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A rotating spring-mass system is considered using polar coordinates. The system contains a cubic nonlinear 
spring with damping. The angular velocity harmonically fluctuates about a mean velocity. The dimensionless 
equations of motion are derived first. The velocity fluctuations resulted in a direct and parametric forcing terms. 
Approximate analytical solutions are sought using the Method of Multiple Scales, a perturbation technique. The 
primary resonance and the principal parametric resonance cases are investigated. The amplitude and frequency 
modulation equations are derived for each case. By considering the steady state solutions, the frequency response 
relations are derived. The bifurcation points are discussed for the problems. It is found that speed fluctuations may 
have substantial effects on the dynamics of the problem and the fluctuation frequency and amplitude can be adjusted 
as passive control parameters to maintain the desired responses.  
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1. Introduction 
 

 Velocity fluctuations affect substantially motion of the dynamical systems. Fluctuation amplitudes and 
frequencies may be adjusted to obtain the desired responses for the specific systems. The effect of velocity 
fluctuations on the vibrations of axially moving systems have been extensively studied. In a pioneering study 
of Pakdemirli et al. [1] a numerical study was conducted to determine the stability charts. Principal parametric 
resonances were investigated for axially moving beams by Öz et al. [2]. Pakdemirli and Öz [3] conducted an 
infinite mode analysis and showed that the velocity fluctuations may lead to extremely complex dynamical 
phenomena involving resonances up to four modes of vibration. Both tension and speed oscillations were 
considered for axially moving materials [4]. Harmonic variations in velocity were treated for axially moving 
laminated composite beams by Ghayesh et al. [5]. Experimental investigation of the moving fabric problem 
for axially accelerating transport velocity was conducted by Lin et al. [6]. Chaotic motion was also observed 
for axially moving systems with fluctuating velocities [7, 8]. Internal resonances and resonances of sum type 
were studied for viscoelastic beams with pulsating speed [9, 10]. Stabilizing the chatter vibrations in machine 
tools via harmonic variations in the angular speeds was treated by Pakdemirli & Ulsoy [11]. Apart from the 
velocity fluctuations which alter the dynamics of the systems, surface effects were also proven to be effective 
on altering the natural frequencies and dynamics of the vibrating systems leading to quasi-periodic and chaotic 
behavior [12].  
 In an early study, Linnett [13] studied the rotating spring mass systems under harmonic excitation 
force. It is shown that the rotation speed highly influences the natural frequencies of the spring-mass systems 
[14]. The angular speeds were taken to be constant in both of the studies.  
 In this study, the harmonic angular velocity fluctuations are incorporated to a rotating spring-mass 
system for the first time. The dimensionless equation of motion is derived first. It is observed that the variations 
in velocity resulted in forced and parametric excitation terms. The primary resonances and the principle 
parametric resonances are investigated in detail using the Method of Multiple Scales, a perturbation technique 
[15]. The problem involves amplitude and phase variations in time requiring an advanced perturbation 
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technique such as multiple scales, averaging method or the newly proposed shift-perturbation method [16]. 
The mentioned advanced techniques are more successful in predicting the dynamical behavior of such systems 
since they allow for shifts in the horizontal and vertical directions [16]. The amplitude and phase variation 
equations in time are derived for both cases and the steady state solutions are depicted via the frequency 
response curves. The bifurcation points for solutions are discussed. The response of such systems can be 
passively controlled by adjusting the amplitude and frequency of the fluctuations.  
 A major problem in rotating machinery is the small eccentricities which lead to undesired vibrations 
that harm the mechanical system in the long run. Rotating shafts, blades, propellers, automobile wheels, 
satellite booms, rolling bears, spur gears, machining tools are severely affected by the rotation if small 
unbalances exist in the system. In contrast, occasionally, one needs to produce vibrations and the most basic 
system is to rotate an unbalanced mass about a fixed point to enhance vibrations. Some examples may be the 
vibrational property induced in cellular phones, fruit vibration harvesters, massage equipment etc. In either 
case, whether the vibrations are suppressed or enhanced, the simplified model is a rotating spring-mass system 
with a damping which deserves investigation to understand the basic dynamics of such systems. This study 
incorporates a variable fluctuation angular velocity to passively control the vibrational behavior of such 
systems.  
 
2. Equation of motion and the perturbation analysis 
 
 The sketch of the problem is given in Fig.1.  

 

 
 

Fig.1. Rotating spring mass system. 
 
 The mass is sliding on a frictionless rigid road and rotating in a horizontal plane with fluctuating 
angular velocity θ . The cubic nonlinear spring has a linear spring constant 1k  and a nonlinear spring constant 

2k . The viscous damping constant is c . Polar coordinates are employed. In the radial direction, the equation 
of motion is 
 

  ( ) ( )* * ** * ,
32 1 2

0 0
k k cr r r r r r 0
m m m

r − θ + − + − + =   (2.1) 

 
with *r  being the dimensional radial distance from the origin and 0r  being the length of the undeformed spring. 
The angular velocity is harmonically varying about a mean velocity 0ω  
 
  ( )* * *Ω2 2

0 1 fsin tθ = ω + ε , (2.2) 
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where *t  is the dimensional time, fε  is the amplitude and *Ω  is the dimensional frequency of the fluctuations. 
ε  is a small book-keeping parameter to ensure that the fluctuations are small compared to the mean velocity. 
The relative displacement is defined as  
 
  * *

0u r r= − . (2.3) 
 
Substituting (2.2) and (2.3) together with the dimensionless quantities  
 

  
*

0

uu
r

= ,      *
0t t= ω , (2.4) 

 
into (2.1) yields the dimensionless equation of motion 
 
  sin sin2 3

2u u u 1 f t fuu t+ ω + εμ + εα = + ε Ω + ε Ω  , (2.5) 
 
where  
 

  1
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0
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m
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ω

,     
2

2 0
2 2

0

k r
m

εα =
ω

,     
0

c
m

εμ =
ω

,     
*ΩΩ
0

=
ω

,     2
1 1ω = α − . (2.6) 

 
The damping and nonlinear terms are reordered so that their effects balance the effects of the excitation terms. 
As can be seen from (2.5), the fluctuations in the angular velocity cause an external excitation term and a 
parametric excitation term. The initial conditions for the problem are 
 
  ( )u 0 0= ,     ( )u 0 0= . (2.7) 
 
An approximate solution will be given for the problem using the method of Multiple Scales, a perturbation 
technique [15]. Assuming a two-term approximate expansion 
 
  ( ) ( ) ( ) ( ); , , 2

0 0 1 1 0 1u t u T T u T T Oε = + ε + ε , (2.8) 

 
with the fast and slow time scales being  
 
 ,0 1T t T t= = ε , (2.9) 
 
and the time derivatives are defined for the new variables 
 

  0 1
d D D
dt

= + ε +… ,     
2

2
0 0 12

d D 2 D D
dt

= + ε +… , (2.10) 

 
where / , ,i iD T i 0 1= ∂ ∂ = . Substituting (2.8)-(2.10) into (2.5) and (2.7) and separating terms with respect to 
their orders yield 
 
  ( ) : 2 2

0 0 0O 1 D u u 1+ ω = , (2.11) 
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  ( ) ( ), 0 0 0u 0 0 D u 0 0= = . (2.12) 
 
  ( ) : 2 2 3

0 1 1 0 1 0 0 0 2 0O D u u 2D D u D u uε + ω = − − μ − α + Ω Ω0 0 0fsin T fu sin T+ , (2.13) 
 
  ( ) ( ), ( )1 0 1 1 0u 0 0 D u D u 0 0= + = . (2.14) 
 
The first order solution in terms of complex and real amplitudes is 
 

  ( ) ( ) ( )( )cos0i T
0 1 1 0 12 2

1 1u A T e cc a T T Tω= + + = + ω + β
ω ω

,  (2.15) 

 
where cc stands for the complex conjugates of the preceding terms and the complex amplitudes are defined as  
 

  ( ) ( ) ( )1i T
1 1

1A T a T e
2

β= . (2.16) 

 
The initial conditions (2.12) require 
 

  ( ) 2
1a 0 = −

ω
,     ( )0 0β = . (2.17) 

 
In order to proceed to the next level of approximation, some assumptions are needed for the fluctuation 
frequencies. The primary resonance case ( Ω )≈ ω  and the principal parametric resonance case ( Ω )2≈ ω  will 
be treated separately.  
 
3. Primary resonances 
 
 Primary resonances occur when the velocity fluctuation frequency is near the natural frequency of the 
system  
 
  Ω = ω + εσ , (3.1) 
 
where σ  is the detuning parameter expressing the nearness of the external excitation to the natural frequency. 
Expressing the sin terms in complex forms 
 

  sin
i t i te et

2i

Ω − Ω−Ω = , (3.2) 

 
and substituting (2.15), (3.1) and (3.2) into (2.13) yields 
 

  

 .

0 1i T i T2 2 2 2
0 1 1 1 2 4 2

3 if 1D u u e 2i D A i A 3 A A A 1 e
2

NST cc

ω σα  + ω = − ω + μ ω + α + + + +  ω ω  
+ +

 (3.3) 

 
where NST stands for the non-secular terms. Elimination of the secularities yield the complex equation 
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  1i T2 2
1 2 4 2

3 if 12i D A i A 3 A A A 1 e 0
2

σα  ω + μ ω + α + + + = ω ω 
.  (3.4) 

 
Substituting for the complex amplitudes in (2.16), separating real and imaginary parts and defining a new phase  
 
  1Tγ = σ − β , (3.5) 
 
one finally obtains the amplitude and phase modulation equations 
 

  cos1 2
1 f 1D a a 1
2 2

 = − μ − + γ ω ω 
, (3.6) 

 

  sin22 2
1 5 2

3 3 f 1D a 1
8 2a2

α α  γ = σ − − + + γ ω ωω ω 
, (3.7) 

 
with the initial conditions being  
 

  ( ) ( ) ,2
1a 0 0 0= − γ =

ω
. (3.8) 

 
For the steady state solutions, 1D a 0=  and 1D 0γ = , upon eliminating γ  between the equations and solving 
for the detuning parameter, we get 
 

  
22

2 22 2
5 2 2 2

3 3 1 f 1a 1
8 22 a

α α  σ = + + − μ ωω ω ω 
 , (3.9) 

 
or the fluctuation frequency from (3.1) is  
 

  ω ω
22

2 22 2
5 2 2 2

3 3 1 f 1a 1
8 22 a

 α α   Ω = + εσ = + ε + + − μ  ωω ω ω  
 , (3.10) 

 
which is the frequency response equation for the problem. Returning back to the original real variables with 
the appropriate definitions, the approximate solution in terms of the fluctuation frequency is  
 

  ( ) ( )( ) ( )cos2
1u a t t t O= + Ω − γ + ε

ω
, (3.11) 

 
where the amplitude and phase variations are governed by (3.6)-(3.8). The total radial distance from the origin is  
 

  ( ) ( )( ) ( )cos2
1r 1 u 1 a t t t O= + = + + Ω − γ + ε

ω
. (3.12) 

 
 A characteristic plot of the frequency response curve (Eq.3.10) for steady state solutions is given in 
Fig.2. As the fluctuation frequencies are increased, the responses increase up to the point A which is a saddle 
node bifurcation point. If one increases the frequencies further, then an abrupt decrease in the response is 
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observed with the response decreasing to point C. As fluctuation frequencies are decreased from a higher value 
starting from point C, an increase in the responses is observed up to point B which is another saddle node 
bifurcation point. A jump is observed again to the higher curve which is much less compared to the jump 
between A and C. The response follows the arrows if further decrease is made.  
 

 
 
Fig.2. Characteristics of the frequency response curves for primary resonances ,  ,2 1 1α = ω = . , 0 1ε = . ,f 0 9=  
          .0 5μ = . 
 

 
 

Fig.3. Frequency response curves for primary resonances for 2 1α = , solid; .2 1 5α = , dashed; 2 2α = , dotted 
         , . , , .1 0 1 f 1 0 5ω = ε = = μ = . 
 
 The portion of the curve AB is unreachable from both directions and that part of the solution is 
unstable. This jump phenomenon is a characteristic of nonlinear systems. If the curves are bent to the right, 
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the system has a hardening behavior, else it is softening. In our specific problem, the nonlinearity is of 
hardening type.  
 The frequency-response curves are given in Fig.3 for various nonlinearity coefficients. As the 
nonlinearities increase, the curves bent more to the right without a change in the maximum amplitudes, thereby 
increasing the region responsible from jump phenomena observed in nonlinear systems.  
 Effect of fluctuation amplitudes on the responses are depicted in Fig.4. As the fluctuation amplitudes 
increase, the maximum responses are higher in contrast with the increase in nonlinear coefficients for which 
the maximum amplitudes remain the same. In both cases, however, an increase results in a wider region of 
jump phenomenon.  
 

 
 
Fig.4. Frequency response curves for primary resonances for .f 0 8= , solid; f 1= , dashed; .f 1 2= , dotted 
          , . , ,  .21 0 1 1 0 5ω = ε = α = μ = . 
 
 For similar problems, the steady state solutions of the frequency response curves were contrasted with 
direct numerical simulations of the system and it was shown that the curves formed by the Method of Multiple 
Scales produced reliable solutions for small perturbation parameters [17, 18]. 
 
4. Principal parametric resonances 
 
 Principal parametric resonances occur mainly due to parametric excitation when the velocity 
fluctuation frequency is near two times the natural frequency of the system  
 
  2Ω = ω + εσ , (4.1) 
 
where σ  is the detuning parameter. For this case, Eq.(2.13) reduces to  
 

  0 1i T i T2 2 2 2
0 1 1 1 2 4

3 ifD u u e 2i D A i A 3 A A A Ae
2

ω σα + ω = − ω + μ ω + α + + ω 
 NST cc+ + , (4.2) 

 
where NST stands for the non-secular terms. Elimination of secularities yield the complex equation 
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  1i T2 2
1 2 4

3 if2i D A i A 3 A A A Ae 0
2

σαω + μ ω + α + + =
ω

. (4.3) 

 
Substituting for the complex amplitudes in (2.16), separating real and imaginary parts and defining a new phase  
 
  1T 2γ = σ − β , (4.4) 
 
one finally obtains the amplitude and phase modulation equations 
 

  cos1
1 fD a a a
2 2

= − μ − γ
ω

, (4.5) 

 

  - - sin22 2
1 5

3 3 fD a
4

α αγ = σ + γ
ω ωω

, (4.6) 

 
with the same initial conditions given in (3.8).  
 For the steady state solutions, 1D a 0=  and 1D 0γ = , and there exists both trivial solutions ( )a 0=  and 
non-trivial solutions ( )a 0≠ . To find the nontrivial solutions, eliminate γ  between the equations and solve for 
the detuning parameter which is 
 

  
2

2 22 2
5 2

3 3 fa
4

α ασ = + − μ
ωω ω

 . (4.7) 

 
The fluctuation frequency from (4.1) is  
 

  ω ω
2

2 22 2
5 2

3 3 f2 2 a
4

 α α Ω = + εσ = + ε + − μ
 ωω ω 

 , (4.8) 

 
which is the frequency response equation for the non-trivial solutions. Returning back to the original real 
variables with the appropriate definitions, the approximate solution in terms of the fluctuation frequency is  
 

  ( ) ( ) ( )Ω
2

t1u a t cos t O
2 2

 γ 
= + − + ε 

ω  
, (4.9) 

 
where the amplitude and phase variations are governed by (4.5) and (4.6). The total radial distance from the 
origin is  
 

  ( ) ( ) ( )Ω
2

t1r 1 u 1 a t cos t O
2 2

 γ 
= + = + + − + ε 

ω  
. (4.10) 

 
 Results of the principal parametric resonances are qualitatively different from those of primary 
resonances. A characteristic plot of the frequency response relation (4.8) is given in Fig.5. As the frequency is 
increased up to point A, only a trivial solution exists which is stable. At point A, a pitchfork bifurcation occurs 
and a non-trivial and trivial solution co-exists, the former being stable and the latter unstable. Point B is another 
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pitchfork bifurcation point, advancing from where the nontrivial solution is unstable, whereas the trivial 
solution is stable. For a detailed stability analysis of similar systems, see Öz et al. [2].  
 

 
Fig.5. Frequency response curves for principle parametric resonances for stable (solid) and unstable (dotted) 
          solutions , , . , . , .2f 4 1 0 2 0 5 0 2= ω = ε = α = μ = . 
 
 Figure 6 depicts the effect of nonlinearities on the frequency-response curves. As the nonlinearities 
increase, the curves and the bifurcation points shift to the right with the curves bended more.  
 

 
Fig.6. Frequency response curves for principle parametric resonances for .2 0 5α =  (solid), .2 0 75α =  (dashed) 
          and 2 1α =  (dotted) solutions , , . , .f 4 1 0 2 0 2= ω = ε = μ = . 
 
 In Fig.7, the effects of fluctuation amplitudes are shown. As the fluctuation amplitudes increase, the 
bifurcation points diverge from each other with the nontrivial solutions diverging from each other without a 
change in their bending.  
 

Ω
0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

2

2.5

3

A B

Ω
0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

2

2.5

3



M. Pakdemirli  139 

 
 
Fig.7. Frequency response curves for principle parametric resonances for f 4=  (solid), f 5=  (dashed) 
           and f 6=  (dotted) solutions , , . , .2 1 1 0 2 0 2α = ω = ε = μ = . 
 
5. Concluding remarks 
 
 A mathematical model is developed to incorporate angular velocity fluctuations for a rotating spring-
mass system. Many physical systems including continuous models (if treated as rigid bodies) can be modelled 
as a spring-mass idealization. The equations are cast into a dimensionless form for which approximate 
analytical solutions are presented by using the Method of Multiple Scales, a perturbation technique. The model 
inherits both external excitation and parametric excitation and the primary and principal parametric resonances 
are investigated in detail which are the most fundamental resonances for such excitations. From the amplitude 
phase modulation equations, the steady state solutions are derived in the form of frequency response functions. 
Effects of amplitudes and frequencies of the velocity fluctuations and the nonlinearities on the responses are 
depicted in figures in detail.  
 The nonlinearity is a system parameter which cannot be easily controlled. However, the speed 
amplitude and frequency of fluctuations can easily be altered in a system. The most important parameter is the 
frequency of speed fluctuations. Depending on the goal, the system has to be operated in a suitable frequency 
range. If the goal is to suppress vibrations, the resonance regions should be avoided and they are close to the 
natural frequency for primary resonances and two times the natural frequency for principal parametric 
resonances. If the goal is to enhance vibrations, then the resonance regions may be selected with a caution not 
to harm the whole system by excessive vibrations. The amplitudes of fluctuations are of secondary importance 
and affect the response curves and their ranges in the resonant regions. Another factor which has a direct 
influence on the resonance curves is the damping which reduces the responses in the resonant regions. This 
study underlines the principles of passive control parameters for the rotating-mass systems. An active control 
of the system can be done in further studies.  
 
Nomenclature 
 
 ( )1a T  – real amplitudes 

 ( )1A T  – complex amplitudes 

 c  – dimensional viscous damping constant 

 0D  – derivative with respect to fast time scale 
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 1D  – derivative with respect to slow time scale 

 1k  – linear spring constant 

 2k  – non-linear spring constant 

 m  – mass of the rotating object 

 *r  – dimensional radial distance 
 r  – non-dimensional radial distance 
 0r  – length of the undeformed spring 

 *t  – dimensional time 
 t  – non-dimensional time 

 0T  – fast time scale 

 1T  – slow time scale 

 *u  – dimensional relative displacement 
 u  – non-dimensional relative displacement 

 0u  – unperturbed solution 

 1u  – correction to perturbed solution 

 1α  – non-dimensional linear spring constant 

 2α  – non-dimensional non-linear spring constant 

 ( )1Tβ  – phases 

 γ  – defined new phase 

 ε  – a small book-keeping parameter 
 fε  – the amplitude of the fluctuations  

 εμ  – non-dimensional viscous damping constant 

 *θ  – dimensional angular displacement 
 θ  – non-dimensional angular displacement 

 *θ  – dimensional angular velocity 

 θ  – non-dimensional angular velocity 
 σ  – detuning parameter 

 0ω  – angular mean velocity 

 ω  – non-dimensional natural frequency 

 *Ω  – dimensional frequency of the velocity fluctuations 
 Ω  – non-dimensional frequency of the velocity fluctuations 
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