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Propagation of waves in a micropolar monoclinic medium possessing hermoelastic properties based on the 
Lord- Shulman (L-S),Green and Lindsay (G-L) and Coupled thermoelasticty (C-T) theories is discussed. The 
investigation is divided into two sections, viz., plane strain and anti-plane strain problem. After developing the 
solution, the phase velocities and attenuation quality factor have been derived and computed numerically. The 
numerical results have been plotted graphically. 
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1. Introduction 
 
 Any material is endowed with microstructure, like atoms and molecules at microscopic scale, grains 
and fibers or particulate at mesoscopic scale. Homogenization of a basically heterogeneous material depends 
on the scale of interest. When stress fluctuation is small enough compared to microstructure of the material, 
homogenization can be made without considering the detailed microstructure of the material. However, if it 
is not the case, the microstructure of the material must be considered properly in a homogenized formulation 
(Eringen, 1999; Hu et al., 2005). The concept of microcontinuum, proposed by Eringen (1999), can take into 
account the microstructure of the material while the theory itself remains still in a continuum formulation. 
The first grade microcontinuum consists of a number of theories, such as micropolar, microstretch and 
micromorphic, depending on how much micro-degrees of freedom are incorporated. These microcontinuum 
theories are believed to be potential tools to characterize the behavior of materials with complicated 
microstructures. 
 The most popular microcontinuum theory is the micropolar one, in this theory, a material point can 
still be considered as infinitely small, however, there are microstructures inside this point. So there are two 
sets of variables to describe the deformation of this material point, one characterizes the motion of the inertia 
center of this material point; the other describes the motion of the microstructure inside this point. In the 
micropolar theory, the motion of the microstructure is supposed to be an independently rigid rotation. 
Applications of this theory can be found in Eringen (1999); Hu et al. (2005), Lakes (1983). 
 The subject of generalized thermoelasticity has drawn the attention of researchers due to its 
relevance to many practical applications. Theories of generalized thermoelasticity have been developed 
mainly to overcome the shortcomings inherent in the classical coupled dynamical theory of thermoelasticity, 
such as the infinite speed of thermoelastic disturbances, unsatisfactory thermoelastic response of a solid body 
to short laser pulses and poor description of thermoelastic behaviour at low temperature. The generalized 
theories are characterized by the finite speed of thermal disturbance. A review of these theories is presented 
in the articles by Chandrasekharaiah (1998) and Hetnarski and Iganaczak (1999). 
 The theory of micropolar thermoelasticity has been a subject of intensive study. The linear theory of 
micropolar thermoelasticity was developed by Eringen (1970) and Nowacki (1966) to include thermal effects 
and is known as micropolar coupled thermoelasticity. A comprehensive review of works on the subject was 
given in Dhaliwal and Singh (1980). Boschi and Iesan (1973) extended a generalized theory of micropolar 
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thermoelasticity that permits the transmission of heat as thermal waves at finite speed. Othman and Baljeet 
(2007), Othman et al. (2009) investigated various problems in the generalized theory of micropolar 
thermoelasticity. Verma (2002), Verma and Haseba (2001) discussed the propagation of waves in anisotropic 
media in generalized thermoelastcity. 
 Singh and Tomar (2007) derived the reflection and transmission coefficients when plane qP-wave is 
incident obliquely at acorrugated interface between two different monoclinic elastic half-spaces. They 
derived the expressions for reflection and transmission coefficients using Rayleigh’s method and obtained 
the variation of the modulus of reflection and transmission coefficients with the angle of incidence, 
frequency and corrugation of the interface. Chattopadhyay et al. (2009) discussed the reflection and 
refraction when plane quasi-P-wave is incident at a corrugated interface between distinct triclinic elastic half 
spaces. Singh (2010) in his article studied the reflection of plane waves at the free surface of a monoclinic 
thermoelastic solid half-space. Sharma (2011) obtained energy flux characteristics of inhomogeneous waves 
in anisotropic thermoviscoelastic media. 
 The aim of the present paper is to discuss the propagation of waves in a micropolar monoclinic 
thermoelastic half space. The investigation is divided into two sections, viz., plane strain and antiplane strain 
problems. After developing the solution, the phase velocities and attenuation quality factor have been derived 
and computed numerically. The behavior of the components of displacement, microrotation and stresses for 
plane waves is obtained and plotted graphically. Some particular cases of interest are also deduced. 
 
2. Basic equations 
 
 A homogeneous anisotropic thermally conducting micropolar elastic solid is considered at a uniform 
temperature oT , in the undisturbed state. The balance equations for momentum, moment of momentum and 

energy in this medium, in the absence of body forces and heat sources, are given by 
 
  , ,ji j it u     (2.1) 

 

  , , , , , , ,ik i ijk ij km t j i j k 1 2 3    
 (2.2) 

 

     * *
, , ,ij ij o o ij i j o o i jK T C T T T u n u         

  (2.3) 
 

where, *
ijK  is (positive-definite) thermal conductivity tensor,  and *C  are density and specific heat at 

constant strain, respectively, iu  and i  are the components of the average displacements and microrotations 
of the particles. The thermal displacement T denotes variations in the temperature of the medium in 
undisturbed state. ijk  is the permutation symbol, which is zero if any two of its suffixes are equal, takes the 

values 1 if the suffixes are in cyclic order and -1 if the suffixes are in cyclic order. The symmetric non-
singular tensor ij  represents thermal expansion of the medium. The components of the tensor define 

thermoelastic coupling, which is explained through constitutive relations. In terms of deformation, 
microrotation and temperature, the stress ijt  and couple stress ijm components in the medium are expressed 

as 
 

  
  ,ij ijkl kl ij 1t A 1 T     

        ij ijkl klm B 
 (2.4) 

 
where the fourth rank asymmetric tensors ijklA and ijklB  represents the elastic constants of the medium. The 

two relaxation times are given by 1 o 0    . These time coefficients represent the thermal relaxation 
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mechanism and account for thermoelastic loss in the medium. Also, components of the micropolar strain 
tensor are given by , ,,ij j i jik k ij i ju       . 

Also, we have  
for Lord and Shulman(L-S)theory : , ,1 o0 n 1    

for Green and Lindsay (G-L)theory: , ,o 1 on 0 0      

for Coupled Thermoelasticity (C-T) theory ,o 1 on 0 0     . 
 
3. Formulation of the problem 
 
 Following Slaughter (2002), we have used appropriate transformations on the set of Eq.(2.4) to 
derive equations for a micropolar monoclinic medium. So, we have the following set of equations for the 
propagation of waves in the x-z plane 
 

  

   
   

 

, , , , , ,

, , , , ,

, , , , , ,

11 1 11 81 1 12 88 1 22 99 1 33 77 18 2 11 12 87 2 12

82 2 22 94 2 33 13 96 3 13 59 3 23 77 18 3 1

88 3 2 99 2 3 94 1 3 83 3 22 1 1 1 8 2 9 3 1

A u A u A u A u A A u A A u

A u A u A A u A u A A

A A A A u 1 T T T u
t

       

        

                   


     

   (3.1)

 
 

  

   
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       

(3.2) 

 

  

     
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A A u A u A A A u A A u

A u A A u A u A u A A

A A A A A A

A A 1 T T T u
t

       

       

         

             


 

    (3.3) 

 

  

 
         

, , , , , , , ,

, , , , , , ,
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                  


   

(3.4)
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
        ,2T j

t
      


       

(3.5)
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 

     

, , , , , , , ,

, , , , , , ,

, , , ,

96 1 31 95 2 31 99 3 11 94 3 21 46 1 32 45 2 32 49 3 12 44 3 22

31 1 13 37 1 23 38 2 13 32 2 23 33 3 33 11 1 1 77 2 1 3
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B B B B B B B B

B B B B B A u A u

A u A u A u 1 T j
t

               

              

                 


 

 
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. .

, , , .

2
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2
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T T
K T K T K T C

t t

T n u u u
t t

  
          

  
         

 
(3.6) 

 
4. Solution of the problem 
 
 We consider a homogeneous, micropolar monoclinic generalized thermoelastic half space. When the 
displacement and rotation fields depend on two space variables x1; x3 and time ’t’, the field equations can be 
decomposed into two independent sets, (i) plane strain and (ii) anti-plane strain. 
 
4.1. Plane-strain 
 
 In this case we assume the components of displacement and microrotation of the form 
 

   , ,1 3u 0 uu ,             ( , , ),20 0    (4.1) 
 
and we assume the solution of the form 
 

       , , , , , , 1 1 3 3i p x p x ct
1 3 2 1 3 2u u T u u T e        (4.2) 

 
where the components ),,,( 231 Tuu   define the amplitude and polarization of particle displacement, 

microrotation and temperature distribution in the medium.  
 To facilitate the solution, we use the following non-dimensional variables 
 

  
   

*

, , ,1 1 33
1

x x x x
c

  
       

   
*

, , ,1 3 1 3
1

u u u u
c

  
           

,ij
ij

1111

t
t

A
 

    
 

    
*

,ij 1
ij

2323

m c
m

B
 

                
,2 1111

2
A

X

 
                     

,
0

T
T

T
 

 
   (4.3) 

  
* ,t t                               

* ,0 0                             
* ,1 1     

 

  

* ,2 X

j
 

                           

2 1111
1

A
c 

   
 
where ω is the characteristic frequency of the material and 1c  is the longitudinal wave velocity of the 
medium. 
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 Using Eqs (4.3) and (4.4) on Eqs (3.2)-(4.1), and solving the resulting equations for the non-trivial 
solution, we obtain, 
 

  
4 3 2A B C D E 0            (4.4) 

 
where the list of symbols is given at the end of the paper (Appendix A). 
 The phase propagation velocity and attenuation quality factor of the quasi-longitudinal displacement 
(qLD) wave, quasi thermal wave (qT), quasi transverse microrotational (qTM) wave and quasi transverse 
displacement (qTD) wave, are obtained from the complex solutions i , i = 1, 2, 3, 4, of the equation as 
 

   Re ,i ial     (4.5) 
 

     Im Re .1
i i iQ 2 ag al     (4.6) 

 
 These waves are called quasi-waves because polarizations may not be along the dynamic axes. The 
waves with velocities v1, v2, v3, v4 may be named as that are propagating with the descending phase 
velocities vi, (i=1,2,3,4), respectively. 
 
4.2. Antiplane strain 
 
 In this case we assume the the components of displacement and microrotation of the form 
 

   , ,20 u 0u ,                           , , ,1 30     (4.7) 
 
and we assume the solution of the form 
 

       , , , , 1 1 3 3i p x p x ct
2 1 3 2 1 3u u e                                                           (4.8) 

 
where the components  , ,2 1 3u   define the amplitude and polarization of particle displacement and 

microrotation in the medium. 
 Using Eqs (4.5) and (4.6) on Eqs (3.2)-(4.1), and solving the resulting equations for the non-trivial 
solution, we obtain, 
 

  
3 2F G H 0         (4.9) 

 
where the list of symbols is given at the end of the paper. The phase propagation velocity and attenuation 
quality factor of the quasi-transverse displacement (qLD) wave, quasi-transverse microrotational (qTM1, 
qTM2) waves, are obtained from the complex solutions, i , i = 1, 2, 3, of the equation as 
 

   Re ,i ial               (4.10) 
 

     Im Re .1
i i iQ 2 ag al      (4.11) 

 

 These waves are called quasi-waves because polarizations may not be along the dynamic axes. The 
waves with velocities v1, v2, v3 may be named as that are propagating with the descending phase velocities 
vi, (i=1,2,3), respectively. 
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5. Particular cases 
 
5.1. Orthotropic material 
 
 Taking 17 18 72 73 65 64 82 83 59 94A A A A A A A A A A 0          , in Eqs (4.5) and (4.10), we 
obtain the corresponding expressions for an orthotropic micropolar generalized thermoelastic medium. 
 
5.2. Tetragonal material 
 
 Taking 65 94A A 0  and , , ,88 77 22 11 82 17A A A A A A    ,72 18A A  59 64A A  ,82 17A A 

,55 66A A  99 44A A , in the Eqs (4.5) and (4.4), we obtain the corresponding expressions for a tetragonal 
micropolar generalized thermoelastic medium. 
 
5.3. Cubic material 
 
 Taking ,17 18 72 73 65 64A A A A A A 0      ,82 73 59 94A A A A 0    ,13 12 23A A A   

69 78 54A A A  88 44 66A A A  , 22 11 33A A A  , 55 99 77A A A  , in the Eqs (4.5) and (4.10), we obtain 
the corresponding expressions for a tetragonal micropolar generalized thermoelastic medium. 
 
6. Numerical results and discussion 
 
 In order to illustrate the theoretical results obtained in the preceding sections, we now present some 
numerical results. For numerical computation, we take the values for relevant parameters for a micropolar 
monoclinic thermoelastic solid as 
 

  . , . , ,10 2 10 2 10 2
11 99 69A 33 6 10 Nm A 17 43 10 Nm A 16 10 Nm         

 

  . ,10 2
31A 5 3 10 Nm  . , . ,10 2 10 2

31 66A 5 3 10 Nm A 17 2 10 Nm      
 

  . ,10
96A 16 8 10 N  . , . ,9 9

88 77B 2 91 10 N B 1 44 10 N              
 

  . / ,31 74 Kg m               . ,15 2j 0 2 10 m        
* . sec ,2 oK 0 6 10 J m C                

 

  
* . oC 0 23 J Kg C ,        .T 298 K  

 
 Figures 1 and 2 show the variations of phase velocities Vi, i = 1, 2, 3, 4, and attenuation quality 
factors Qi, i = 1, 2, 3, 4. In these figures the solid curves represent the cases of a micropolar monoclinic 
generalized thermoelastic (MMT1) half space (   = 0.25), while dotted curves represent the cases of a 

micropolar monoclinic generalized thermoelastic (MMT2) half space (   = 0.35). The three theories of 
generalized thermoelasticity, viz, Lord Shulman (L-S) and Green Lindsay (G-L) are compared in all the 
graphs. The solid and dotted line without center symbol corresponds to L-S theory, the solid and dotted line 
with center symbol ( o o   ) corresponds to G-L theory. 
 It can be seen from Fig.1a that the value of phase velocity V1 goes on decreasing with an increase in 
frequency for both the theories of thermoelasticity. The variation pattern of MMT1 and MMT2 is similar 
with the difference in their amplitudes. Figure 1b shows that the value of phase velocity V2, attains a constant 
value. It is evident form Fig.1c that the value of phase velocity V3 for the case of MMT1 and for both the 
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theories of thermoelasticity, sharply decreases and then attains a constant value. However, a very small 
oscillation in its value is observed for the case of MMT2. The values for the case of MMT1 are less in 
magnitude as compared to those of MMT2. Figure 1d represents the variations in the value of phase velocity 
V4 with frequency. It can be seen form this figure that the variation pattern is similar to the case of Fig.1c 
except for the difference in there amplitudes. 
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Fig.1a. Variation of phase velocity V1 with frequency. 
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    Fig.1b. Variation of phase velocity V2 with frequency. 
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Fig.1c. Variation of phase velocity V3 with frequency. 
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    Fig.1d. Variation of phase velocity V4 with frequency. 

 Figure 2 represent variations in the value of attenuation quality factors Qi, i=1, 2, 3, 4. It is shown in 
Fig.2a that the value of attenuation quality Q1 for the case of MMT1 and MMT2 increases with an increase in 
frequency, for both the theories. Figures 2b and 2d represent the variations of attenuation quality factors 
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Q2,Q4 with frequency. It can be seen from these figures that, for the case of MTIS, the values of attenuation 
quality factor decrease and then attain a constant value for both the theories, while for Q4, its value initially 
decreases, then attains a constant value with an increase in frequency. It can be seen from Fig.2c that the 
value of attenuation quality factor Q3 increases, then decreases and then attains a constant value for all the 
cases. 
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Fig.2a. Variation of attenuation quality factor Q1

-1 
with frequency. 
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Fig.2b. Variation of attenuation quality factor 

Q2
-1 with frequency. 
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Fig.2c. Variation of attenuation quality factor Q3

-1 
with frequency. 
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Fig.2d. Variation of attenuation quality factor Q4

-1 
with frequency. 

 
 Figures 3 and 4 shows the variations of phase velocities and attenuation quality factor for the anti-
plane problem. It can be seen in the figure that their behavior is similar. 
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Fig.3. Variations of phase velocities with frequency. 
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Fig.4. Variations of attenuation quality factor 

with frequency 
 
7. Conclusion 
 
 The importance of thermal stresses in causing structural damages and changes in functioning of the 
structure is well recognized whenever thermal stress environments are involved. Wave propagation in a 
micropolar monoclinic thermoelastic half space has been discussed. The phase velocities and attenuation 
quality factor have been computed and plotted graphically. The numerically computed results are found to be 
in close agreement with the theoretical results. 
 
Nomenclature 
 
 ijklA and ijklB  – represents the elastic constants of the medium 

 *C  – specific heat at constant strain 

 *
ijK  – (positive-definite) thermal conductivity tensor 

 T – thermal displacement 
 iu and i  – components of the average displacements and microrotations of the particles 

 ij  – represents thermal expansion of the medium 

 ijk  – permutation symbol 

   – mass density 

The two relaxation times are given by 1 o 0    . These time coefficients represent the thermal relaxation mechanism 

and accounts for thermoelastic loss in the medium. 
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