1 f a 0

V V

 
              

, 

 
  (i =1, 2   and   j =3, 4) 
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where , , ,1 2 3 4Z Z Z Z  are the complex amplitude ratios of the reflected LD-wave, T-wave and coupled CD-I, 
CD-II waves in medium M.  
 The phase of the reflected waves for the incident LD-wave, T-wave and CD-I waves can be written 
by using Eqs (5.6) and (5.7) as  
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Following Schoenberg (1971), we can write 
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where ,'iV  the real phase speed and '
i , the angle of reflection are given by  
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(1) For the incident LD-wave 
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(3)  For the incident CD-I wave 
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(4)  For the incident CD-II wave 
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6. Particular case 

 
 If two temperature parameters vanish, i.e., a 0 , then we obtain the amplitude ratios in the 
micropolar thermoelastic solid half space, where the values of ija  are given by 
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  (i =1, 2   and   j =3, 4). 
 
7. Numerical results and discussion 

 
      For numerical computations, we take the following values of relevant parameters for both the half spaces. 
 Following Eringen (1984), the values of micropolar constants for medium M are taken as 
 

  . , . , . ,10 2 10 2 10 29 4 10 Nm 4 0 10 Nm 1 0 10 Nm            
 

  ˆ. , . , . ,10 17 2 3 37 79 10 N j 0 002 10 m 1 74 10 Kg m           
 

and thermal parameters for medium M 	are taken as 
 

  . , . , . 5 2 1
0 0T 0 298K 0 292K 0 268 10 Nm K       , 

 

  . , . , .3 1 1 2 2 1 1 1c 0 104 10 J kg K a 0 03m K 1 7 10 J m s K           , 
 

  , . sec, . sec0 11 0 4 0 2     . 
 

 In Figs 2-25, we use a solid line for the incident wave in the micropolar generalized thermoelastic 
solid (a=0), small dashes line for the incident wave in the micropolar generalized thermoelastic solid with 
two temperatures (a=0.3) and large dashes line for the incident wave in the micropolar generalized 
thermoelastic solid with two temperatures (a=0.9).    
 
7.1. Incident LD-Wave 

 
 Variations of amplitude ratios ;iZ 1 i 4  , with the angle of incidence 0 , for the incident LD-

wave are shown in Figs 2 through 5. 
 Figure 2 shows that the values of the amplitude ratio 1Z  for all the values of a decrease in the whole 

range, except for 0 84    where the values for a=0 and a=0.3 increase. Also the values for a=0.9 remain more 
than the values for a=0.3 and a=0 in the whole range except in the initial range where the values are same. 
 Figure 3 shows that the values of 2Z  for all the values of a increase in the whole range except near 

0 90   , where the values of the amplitude ratio decrease sharply. Also, the values for all three values of a 
remain same with a slight difference in their magnitude. 

 Figure 4 shows that the values of 3Z  for all the values of a first increase in the range 00 75     

and then decrease for subsequent values. Also, the values for a=0 remain more than the values for a=0.3 
which remain more than the values for a=0.9. It is noted from Fig.5 that the behavior of variation of 4Z  for 

all the values of a is similar. The values of 4Z  for a=0.9 remain greater than the values for a=0.3 and a=0.  
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Fig.2. 
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Fig.3. 



226  K.Sharma 

0 10 20 30 40 50 60 70 80 90
Angle of incidence 

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de
 r

at
io




a=0

a=0.3

a=0.9

 
 

Fig.4. 
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Fig.5. 
 

Figs 2-5. Variations of amplitude ratios with the angle of incidence for LD-Wave. 
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7.2. Incident T-Wave  

 
 Variations of amplitude ratios ;iZ 1 i 4  , with the angle of incidence 0 , for the incident T- wave 

are shown in Figs 6 through 9. 
 Figure 6 illustrates that the values of 1Z  for all the values of a decrease in the whole range and the 

values of the amplitude ratio for all the values of a remain same in the whole range.   
 It is evident from Fig.7 that the values of 2Z  for all the values of a first decrease in the initial range 

and then show an increase near 0 90   . Also, the values of the amplitude ratio decrease with a decrease in 
the value of a, that shows the effect of two temperatures.  
 Figure 8 shows that the behavior of variation of 3Z  for all the values of a is similar with a 

difference in their magnitude. The values of 3Z  decrease with an increase in the value of a.  

 Figure 9 shows that the values of the amplitude ratio 4Z  decrease with a decrease in the value of a. 

The maximum value is attained for a=0.9 in the intermediate range.   
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Fig.7. 
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Fig.8. 
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Fig.9. 
 

Figs 6-9. Variations of amplitude ratios with the angle of incidence for T-Wave. 
 
 

7.3. Incident CD-I Wave  
 
 
 

 Variations of amplitude ratios ;iZ 1 i 4  , with the angle of incidence 0 , for the incident CD-I 

wave are shown in Figs 10 through 13. 
 Figures 10 and 11 shows that the values of the amplitude ratio 1Z  and 2Z  for all the values of a 

increase from normal incidence to intermediate range and then decrease from intermediate range to grazing 
incidence. Also from normal incidence to intermediate range the values for a=0 are more than the values for 
a=0.3 and a=0.9, while in the next range the values are similar.   
 It is noted from Fig.12 that the values of 3Z  for all the values of a increase in the whole range and the 

values for a=0 remain more than the values for a=0.3, which are greater than the values for a=0.9 in the whole 
range.  
 Figure 13 shows that the values of 4Z  for all the values of a decrease in the whole range with a 

difference in their magnitude. Also, the values of the amplitude ratio decrease with a decrease in the value 
of a.  
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Fig.10. 
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Fig.11. 
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Fig.12. 
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Figs 10-13. Variations of amplitude ratios with the angle of incidence for CD-I Wave. 
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Conclusion 
 
 An analytical expression for reflection coefficients of various reflected waves have been derived. It 
is observed that the values of 3Z  decrease with an increase in the value of a, for the incidence of all the 

plane waves that reveals the effect of two temperatures. Also, the values of 4Z  increase with an increase in 

the value of a, for the incidence of all the plane waves. These two temperatures have a significant impact on 
the amplitude ratios. 
 
Nomenclature 

 c  – specific heat at constant strain  

 ĵ  – microinertia 
 K, α, β and γ  – micropolar constants 

 K  – thermal conductivity 
 mij – components of couple stress tensor	 
 T – temperature change  
 T0 – constant absolute temperature of the reference configuration 
 tij – components of the stress tensor  
 andu   – displacement and microrotation vectors 

 T  – coefficient of linear thermal expansion 

 ij  – Kronecker delta  

 ijr  – alternating tensor 

 λ and μ  – Lame’s constants  
  T3 2 K        

   – density 
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