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The Car and Beam prototype is a teaching piece of equipment, inspired by Ball and Beam systems. It consists 
of a beam supported in its center by means of a rotating axis installed in two rolling bearings, allowing the beam to 
rotate through the actuation of a servo motor. A car is coupled to this beam, and its displacement is measured using 
a linear encoder. This paper focuses on two key aspects: firstly, it offers a mathematical model of the Car and Beam 
system, and secondly, it outlines the development of a state-feedback tracking controller through pole placement 
to this system. To validate the modeling and control approach, we present simulation and experimental results using 
three different reference profiles: step, square wave, and sine wave. Our findings demonstrate the effectiveness of 
the control strategy in tracking predefined trajectories, both in simulation and with the physical prototype. In 
conclusion, this study highlights the efficacy of the methodology employed for mathematical modeling and the 
controller's design in the context of this specific application. The results indicate promising potential for further 
exploration in this domain. 
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1. Introduction 
 
 The Car and Beam prototype is a teaching piece of equipment inspired by Ball and Beam systems. The 
primary objective of the Ball and Beam system is to maintain the ball's position on a beam by controlling the 
beam's angle (Garai and Balasubramanyam, [1]). Various control techniques have been introduced to manage 
this system. 

In related literature, Ali et al. [2] and Csurcsia et al. [3] utilized ARDUINO to implement a PID 
controller for Ball and Beam systems. Meanwhile, Garai and Balasubramanyam [1] employed a cascade PID 
controller to regulate the ball position. Aviles et al. [4] investigated a PD and a PID controller using an ESP32 
as a data acquisition board. 

Other controllers were also used to stabilize the ball in the desired position. Howimanporn et al. [5] 
introduced real-time monitoring and control a Ball and Beam system using a Fuzzy Predictive approach based 
on Programmable Logic Controller Network and Information Technologies. In the work by Zhang et al. [6], a 
Nonlinear Takagi-Sugeno Fuzzy Observer Design was presented. Zaare and Soltanpour [7] developed a 
position control strategy for a Ball and Beam system, incorporating a State-Disturbance Observer-Based 
Adaptive Fuzzy Sliding Mode Control to handle matched and mismatched uncertainties. Furthermore, Rosa et 
al. [8] implemented a Cascaded LQR-FLC (Linear Quadratic Regulator – Feedback Linearization Controller). 
 Throughout our research, it became evident that numerous studies explored the application of control 
techniques using Ball and Beam prototypes. However, there is a limited body of work that focuses on similar 
Car and Beam prototypes like the one under investigation in this study. For instance, Yeom [9] utilized a U-
profile beam to regulate the wheel's position. The author achieved this by implementing a PID controller, with 
controller gains determined through the particle swarm optimization algorithm. Additionally, Niro et al. [10] 
introduced a real-time tracking system for a modified Ball and Beam system, employing a DC motor as the 
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actuator. Considering this, the Car and Beam prototype emerges as a promising subject with significant 
potential for further exploration. 
 The state-feedback control using the pole placement technique employed in this study enables the 
positioning of a dynamic system's poles at specific locations to achieve the desired performance of the closed-
loop system (Yoneyama, [11]). A range of prior studies has used the pole placement technique in combination 
with other control methods, conducting extensive simulations to explore the behavior of the different dynamic 
systems. For instance, Breganon et al. [12] designed a pole placement controller for both linear and nonlinear 
models of a rotational inverted pendulum, commonly referred to as Furuta pendulum. Aguiar and Lordelo [13] 
applied this technique to control the position of a direct current electric motor connected to an uncertain load. 
Guo et al. [14] proposed a robust finite-time trajectory tracking control strategy for wheeled mobile robots 
dealing with parametric uncertainties and disturbances. In this study, to mitigate the impact of lumped 
uncertainties, a nonlinear extended state observer was employed to estimate unknown states and uncertainties, 
with the associated coefficients tuned using the pole placement technique. Abdulwahhab [15] utilized pole 
placement control in simulating a magnetic levitation system. Additionally, in the works of Kim et al. [16], 
Souza and Souza [17], and Silva and Prado [18], the pole placement technique was applied to dynamic models 
of an autonomous underwater vehicle, a satellite attitude control system, and an active suspension system 
manufactured by Quanser, respectively.  

The state feedback-based pole placement technique also produced significant implementation 
outcomes. For instance, Bispo et al. [19] employed this approach to regulate the angular position of a Propeller 
and Beam system. Shang et al. [20] utilized a method that combines a neural network RBF (Radial Basis 
Function) and pole placement to control a flexible servo manipulator system and reduce rotation angle 
fluctuations. Additionally, Zhu and Li [21] introduced a robust fault estimation design for an experimental 3 
DOF helicopter system, taking into account actuator saturation and utilizing the pole placement technique to 
fine-tune the transient response of estimation errors. 

This paper focuses on two primary aspects: developing the mathematical model of a Car and Beam 
prototype and designing a state-feedback tracking controller through pole placement to manage the car's 
position along the beam's length. Note that this approach differs this paper from Yamanaka et al. [22], which 
control this prototype using a PID controller without obtaining a system model. Subsequently, we analyzed 
simulation and experimental results to assess the effectiveness of the proposed methodology in this context. 

The structure of the paper is as follows. Section 2 covers of the Car and Beam prototype design. 
Section 3 covers the modeling of the prototype. Section 4 presents the state-feedback tracking control for the 
prototype. In Section 5, we explore pole placement concepts. Section 6 is dedicated to discussing the results 
obtained. Finally, Section 7 presents the study's conclusions. 

 
2. Car and Beam prototype 
 

The Car and Beam prototype considered in this paper consists of a horizontal structural beam of 
aluminum that measures 20x20mm , with a V-slot design and a length of 500mm . This beam is securely 
affixed at its center through a stainless-steel shaft, which has an 8 mm  diameter. Two rolling bearings support 
this central shaft, enabling the beam's rotation. Attached to the beam is a car equipped with four ball-bearing 
pulleys responsible for facilitating its movement, as detailed by Yamanaka et al. [22]. The prototype, as shown 
in Fig.1. Important components of the setup are indicated in Fig.1 by corresponding numbers. 

To operate the prototype, we use an Intel Core 2 Duo E8400 computer ① running at  3GHz , equipped 
with  3GB  of RAM. This computer has Matlab/Simulink software installed along with the Simulink Real-
Time toolbox. Additionally, we utilize a National Instruments PCI-6221 hardware component for receiving 
and transmitting data through a block of connectors ②. For the angular movement of the system, we employ 
a TowerPro MG995 servo motor ③, which offers a variable torque range between .   9 4 kg cm  and  11kg cm  for 
voltages ranging from .  4 8V  to  6V , respectively. This servo motor is connected to the beam via an aluminum 
rod, and its angular variation is controlled through a Pulse Width Modulation (PWM) signal. 
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Fig.1. Car and Beam prototype setup. 
  

The prototype includes a linear encoder, a H9720 model from AVAGO, installed on the car to provide 
position feedback along the length of the beam ④. This linear encoder is connected to a linear strip ⑤ with 
a resolution of  150 Lpi  (Lines per inch). The servo motor and linear encoder are powered by a DC power 
supply ⑥. 
 
3. Car and Beam modeling 
 
 We derive the differential equations describing the dynamics of a system by applying the relevant 
physical laws that govern the process, as outlined by Dorf and Bishop [23]. Figure 2 shows a diagram of the 
Car and Beam system and the forces influencing the car's motion, where the moment of inertia of the wheels 
was neglected because it has small values. Applying Newton's second law, we obtain the following differential 
equation: 
 
  ( ) ( )( ) ( )sin ,tmx t mg t F t 0− θ − =  (3.1) 
 
where m  is the mass of the car,    mm / s2g 9810=  is the acceleration of gravity, tF  is the frictional force of the 
car.  
 

 
 

Fig.2. Car and Beam prototype and its acting forces. 
 

 Disregarding the frictional force on the wheels of the car ( )tF t , to simplify the model, it follows that 
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  ( ) ( )( ) sin   ,mx t mg t 0− θ =  
 
  ( ) ( )( )sin ,mx t mg t= θ  (3.2) 
 
  ( ) ( )( )sin .x t g t= θ  

 
Note that the angle θ  differs from the servo motor axis angle α . To convert the beam angle into the 

servo motor angle, we utilize the relationships illustrated in Fig.2, which leads to the following equations: 
 

  ( )sin  ,
amr

h
r

α =  (3.3) 

 

  ( )sin ,
/
h

L 2
θ =  (3.4) 

 
where armr 105 mm=  is the length of the arm attached to the servo motor, and L = 500 mm  is the total length 
of the beam. Thus, from Eqs (3.3)-(3.4), we have 
 

  ( ) ( )sin sin ,arm
Lr h
2

α = θ =   

   (3.5) 

  ( ) ( )sin
sin .arm2 r

L
α

θ =   

 
 Substituting Eq.(3.5) into Eq.(3.2), it yields  
 

  ( ) ( )sin
 .arm2 r

x t g
L
α

=  (3.6) 

 
 By introducing the new variable  sin 1u−α= , where u  is the system’s input, from Eq.(3.6), we obtain 
 

  ( ) ( ).arm2grx t u t
L

=  (3.7) 

 
Choosing the state variables as the position 1x x=  and the velocity 2x x=  of the car, from Eq.(3.7) 

and the parameters described below Eqs (3.1) and (3.4), we represent the dynamics of the Car and Beam 
system by 
 
  ( ) ( ) ( ) ( ) ( ),     ,x t Ax t Bu t y t Cx t= + =  
   (3.8) 

  ( ) ( )
( ) [ ], ,  and .

.
1

2

x t 0 1 0
x t A B C 1 0

x t 0 0 4120 2
     

= = = =     
    

 

 
From the state space representation in Eq.(3.8), it is possible to verify the controllability of the system 

and design a tracking controller for it, as described in Sections 4 and 5. 
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4. Tracking control 
 
 The tracking control block diagram is shown in Fig.3 (Ogata, [24]; D’Azzo and Houpis [25]). 
 

 
 

Fig.3. Tracking control diagram (adapted from D’Azzo and Houpis [25]). 
 
 From the block diagram in Fig.3, we obtain 
 
  ( ) ( ) ( ) ,nx t r t Cx t= −  (4.1) 
 

  ( ) ( ) ( ) [ ] ( )
( )

( )
( )    .

  
ˆ

e n e
n n

x t x t
u t Kx t K x t K K K

x t x t
   

=− + = − − = −   
   

 (4.2) 

 
 By representing the dynamics in Eq.(3.8) together with the dynamics in Eq.(4.1), we have 
 

  
( )
( )

( )
( ) ( ) ( )  

 .
    n n

x t x tA 0 B 0
u t r t

x t x tC 0 0 1
        

= + +        −        




 (4.3) 

 
Assuming that the system is stable and that ( )x ∞ , ( )nx ∞  and ( )u ∞  tend to constant values, in steady 

state, from Eq.(4.3), we obtain (Ogata, [24]) 
 

  
( )
( )

( )
( ) ( ) ( )  

.
    n n

x xA 0 B 0
u r

x xC 0 0 1
 ∞   ∞      

= + ∞ + ∞        ∞ ∞−        




 (4.4) 

 
Considering ( )r t  a step input, one has ( ) ( )r r t r∞ = =  for all t 0> . Thus, subtracting Eq.(4.3) from 

Eq.(4.4) results in 
 

  
( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )  

.
    n n n n

x t x x t xA 0 B
u t u

x t x x t xC 0 0
 − ∞   − ∞    

= +  − ∞         − ∞ − ∞−      

 
 

 (4.5) 

 
Let  

  ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,  ,ˆ ˆe

e ne n n
ne

x t
x t x t x t x x t x t x u t u t u

x t
 

= = − ∞ = − ∞ = − ∞ 
 

 

 

  ˆ ,
A 0

A
C 0

 
=  − 

      ˆ B
B

0
 

=  
 

      and      [ ]Ĉ C 0=  
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from Eq.(3.8) and Eq.(4.5), it follows that 
 
  ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ,x t Ax t Bu t= +       ( ) ( )ˆ ˆ ,y t Cx t=  (4.6) 
 

   [ ]ˆ ,  . ,ˆ  .
0 1 0 0

A 0 0 0 B 4120 2 C 1 0 0
1 0 0 0

   
   = = =   
   −   

 (4.7) 

 
5. Pole placement 
 

State feedback involves utilizing information about all state variables of the system model, enabling 
the placement of closed-loop system poles as desired. For this placement to be carried out in an arbitrary 
manner, it is necessary and sufficient that the controllability matrix ( )     ... n 12

oC B AB A B A B− =
 

 has a rank 

equal to n ,  where n  is the order of the mathematical model. In this case, we say that the system is controllable 
(Nise, [26]). 

Calculating the controllability matrix for the system in Eqs (4.6)-(4.7), we have 
 
  B    ˆ ˆ ˆ ,ˆ ˆ 2

oC AB A B =     (5.1) 

 

  
.

. ,
.

o

0 4120 2 0
C 4120 2 0 0

0 0 4120 2

 
 =  
 − 

 (5.2) 

 
  ( )det . 10

oC 6 9945 10 0= × ≠ . (5.3) 
 

In Eq.(5.3), the controllability matrix of the system in Eqs (4.6)-(4.7) has a non-zero determinant. 
Then, this system is controllable, which, according to Nise [26], enables designing a state-feedback controller 
in state space with pole placement. 

By substituting the control law from Eq.(4.2) into the state space model presented in Eq.(4.3), the 
dynamics become: 
 
  ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ  ,x t A BK x t Br= − +  

   (5.4) 
  ( )ˆ ˆy Cx t= . 
 

We can see that the matrix ( )ˆ ˆ ˆA BK−  serves as the state matrix for the closed-loop system. 

Consequently, modifying the values of the gain K̂  leads to changes in the eigenvalues of this matrix, thereby 
influencing the system's dynamics. 

The characteristic equation of the closed-loop system is computed as follows: 
 
  ( )det  ˆ ˆ .ˆsI A BK 0− + =  (5.5) 
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Suppose we have a set of desired poles denoted as [ ]  1 2 nP = γ γ γ . In that case, the desired 
characteristic equation for the system can be represented as ( )( ) ( )c 1 2 ns s s 0α = − γ − γ − γ = . 
Consequently, it is feasible to determine the values of [ ]1 2 nK K K K=   that make the closed-loop 
characteristic equation equal to the desired characteristic equation, resulting in: 
 
  ( ) ( )( ) ( )ˆ ˆ    .ˆ

1 2 ndet sI A BK s s s− + = − γ − γ − γ  (5.6) 

 
 Alternative methods for determining the gain K̂  for implementing pole placement can be found in 
Ogata [24] and Nise [26]. 
 
6. Results and discussions 
 
 The control scheme of the Car and Beam system is shown in Fig.4. A linear encoder measures the car's 

position. This variable is derived with the help of a derivative filter described by ( ) 10sF s
s 10

=
+

, in order to 

mitigate noise and obtain the car’s velocity. The position of the car is also compared with the reference r , 
generating the error signal, which is integrated to create the variable nx , as explained in the diagram in Fig.3. 
The values of these three variables are used to produce the control signal u . After that, the value of the control 
signal u  is converted to the servo motor axis angle, α , and from this angle to the corresponding PWM value. 
The PWM signal is used to drive the servo motor. The servo motor acts on the system, changing the angle of 
the beam and, consequently, moving the car. 
 

 
 

Fig.4. Car and Beam control system diagram. 
 
The mathematical model, given in Eq.(3.7), utilizes ( )sinu = α  as the control input, where α  

represents the angle in the servo motor axis. As shown in Fig.4, a PWM signal is used to control the Car and 
Beam prototype through servo motor activation. We assume a linear relationship between the axis angle and 
the PWM signal for the angle-to-PWM conversion. Therefore, we conducted tests on the prototype to 
establish the relationship between the PWM signal and the angle in the servo motor. The resulting data is 
illustrated in Fig.5. 
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Fig.5. Relationship between measured angle in the servo motor axis and the PWM signal. 
 

The polynomial that describes the relationship between the measured angle and the PWM signal is 
presented in Eq.(6.1) 
 
    .   . .PWM 0 3185 0 8002= − α +  (6.1) 
 

As described in Sec.5, it is necessary to choose the desired polos to design the feedback gain K̂ . In 
this paper, the poles were chosen based on simulations and experimental tests with the prototype. It is important 
to note that the poles must be on the left side of the complex plane (real part less than zero). We choose the 
following poles 
 
  [ ] . .   .4 2 5 0 5= − − −P   (6.2) 
 
 With the poles from Eq.(6.2) and the matrices from Eq.(4.7), the Matlab ‘place’ command was used 
to calculate the tracking control gains. The values found were: [ ] [ ]. .1 2K K K 0 0032 0 0017= =  and 

[ ].eK 0 0012= − . 
We conducted three simulations and tests using the prototype to validate whether the mathematical 

model accurately reflects the system's dynamics. Additionally, we assessed whether the tracking control via 
pole placement can effectively move the car to the desired position and stabilize the system. 
 The first condition tested in this work was a step-like reference described by Eq.(6.3) 
 

  ( )

 ,   ,

 ,   ,
 

 ,     .    

step

0 mm 0 s t 5 s

90 mm 5 s t 30 s
r t

180 mm 30 s t 60 s

≤ <


 ≤ <=

 ≤ <



 (6.3) 

 
 Figure 6 shows that the controller exhibited a similar response in simulation and in experimentation. 
This figure also displays the control action guiding the system to follow the specified step-like reference. 
Notably, during the time intervals between 12 s  to 30 s  and 38 s  to 60 s , changes in the control signal are 
evident during the experiment, even when the car is stabilized in the desired position. This phenomenon can 
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be attributed to the dead zone of the servo motor, preventing its angular variation within the system. Further 
investigation of this phenomenon is left for future work. 

The second test considered a square wave reference given by Eq.(6.4) 
 

  ( )

 ,   ,

 ,      ,

 ,   ,
 

 ,      ,

 ,    ,

, otherwise.    

sw

180 mm 5 s t 30 s

0 mm 30 s t 45 s

180 mm 45 s t 70 s
r t

0 mm 70 s t 85 s

180 mm 85 s t 110 s

0

≤ <


 < <


 ≤ <


=
 < <

 ≤ <




 (6.4) 

 

 
 

Fig.6. System response and control action used to track the reference Eq.(6.3). 
 

The response for this second reference can be seen in Fig.7, where it is possible to observe that the 
closed-loop system demonstrated a similar response in both the simulation and the experiment. The controller 
generated an effective control action to ensure the car tracks the desired square wave reference. In the control 
action, at moments 15 s  to 29 s  and 52 s  to 69 s , there was also a change in the signal due to the same 
circumstances of the servo motor dead zone. 

The third and final test was performed applying a sine wave reference described by Eq.(6.5). 
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  ( ) ( ) [ sin . ] .sinr t 90 0 2 t 90 mm= π +  (6.5) 
 

 
 

Fig.7. System response and control action used to track the reference Eq.(6.4). 
 

 
 

Fig.8. System response and control action used to track the reference Eq.(6.5). 
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In Figure 8, it is noticeable that there was an error in the system's response both in the simulation and 
the experiment. This error is due to the reference being a sine wave with a non-zero derivative, which differs 
from the reference used in developing the controller described in Sec. 4. This error can be made smaller by 
choosing the eigenvalues of the closed-loop system with more negative real parts (Dorf, [23]; Ogata, [24]). 
Another important detail is that the reference starts at 90 mm , while the car begins at 0 mm , as indicated in 
the response. A notable difference is observed in the control signal, which appears much smaller in the 
simulation compared to the experiment. To highlight the variation of the control signal in the simulation, an 
enlargement was carried out from the moment 20 s  to 140 s , also shown in Fig.8. 
 
7. Conclusions 
 

This paper presented a methodology for modeling and controlling a Car and Beam prototype. The 
obtained model is nonlinear, and we introduced a change of variable to linearize the system dynamics. The 
experimental prototype allows for measuring the car's position, which is processed to control the car's 
movement. The position is acquired through a linear encoder and undergoes a derivative filter to obtain the 
car's velocity while reducing noise. The error signal is generated by comparing the car's position with a 
reference, and this error is integrated to create a new control variable, nx . These three variables are utilized to 
generate a control signal, subsequently converted to a PWM signal to control the axis angle of the servo motor, 
moving the beam and, consequently, the car to the desired position. The conversion from the servo motor angle 
to the PWM signal was determined by a linear function derived through tests with the prototype. By examining 
the response characteristics presented in Figs 6-8, it is possible to verify that the mathematical model aligns 
with the dynamics of the real prototype, as the rise and accommodation times were similar. 

From the obtained simulation and experimental results, it is concluded that the methodology used to 
design the tracking control via pole placement was satisfactory for this application. The controller effectively 
tracked the desired reference in all three conducted tests. For future work, we plan to explore other control 
techniques and compare their performance with the results presented in this paper. 
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Nomenclature  

 
 A  – state matrix 
 B  – input matrix 
 Â  – state matrix for the augmented dynamics 
 B̂  – input matrix for the augmented dynamics 
 C  – output matrix 
 Ĉ  – output matrix for the augmented dynamics 
 oC  – controllability matrix 

 ( )F s  – derivative filter 

 tF  – friction force acting on the movement of the car 

 g  – acceleration of gravity 
 h  – height in relation to angle 
 K  – state gain 
 eK  – integrator gain 
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 K̂  – controller gain 
 1K  – position gain 

 2K  – velocity gain 

 L  – total beam length 
 m  – car mass 
 P  – system poles 
 r  – system reference 
 armr  – length of arm attached to the motor 

 sinr  – sine wave reference 

 stepr  – step-like reference 

 swr  – square wave reference 

 x̂  - augmented state vector derivative 
 u  – system control signal 
 û  – difference between the actual control signal and its steady state value 
 x  – car position 
 x̂  – augmented state vector 
 x  – car velocity 
 x  – car acceleration 
 , 1 2x x  – state variables 

 ex  – difference between the actual state of the system and its steady state value 

 nx  – new state variable consisting of the difference between the reference and the output of the system 

 nex  – difference between the new state variable and its steady state value 

 y  – system output 
 α  – servo motor axis angle 
 θ  – beam angle 
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