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It is proposed to use the Hall currents to model the transient magneto-hydrodynamic two liquid flows and 
heat transfer of ionized gases propelled by a common pressure gradient via a horizontal channel consisting of 
parallel porous plates. For the distributions of velocity and temperature, the principal partial differential equations 
that explain heat transfer flow under the chosen constraints are resolved. Graphical representations are given for 
the distributions of velocity, temperature, and heat transfer rates. This research will be carried out using non-
conducting porous plate’s channel. 
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1. Introduction 

 
 In the decades-long research there has been a progressively impressive enthusiasm for investigating 
electro-magnetohydrodynamic (EMHD) two-fluid flow through channels, pipes or tubes. The transient 
phenomenon of such flows has been the subject of numerous research studies [1-5]. A few examples of 
applications in engineering and technology as well as industry-related different energy transformation 
frameworks that have sparked interest in this area include the development of conceptual designs for fluid 
metal magneto-hydrodynamic (MHD) power generators, accelerators, and fusion reactors. These applications 
therefore demand in-depth and reliable understanding of thermo-hydraulic systems with two-phase/two-fluid 
flow with an externally applied magnetic field. Two-fluid/ two-phase flows are also encountered in the 
petrochemical industry during the transportation and extraction of oil.  
 There are many astronomical and geophysical problems, such as plasma streams in an MHD control 
generator, radio propagation through ionized gases, plasma jets, as well as Hall accelerators, which depend 
greatly on Hall currents. While the magnetic field strength is extremely strong with a low density fluid, the 
Hall impact cannot be ignored because it affects how plasma flows differently. Many researchers, including 
Cowling [6], Sherman and Sutton [7], Sato [8], Shercliff [9], Raju and Rao [10], Ram [11], and many more 
authors, have conducted model examinations on the impact of Hall-currents on EMHD flows. Sakhnovskii 
[12], Jana and Datta [13], Beg et al. [14] and many have studied these consequences for the unsteady 
situation. Additionally, it is believed in the literature that the existence of hydro-magnetic forces and Hall 
currents has had a significant impact on the MHD flow behavior in channel flows with porous boundaries. 
As a result of their use in many engineering and technological fields, numerous studies have been accounted 
for in the literature.Among these, the works of Rama Bhargava and Meena Rani [15], Raju and Rao [16], 
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Ganesh and Krishnambal [17], Ghosh et al. [18], Gupta et al. [19], Khaled [20] and many more are worth 
mentioning. 
 Numerous researchers have explored the MHD heat transfer in two-fluid/or two-phase flows under a 
few specific circumstances without taking the Hall effects into account. In Lohrasbi and Sahai's [21] 
investigation of MHD two-phase stream with temperature-dependent transport characteristics, they dealt 
with a numerical approach to the problem of heat transfer caused by the MHD Poiseuille flow of two 
incommensurable fluids in a straight channel. A problem of MHD two-fluid heat flow for a short circuit 
model was studied by Malashetty and Leela in [22]. They thought about a similar issue for the open circuit 
case [23]. The unstable MHD convective heat and mass transfer via a semi-boundless vertical permeable 
moving plate with heat transfer was investigated by Chamkha [24]. Sharma and Rani [25] looked into the 
effects of compressibility and a finite Larmor radius on the thermosolutal instability of plasma. The Hall 
effects on the thermosolutal instability of plasma were examined by Sharma and Rani in [26]. Zivojin et al. 
[27] investigated the heat transfer and magnetohydrodynamic flow of two incommensurable fluids with 
induced magneticfield effects. Abdul [28] thought of the momentary magnetohydrodynamic movement of 2-
incompatible fluids along a flat conduit. Heat transmission in two-ionized fluids in a horizontal conduit with 
an applied transverse magnetic field and Hall effect was examined by L.Raju [29]. The unsteady MHD flow 
of two immiscible liquids over a horizontal channel with chemical reaction was investigated by Sivakamini 
and Govindarajan [30]. Abd Elmaboud et al. [31] researched into the electromagnetic flow of immiscible 
liquids. L.Raju [32] used Hall currents to investigate the heat transfer in a rotating system with a 
hydromagnetic two-fluid flow of an ionised gas between parallel walls. L.Raju and Gowri [33] examined the 
effect of Hall current on the unsteady MHD 2-ionised fluid heat transfer flow within a channel. The effect of 
Hall currents on EMHD 2-layered plasma heat transfer flow via a channel of a porous plates was studied by 
Nagavalli et al. [34]. L.Raju and Venkat [35] investigated an unsteady EMHD flow and heat transfer of two 
ionized liquids in a rotating system with Hall currents for the case of insulating plates. 

This article examines an issue of an unsteady electro-magnetohydrodynamic flow of two liquids and 
the heat transfer through a horizontal channel of non-conducting porous plates in the presence of Hall 
currents. This speculative research could have some practical applications in a variety of distinct fields, 
including geophysics, aviation science, specifically in the area of streamlined warming, and issues of 
engineering applications, such as pivoting MHD generators, Hall accelerators, plasma jets, spacecraft, the 
cooling process of thermo-atomic power reactors, the challenge of boundary layer control, and so forth. 
 
2. Formulation and mathematical analysis 
 
 We suppose an unsteady two-dimensional electro-magneto hydrodynamic two-liquid flow of ionised 

gases that is controlled by a common constant pressure gradient 
p

x





 in a horizontal channel that is 

constrained by two parallel porous plates that stretch out in the x- and z-directions with Hall currents. A 
steady suction 0v  is applied normally to both plates. In the y-direction, a constant magnetic field 0B  is 
applied. Since the magnetic Reynolds number is thought to be low, it is assumed that the induced magnetic 
field is insignificant. In the plane parallel to the channel plates, the x-axis is taken in the direction of a 
hydrodynamic pressure gradient but not in the direction of a flow. The coordinate system and physical 
system for the two-fluid flow model are shown in Fig.1 with the origin placed midway between the plates. 
The fluids in the upper and lower zones (regions), that is, 10 y h   and 2h y 0  are assigned as Region-I 
and Region-II, respectively. Two immiscible, electrically conducting, incompressible fluids with different 
viscosities ,1 2 , densities ,1 2  and electrical conductivities 01 , 02  are present in Regions I and II. In 
contrast to the channel height, the channel width is supposed to be extremely enormous. Since the size of the 
plates is limitless, all physical quantities – aside from pressure – will depend, on y  and t . The interface 

between two immiscible fluids is thought to be flat, stress-free, and unaffected. And for the sake of 
simplicity, the following hypotheses put forth by Sato [8] and L.Raju [32] are taken into consideration (i) 
The electric and magnetic fields are not affecting the equilibrium state of ionisation, (ii) The impact of space 
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charge is ignored, iii) The magnetic Reynolds number is low, and as a result neither the generated magnetic 
field nor the applied magnetic field are much larger than the magnetic field that is outwardly applied to the 
fluid. These hypotheses lead to a thorough description of the governing equations of motion and current for 
the two-dimensional unsteady electro- magneto hydrodynamic two-fluid flow problem. 
 The main equations to be solved for the issue are the equations of motion and current for an unsteady 
EMHD two-fluid flow of neutral fully ionised gases valid under the aforementioned suppositions. The 
governing equations of motion and current for an unsteady hydromagnetic two-fluid flow of neutral fully 
ionised gas in a horizontal channel bounded by two parallel porous plates are shortened in both fluid regions, 
comparable to Spitzer [36], Sato [8], Malashetty and Leela [23]. The thermal boundary conditions are 
acknowledged to apply to all areas of the channel plates while disregarding thermal conduction along the 
flow path. 
 

 
 

Fig.1.Flow geometry. 
 
 The equations for the research include the motion, current, and energy equations along with the 
boundary and interface conditions. We use the fluid's velocity as  , , ,i i iV u 0 w  the strength of the magnetic 

flux as  , , ,0B 0 B 0  the current density as  , , ,i ix izJ J 0 J and the electric field as  , ,i ix izE E 0 E  and 

, ( , )2 2 2
i ix izJ J J i 1 2    for both fluid areas, according to the analysis used in the research of Sato [8] and 

L.Raju and Gowri [33]. As a result, the governing equations in the two fluid regions (that is, for the fluids in 
the upper and lower regions, i.e., Region-I and Region-II), are simplified and become as follows: 
 
Region-I: 
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 (2.1) 
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Region-II 
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 In the aforementioned equations, 1 and 2 subscripts denote, respectively, the amounts for Regions-I 
and II. The values ,1 2u u  and ,1 2w w  represent, respectively, the primary and secondary velocity distributions 
for the two fluids and these are the x- and z-direction velocity components. Specifically, the x- and z-
components of the electric field and current densities are denoted by the symbols ,  i ix zE E , and ,  .xi ziJ J The 
ratio of the electron pressure to the total pressure is denoted by /es p p . For neutral, completely ionized 
plasma, the estimation of s is 1/2, while for a weakly ionized gas, it is close to zero. 11 , 12  and 21 , 22  
are modified conductivities and are parallel to and normal to the direction of the electric field, respectively. 
Fluid velocity and sheer stress must be continuous over the interface at y 0 . The boundary and interface 
conditions on ,1 1u w  and ,2 2u w  and for the fluids in the two zones are given by the following equations: 
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 (2.11) 
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   -  2 2u h 0 ,  -2 2w h 0 , (2.12) 

 
       1 2u 0 u 0 ,     1 2w 0 w 0 , (2.13) 
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For both fluids, the isothermal boundary and interface conditions for temperature are:  
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To form Eqs (2.1) to (2.10) and (2.11) to (2.14) as dimensionless, the following non-dimensional variables 
are used: 
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where  ,i 1 2 , i  is the temperature distribution of the fluids, M is the Hartmann number,  is the 

viscosity ratio, h is the height ratio,  is the density, 0 is the electrical conductivity ratio, m is the Hall 
parameter and  is the thermal conductivity ratio between the two fluids. e is the electron gyration 

frequency,  and e  are the mean collision times between electron and neutron and electron and ion, 
respectively. Additionally, the previously stated formulation in (2.16) for the Hall parameter m, which is 
crucial due to partially-ionized gas, accords with the formulation for fully-ionized gas as e  approaches 
infinity. 
 The non-dimensional kinds of Eqs (2.1) through (2.14) are given by omitting the asterisks and 
considering transformations (2.16). 
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Region-I  
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The boundary and interface conditions on 1u , 1w  and ,2 2u w  are simplified as 
 
     , for , , for ,1 1u 1 0 t 0 w 1 0 t 0     

   (2.27) 
     cos , for , cos , for1 1u 1 t t 0 w 1 t t 0        , 

 
  ( ) , ( ) ,2 2u 1 0 w 1 0     (2.28) 
 
  ( ) ( ),1 2u 0 u 0 ( ) ( ),1 2w 0 w 0   (2.29)  
 

     and1 2 1 2u u w w1 1
h hy y y y

   
     

and at1 2
1 2

w w
y 0

y y

 
   

 
. (2.30) 

 
The isothermal boundary and the interface conditions are given by  
 

    ,1 1 0    ,2 1 0      1 20 0   and 1 21

y h y

 


  
at y 0 .  (2.31) 

 
3. Method of solution 
 
 The momentum and energy equations (2.17)-(2.19) and (2.22)-(2.31) must be resolved in order to 
satisfy the boundary and interface conditions (2.27)-(2.31) for the velocity and temperature distributions in 
both fluid regions. Given that they are coupled partial differential equations, these equations cannot be 
solved in closed form. However, if the subsequent two-term series is assumed (Regular perturbation 
technique of first order), they can be reduced to simple linear differential equations [33]. 
  
  ( , ) ( ) cos ( )1 01 11u y t u y t u y    and ( , ) ( ) cos ( ),1 01 11w y t w y t w y     (3.1)  
 
  ( , ) ( ) cos ( )2 02 12u y t u y t u y    and ( , ) ( ) cos ( ),2 02 12w y t w y t w y     (3.2) 
 
  ( , ) ( ) cos ( )1 01 11y t y t y       and ( , ) ( ) cos ( ),2 02 12y t y t y        (3.3)  
 
where the terms ( ) ( )( ) ( ) ( ) ( ) and ,, , , 01 0201 02 01 02 y yy y y yu u w w   are the temperature and velocity 

distributions in the steady-state two-fluid areas and ( ) ( ) ( ) ( ), , ,11 12 11 12y y y yu u w w ( ) ( )and ,11 12y y  are 
the relevant time-dependent components. 
 We add the complex notation  , ( , ) ( , )1 1 1q y t u y t iw y t   to unify Eqs (2.17) and (2.18) into a 

single equation and for convenience; likewise,  , ( , ) ( , )2 2 2q y t u y t iw y t   to unify Eqs (2.22) and (2.23). 

We construct the differential equations by including the formulas from (3.1)-(3.3) into (2.17)-(2.19) and 
(2.22)-(2.24), then separate the steady and transient time-varying components. The boundary and interface 
conditions are used to resolve the resulting linear differential equations analytically. To find the conclusive 
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answers to the unstable EMHD problem in two-fluid regions, the closed form solutions for the steady and 
transient-time dependent sections are independently produced. 
The solutions for the primary and secondary velocity distributions, ,  1 2u u  and ,  1 2w w , respectively, are 
provided by: 
  

  

   

 
, cos . ( )

cos30 31 34 35

1 01 11

f y f y f y f y2
1 2 5 6

1

q y t q y t q y

c
f e f e t f e f e

c

  

     
 (3.4) 

 

  

   

 
, cos . ( )

cos32 33 36 37

2 02 12

f y f y f y f y4
3 4 7 8

3

q y t q y t q y

c
f e f e t f e f e

c

  

     
 (3.5) 

 

where ,
( , ) ( , )

, , , ( , ) ,1 1
01 01 01 11 11 11 02 02 02 12 12 12 1

q y t q y t
q u iw q u iw q u iw q u iw u y t

2


        

( , ) ( , )
( , ) ,1 1

1
q y t q y t

w y t
2i


 and similarly for ( , ) and ( , ).2 2u y t w y t  

 
Mean velocity distributions are  
 

  1m 1m 1mq u iw  ,2
1 97 2 98 28

1

c
f c f c f

c
     

   (3.6) 

          4
3 99 4 100 29

3
2m 2m 2m

c
f c f c f

c
q u iw       

 

where ,1m 1m
1m

q q
u

2


 ,1m 1m

1m
q q

w
2i


 ,2m 2m

2m
q q

u
2


 2m 2m

2m
q q

w
2i


 . 

 
 Therefore, using the aforementioned expressions (3.4)-(3.6), we independently solve the appropriate 
energy equations for the steady and transient time-dependent components. The following are the concluding 
answers for the temperature distribution between the two regions and the rate of heat transfer coefficients at 
the channel porous plates under an unsteady condition: 
 
Region-I:  
 

  






( , ) ( ) cos ( )

cos

23 24

25 26 30 31 30 31

9 10 138 139 140

141 34 35

d y d yy
1 01 11 1 2 36 37

d y d y f y f y f y f y
38 39 40 41 42 43 44

g y g y d y d y d y
5 6 146 147 148

d y f y f
149 150 151

y t y t y g g e d e d e

d e d e d e d e d e d e d y

t g e g e d e d e d e

d e d e d e

           

      

      

   .34 35y f y f y
152 153d e d e 

 (3.7) 
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The upper plate coefficient of heat transfer rate 1
1Nu

y


 


at y 1  is: 

 

  




cos

23 24 25 26

30 31 30 31

9 10 138 139

140 141 34

d d d d
2 36 23 37 24 38 25 39 26

f f f f
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g g d d
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d d f
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d f e d f e d f e d f e d

Nu t g g e g g e d d e d d e

d d e d d e d f e

     

     

       

   


35

34 35

f
151 35

f f
152 34 153 35

d f e

d f e d f e

 
 
 
 
 
 
 
  
  
 

. (3.8) 

 
Region-II:  
 

  





( , ) ( ) cos ( )

cos

45 74 75

76 77 32 33 32 33
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188 36

d y d y d y
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d y f y
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d e d e d

           

        

      

   .37 36 37f y f y f y
8 199 200e d e d e 

 (3.9) 

 

The lower plate coefficient of the heat transfer rate 2
2

d1
Nu

h dy





at y 1   is given by: 

 

  


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cos

45 74 75 76 77

32 33 32 33

18511 12

186 187

d d d d d
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f f f
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e d f e
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 
 
 
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   
 

 (3.10) 

 
where, the symbols and notations which are used to perform the mathematical analysis and make equations 
simpler are shown separately in the Appendix. 
 
4.Results and Discussion: 
 
 The governing partial differential equations for the primary and secondary velocity distributions  
( ,1 2u u and ,1 2w w ) as well as the temperature distributions ( ,1 2  ) in the two regions are solved using a two-

term series (regular perturbation technique of first order). Graphical examples are used to explain related 
computational estimation for the various sets of governing parameter values. Figures 2 to 25 display profiles 
for the temperature and velocity distributions in the two zones as well as the rate of heat transfer coefficients. 
The profiles for unsteady motions are shown in the figures as solid lines, whereas those for steady motions 
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are dashed-spot lines. The impact of flow parameters on the velocity and temperature fields is explored by 
the Hartmann number M, Hall parameter m, porous parameter , density ratio ,  viscosity ratio ,  height 

ratio h, electrical conductivity ratio 0  and thermal conductivity ratio . Since the issue involves a too many 
non-dimensional parameters, we fix the parameters .01 1 2  and .02 1 5  in all numerical computations for 
simplicity, and the effect of other significant parameters is examined. It is noticed that the solutions are found  
to be free of ’s’ (electron pressure to aggregate pressure proportion). We see that, when the motion is steady 
state and the channel side plates are non-porous, the analysis is in excellent agreement with the results of 
L.Raju [29]. Additionally, this analysis supports L.Raju and Gowri [33] solutions to the unsteady issue with 
non-porous side plates. 
 Figures 2, 3 and 4 illustrate how changing the Hartmann number M affects velocity and temperature 
distributions while all other parameters are held constant. As is seen in Fig.2, the primary velocity 
distribution diminishes when the Hartmann M augments up to an estimate of M 6 , beyond which it 
enhances in zone I. The primary velocity distribution in area II increases as the Hartmann number M rises 
until an estimate of M 4 , at which time it starts to fall. The secondary velocity distribution is shown in 
Fig.3 to grow with M up to an estimated value of M 6 , after which it decreases in the two zones. This 
tendency may be due to the Lorentz force actually which acts against the flow in the presence of a transverse 
magnetic field in an electrically conducting fluids. As M rises, the channel's most extreme primary and 
secondary velocity distributions have a tendency to move away from region-I (which is in the upper fluid 
area) over the channel's central line. It is found from Fig.4 that the temperature distribution in two regions 
decrease as M rises. The channel's most extreme temperature tends to shift beyond the channel focus line and 
toward region-I with an increase in the magnetic parameter M. These observations indicate that the applied 
transverse magnetic field has a more noticeable effect on velocity fields rather than temperature. 
 

  
 

Fig.2. Velocity profiles (primary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied M with

,m 2 ,2  . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 

Fig.3. Velocity profiles (secondary): unsteady flow 
,1 2w w  and steady case *, *1 2w w for varied M with 

,m 2 ,2  . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates). 
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Fig.4. Temperature profiles: unsteady flow ,1 2  and 
steady case *, *1 2  for varied M with ,m 2 ,2 

. ,0 333  . ,h 0 75 ,0 2  . ,01 1 2  . ,02 1 5 
,1  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates). 
 

 
Fig.5. Velocity profiles (primary): unsteady flow 

,1 2u u and steady case *, *1 2u u for varied m with 
,M 2 ,2  . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 
 

  
 

Fig.6. Velocity profiles (secondary): unsteady flow 
,1 2u u and steady case *, *1 2u u for varied m with 

,M 2 ,2  . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 

Fig.7. Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied m with ,M 4

,2  . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t     

(Insulating porous plates). 
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Fig.8. Velocity profiles (primary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied   with

,M 2 ,m 2 . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 

Fig.9. Velocity profiles (secondary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied   with

,M 2 ,m 2 . ,0 333  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 
 

  
 

Fig.10. Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied   with ,M 4

,m 2 . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t     

(Insulating porous plates). 
 

Fig.11. Velocity profiles (primary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied   with

,M 2 ,m 2 ,2  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates) 
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Fig.12 Velocity profiles (secondary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied   with

,M 2 ,m 2 ,2  ,h 1 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 

Fig.13 Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied   with ,M 4

,m 2 ,2  . ,h 0 75 ,0 2  . ,01 1 2  . ,02 1 5 
,1  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates) 
 
 

  
 

Fig.14. Velocity profiles (primary): unsteady flow 
,1 2u u  and steady case *, *1 2u u for varied h with 

,M 2 ,m 2 ,2  . ,0 333  ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 

Fig.15. Velocity profiles (secondary): unsteady flow 
,1 2w w  and steady case *, *1 2w w for varied h with 

,M 2 ,m 2 ,2  . ,0 333  ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates). 
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Fig.16. Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied h with ,M 4

,m 2 ,2  . ,0 333  ,0 2  . ,01 1 2  . ,02 1 5 
,1  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates). 

Fig.17. Velocity profiles (primary): unsteady flow 
,1 2u u and steady case *, *1 2u u for varied 0  with 

,M 2 ,m 2 ,2  . ,0 333  ,h 1 . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 
 
 

 
 

 
 

Fig.18 Velocity profiles (secondary): unsteady flow 
,1 2u u and steady case *, *1 2u u for varied 0  with 

,M 2 ,m 2 ,2  . ,0 333  ,h 1 . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t    (Insulating 

porous plates). 

Fig.19. Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied 0  with ,M 4

,m 2 ,2  . ,0 333  . ,h 0 75 . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t     

(Insulating porous plates). 
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Fig.20. Velocity profiles (primary): unsteady flow 
,1 2u u and steady case *, *1 2u u for varied   with 

,M 2 ,m 2 ,2  . ,0 333  ,h 1 ,0 2 
. ,01 1 2  . ,02 1 5  . ,0 5  ,1  / .t   

(Insulating porous plates). 
 

Fig.21. Velocity profiles (secondary): unsteady flow 
,1 2u u and steady case *, *1 2u u for varied   with 

,M 2 ,m 2 ,2  . ,0 333  ,h 1 ,0 2 
. ,01 1 2  . ,02 1 5  . ,0 5  ,1  ,1  / .t   

(Insulating porous plates). 
 
 

  
 

Fig.22 Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied   with ,M 4

,m 2 ,2  . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t     

(Insulating porous plates). 

Fig.23 Temperature profiles: unsteady flow ,1 2 
and steady case *, *1 2  for varied   with ,M 4

,m 2 ,2  . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  . ,0 5  ,1  ,1  / .t     (Insulating 

porous plates). 
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Fig.24. Nusselt Number  1Nu for varied M with

,2  . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t   

(Insulating porous plates). 

Fig.25. Nusselt Number  2Nu for varied M with

,2  . ,0 333  . ,h 0 75 ,0 2  . ,01 1 2 
. ,02 1 5  ,1  . ,0 5  ,1  ,1  / .t   

(Insulating porous plates). 
 
 Figures 5 and 6 show how changing the Hall parameter 'm' affects both primary and secondary 
velocity distributions. Figure 5 illustrates how increasing m improves the primary velocity distribution in the 
two locations. Figure 6 demonstrates that the secondary velocity distribution rises as m rises up to an 
estimated value of 1 before falling in the two locations. The highest primary and secondary velocity 
distributions of the channel are also seen to be moving over the channel center line and toward zone-I when 
m increments. The cause of the variable Hall parameter m on temperature field is seen in Fig.7. It is seen that 
raising m enhances how evenly the temperatures are distributed between the two regions. This implies that 
the Hall parameter accelerates the temperature of the fluids in the two locations. The channel's highest 
temperature also has a tendency to cross the channel center-line and move toward zone-I when m increases. 
 Figures 8, 9, and 10 each depict how the porosity parameter   affects the distributions of velocity 
and temperature. Figure 8 illustrates how a drop in the primary velocity distribution in area II results from an 
increase in  , whereas increasing   leads the primary velocity distribution in Region-I to grow. A rising   
lowers the secondary velocity distribution in the two zones, as shown in Fig.9. Further investigation 
demonstrates that the greatest primary and secondary velocity distributions in the channel have a tendency to 
migrate toward region-I as   increases by crossing the channel focus center line. From Fig.10, it is evident 
that the temperature circulation has increased in two zones. As a result, suction tends to higher temperature 
in both locations. As the permeability parameter   raises, the channel's greatest temperature conveyance 
tends to migrate away from region-I and over the channel focal line. 
 Figures 11 and 12 show the results of the viscosities ratio  between the two liquids. In both zones, 
the primary and secondary velocity distributions are found to increase as   increases. As   increases, the 
channel's most extreme primary and secondary velocity distributions have a tendency to cross the channel 
focus line and head towards Region-I. Figure 13 shows the impact of the viscosity ratio   on the 
temperature distribution. The temperature distribution is observed to decrease as   increases up to 1  , 
after which it increases up to .0 3   before decreasing once more close to the channel's centre. The 
temperature transmission decreases in Region-II. Additionally, when the viscosity proportion grows, the 
temperature distribution in the channel tends to shift towards Region-II, beneath the channel focus line. 
 Figures 14, 15 and 16 illustrate the effect of changing the height ratio h on velocity and temperature 
distributions. The primary and secondary velocity distributions in the two zones are seen to increase as h 
increases. The channel's most primary and secondary velocity distributions typically move with 'h' 
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increments over the channel centre line in the direction of Region-I. Figure 16 shows that increasing h 
increases the temperature dispersion up to h=0.75, after which the temperature dispersion in the two zones 
decreases. As h increases, the channel's highest temperature has a tendency to shift beyond the channel focus 
line and toward Region-I. 
 Figures 17, 18 and 19 display the impact of electrical conductivity ratio 0  on velocity and 

temperature fields. It is found that, when 0  increases; neither the primary nor secondary velocity 

distributions show any major or minor deviation. As 0  increases, the channel's maximum primary and 
secondary velocity distributions have a tendency to cross the channel focus line and head toward Region-I. It 
is found from Fig.19 that as 0  increases in the two zones, there is no significant minor deviation from 

temperature conveyance. As 0  increases, the channel's most extreme temperature dispersion has a tendency 
to cross the channel focus line and head toward zone-I. 
 Figures 20, 21 and 22 show how the density ratio   affects the distributions of velocity and 

temperature in the two fluid zones. It is seen from Figs 20 and 21 that an increase in   reduces the two 
regions' primary and secondary velocity distributions. As   increases, the channel's most extreme main and 
secondary velocity distributions have a tendency to cross the channel centre line and head in the direction of 
area I. It is found from Fig.22 that the temperature distribution in the two zones will be built by an increasing
 . As   increases, the channel's highest temperature has a tendency to cross the channel focal line and head 
toward area I. 
 Figure23 shows the effect of thermal conductivity ratio   on temperature distribution. The 
temperature distribution in the two zones is observed to be increased by an increasing . As   increases, the 
channel's highest temperature has a tendency to shift slightly over the focus line and toward region-I. 
 The rate of heat transmission coefficients in relation to the Hartmann number M is shown in Figs 24 
and 25. It is clear that the rate of heat transfer increases as M grows when all governing factors are held 
constant. The rate of heat transfer at the plates is, however, reduced up to a certain value when the Hall 
parameter m is increased, and thereafter it increases. 
 
5. Conclusions  
 
 Theoretically, Hall currents are used to study the behaviour of the temperature distribution brought 
on by an EMHD two liquid flow of ionized gases into a straight channel constructed of porous non-
conducting plates. Graphs are used to investigate the effects of flow parameters on the temperature fields and 
rate of heat transfer coefficients in two liquid zones. These parameters include the Hartman number, Hall 
parameter, Porous parameter, ratios of the viscosities, densities, heights, electrical conductivities, and 
thermal conductivities. Some significant outcomes include the following: 

 In zone-I, the primary velocity distribution increases up to an estimated value and then reduces past 
this estimate as the Hartmann number rises, where in zone-II, it enhances up to an estimated value 
and then decreases past this estimate. Up to a particular parameter estimation, the secondary velocity 
distribution increases, and then it starts to decline. 

 As the Hartmann number rises, the temperature distribution in two regions becomes less uniform. 
 The secondary distribution grows with an increase in the Hall parameter up to a certain estimate, 

after which it drops in the two regions. This contrasts with the main distribution, which is improved 
in both regions by an increasing Hall parameter. 

 The temperature distribution in two regions is enhanced by an increase in the Hall parameter. 
 An increment in the porous parameter enhances the primary velocity distribution in Region-I and 

diminishes in the Region-II, while the secondary velocity distribution diminishes in the two regions. 
 A growth in either the Hall parameter/or porous parameter/or thermal conductivity ratio/or density 

ratio improves the dispersion of temperature in the two regions. 
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 A rise in the viscosity or density ratio or height ratio improves primary and secondary velocity 
profiles. 

 When either the height ratio or viscosity ratio increases up to a certain point, the temperature 
distribution increases; after that, it decreases in the two zones. 

 An increase in the Hartmann number accelerates the rate of heat transfer coefficients at the plates. 
However, as the Hall parameter increases up to a certain point, the rate of heat transfer coefficient at 
the plates decreases and from that point on, it increases. 
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Nomenclature 
 
 0B  − applied magnetic field 

 B  − magnetic flux intensity 

 

, ,..., , , ...

, ,..., , ,....

,

  

 , ...

1 2 1 2

1 2 1 2

1 2 3

c c d d

f f g g

m m m







 − symbols/or functional relations considered in all the solutions and equations. 

  ,pic i 1 2  − specific heat in the two fluid regions at constant pressure 

 ,  , ,ix izE E i 1 2  − applied electric fields in x- and z- directions respectively 

 h  − height ratio 

 1h  − height of upper region (Region-I) 

 2h  − height of the lower region 

 ,ix izI I  − current. densities in two fluid regions along the x- and z-axes those are dimensionless 

 ,  ix izJ J  − current densities in the x- and z-axes, respectively 

 J  − current density 

 ,1 2K K  − fluid's thermal conductivities 

 m  − Hall parameter 

 ,  ix izm m  − electric fields with no dimensions of both fluid regions 

 M  − Hartmann number 

 ,1 2N N  − represented symbols for n a d1x 1z 2x 2z1 2m im m iN N m    

 ,  1 2Nu Nu  − heat transfer coefficients at upper and lower plates 

 P  − pressure 

 ep  − electron pressure 

 , , ,01 02 11 12q q q q  − velocities in steady and transient states expressed in complex notation 

 ,1m 2mq q  − mean velocities in complex notation, where ,1m 1m 1m 2m 2m 2mq u iw q u iw     

 /es p p  −ionization number = ratio of electron pressure to total pressure 
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 ,  t T  − time, temperature 

  , : ,i 1 2T i 1 2 T T  − fluid's temperature for two regions 

  , : ,i 1 2u i 1 2 u u  − primary velocity distributions 

 ,1m 2mu u  − mean primary velocity distributions 

    ,01 02u y u y  − primary velocity distributions in steady state case 

    ,11 12u y u y  − transient primary velocity components 

 pu  −characteristic velocity = 
2
i

i

hp

x



 

 

 iV  − fluid velocity 

  , :i 1w i 1 2 w , 2w  − secondary velocity distributions 

 ,1m 2mw w  − mean secondary velocities 

    ,01 02w y w y  − steady state- secondary velocity distributions 

    ,11 12w y w y  − transient state- secondary velocity components 

 ( , , ) :x y z  − The rectangular Cartesian space coordinates 

 
p

x




 − common-constant pressure-gradient 

   − viscosities proportion 

   − thermal conductivities proportion 

   − porous parameter 

 ,1 2  − fluids' viscosities 

 ,01 02   − both fluids' electrical conductivities 

 0  − electrical conductivity ratio 

 , , ,11 12 21 22     − modified conductivities parallel and normal to the electric field's direction 

 ,1 2   − symbols used for ,12 22
1 2

11 21

       

   − amplitude (a small constant quantity, 1  ) 

   − ratio of densities  

 ,1 2   − the two fluids' densities 

 ,1 2   − non-dimensional temperature distributions  

    ,01 02y y   − temperature distributions at steady state 

    ,11 12y y   − temperature distributions during a transient state 

 , e   − between an electron and an ion or an electron and a neutral particle, the average collision period 

   − oscillation frequency 

 e − electron gyratory frequency 

 

subscripts: 

 

 1, 2 – quantities indicate for both upper and lower fluid regions 



V.Gowri Sankara Rao and T. Linga Raju   109 

 

Appendix 
 

  

, , , ,

, , ,

2

1 1x 1z 2 2x 2z 1 1 2

0 01 0 02
2 1 22 2 2

m
N m im N m im h k 1 s

1 m

s msm
k 1 s 1

1 m 1 m 1 m

 
            

             
   

 

 

  

   

, ,

, ,

2 2
1 2 9 12 2

2 2 2 2 2
3 1 2 4 10 2 1 22 2

mi 1 i m
c M c f M N

1 m 1 m

1 1
c h M mi c f h h M N i m

1 m 1 m

            
     

             
  

 

 

  

, , , ,

, , , ,

30 31 32 33f f f f

97 98 99 100
30 31 32 33

23 30 30 24 30 31 25 31 30 26 31 31

e 1 e 1 e 1 e 1
c c c c

f f f f

d f f d f f d f f d f f

   
   

       

 

 

  

   
, , ,

, , , ,

31 33 34
40 42 432 2 2

30 30 30 30 31 31

74 32 32 75 32 33 76 33 32 77 33 33

d d d
d d d

f f f f f f

d f f d f f d f f d f f

  
     

       

 

 

  

   
, , , ,

, , ,

84 85
92 93 134 123 5 135 123 62 2

32 45 32 33 45 33

136 124 5 137 124 6 138 34 34

d d
d d d d f d d f

f d f f d f

d d f d d f d f f

   
 

   

 

 

  

 

 

, , ,

, ,

22 2
158 34 34 120 159 35 35 120 160 34 34 120

2
161 35 35 120 162 35 120

d f f d d f f d d f f d

d f f d d f d

           

      

 

 

  

cos , cos , cos ,

cos , cos , , ,

2 2 2 2
163 55 164 56 165 56 53

163 164
166 56 54 167 166 168 169

113 113

d d t d d t d d d t

d d
d d d t d d t d d

d d

         

        

 

 
  , ,181 170 7 182 170 8d d f d d f  ,185 36 36d f f  ,186 36 37d f f   

 
  ,187 37 36d f f  ,188 37 37d f f  ,285 273 277d d d  ,286 274 278d d d   

 

  ,287 275 279d d d  , ,285
288 276 280 289 2

138 138 120

d
d d d d

d d d
  

  
 



110  An unsteady electro-magnetohydrodynamic two-liquid plasma… 

 

  , ,286 287
290 2912 2

139 139 120 140 140 120

d d
d d

d d d d d d
 

     
 

 

  

   
, , ,

, , ,

288 281 282
292 293 2942 2 2

141 141 120 120 12034 34 35 35

283 284
295 296 297 55 2702 2

34 34 120 35 35 120

d d d
d d d

d d d f f d f f d

d d
d d d d d

f f d f f d

  
        

  
     

 

 

  

, , ,

, , , , ,
1 1

1 1

33111
299 297 36 7 302 297 37 8 332 9 327 330 3287 36 37 8

2

337 m 338 m 339 340 339 341 339 41 30 41 302
m m

dg
d d f f f f d d f f f f d g d d d

h h

1 M
d q d q d d d d d f f f f

q q 1 m

     
 

    


 

 

  

, , , ,

, , , ,

361
344 339 42 31 370 385 380 43 386 380 4342 31 43 442

25 25

4 4
388 380 44 389 380 44 390 380 44 391 38043 44 43

184184

d
d d f f f f d d d f f d d f f

d d

c c
d d f f d d f f d d f d d f

cc

   
 

   

 

 

  , , , ,4
392 380 393 380 377 394 380 377 395 378 380 4344 33 44

184

c
d d f d d d f d d d f d d d f

c
        

 

  

, ,

, , , ,

4 4 4 4
396 378 380 44 397 380 378 380 380 377 380 377 378

184 184184 184

398 381 385 399 382 386 400 383 388 401 384 389

c c c c
d d d f d d d d d d d d d

c cc c

d d d d d d d d d d d d

     

       
 

 

  ,402 387 395d d d  ,
2

431 3392 2

1 s
d 1 d

1 m M

   
 

,427
432

113

d
d

d
  

 
  ,437 432 5 34 5 34d d f f f f ,438 432 5 34 6 35d d f f f f ,439 432 6 35 5 34d d f f f f  

 
  ,440 432 6 35 6 35d d f f f f ,441 433 5 5d d f f ,442 433 5 6d d f f ,443 433 6 5d d f f  

 
  ,444 433 6 6d d f f ,445 434 5d d f ,446 434 6d d f ,1 53 13 54 16f c c c c   

 

  

, , , , ,

, , cos ,

5 7

34 35

c c
2 6 1 3 73 13 1 74 4 8 3 5 24 6 15 5 16

f f

7 8 18 8 25 28 24 26
34 35

f c f e f c c f c f c f e f f f f f f

e 1 e 1
f f f f f f t f f

f f

        

                                

 

 



V.Gowri Sankara Rao and T. Linga Raju   111 

  

cos , ,

, , ,

36 37 2f f
1

29 27 25 30
36 37

2 22
1 1 3 1 1 31

31 32 33

4ce 1 e 1
f t f f f

f f 2

4c 4c4c
f f f

2 2 2

                         

          
  

 

 

  

   

   

tan tan
, ,

tan tan
, ,

2 2
1 1

34 35

2 2
1 1 3 1 1 3

36 37

4 c t 4 c t
f f

2 2

4 c t 4 c t
f f

2 2

             
 

             
 

 

 
  ,13 267g d ,14 266g d ,15 268g d ,16 265g d  

 
  ,17 335g d ,18 334g d ,19 336g d .20 333g d  

 
References 
 
[1] Hartmann J. (1937): Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic 

field.– Mathematisk-fysiske Meddeleser. Det kgl. Danke Vid. Selskab, vol.15, No.6, pp.1-28. 
[2] Nigam S.D. and Singh S.N. (1960): Heat transfer by laminar flow between parallel plates under the action of 

transverse magnetic fields.– Quart. J. Mech. Appl. Math.,vol.13, pp.85-97. 
[3] Rudraiah N., Kumudini V. and Unno W. (1985): Theory of nonlinear magneto convection and its application to 

solar convection problem.– I. Publ. Astron. Soc., Japan, vol.37, pp.183-206. 
[4] Alireza S. and Sahai V. (1990): Heat transfer in developing magnetohydrodynamic Poiseuille flow and variable 

transport properties.– Int. J. of Heat and Mass Transfer,vol.33, No.8, pp.1711-1720.  
[5] Attia H.A. and Sayed Ahmed M.E. (2002): A transient Hartmann flow with heat transfer of a non-Newtonian fluid 

with suction and injection, considering the Hall effect.– J. of Plasma Physics, vol.67, No.1, pp.27-47. 
[6] Cowling T.G. (1957): Magnetohydrodynamics.– Interscience Publishers, Inc., New York. 
[7] Sherman A. and Sutton G.W. (1961): Magnetohydrodynamics (Evanston, Illinois).– p.123. 
[8] Sato H. (1961): The Hall Effect in the viscous flow of ionized gas between parallel plates under transverse magnetic 

field.– J. Phys. Soc. Japan, vol.16, No.7, pp.1427-1433. 
[9] Shercliff J.A. (1962): The Theory of Electro-magnetic Flow Measurement.– Cambridge University Press. 
[10] Raju T.L. and Ramana Rao V.V. (1992): Hall effect in the viscous flow of an ionized gas between two parallel 

walls under transverse magnetic field in a rotating system.– Acta PhysicaHungarica, vol.72, No.1, pp.23-45. 
[11] Ram P.C. (1995): Effects of hall and ion-slip currents on free convective heat generating flow in a rotating fluid.– 

Int. J. Energy Res., vol.19, No.5, pp.371-376. 
[12] Sakhnovskii E.G. (1963): Effects of anisotropic conductivity in Rayleigh magnetohydrodynamic problems.– Zh. 

Tekhon. Fsz., vol.33, p.631. 
[13] Jana R.N. and Datta N. (1977): Hall effects on hydromagnetic flow over an impulsively started porous plate.– Acta 

Mechanica, vol.28, pp.211-218. 
[14] Beg O.A., Zueco J. and Takhar H.S. (2009): Communications in nonlinear science and numerical simulation.– 

vol.14, pp.1082-1097. 
[15] Rama Bhargava and Meena Rani. (1984): Magneto hydro dynamic flow and heat transfer in a channel with porous 

walls of different permeability.– Indian J. Pure Appl. Math., vol.15, No.4, pp.397-408.  
[16] Raju T.L. and Ramana Rao V.V. (1993): Hall effects on temperature distribution in a rotating ionized 

hydromagnetic flow between parallel walls.– Int. J. Engg. Sci., vol.31, No.7, pp.1073-1091. 
[17] Ganesh S. and Krishnambal S. (2007): Unsteady magnetohydrodynamic Stokes flow of viscous fluid between two 

parallel porous plates.– Journal of Applied Sciences, vol.7, No.3, pp.374-379. 



112  An unsteady electro-magnetohydrodynamic two-liquid plasma… 

[18] Ghosh S.K., Beg O.A. and Narahari M. (2009): Hall effects on MHD flow in a rotating system with heat transfer 
characteristics.– Meccanica, vol.44, No.6, pp.741-765. 

[19] Gupta A.S., Guria M. and Jana R.N.(2011): Hall effect on the magnetohydrodynamic shear flow past an infinite 
porous flat plate subjected to uniform suction or blowing.– Int.J.Nonlinear Mechanics, vol.46, No.3, pp.1057-1064. 

[20] Khaled K.J. (2015) :Influence of hall current and viscous dissipation on MHD convective heat and mass transfer in 
a rotating porous channel with Joule heating.– American J. Mathematics and Statistics, vol.5, No.5, pp.272-284. 

[21] Lohrasbi J. and Sahai V. (1988): Magnetohydrodynamic heat transfer in two phase flow between parallel plates.– 
Appl. Sci. Res., vol.45, pp.53-66. 

[22] Malashetty M.S. and Leela V. (1991): Proceeding of national heat transfer conference on AICHE and ASME 
HTD.– p.159. 

[23] Malashetty M.S. and Leela V. (1992): Magnetohydrodynamic heat transfer in two phase flow.– Int. J. of Engg. 
Sci., vol.30, pp.371-377. 

[24] Chamkha A.J. (2004): Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable 
moving plate with heat absorption.– Int. J. Engg. Sci., vol.42, pp.217-230. 

[25] Sharma R.C. and Neela Rani. (1986): Finite larmor radius and compressibility effects on thermosolutal instability 
of a plasma.– Z. Naturforsch., 41a, pp.724-728. 

[26] Sharma R.C. and Neela Rani. (1988): Hall effects of thermo-solute instability of a plasma.– Indian J. Pure Appl. 
Math, vol.19, No.2, pp.202-207. 

[27] StamenkovićZ., NikodijevićD.D., Kocić M. and PetrovićJ.D. (2012): MHD flow and heat transfer of two 
immiscible fluids with induced magnetic field.– Thermal Science, Int. Sci. Journal, vol.16, No.2, pp.323-S336. 

[28] Abdul M. (2014): Transient magnetohydrodynamic flow of two immiscible fluids through a horizontal channel.– 
Int.J.Engg.Res., vol.3, No.1, pp.13-17. 

[29] Linga Raju T. (2019): MHD heat transfer two-ionized fluids flow between two parallel plates with Hall currents.– 
Results in Engineering, vol.4, 100043 Elsevier BV,http://doi.org/10.1016/j.rineng.2019.100043. 

[30] Sivakamini L. and Govindarajan A. (2019): Unsteady MHD flow of two immiscible fluids under chemical reaction 
in a horizontal channel.– AIP conference proceedings 2112.020157, https://doi.org/10.1063/1.5112342. 

[31] Abd Elmaboud Y., Abdesalam S.I., Mekheimer Kh.S. and Kambiz Vafai. (2019): Electromagnetic flow for two-
layer immiscible fluids.–Engineering Science and Technology, an International Journal, vol.22, pp.237-248. 

[32] Linga Raju T. (2021): Electro-magneto hydrodynamic two fluid flow of ionized-gases with Hall and Rotation 
effects.– Int. J. Appl. Mech., vol.26, No.4, pp.128-144. DOI: 10.2478/ijame-2021-0054. 

[33] Linga Raju T. and Gowri Sankara Rao V. (2021): Effect of Hall current on unsteady magnetohydrodynamic two-
ionized fluid flow and heat transfer in a channel.– Int. J. of Applied Mechanics and Engg., vol.26, No.2, pp.84-106. 

[34] Naga Valli M., Linga Raju T. and Kameswaran P.K. (2022): Effect of Hall currents on EMHD 2-layered plasma 
heat transfer flow via a channel of porous plates.– To appear in Springer Conference Proceedings of 8th 
International Conference on Mathematics and Computing, (ICMC-2022) held during January6-8, 2022 at VIT, 
Vellore, India. Manuscript No.208.  

[35] Linga Raju T. and Venkat Rao B. (2022): Unsteady electro-magneto hydrodynamic flow and heat transfer of two 
ionized fluids in a rotating system with Hall currents.– Int. J.Appl. Mech., vol.27, No.1. pp.125-145.  

[36] Spitzer L. Jr. (1956): Physics of Fully Ionized Gases.– Interscience Publishers N. Y. 

 
Received: November 19, 2022 
Revised: April 26, 2023 

 


