
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 2, 439–450
DOI: 10.1515/amcs-2016-0031

A MODIFIED K3M THINNING ALGORITHM

MAREK TABEDZKI a, KHALID SAEED a,b,∗, ADAM SZCZEPAŃSKI a

aFaculty of Computer Science
Białystok University of Technology, ul. Wiejska 45 A, 15-351 Białystok, Poland

e-mail: {m.tabedzki,k.saeed}@pb.edu.pl,aszczepa@agh.edu.pl

bFaculty of Mathematics and Information Sciences
Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland

The K3M thinning algorithm is a general method for image data reduction by skeletonization. It had proved its feasibility
in most cases as a reliable and robust solution in typical applications of thinning, particularly in preprocessing for optical
character recognition. However, the algorithm had still some weak points. Since then K3M has been revised, addressing the
best known drawbacks. This paper presents a modified version of the algorithm. A comparison is made with the original
one and two other thinning approaches. The proposed modification, among other things, solves the main drawback of K3M,
namely, the results of thinning an image after rotation with various angles.

Keywords: skeletonization, thinning, K3M algorithm, digital image processing.

1. Introduction

Thinning is an important stage in the image processing
procedure of many systems. Mainly, it is one of
the possible means of creation of the description of
a shape. Thinning equalizes the deficiencies created
during preprocessing, such as an uneven width of the
lines or ragged edges. The resulting skeleton of the
object is usually one- or two-pixel wide and preserves the
distinctive features of the described object. Characteristic
points of it, such as endings, joints and central points
of the curves, are usually sufficient to distinguish, for
example, one letter from another during optical character
recognition (OCR), or describe fingerprints or veins
patters. The skeleton also helps, for example, in splitting
the shape into its characteristic sections, like in the work
of Xie et al. (2011), where it is used to distinguish body
parts.

Thinning procedures originate in the 1950s, when
using the averaging operation conducted by employing a
square window with a high threshold produced almost a
skeleton from an image (Dinneen, 1955). An extended
survey of the approaches to thinning prior to the year
1991 is given by Lam et al. (1991). In general, thinning

∗Corresponding author

algorithms can be split into parallel, which produce a
skeleton of the shape in one step, or sequential, which
analyze border pixels of the shape in each iteration
removing the ones corresponding to given rules up until
the skeleton is extracted. Examples of the most widely
used algorithms from the first group include the following:

• Rutovitz algorithm (Rutovitz, 1966),

• Zhang–Suen algorithm (Zhang and Suen, 1984),

• Guo–Hall algorithm (Guo and Hall, 1989),

• Chen algorithm (Chen and W.H., 1993),

• Deng algorithm (Deng et al., 2000),

• Prakash algorithm (Prakash et al., 2015),

and from the second group we can list the following:

• Arcelli–Sanniti di Baja algorithm (Arcelli and
Sanniti di Baja, 1978),

• Arcelli improved algorithm (Arcelli, 1981),

• KMM algorithm (Saeed et al., 2001),

• Kardos algorithm (Kardos et al., 2009),

{m.tabedzki,k.saeed}@pb.edu.pl, aszczepa@agh.edu.pl

440 M. Tabedzki et al.

START Phase 0:
detection of

borders

Phase[i]: For
i=1 to 5

Remove border
pixels with

neighborhood
in A[i]

Any pixels
removed?

YES

STOP
Remove border

pixels with
neighborhood
in A1pix array

NO

Fig. 1. Flowchart of the original K3M.

• K3M algorithm (Saeed et al., 2010),

• Abu-Ain algorithm (Abu-Ain et al., 2013).

The improved algorithm is planned to be used in the
human posture recognition and monitoring system. The
main purpose of such a system will be the monitoring of
people in crowded places to detect unusual behavior.

Another application is to identify security issues and
people whose strange behavior may indicate the intention
of committing a crime. This may work in conjunction
with other means of people identification which can
be applied using a security camera, for example, face
recognition which is also in the spectrum of interests of
the authors (Misztal et al., 2013). On the other hand,
human body posture recognition might also be used in
monitoring babies during their sleep.

The paper consists of four main sections. The next
one contains the description of the original K3M approach
and its drawbacks. Afterwards, the proposed changes are
described, followed by the results of experiments and a
comparison of the improved approach with the original
one as well as with the KMM (Saeed et al., 2001) and
Zhang–Suen (Zhang and Suen, 1984) approaches. The
conclusions are contained in the last section.

2. Original K3M algorithm

The K3M algorithm was described by Saeed et al. (2010).
Its basic flowchart is presented in Fig. 1.

K3M is a sequential iterative algorithm. Each
iteration involves six phases, repeated in sequence until
no modification to the image can be made. Another
phase is added to produce a one-pixel-width skeleton.
The input to the algorithm is a binary image, where the
background pixels are encoded as 0s whilst the image

(object) pixels are encoded as 1s. Thinning decisions are
made for border pixels (those image pixels that stick to
the background), based on 3 × 3 neighborhood templates
of the tested pixel. The thinning decision is either to
delete the pixel or to retain it. The possible neighborhood
configurations are encoded using values named neighbor
weights. The weight of the neighborhood of the pixel
W (x, y) is calculated using the mask presented in Fig. 2.

The weights of the pixels that must be removed in
each phase are stored in lookup arrays A0–A5 and A1pix
for an additional phase:

• A0: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 56, 60, 62,
63, 96, 112, 120, 124, 126, 127, 129, 131, 135,143,
159, 191, 192, 193, 195, 199, 207, 223, 224, 225,
227, 231, 239, 240, 241, 243, 247, 248, 249, 251,
252, 253, 254,

• A1: 7, 14, 28, 56, 112, 131, 193, 224,

• A2: 7, 14, 15, 28, 30, 56, 60, 112, 120, 131, 135,
193, 195, 224, 225, 240,

• A3: 7, 14, 15, 28, 30, 31, 56, 60, 62, 112, 120, 124,
131, 135, 143, 193, 195, 199, 224, 225, 227, 240,
241, 248,

• A4: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120,
124, 126, 131, 135, 143, 159, 193, 195, 199, 207,
224, 225, 227, 231, 240, 241, 243, 248, 249, 252,

• A5: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120,
124, 126, 131, 135, 143, 159, 191, 193, 195, 199,
207, 224, 225, 227, 231, 239, 240, 241, 243, 248,
249, 251, 252, 254,

• A1pix: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 56,
60, 62, 63, 96, 112, 120, 124, 126, 127, 129, 131,
135,143, 159, 191, 192, 193, 195, 199, 207, 223,
224, 225, 227, 231, 239, 240, 241, 243, 247, 248,
249, 251, 252, 253, 254.

K3M is fast, robust and reliable, as proven by the
authors (Saeed et al., 2010).

2.1. Drawbacks of the original approach.
The original algorithm was developed mainly for
preprocessing binary images for biometric purposes such

 128 1 2

64 X 4

32 16 8

Fig. 2. Mask used to calculate the weight of a pixel.

A modified K3M thinning algorithm 441

as optical character recognition (OCR) or acquisition of a
fingerprint or a vein pattern. One of the main assumptions
of the algorithm was to maintain skeleton continuity,
which was successfully achieved. As was proved in the
authors’ former publications, pixels that could lead to a
disruption of the skeleton are not removed. The other
assumptions of the algorithm were simplicity and short
computing time. The fast processing speed was acquired
with some compromises in the skeleton shape which
are typically unnoticeable during the thinning of already
relatively thin objects such as letters.

The main problem arises when considering more
complicated shapes than those of the standard type.
As a sequential algorithm, K3M suffers from the
order-dependency problem—different visiting orders of
the detected border pixels may yield different skeletons.
This was examined by rotating input images—the rotation
is the equivalence of changing the visiting order. The
drawbacks of K3M manifest themselves mainly during the
thinning of wider objects. This refers to the following:

1. Leftover spurs in discoid objects—this may appear
occasionally on various sides of the skeleton
depending on the actual shape of the disc. The spurs
may or may not appear during the processing of the
same object, depending on its rotation, as presented
in Fig. 3.

2. Leftover diagonal line in the bottom right corner
of the skeleton—these are the artifacts generated
due to the way in which K3M analyzes the image:
from the top left corner of it to the bottom right.
This means that, if the corner pixel is with the
weight of 193 (bottom-right corner), the neighboring
pixels are typically analyzed and removed earlier
during Phase 2, leaving the pixel with the actual

(a) (b)

(c) (d)

Fig. 3. Example of spur artifact: original figure (a), skeleton of
the original image (b), image rotated by 180◦ (c), skele-
ton of the rotated image containing a spur artifact (d).

(a) (b)

(c) (d)

Fig. 4. Example of diagonal line artifact: original figure (a),
skeleton of the original image (b), image rotated by 180◦

(c), skeleton of the rotated image (d).

weight of 128 when its analysis starts. This value
is not included in any neighborhood lookup array
and hence the pixel is preserved, and with the
cumulative effect in every next step the artifact is
generated. Examples of such artifacts are presented
in Fig. 4. It is noticeable that, depending on
the rotation angle the artifact is generated in a
different corner of the original shape. Also, it is
visible that using the original A1pix array produces
the result with 2-pixel-wide diagonal lines. The
mechanism of diagonal lines occurrence is described
in Appendix A.

3. Different handling of circular objects depending on
their symmetry—it is hard to obtain an ideal circle
during the preprocessing of a noisy image, and it
is only for the ideal one that the K3M algorithm
generates the same skeleton regardless of the angle
of rotation (Fig. 5). It can also be noticed that K3M
produces a cross-shaped skeleton from a ideal circle
rather than a dot-shaped one, and it produces some
additional horizontal and vertical lines in the other
two shapes.

4. Different skeleton shapes for the same object if it is
rotated by different angles—this is clearly noticeable
in figures describing previous problems.

The proposed modifications address all
aforementioned drawbacks.

3. Proposed modifications

An overall schematic of the modified solution has only
one change relative to the original solution (Fig. 1), as
presented in Fig. 6. The additional Phase 0a is executed
after Phase 0.

The altered algorithm is split into seven phases inside
the main loop and one phase outside the loop (Fig. 6).

442 M. Tabedzki et al.

3.1. Modification of neighborhood lookup arrays.
From the original arrays only A2 was expanded (the
added values are in bold) and array A1pix was replaced
completely:

• A0: 3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 56, 60, 62,
63, 96, 112, 120, 124, 126, 127, 129, 131, 135, 143,

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Example of different circle handling: ideal circle (a),
skeleton of this circle (b), 180◦ rotation of this circle
(c), skeleton of the rotated image (d), slightly wider than
higher circle (e), skeleton of this circle (f), 180◦ rotation
of this circle (g), skeleton of the rotated image (h), asym-
metrical circle (i), skeleton of this circle (j), 180◦ rota-
tion of this circle (k), skeleton of the rotated image (l).

Phase 0a:
adjustment of

borders

START Phase 0:
detection of

borders

Phase[i]: For
i=1 to 5

Remove border
pixels with

neighborhood
in A[i]

Any pixels
removed?

YES

STOP
Remove border

pixels with
neighborhood
in A1pix array

NO

Fig. 6. Flowchart of the modified K3M. The additional phase is
highlighted with a gray background.

24 48 192

Fig. 7. Additional mask values in array A2.

159, 191, 192, 193, 195, 199, 207, 223, 224, 225,
227, 231, 239, 240, 241, 243, 247, 248, 249, 251,
252, 253, 254,

• A1: 7, 14, 28, 56, 112, 131, 193, 224,

• A2: 7, 14, 15, 24, 28, 30, 48, 56, 60, 112, 120, 131,
135, 192, 193, 195, 224, 225, 240,

• A3: 7, 14, 15, 28, 30, 31, 56, 60, 62, 112, 120, 124,
131, 135, 143, 193, 195, 199, 224, 225, 227, 240,
241, 248,

• A4: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120,
124, 126, 131, 135, 143, 159, 193, 195, 199, 207,
224, 225, 227, 231, 240, 241, 243, 248, 249, 252,

• A5: 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120,
124, 126, 131, 135, 143, 159, 191, 193, 195, 199,
207, 224, 225, 227, 231, 239, 240, 241, 243, 248,
249, 251, 252, 254,

• A1pix: 2, 5, 13, 20, 21, 22, 32, 48, 52, 54, 65, 67,
69, 80, 81, 84, 88, 97, 99, 128, 133, 141, 208, 216.

The masks represented by the values added to A2 are
presented in Fig. 7.

These masks were added to clear the shape of some
leftover spurs during Phase 2 and as a part of the solution
for the problem of the diagonal line artifacts in the original
K3M (see Fig. 4).

The change in the A1pix array is proposed as a way
to produce one-pixel-wide diagonal lines, as opposed to
the original array which produced two-pixel-wide ones
(see Fig. 4).

3.2. Modification of Phase 0. The flowchart of
modified Phase 0 is presented in Fig. 8.

The main addition in this phase is the comparison
of the pixel weight to four additional masks if its weight
is not in the border neighborhood lookup array A0.
These masks are presented in Fig. 9. The condition
C1 is (W (x, y) == 95 and (x − 2, y) == white)
or (W (x, y) == 125 and (x, y − 2) == white) or
(W (x, y) == 215 and (x, y + 2) == white) or
(W (x, y) == 245 and (x + 2, y) == white). If it is
fulfilled, the pixel is also marked as a border one. This

A modified K3M thinning algorithm 443

Flag (x-1,y-1) as
border

Is C1 fulfilled?

START Get next black
pixel (x,y)

Calculate
neighborhood
weight W(x,y) Is W(x,y) in

A[0]?
YES

STOP

Flag (x,y) as
border

NO

YES

Is (x,y) last
black pixel?

YES

YES

NO

Is W(x,y)
== 193?

and is (x-1,y-1)
black?

NO

NO

Fig. 8. Flowchart of Phase 0.

solution addresses the issue of circle handling (Fig. 5)
and disks (Fig. 3) by the original K3M.

The second addition to Phase 0 is the marking of the
top-left neighboring pixel of a bottom-right corner pixel
(the weight value of 193; see Fig. 10) as a border pixel.
This change is made to help deal with the diagonal line
artifacts (see Fig. 4).

 X X

 95

 215

 X X

 125 245

Fig. 9. Additional masks for Phase 0.

3.3. Phase 0a. Phase 0a supplements the changes
introduced in Phase 0 to ensure that the discoid and
circular objects will not have any unwanted spurs (see
Figs. 3 and 5). The flowchart of the new phase is presented
in Fig. 11.

The weight of every regular black (non-border) pixel
is calculated again using the mask presented in Fig. 2,
although in the calculation there are included only the
neighboring border pixels found during Phase 0 and
already found in Phase 0a, not all surrounding black
pixels. This weight is compared to two new masks
(Fig. 12) and, if the weight is equal to any of them, the
pixel is also marked as border.

3.4. Modification of Phases 1–5. The flowchart of the
modified Phases 1 to 5 is presented in Fig. 13.

Condition C2: if W (x, y) == 241 and (x, y + 1) is
border and (x, y + 2) == white and (x + 1, y + 2) ==
white, presented in Fig. 13, is added to address the issue
of diagonal line artifacts presented in Fig. 5. It determines
whether the bottom neighbor of the analyzed pixel might
be a corner. If the condition is fulfilled, the bottom
neighbor is analyzed for deletion before removing the
currently analyzed pixel (Fig. 14). This helps avoid the
situation described in Appendix A.

Condition C3: if (W (x, y) == 195 or W (x, y) ==
227) and (x+1, y−1) is border (Fig. 15) is introduced to
remove asymmetrical horizontal lines in circular shapes.
The extra horizontal lines in the skeleton are created
in a similar way as the diagonal ones—due to the fact
that further columns of the image are analyzed after the
removal of some pixels from an earlier column.

If these pixels are analyzed before the removal of
essential neighbors, they are removed correctly. That is
why during the analysis of pixel (x, y), if its weight is
equal to 195 or 227, its top-right neighbor (x − 1, y + 1)
is also analyzed. On the other hand, this neighbor shall
not be removed too early, because it would alter the
calculation of the weight of top neighbor of (x− 1, y+1)
pixel. That is why this pixel is only marked for deletion
first, and then removed only when it becomes the analyzed
pixel (x, y). These pixels are presented in Fig. 5.

 A

 X

193

Fig. 10. Pixel that fulfills the mask 193 (X) and its neighbor
which shall be marked as border (A).

444 M. Tabedzki et al.

START
Get next black
pixel (x,y) (not

border)

Calculate
neighborhood
borders weight

W(x,y)

Is W(x,y) ==
31 or 124?

YES

STOP

Flag (x,y) as
border

Is (x,y) last
black pixel?

YES

NO

NO

Fig. 11. Flowchart of Phase 0a.

4. Results

Three experiments were conducted using the original and
improved K3M solutions as well as the KMM (Saeed
et al., 2001) and Zhang–Suen (Zhang and Suen, 1984)
approaches as reference algorithms. These experiments
include:

• testing the algorithms on selected basic
shapes—mainly the ones troublesome for the
original K3M,

• checking the computing times of all algorithms,

• testing the algorithms on images presenting the
human body posture.

 X X

31 124

Fig. 12. Two new masks introduced for Phase 0a. In these
masks, the light gray color represents a black pixel, the
dark gray color represents pixels that shall be border
ones and the white color represents pixels that shall not
be border ones (they might be regular black or white
pixels).

Calculate
neighborhood

weight
W(x,y+1)

START Get next border
pixel (x,y)

Calculate
neighborhood
weight W(x,y)

YES

STOP Is (x,y) last
border?

YES

YES

Is W(x,y) in A[i]
or (x,y) marked

for deletion?

Is C2 fulfilled?

Is W(x,y+1) in
A[i]?

Change (x,y+1)
to white

YES

Change (x,y) to
white

NO

NO

NO

NO

Is C3 fulfilled? NO

Calculate
neighborhood

weight
W(x+1,y-1)

YES
Is W(x+1,y-1) in

A[i]?

Mark (x+1,y-1)
for deletion

YES

NO

Fig. 13. Flowchart of Phase i, i = 1, . . . , 5.

4.1. Thinning of basic images. To test the
improvements over the original K3M approach, a set of
basic shapes including all those described in Section 2.1
was prepared. The images were created by the
authors, specifically for this publication, to reveal and
emphasize the problems that may arise in skeletonization.
The images were processed using both improved and
original approach as well as the KMM and Zhang–Suen
algorithms, as mentioned earlier. The resulting skeletons
are presented in Table 1. Many of the shapes were handled
differently by the algorithms. A brief summary of the
results is listed below.

• Shapes 1, 2 and 3 were handled properly by the
improved K3M, KMM and Zhang–Suen approaches,
while K3M produced diagonal line artifacts.

 X

 A

241

Fig. 14. Situation in which a bottom neighbor (A) of the ana-
lyzed pixel (X) will be considered a corner.

A modified K3M thinning algorithm 445

 A A

 X X

195 227

Fig. 15. Situations in which the top-right neighbor (A) of the
analyzed pixel (X) will also be considered for removal.

• Shape 4 was handled properly by both the K3M and
KMM approaches while the Zhang–Suen approach
omitted one vertex of the triangle.

• Shape 5, the diamond, was handled properly by
the original K3M while KMM omitted one vertex
and the improved K3M and Zhang–Suen approaches
omitted two vertexes.

• Shapes 6–8 are different circles, 7 and 8 are
symmetrical and 6 is asymmetrical. The improved
K3M handled all of them properly while KMM
produced a correct skeleton approach only from 6
and 7, and Zhang–Suen only from 8, leaving no
pixels in the other ones. The original K3M treated
all the shapes differently, although arguably only 8
could be considered as proper.

• Shape 9 was handled properly by both K3M
approaches, although the original K3M produced a
short diagonal spur in the bottom of the skeleton and
the there-pixel neighborhood in diagonal lines. Both
the K3M and Zhang–Suen approaches are missing
one side of the arrow.

• Shape 10 was handled properly by all approaches
except KMM.

• Shape 11 was handled properly only by the original
K3M, while the result of KMM is missing one side
of an arrow, and the improved K3M and Zhang–Suen
approaches produced straight line skeletons.

• Shape 12 was handled properly by all algorithms,
although the original K3M shortened the top part of
the diagonal line.

• Shape 13 was handled properly by all algorithms.

• Shape 14 was handled properly by both K3M
and KMM. The Zhang–Suen approach omitted one
vertex of the shape.

As can be seen, in most cases the modified K3M
algorithm gives better results than the original K3M and
the other tested approaches. It is the only approach which
handled all the circles properly.

Table 1. Comparison of the results of thinning between the im-
proved K3M and the original K3M, KMM and Zhang–
Suen algorithms. The black lines are the skeletons of
the objects and the gray silhouettes are the original
shapes. The column No. contains the image number.

Sample Improved
K3M

Original
K3M

KMM Z–S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

446 M. Tabedzki et al.

Table 2. Comparison of computing time of thinning for the im-
ages presented in Table 1 using the improved K3M and
the original K3M, KMM and Zhang–Suen algorithms.
The Sample column gives information about the im-
age number, Res. shows the image resolution in pixels,
and the remaining columns show the average comput-
ing time for particular algorithms in milliseconds.

Sample Res. Improved
K3M

Original
K3M

KMM Z–S

1 32x25 6 <1 <1 <1
2 88x52 46 15 15 <1
3 72x71 31 12 9 <1
4 127x164 265 78 78 16
5 107x78 78 31 24 <1
6 56x54 31 15 13 <1
7 64x64 47 16 15 <1
8 57x57 31 15 15 <1
9 46x143 47 16 15 <1
10 127x104 156 47 47 15
11 44x20 <1 <1 <1 <1
12 41x44 <1 <1 <1 <1
13 151x138 94 31 15 31
14 216x196 562 172 172 31

4.2. Computing times. All the test shapes were
processed 51 times by the original and the improved K3M,
KMM as well as the Zhang–Suen approaches. Processing
times from these trials were sorted in ascending order
and 11 median values were averaged. These results are
presented in Table 2.

It is worth noticing that pictures 11 and 12 are
very small, which accounts for the low execution time,
below the timer resolution. The analysis was conducted
on an Intel Core i7-4790 3.6 GHz CPU with 4 GB
of RAM, running Microsoft Windows 8.1, and all the
implementations were single-threaded, written in Java.

All the algorithms processed each of the images
in less than a second, in some cases even in less than
a millisecond. The Zhang–Suen approach, due to its
parallel character, seems to be the fastest algorithm
amongst the tested ones. The other approaches are
somehow similar in their implementation process and
sequential character. Notice that the time differences
shown in Table 2 are certainly higher for larger images.

4.3. Thinning of human silhouettes. The last
experiment was conducted to check whether the
improvements of the original K3M have any impact on
the thinning of sample human silhouettes. Overall, the
tests were performed on 79 samples; the eight exemplary
results are presented in Table 3.

As seen in the sample images, the improved
K3M leaves fewer unwanted artifacts than the original
approach, although the skeletons of the silhouettes are still

Table 3. Comparison of the results of thinning of human silhou-
ettes using the original and improved K3M approaches.
The column Sample contains image numbers, the col-
umn O. K3M contains images processed using the orig-
inal K3M approach and the columns I. K3M contain
images processed using the improved K3M approach.

Sample Original
K3M

Improved
K3M

Sample Original
K3M

Improved
K3M

1 2

3 4

5 6

7 8

im perfect and need some extra denoising before further
analysis.

5. Conclusions

The first experiment shows that modifications of the
K3M algorithm eliminated all of the drawbacks of the
original approach described in Section 2.1. The improved
K3M generally gives better thinning results than the
original K3M, KMM or other known algorithms, like the
Zhang–Suen approach.

As shown in the second experiment, better results
come at a cost—the computing time increases, though it
is still fast enough to process small images in real time.
The cost is partially due to the fact that the improved
K3M was implemented on the basis of an optimal
K3M implementation which includes some solutions that
accommodate well for the latter but hamper the optimal
implementation of the former. The authors are currently

A modified K3M thinning algorithm 447

concentrating on the improvement of the quality of the
source code of the proposed solution.

One of the important aspects is reduction in the
number of phases without any loss of skeleton quality.
A five-scan procedure is more time-consuming than one.
However, it is worth noting that, in our algorithm, the
computing time does not scale linearly, and hence five
phases do not take five times more time than one. This
is because the most time-consuming stage—looking for
border pixels—happens only once per iteration step.
Therefore, each of the five phases takes into account only
a small subset of original image pixels. Moreover, there
are fewer pixels to analyze after each phase as some of
them are removed. In an optimal implementation, border
pixels are probably buffered, so there is no need to search
for them in each stage.

The third experiment was conducted to prove the
suitability of the improved solution for a human posture
recognition system. The results are promising, although
still reveal some problems. Such problems are solved
by using the black pixel distance from the nearest white
pixel in the initial image preprocessing stage. This
allows us to narrow the number of pixels left for thinning
by determining which pixels are unnecessary for proper
skeleton acquisition. This procedure is explained in
Appendix B. The initial experiments of the authors proved
that this approach may provide even more regularity and
repeatability of similar shape skeletons.

Conclusively, the most important features of thinning
algorithms are connectivity and shape preservation. The
latter is particularly important when thinning wide
shapes, and, as revealed by the experiments, the
proposed modification performs significantly better than
the original K3M or any other tested algorithm in the
paper. By connectivity (or continuity) we mean topology
preservation—the goal of the thinning algorithm is to
reduce the image (understood as a set of black pixels)
in such a way that each 8-connected black component
in the original picture contains exactly one 8-connected
black component of the produced picture whilst each
4-connected white component in the output picture
contains exactly one 4-connected white component of
the input picture. In other words, a topology preserving
thinning algorithm does not split, nor does it delete
completely, the 8-connected black components, and it
does not merge nor creates 4-connected white components
(Kong and Rosenfeld, 1989). This is guaranteed by the
selection of pixels for deletion.

Pixel weights, introduced in the deletion arrays,
represent specific configurations of the tested pixel
neighbors. There is a finite number of such configurations,
and they have been carefully selected to ensure that no
pixel will be removed if it causes skeleton disruption. The
weights representing configurations where a tested pixel is
the only pixel connecting its neighbors are never included

in any deletion array. In Steps 1–5 of the algorithm we
consider only pixels whose neighbors are interconnected,
and hence there is no possibility that their deletion can
cause a loss in skeleton continuity. For the final step,
the deletion array was created with only one principle
in mind—to never remove a pixel if it disrupts skeleton
continuity. The sequential nature of these steps ensures
that the pixels are deleted in accordance with a defined
sequence. This takes place in such a way that when testing
any pixel, there is previous knowledge about the decisions
made for prior pixels, and we always make our decision
before testing the following pixels, although this comes at
some additional cost (an order-dependency problem).

As the decision made for previous pixels has impact
on the decision made for the tested one, the visiting
order is significant and can always affect the results.
There are two consequences of this: first, it is important
to keep a proper sequence of iteration; deletion arrays
were selected for the specific iteration direction, and will
not work for others (for example, some lines may be
completely deleted). Second, a rotation of the thinned
shape affects results. This is because, as a matter of
fact, the rotation means changing the order in which we
iterate through pixels. In effect, when thinning rotated
shapes, we can obtain different output images, as was
described in Sections 2.1 and 4.1. The authors now
work on a new algorithm that combines the topology
preservation features of K3M+ with the advantages of
parallel algorithms.

Acknowledgment

This work was supported by the grants S/WI/1/2013 and
S/WI/2/2013 from the Białystok University of Technology
and funded with resources for research by the Ministry of
Science and Higher Education in Poland.

References
Abu-Ain, W., Abdullah, S.N.H.S., Bataineh, B., Abu-Ain, T.

and Omar, K. (2013). Skeletonization algorithm for binary
images, Procedia Technology 11(0): 704–709.

Arcelli, C. (1981). Pattern thinning by contour tracing, Com-
puter Graphics and Image Processing 17(2): 130–144,
DOI: 10.1016/0146-664X(81)90021-6.

Arcelli, C. and Sanniti di Baja, G. (1978). On the sequential
approach to medial line transformation, IEEE Transactions
on Systems, Man and Cybernetics 8(2): 139–144, DOI:
10.1109/TSMC.1978.4309914.

Chen, Y. and W.H., H. (1993). Parallel thinning algorithm for
binary digital patterns, in C. Chen et al. (Eds.), Hand-
book of Pattern Recognition; Computer Vision, World
Scientific Publishing, River Edge, NJ, pp. 457–490, DOI:
10.1007/978-3-642-33564-8_78.

Deng, W., Iyengar, S.S. and Brener, N.E. (2000). A fast parallel
thinning algorithm for the binary image skeletonization,

448 M. Tabedzki et al.

International Journal of High Performance Computing Ap-
plications 14(1): 65–81.

Dinneen, G. (1955). Programming pattern recognition, Pro-
ceedings of the 1955, Western Joint Computer Con-
ference, New York, NY, USA, pp. 94–100, DOI:
10.1145/1455292.1455311.

Guo, Z. and Hall, R. (1989). Parallel thinning with
two-subiteration algorithms, Communications of the ACM
32(3): 359–373, DOI: 10.1145/62065.62074.

Kardos, P., Nemeth, G. and Palagyi, K. (2009). An
order independent sequential thinning algorithm, in
P. Wiederhold and R. Barneva (Eds.), Combinatorial Im-
age Analysis, Lecture Notes in Computer Science, Vol.
5852, Springer, Berlin/Heidelberg, pp. 162–175, DOI:
10.1007/978-3-642-10210-3_13.

Kong, T.Y. and Rosenfeld, A. (1989). Digital topology:
Introduction and survey, Computer Vision, Graph-
ics, and Image Processing 48(3): 357–393, DOI:
10.1016/0734-189X(89)90147-3.

Lam, L., Lee, S. and Sueni, C. (1991). Thinning
methodologies—a comprehensive survey, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
14(9): 869–885, DOI: 10.1109/34.161346.

Misztal, K., Szczepański, A., Kocjan, P., Saeed, K. and Tabor, J.
(2013). Distribution estimation applied to face recognition
as a simple and robust solution, 2013 International Con-
ference on Biometrics and Kansei Engineering (ICBAKE),
Tokyo, Japan, DOI: 10.1109/ICBAKE.2013.19.

Prakash, R., Prakash, K.S. and Binu, V. (2015). Thinning
algorithm using hypergraph based morphological
operators, 2015 IEEE International Advance Computing
Conference (IACC), Benglore, India, pp. 1026–1029.

Rutovitz, D. (1966). Pattern recognition, Journal of the Royal
Statistical Society: Series A (General) 129(4): 504–530.

Saeed, K., Rybnik, M. and Tabedzki, M. (2001). Implementation
and advanced results on the non-interrupted
skeletonization algorithm, in W. Skarbek (Ed.), Com-
puter Analysis of Images and Patterns, Lecture Notes in
Computer Science, Vol. 2124, Springer, Berlin/Heidelberg,
pp. 601–609.

Saeed, K., Tabędzki, M., Rybnik, M. and Adamski, M. (2010).
K3M: A universal algorithm for image skeletonization
and a review of thinning techniques, International Jour-
nal of Applied Mathematics and Computer Science
20(2): 317–335, DOI: 10.2478/v10006-010-0024-4.

Xie, F., Xu, G., Cheng, Y. and Tian, Y. (2011). Human body and
posture recognition system based on an improved thinning
algorithm, IET Image Processing 5(5): 420–428, DOI:
10.1049/iet-ipr.2009.0303.

Zhang, T. and Suen, C. (1984). A fast parallel algorithm
for thinning digital patterns, Communications of the ACM
27(3): 236–239.

Marek Tabedzki received an M.Sc. degree in
2001 and a Ph.D. degree in 2009, both in com-
puter science from the Białystok University of
Technology (Poland). He is presently with the
same university, at the Faculty of Computer Sci-
ence. His research interests include information
processing systems, particularly digital analysis
image processing, pattern recognition and bio-
metrics.

Khalid Saeed received a B.Sc. degree in elec-
trical and electronics engineering in 1976 from
Baghdad University, and then M.Sc. and Ph.D.
degrees from the Wrocław University of Tech-
nology in 1978 and 1981, respectively. He re-
ceived his D.Sc. degree (habilitation) in computer
science from the Polish Academy of Sciences in
2007. He had been a visiting professor of com-
puter science with the Białystok University of
Technology, where he is now working as a full

professor. He was a professor of computer science at the AGH Univer-
sity of Science and Technology in the years 2008–2014. He also works
at the Faculty of Mathematics and Information Sciences of the Warsaw
University of Technology. His areas of interest are biometrics, image
analysis and processing, and computer information systems.

Adam Szczepański received his M.Sc. degree
in computer science from the Białystok Techni-
cal University (Poland) in 2008. He is a for-
mer employee of the Faculty of Physics and Ap-
plied Computer Science of the AGH University
of Science and Technology in Kraków, Poland.
Currently he works as a software developer in
Eniro Group Poland. His research interests in-
clude digital image and signal processing, and
pattern matching and recognition. He is regis-

tered as a Ph.D. student with the Faculty of Computer Science at the Bi-
ałystok University of Technology under the supervision of Prof. Khalid
Saeed.

Appendix A

Genesis of diagonal line artifacts

To present the genesis of diagonal line artifacts, a square
figure will be used (Fig. A1). This is due to the fact
that this example has four corners and thus is a good
demonstrator of how the top-left, bottom-left and top-right
corners are removed and the bottom-right corner is kept
in the skeleton. Figure A1 contains also a description
explaining how regular, border and removed black pixels
will be marked in all the figures in this appendix.

It is important to remember that the K3M algorithm
analyzes the image column-by-column from the top-left
corner of the image to the bottom-right one, so the
analysis of the shape in Fig. A1 is performed starting from
pixel 1, then going to 2 and ending with pixel 16.

The decisions for pixels in Phase 0 are as follows:

• Pixel 1 – Weight = 28: is border,

• Pixel 2 – Weight = 31: is border,

A modified K3M thinning algorithm 449

 Regular black pixel

 1 5 9 13

 2 6 10 14 Border black pixel

 3 7 11 15

 4 8 12 16 Removed black pixel

Fig. A1. Sample square.

• Pixel 3 – Weight = 31: is border,

• Pixel 4 – Weight = 7: is border,

• Pixel 5 – Weight = 124: is border,

• Pixel 6 – Weight = 255: is not border,

• Pixel 7 – Weight = 255: is not border,

• Pixel 8 – Weight = 199: is border,

• Pixel 9 – Weight = 124: is border,

• Pixel 10 – Weight = 255: is not border,

• Pixel 11 – Weight = 255: is not border,

• Pixel 12 – Weight = 199: is border,

• Pixel 13 – Weight = 112: is border,

• Pixel 14 – Weight = 241: is border,

• Pixel 15 – Weight = 241: is border,

• Pixel 16 – Weight = 193: is border.

The results of Phase 0 are presented in Fig. A2.

 1 5 9 13

 2 6 10 14

 3 7 11 15

 4 8 12 16

Fig. A2. Result of Phase 0 on the sample shape.

The decisions for pixels in Phase 1 are as follows:

• Pixel 1 – Weight = 28: changed to white,

• Pixel 2 – Weight = 30: no change,

• Pixel 3 – Weight = 30: no change,

• Pixel 4 – Weight = 7: changed to white,

• Pixel 5 – Weight = 60: no change,

• Pixel 8 – Weight = 135: no change,

• Pixel 9 – Weight = 124: no change,

• Pixel 12 – Weight = 199: no change,

• Pixel 13 – Weight = 112: changed to white,

• Pixel 14 – Weight = 240: no change,

• Pixel 15 – Weight = 241: no change,

• Pixel 16 – Weight = 193: no change.

The results of Phase 1 are presented in Fig. A3.

 1 5 9 13

 2 6 10 14

 3 7 11 15

 4 8 12 16

Fig. A3. Result of Phase 1 on the sample shape.

The decisions for pixels in Phase 2 are as follows:

• Pixel 2 – Weight = 30: changed to white,

• Pixel 3 – Weight = 14: changed to white,

• Pixel 5 – Weight = 28: changed to white,

• Pixel 8 – Weight = 7: changed to white,

• Pixel 9 – Weight = 56: changed to white,

• Pixel 12 – Weight = 135: changed to white,

• Pixel 14 – Weight = 112: changed to white,

• Pixel 15 – Weight = 208: no change,

• Pixel 16 – Weight = 129: no change.

The results of Phase 2 are presented in Fig. A4.

After Phase 2 there are no changes in the shape in
Phases 3 to 5, and at the beginning of the next Phase 0
the shape is as presented in Fig. A5. Pixels 15 and 16 are
the beginning of the diagonal line artifact and would not
be changed during a further analysis, even if the original
shape were bigger.

450 M. Tabedzki et al.

 5 9

 2 6 10 14

 3 7 11 15

 8 12 16

Fig. A4. Result of Phase 2 on the sample shape.

 6 10

 7 11 15

 16

Fig. A5. Shape at the beginning of the next Phase 0. The
diagonal line artifact is clearly visible.

Appendix B

Determining the pixels necessary for
the thinning of an object

This appendix contains a very brief description of the
authors’ current work to improve the algorithm further.
The idea consists of 5 steps:

1. calculation of the distances of each black pixel from
nearest white pixel,

2. calculation of the weights of each black pixel
depending on the distances of its black neighbors,

3. determination of the leaving or removing of each
black pixel based on of its distance and weight,

4. dilatation of the remaining black pixels,

5. thinning using the improved K3M algorithm.

The results of these steps are presented in Table B1.
It is noticeable that with this approach the circular shape
is thinned differently than using regular algorithms—not
to a dot, but to a cross skeleton.

Table B1. Graphical representation of the proposed processing
steps.

Description Image

Original image

Gray-scale representation of the distances
of black pixels from the nearest white pixel

Pixels left after the third step

Image after dilatation

Final image after thinning

Received: 4 April 2015
Revised: 27 August 2015
Re-revised: 28 October 2015
Accepted: 2 December 2015

	Introduction
	Original K3M algorithm
	Drawbacks of the original approach

	Proposed modifications
	Modification of neighborhood lookup arrays
	Modification of Phase 0
	Phase 0a
	Modification of Phases 1–5

	Results
	Thinning of basic images
	Computing times
	Thinning of human silhouettes

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

