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The objective of the paper is to look at the propagation and reflection of plane waves in a thermo-diffusion 

isotropic medium. The reflection of plane waves in a thermo-diffusion medium was investigated in this study with 

reference to triple phase lag thermo-elasticity. The memory dependent derivative (MDD) is applied for this 

investigation. The fundamental equations are framed and solved for a particular plane. The four plane waves that 

are propagating across the medium are, shown namely: longitudinal displacement, P-wave, thermal diffusion T-

wave, mass diffusion MD-wave and shear vertical SV-wave. These four plane wave velocities are listed for a 

specific medium, illustrating the impact of the diffusion coefficient and are graphically represented. Expressions 

for the reflection coefficient for the incidence plane wave are produced from research on the reflection of plane 

waves from the stress-free surface. It should be noted that these ratios are graphically represented and shown when 

diffusion and memory dependent derivative (MDD) factors are in play. The new model is relevant to many different 

fields, including semiconductors, earth- engineering, and electronics, among others, where thermo-diffusion 

elasticity is significant. Diffusion is a technique that can be applied to the production of integrated circuits, MOS 

transistors, doped polysilicon gates for the base and emitter in transistors, as well as for efficient oil extraction from 

oil reserves. Wave propagation in a thermos-diffusion elastic media provides crucial information about the presence 

of fresh and enhanced waves in a variety of technical and geophysical contexts. For experimental seismologists, 

developers of new materials, and researchers, this model might be useful in revising earthquake estimates. 

 

Keywords: diffusion, triple phase lag thermo-elasticity, reflection coefficients, Memory Dependent Derivative 

(MDD). 

 

1. Introduction 

 
 Engineering structural problems involve calculating deformations, deflections, and internal forces 

within structures. Thermo-elasticity, an integral offshoot of elasticity, is crucial in stress analysis and 

mechanical behaviors in materials like steel, wood, concrete, coal, polymers, metals, composites, and rocks 

and concrete. Biot [1] developed the classical theory of thermo-elasticity (CTT), which governed heat transfer 

within structures. Lord and Shulman [2] modified Fourier's law by adding a new parameter called one 

relaxation time to remove the paradox of Biot [1]. Later, researchers [3-6] also developed different generalized 

heat models. Tzou [7] introduced the dual time delay model (DPL) in heat law, which was later extended by 

Roy Choudhuri [8] to the three-phase lags heat transfer system (TPL). This model describes transient heat 
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conduction in materials with thermal relaxation phenomenon, considering temperature gradient, heat-flux, and 

heat storage as constitutive elements and three separate time lags. 

Thermo-diffusion is a phenomenon in mixtures of substances, particularly fluids and solid materials, where 

components move due to temperature gradients, i.e. different particles within the mixture tend to move in 

response to this temperature difference. It is crucial in fields like chemical engineering, geophysics, 

astrophysics, and material science, as it optimizes processes and designs more efficient systems involving 

mixtures of different substances. Nowacki, and some eminent researchers [9-13] extensively investigated 

dynamical issues of diffusion and developed the coupled theory of diffusion of heat and mass. Othman and 

Eraki [14] analyzed generalized thermoelastic diffusion in a magnetized medium under the effect of initial 

stress utilizing TPL concept. Yadav [15] studied the effect of diffusion in an orthotropic medium. Mondal and 

Kanoria [16] enhanced the Fourier law in the context of memory-dependent derivative for TPL model. Yadav 

[17] examined the effect of TPL and diffusion in semiconductors.  

 Yadav [18,19] studied thermo-diffusion in detail. Many investigators have studied the reflection 

problem in a thermoelastic medium, isotropic micropolar and diffusive medium, eminent of them are Marin 

and his co-workers [20], Othman et al. [21], Yadav [22], Abbas et al. [23], Singh et al. [24], Sheoran et al. 

[25], Saeed et al. [26].  

 Yadav [27] explored the effect of a magnetic field and multi-phase-lag on photothermal-plasma wave 

in a two-temperature diffusive-semiconductor. Yadav et al. [28] examined the results of nonlocal impedance 

in a micropolar porous thermo-diffusive medium. Yadav et al. [29] investigated piezo-electric waves in an 

orthotropic hygro-thermo-elastic medium. Regarding the hypothesis of elastic substances with a dipolar 

structure, Marin et al. [30] presented a generalization of the Saint- Venant principle. By using the Eigen value 

method, Alzahrani et al. [31] investigated a two-dimensional porous substance with different conductivities. 

Abouelregal and Marin [32] analyzed thermoelastic vibrations in a nonlocal nanobeam. Singh [33] investigated 

how generalized thermoelastic diffusion affects SV wave behaviour in an elastic solid at free surface. 

 The new memory-dependent derivatives model in thermo-elasticity theory is suitable for various 

fields, including semiconductors, earth-engineering, and electronics, where thermo-diffusion elasticity is 

significant. It addresses the historical behaviour of displacement fields and temperature fields over time, unlike 

traditional elasticity theory which considers instantaneous values and Fourier's law without time-dependent 

considerations. The wave propagation is the easiest and most cost-effective method to detect oil and mineral 

deposits without drilling into the earth. Since seismic wave technologies offer higher accuracy, higher 

resolution, and are more cost-effective than drilling, which is extensive and time-consuming, almost all oil 

companies rely on seismic interpretation. Diffusion is a technique used in various fields, including integrated 

circuits, MOS transistors, and oil production from oil reserves. Wave propagation in thermo-diffusion elastic 

media provides crucial information for seismic studies, material creation, and researchers. This work 

contributes to the understanding of thermal lagging's effects and helps create more sophisticated models 

capturing heat flow. 

 

2. Memory dependence derivative origin 

 
 Fractional calculus has been employed throughout the past few decades in a variety of fields, including 

control engineering, electromagnetic engineering, aerospace engineering, nuclear physics, signal processing, 

and quantum mechanics. Unconventional building methods are also necessary for the ongoing development of 

novel materials. One of fractional calculus' most considerable benefits across numerous applications is the fact 

that it is nonlocal. A fractional-order derivative (FOD) is a generalisation of an integral-order derivative and it 

is an effective method for outlining memory phenomenon. Although it does not mimic any physical process, 

the memory function of a fractional derivative is known as the kernel function. Fractional derivatives continue 

to trail the integer-order calculus far behind due to the ambiguous physical meaning. It was modelled after the 

letter L'Hospital wrote to Leibnitz regarding the definition of the half-order derivative in 1695. Also, the use 

of fractional-order derivatives to describe memory processes is one approach. Differentiation could be the 

antithesis of a integration. Since then, a number of definitions have been created. The most widely used non-

local FODs are the Riemann-Liouville (RL-FOD) and Caputo (C-FOD) types. 
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2.1. Definition (RL-FOD) 

 

The Riemann-Liouville FOD is defined as 
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and (.)  is the Gamma function, n  is integer of order , which is dependent on the strain history ( )t from 0  to t . 

 

2.2. Definition (C-FOD) 

 

The Caputo FOD ( )0
tD t  of order  with respect to time is defined as  
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A material model has been studied by Mainardi [34]; this model provides a formula for memory phenomenon 

in diverse fields. The simulation uses the form 
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where ( )0
tD t  is the FOD, which is reliant on the history of strains from 0 to t. For integral value of n   
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where, 0   is a constant, ( )t is the strain history and ( )t is the stress history from time 0  to t . In the 

below mentioned concept, memory dependence means non-locality in time. In general, a memory process 

consists of two stages: the first is brief, with permanent retention at the beginning, and it cannot generally be 

overlooked; the other is guided by the fractional model equation (2.3). Most of the time, the genesis is not the 

crucial transition between the initial stage and the working stage. Comparing this to the standard fractional 

models of one step is considerably different. The most important idea is that a fractional derivative's order acts 

as a memory index. The dimensionless form of the solution of Eq.(2.3) is  
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where m  is a creeping strain as time passes mt t . ( )   is the memory function. Equation (2.5) implies that 

if   increases, ( )   increases. Also, Eq.(2.5) shows that the process of forgetting is slowed down as the index 

value   increases. In particular, at ,0   ,0 meaning that “nothing is memorized”, and ,1  for 1   

conveys the message "nothing is forgotten". Therefore, the fractional order   is essentially referred to as the 

memory effect index. Diethelm [35] by inculcating a kernel function revised the Caputo-type fractional-order 



140 Memory dependent triple-phase-lag thermo-elasticity in thermos… 

derivative which is termed the memory function, in which a physical process does not change. Wang and Li 

[36] incorporated first exposure to Fourier's theory of heat flow by MDD to provide new hyperbolic-type heat 

equation models with measuring memory.  
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where ( )0   is the delay time, which is also freely selectable. They introduced fractional derivative (MDD) 

in terms of an integral form of a common derivative with arbitrary “phase time lag” and kernel function 

( )k t   (as memory effect), can be taken freely in line with the necessity of applications over a slipping 

interval [( ), ]t t . The magnitude of MDD should be always smaller than that of the normal partial derivative. 

 Later, Ezzat et al. [37,38] proposed the first order MDD, instead of fractional calculus, in the rate of 

heat flux in LS theory [2] to denote memory-dependence as: 
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where, ( , )k t   is the kernel function, 
0

D  is MDD term of timing, 0  is the time delay parameter, for present 

time as t, and [ , )0t t   is the past-time interval. According to Ezzat et al. [39] memory kernel, is taken as 

follows:  
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here ,A B  are parametric coefficients, the values of which are freely selectable and a selection of four kernels 

is made as  
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Later, Karamany and Ezzat [40] proposed the first order MDD, rather than fractional calculus, within the rate 

of heat-flux in the LS theory [2] to denote memory-dependence as 

 

    ,dd i i1 D DP       (2.10) 

 

where, ,dD is MDD with respect to time, d  is a time lag parameter due to diffusion, for the present time as 

t, we could say [ , )0t t   is the past time interval. Studies in recent years have extensively examined numerous 

issues in thermo-elasticity based on MDD and fractional-order derivative [41-52]. These research works 

studied thermal waves with micro concentration in thermo-diffusion rotator. Yadav et al. [53] investigated the 

reflection of hydrothermal waves was examined in a nonlocal theory of linked thermo-elasticity.  

 Many researchers have examined wave propagation in an elastic medium under different parameters. 

Othman et al. [54] studied the effect of fractional and magnetic field parameters on plane waves of generalized -

thermoelastic diffusion with reference to a temperature dependent elastic medium. Othman and Eraki [55] 

investigated the effect of gravity on generalized thermoelastic diffusion due to laser pulse heating medium utilizing 

DPL concept. Othman, and Mondal [56,57] investigated the effect of memory dependent-derivative in a 

thermoelastic and micropolar medium. Othman and his co-worker [58,59] investigated the effect of diffusion and 

rotation and initial stress on the plane wave propagation in micropolar as well as thermoelastic medium. Lotfy K. 

and Hassan [60] investigated a thermal shock problem under normal mode method for two-temperature theory. 

Lotfy and his co-workers [61-63] studied the effect of variable thermal conductivity, magnetic field, functionally 

gradation properties on the plasma waves in a semiconductor. Mahdy et al. [64] investigated the effect of laser 

pulses heating, variable thermal conductivity and hyperbolic two-temperature theory using a magneto-photothermal 

theory of semiconductor. Yasein et al. [65] studied elasto-photo-thermal waves in a semiconductor medium under 

the influence of variable thermal conductivity during photothermal excitation subjected to thermal ramp type 

heating. Mahdy et al. [66] studied numerical methods to examine rubella ailment disease. 

 

3. Conceptualization of problem 

 
According to Lord and Shulman [2], the basic equations in triple phase lag theory of a thermo-elastic medium 

with mass diffusion with MDD heat flow developed by Ezzat et al. [37-39] as follows 

– entropy equation  
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– mass conservation equation 
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– constitutive relations 
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– equations of motion 
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Considering the plane strain problem in x-y plane equation (3.4) become 
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According to Roy Choudhuri [8] the heat equation in TPL model is stated as 
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with the condition  
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Using Eqs (3.1), (3.3) and (3.8) in Eq.(3.7) we get 
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Following Ezzat et al. [37, 38] and Wang and Li [36] utilising the definition of MDD in TPL theory, the heat 

flow in TPL with MMD effect having freely taken kernel ( )k t   over a slipping interval [( ), ]it t   is 
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here       k t  is differentiable regarding variables t and ξ, that demonstrate the memory effect on the delay 

interval[( ), ]it t  , and 0 ≤ K (t − ξ) < 1 for ξ ∈ [( ), ]it t  . Here i  takes the values , , ,1 2 3   for TPL heat 

flow and it takes the values , , ,4 5 6    for the TPL diffusion equation.  

Equation (3.9) takes the form  
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where , ,q T V    are the phase lag of heat flux due to thermal inertia, phase lag of temperature gradient, phase 

lag of thermal displacement gradient, and , ,1 2 3   are the TPL time lags for MDD and , , ,
1 2 3

D D D    are 

memory dependent derivatives, respectively. 

Heat equation (3.9) in TPL theory with MDD effect in the x-y plane can be written as 
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Using Eq.(2.9), we get 
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Diffusion equation in TPL theory in context of the LS theory is 
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Using constitutive relations (3.2), (3.3) and (2.10) in Eq.(3.15) we get 
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which can be written as 
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Using  . iju e   and considering the plane strain problem in the x-y plane Eq.(3.17) becomes 
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Equation (3.18) can be written as 
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Diffusion equation in TPL theory with MDDs following Ezzat et al. [37, 38] and Karamany and Ezzat [40] 

Eq.(3.19) becomes 
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where , ,k n p    are the phase lags due to diffusion of TPL model and , ,4 5 6   are the TPL time lags for 

MDD respectively, and , , ,
5 6 4

D D D    are memory dependent derivatives due to diffusion of TPL model. 

Using Eq.(3.10) in Eq.(3.20) we get  

 

  

*

*

( )

( )

5

6

t4 4 4 4 5
n

C C3 2 2 3 2 3
5 t

5 5 5 4 4 4

C2 2 2 2 2 3 3 2 2

t4 5
p

C3
6 t

u v u v u
D D k t

t x t x y t x y t y x

v u v u v u
d D

x y x y y t x t x y t x y

v
D k t

t y





      
                         

      
                          

 
       





* *

( )

( )

5

6

5 5 5

2 3 2 2 2 2 2 3

t2 2 4 4
n

2 2 2 2 2 2
5 t

t2 2 3 3
p

2 2 2 2
6 t

u v u v
d

x x y x y y

T T T T
Da Da k t d

x y x y

T T T T
D a D a k t d

x y x y





   
                

      
                      

      
                  





* *

( )

( )

( ) ( )

5

6

4

t3 3 4 4
n

2 2 2 2 2 2
5 t

t2 2 3 3
p

2 2 2 2
6 t

t 23 4
k k

3 4
4 4t

C C C C
Db Db k t d

t x t y x y

C C C C
D b D b k t d

x y x y

C C
C k t d k t d

2









      
                       

      
                   

  
       

  





 .

4

t

t

0



 

 (3.21)

 

 

Equation (3.21) can be written as  
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Using Eq.(2.9) we get 
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For the plane strain problem in x-y plane and using the Helmholtz’s representation, u  and v  are read in terms 

of potentials   and   
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Using Eqs (3.23), Eqs (3.5)-(3.6), (3.14) and (3.22) become  
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4. Solution to the problem 

 
 There are different methods to calculate the velocities of the waves. The wave solution method is 

applied in this study since it is very accurate and simple to apply. In this method suitable wave potentials are 

defined and using these potentials in the governing partial differential equations, we get simple homogenous 

algebraic equations. Solving these equations, we get the phase velocity equation. This phase velocity defines 

a complex slowness vector, which is used to calculate the motion of material particles.  

The solution to Eqs (3.24) to (3.27) are as outlined below 
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where , ,T   and C  are constants, *V  is the phase velocity and k is the wave number. Using, Eq.(4.1) into 

Eqs (3.24) to (3.27), we get  
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Equations (4.2) to (4.5) become 
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   * ,2
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   * *2 2
C 44 44 44E aV E T bE V C 0        (4.9) 

 

where, for the possibility that Eqs (4.7) to (4.9) with non-trivial solution require 
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where 
*kV   is the wave's circular frequency. If 

* * , , , ,1 1 1
i i iV c i q i 1 2 3 4      , then the real parts 

* * *, ,1 2 3V V V  of the three zeros of Eq.(4.10) are three coupled plane wave’s velocities namely longitudinal ( P ), 

thermal (T ), mass diffusion ( MD ) and the solution to Eq.(4.6) that is 
* ,4V





 is the velocity of SV  wave. 

In general, the velocity of a longitudinal wave is given by L

2
V

  



 and velocity of a transverse wave is 
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given by TV





 but due to the diffusion, MDD parameters and TPL these velocities get affected. The 

variations due to triple phase lag, memory dependent derivative and diffusion are extensively studied in this 

research. In this research, the modified phase velocities, are calculated using Eq.(4.10).  

 

5. Reflection from a free surface  

 
 A thermoelastic solid with diffusion ( y 0 ) in generalized triple phase lag with memory-dependent 

thermo-elasticity is investigated at thermal insulation/ isothermal stress-free condition at surface y 0 . The 

incident of coupled P  wave at incident angle ( 0 ) with the normal, will result in four reflected waves: 

longitudinal ( P ), thermal (T ), mass diffusion ( MD ) and vertically shear ( SV ) waves in the half-space. 

,0 1  ( 0 1   ) are the incident and reflected angle of P  wave, , ,2 3 4    are the reflected angle the of 

reflected ,T ,MD SV waves , respectively, 
* *,0 1c c (

* *
0 1c c ) are the velocities of the reflected and incident P  

wave, 
* * *, , ,2 3 4c c c  are the velocities of reflected ,T ,MD SV waves and , ( , ,., )jk j 1 2 4  are complex 

wavenumbers, respectively. The complete geometry is depicted in Figure 1. 

The appropriate potentials of the reflected and incident waves in the half-space are taken as  
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The required conditions on the boundary at the surface y 0 , are follow as 
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here 
*
1l  is the heat transfer coefficient at the surface where 

*
1l 0  for thermal insulation and 

*
1l   for the 

isothermal surface condition. 1h  is the concentration diffusion coefficient at the surface, where 1h 0  

corresponds to impermeable surfaces and 1h   refers to iso-concentrated surfaces. The potentials stated in 

equations (5.1) to (5.4) must satisfy the boundary conditions (5.6) and follow Snell’s law  
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Fig.1. The geometry of the problem. 
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Using the potentials given by Eqs (5.1) to (5.4), the boundary conditions (5.6) and the system of equations 

(5.11) of four non-homogeneous equations is obtained as 
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(a) for impermeable surface  
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(b) for iso-concentrated surface  
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(c) for thermally insulated  
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(d) for isothermal  
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where , ( , ,., )sZ s 1 2 4  are reflection coefficients of reflected , ,P T ,MD and SV  waves, respectively.  

 

6. Numerical findings and discussion 

 
 In this study, velocities of waves and reflection coefficients are calculated for a thermo-diffusive 

medium. Fortran software is used for a numerical experiment to investigate the impact of frequency, material 

constants and memory-dependent derivative (MDD) parameters, for aluminium chosen from Sharma [67] at 

0T 293K , .       27 89 1010 Nm  , .       21 98 1010 Nm  ,  . 32 7 103kgm  , .     .   ,E
1 12 361 103C J Kg K    

.    1 14 92 10K 3NK s   , * .     1 14 92 10 sK 3 NK   , . ,5 1
t 1 78 10 K     *. , .D 0 4 D 0 4  , . , . ,a 0 6 b 0 7 

,20Hz . ,T 0 03   . ,V 0 01  . ,q 0 02   . ,n 0 02   . ,p 0 03  . ,k 0 01   . ,1 0 05   . ,2 0 04   

. ,3 0 03   . ,4 0 05   . ,5 0 04   . .6 0 03   

 For the above numerical data, the velocities of , ,P T MD  waves are calculated from Eq.(4.10) and 

these of SV  waves from (4.6) using a Fortran program. The reflection amplitudes , ,1 2 3Z Z Z  and 4Z from 

the system of Eq. (5.12) of reflected , ,P T ,MD and SV waves vs. incident angle of P  wave 
0 0

00 90   are 

computed numerically by using a Fortran program for different values of , ,A 1 B 1  . ,a 0 6 . ,b 0 7  

*. , . ,D 0 4 D 0 4   . ,T 0 03   . ,V 0 01  . ,q 0 02   . ,n 0 02   . ,p 0 03  . ,k 0 01  .20Hz  The 

fluctuation of the reflection coefficients for distinct three values of frequency  , diffusion parameter ,a  and 

memory dependent derivative parameters , ,A B  are depicted in Figures 4(a)-4(d) to 6(a)-6(d) and denoted by 

a blue curve using solid circles, purple curve using solid triangle, red curve using single tick, respectively, for 

three different values. 

 

6.1. Impact of frequency 

 

 Variation of velocities of , ,P T ,MD  and SV  wave against frequency is investigated as frequency ,  

varies from 10 25  at the fixed value of MMD parameter; , ,A 1 B 1   diffusion parameters a, b, 
*, ;D D  

. ,a 0 6 . ,b 0 7  . ,D 0 4  * . ,D 0 4  and time delay parameters; . ,T 0 03   . ,V 0 01  . ,q 0 02   . ,n 0 02   

. ,p 0 03  . .k 0 01   The variations are depicted in Fig.2. These fluctuations in velocities of waves are denoted 

by a blue curve using solid circles, purple curve using solid triangle, red curve using single tick, green curve 
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with double tick respectively. The velocity of , ,P T ,MD  wave increases as frequency ,  increases from 

10 25Hz  while that of SV waves almost remains same. The variation of velocity is shown in Fig.2 on 

the scale from . / .40 3 6 10 m s   The fluctuation of reflection coefficient , ,1 2 3Z Z Z  and 4Z  of reflected

, ,P T MD and SV waves in contrast to the incident angle of P  wave 
0 0

00 90   at various values of 

frequency , ,15 20 25Hz  is shown in Figs 4(a)-4(d). It is noticed that the reflection coefficient of reflected

,P MD  and SV waves increases as frequency   increases as , ,15 20 25Hz . 

 

6.2. Impact of diffusion parameters 

 

 Variations of velocities against the diffusion parameter ,b  0 b 1   at the fixed value of MMD parameter; 

, ,A 1 B 1   diffusion parameters; a, 
*,D D ; . ,a 0 6 . ,D 0 4

* .D 0 4 ; time delay parameters; . ,T 0 03   

. ,V 0 01  . ,q 0 02   . ,n 0 02   . ,p 0 03  . ,k 0 01   and frequency; ,25Hz  are depicted in Fig.3.  

 

 
 

  

Fig.2. The dependence of the velocity of , ,P T MD

and SV waves against frequency .10 25Hz  

Fig.3. The fluctuation in the velocity of , ,P T MD

and SV waves against the diffusion parameter b. 

 

These fluctuations in velocities of waves are denoted by a blue curve using solid circles, purple curve using 

solid triangle, red curve using single tick, green curve with double tick respectively. The velocity of SV wave 

is obtained by multiplying each value by 10. It is concluded that velocity of ,T ,MD  increases as the diffusion 

parameter b  increases from 0 b 1  . The variation of velocity is shown in Fig.3 on the scale from 

. / .40 3 6 10 m s   The variation of reflection constants , ,1 2 3Z Z Z  and 4Z is against the incident angle of 

P  wave 
0 0

00 90    for three values of diffusion constants ,a  . , . , .a 0 40 1 5 2 5  at 

( )
( ) ,

2

i

i

2 t
k t

2

    
    

 
 for . , . ,A 0 5 B 0 5   is shown in Figs 5(a)-5(d). It is also noticed that reflection 

amplitudes of , ,P T  and ,MD waves decrease as the incident angle increases 
0 0

00 90    and the diffusion 

parameter ,a  increases from . , . , .a 0 40 1 5 2 5 . 
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6.3. Impact of the MDD parameters and kernel functions 

 

 The reflection coefficients , ,1 2 3Z Z Z  and 4Z  of reflected , ,P T ,MD and SV waves against the 

incident angle of P  wave 
0 0

00 90   are computed numerically by using a Fortran program for various 

values of . ,a 0 6 . ,b 0 7  . ,D 0 4  * . ,D 0 4  . ,T 0 03   . ,V 0 01  . ,q 0 02   . ,n 0 02   . ,p 0 03 

. ,k 0 01  .20Hz   

 

a) 

 

b) 

 
    

c) 

 

d) 

 
    

Fig.4.a-d. Variations of the reflection coefficient of reflected , ,P T MD and SV waves against the angle of 

incidence of P  wave 
0 0

00 90   at different values of frequency , ,15 20 25Hz .  
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The effect of the MDD parameter ( , ),A 0 B 0   ( , ),A 0 B 1  ( , ),A 1 A 1   is shown in Figs 6(a)-6(d) for 

time delay . ,T 0 03  . ,V 0 01  . ,q 0 02   . ,n 0 02   . ,p 0 03  .k 0 01  . The fluctuation of reflection 

coefficient of reflected , ,P T ,MD and SV waves against the incident angle of P  wave at different values of 

the MDD parameter ( , ),A B  and different values of the kernel function ( ) ,k t 1   for , ,A 0 B 0 

( )
( )

i

2 t
k t 1


  


, for ,A 0 B 1   and 

( )
( ) ,

2

i

t
k t 1

  
    

 
for , ,A 1 B 1   is studied. It is seen that 

as the values the MDD parameters ( , )A B  increase the reflection coefficients of reflected , ,P T waves increase 

while these of ,MD and SV waves decrease as the angle of incidence changes from 
0 0

00 90   . 

 

a) 

 

b) 

 
    

c) 

 

d) 

 
    

Fig.5.a-d. The aberration of the reflection coefficient of reflected , ,P T MD and SV waves against incident 

angle of P  wave 
0 0

00 90   at distinct values of the diffusion parameter a, . , . , .a 0 40 1 5 2 5 . 
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a) 

 

b) 

 
    

c) 

 

d) 

 
    

Fig.6.ad. The change in the reflection coefficient of reflected , ,P T MD and SV waves against P  wave’s 

angle of incidence 
0 0

00 90   at different values of MDD parameters ( , ),A 0 B 0  ( , ),A 0 B 1 

( , ).A 1 B 1   

 

7. Conclusions 

 

 The reflection coefficients ,1 2Z Z  and 3Z of reflected , ,P T and SV waves are substantially affected 

by frequency  , diffusion parameter a , and MDD parameters , ,A B  against the incident angle of P  wave 

0 0
00 90   .  

1) It is seen from the graph that as MDD parameters ( , )A B  increase from ( , ),A 0 B 0   ( , ),A 0 B 1 

( , ),A 1 B 1  the value of reflection amplitudes ,1Z 2Z of reflected P  and T  increases while, ,3 4Z Z  

and that of ,MD and SV waves decrease as the angle of incidence changes from .0 0
00 90    
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2) It is noticed that the reflection coefficient 1Z  ,3 4Z Z  of reflected P , ,MD and SV  waves increases as 

frequency   increases from , ,15 20 25Hz  and the angle of incidence shifts between .0 0
00 90    

These modified values of seismic signals (phase velocities from Eq.(4.10), reflection coefficients from 

Eq.(5.12)) may help researchers in geophysical exploration, in locating oil wells and minerals deposits and 

experimental seismologists in correcting earthquake estimation. It will help many industries which are 

preparing devices like MOS transistors, doped polysilicon gates and imaging processing devices to give more 

effective results. Memory dependent derivatives may be useful effectively in decision process and AI devices. 

 

Nomenclature 

 
 a  – coefficient of thermo-diffusion effect 

 b  – constant characterizing the mass diffusion effect 

 C  – concentration of the diffusive material 

 EC  – specific heat  

 *,D D  – coefficients of diffusion 

 ije  – constituents of strain tensor  

 kke  – dilatation 

 *,K K  – thermal conductivities  

 P  – chemical potential per unit mass  

 iq  – heat flux vector, S is the entropy 

 T  – Variation in the temperature  

 0T  – uniform temperature 

 t – time  

 iu  – displacement vector  

 u, v – displacement vector components  

 *V  – wave velocity 

 c  – constant of diffusion expansion  

 t  – thermal expansion factor  

 T  – heat transfer coefficient  

 C  – diffusion coefficients  

 ij  – Kronecker delta 

 i  – flow of the diffusing mass vector  

 ,   – Lame′s constants 

 ρ – density 

 , ,1 2 3    – thermal relaxation time  

 , ,4 5 6    – diffusion relaxation time  

 ij  – constituents of stress tensor 

 0  – propagation angle measured from the normal to the medium surface 

 ω – circular frequency  
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