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{k.patan,m.patan}@issi.uz.zgora.pl).

Abstract: The paper proposes an effective modeling and control procedure for the distributed-
parameter systems using the echo-state network. The main idea is to reconstruct the spatio-
temporal dynamics defined in a given multi-dimensional domain. In the investigated problem
positions of both sensors and actuators are fixed allowing to delegate the complex system
dynamics to echo-state network. Imposing a proper partitioning of the spatial domain, a specific
topology of a neural network is used to form a reservoir capable to follow not only temporal
but also spatial dynamics of the system. Based on available historical data, neural network
model is initially trained and then used to derive the control law in the framework of iterative
learning control. The echo-state network can be retrained after a particular control iterate in
order to reduce model uncertainty and to fit it to the current operating conditions as much as
possible. The performance of the proposed approach is tested and evaluated on the example of
the squared clamped plate control.
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1. INTRODUCTION

Control of distributed-parameter systems (DPS) remains a
challenging task, as its dynamics are infinite-dimensional.
The state, inputs as well outputs may depend on spatial
position. Thus, the natural way of representing DPSs is the
partial differential equations (PDEs) which can provide a
satisfactory accuracy (Ucinski, 2004; Polyanin, 2002). The
control system design is even more complex in case of non-
linear DPS. The commonly used approaches principally
relies on linearization of DPS around some steady-state
or lumping DPS to ordinary differential equation form,
and then the application of the known lumped-parameter
design methods. Unfortunately, linearization can be trou-
blesome in case of non-homogeneous steady-state as co-
efficients become spatially distributed. In turn, lumping
can lead to significant loss of information in the achieved
model (Ray, 1981). To control DPS closed- as well open-
loop methods are used (Haber and Bifano, 2021; Schmidt
et al., 2020). However, it should be noted that most of the
developed solutions uses PDE or ODE models of DPS. In
this context the problem of state estimation of DPS from
noisy process data arises in many fields, for example smart
materials, thermal processes or air pollution (Tricaud and
Chen, 2012; Cacuci et al., 2014; Patan et al., 2019).

In this context, classical approaches dedicated for lumped-
parameter systems simply cannot provide the required
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level of performance and are not straightforward to apply.
A finite difference methods often used due to their sim-
plicity, cannot fully satisfy the accuracy constraints and
guarantee stability and/or convergence. A finite element
method (FEM) is an established method used to solve
systems represented by PDEs Ames (2014). It provides
accurate and stable solutions but usually at the cost of
using a dense spatial-grid. As a direct consequence, this
group of numerical prescriptions is associated with a rel-
atively large computational burden. Additionally, these
methods require the simultaneous analysis of both the
system and input dynamics, thus by definition they are off-
line procedures what makes their application in real-time
not straightforward and troublesome. These deliberations
lead to conclusion that there is still a strong necessity
for alternative approaches to DPS modeling dedicated to
these practical situations where on-line type estimators are
preferred with a lower numerical cost.

Alternative solutions can be developed by means of neural
network models due to its powerfull modeling capabilities.
However, existing contributions on this topic are rather
scarce and usually limited to stationary or one-dimensional
equations with just a few successful attempts to more
general classes of DPSs. In Aguilar-Leal et al. (2016)
the authors imitate the meshing procedure according to
idea of finite element method and build the differential
neural network on such spatial structure. The resulting
model may be very accurate but the network inherits
the large scale of the initial spatial mesh. In this work
for control purposes we adapt the approach proposed
in Patan and Patan (2022b) where the complex system
dynamics was represented by neural network reservoir
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1. INTRODUCTION

Control of distributed-parameter systems (DPS) remains a
challenging task, as its dynamics are infinite-dimensional.
The state, inputs as well outputs may depend on spatial
position. Thus, the natural way of representing DPSs is the
partial differential equations (PDEs) which can provide a
satisfactory accuracy (Ucinski, 2004; Polyanin, 2002). The
control system design is even more complex in case of non-
linear DPS. The commonly used approaches principally
relies on linearization of DPS around some steady-state
or lumping DPS to ordinary differential equation form,
and then the application of the known lumped-parameter
design methods. Unfortunately, linearization can be trou-
blesome in case of non-homogeneous steady-state as co-
efficients become spatially distributed. In turn, lumping
can lead to significant loss of information in the achieved
model (Ray, 1981). To control DPS closed- as well open-
loop methods are used (Haber and Bifano, 2021; Schmidt
et al., 2020). However, it should be noted that most of the
developed solutions uses PDE or ODE models of DPS. In
this context the problem of state estimation of DPS from
noisy process data arises in many fields, for example smart
materials, thermal processes or air pollution (Tricaud and
Chen, 2012; Cacuci et al., 2014; Patan et al., 2019).

In this context, classical approaches dedicated for lumped-
parameter systems simply cannot provide the required
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level of performance and are not straightforward to apply.
A finite difference methods often used due to their sim-
plicity, cannot fully satisfy the accuracy constraints and
guarantee stability and/or convergence. A finite element
method (FEM) is an established method used to solve
systems represented by PDEs Ames (2014). It provides
accurate and stable solutions but usually at the cost of
using a dense spatial-grid. As a direct consequence, this
group of numerical prescriptions is associated with a rel-
atively large computational burden. Additionally, these
methods require the simultaneous analysis of both the
system and input dynamics, thus by definition they are off-
line procedures what makes their application in real-time
not straightforward and troublesome. These deliberations
lead to conclusion that there is still a strong necessity
for alternative approaches to DPS modeling dedicated to
these practical situations where on-line type estimators are
preferred with a lower numerical cost.

Alternative solutions can be developed by means of neural
network models due to its powerfull modeling capabilities.
However, existing contributions on this topic are rather
scarce and usually limited to stationary or one-dimensional
equations with just a few successful attempts to more
general classes of DPSs. In Aguilar-Leal et al. (2016)
the authors imitate the meshing procedure according to
idea of finite element method and build the differential
neural network on such spatial structure. The resulting
model may be very accurate but the network inherits
the large scale of the initial spatial mesh. In this work
for control purposes we adapt the approach proposed
in Patan and Patan (2022b) where the complex system
dynamics was represented by neural network reservoir
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with dedicated architecture consisting of a number of
sparsely interconnected local units representing spatial
subdomains.

In feedback control it can be observed that at each control
iteration the system produce the same tracking error,
oscillations and overshot. To overcome that problems a
promising approach is to use Iterative Learning Control
(ILC) invented in the late 70s (Bristow et al., 2006).
Moreover, simple operating principles as well as possibility
to combine ILC with feedback control constitute that
ILC is very attractive control scheme for practitioners.
In the context of distributed systems control, there is
a number of interesting applications developed to date,
e.g. control of clamped membrane (Cichy et al., 2021)
control of cantilever beam (Patan et al., 2019), control
of friction stir welding (Patan et al., 2022), control of
deformable mirrors (Haber et al., 2013). However, all these
approaches uses either lumped linearized representation of
a system or FEM-based procedures for distributed system
modeling. The contribution of this paper is to apply a
echo-state neural network to state estimation of DPS and
then to apply derived model to design ILC for DPSs.
The accuracy of control is illustrated in the numerical
example on the process of temporal vibrations of the two-
dimensional clamped elastic plate.

2. DISTRIBUTED-PARAMETER SYSTEM
REPRESENTATION

Let y = y(x, t) denote the scalar system state at some
point x of the spatial domain Ω ⊂ R2 and let time t
belong to the bounded observational interval T = [0, tf ].
Mathematically, we handle a dynamic system described by
the following PDE:

∂y

∂t
= F

(
x, t, y,∇y,∇2y;u

)
, (x, t) ∈ Ω× T, (1)

subject to the boundary and initial conditions

B
(
x, t, y,∇y;u

)
= 0, (x, t) ∈ ∂Ω× T, (2)

y
(
x, 0) = y0(x), x ∈ Ω, (3)

where B,F and y0 are some known (possibly non-linear)
functions, ∇ and ∇2 denote the gradient and Hessian, re-
spectively, and u stands for the vector of system actuating
inputs.

It is assumed that the state y is observed by N sensors
taking the observations of the system continuously in time

zj(t) =

∫

Ω

gj(x)y(x, t;u)dx+ εj(t), t ∈ T, j = 1, . . . , N

(4)
where zj(t) is the measurement output, u is the control
input vector and εj( · ) denotes the zero-mean Gaussian
and uncorrelated measurement noise. A non-negative mea-
surement density function gj(x) is representing the spatial
dynamics of j-th sensor. In practical situations a different
choices for such function exist, but most popular approx-
imations are: the uniform distribution (fully distributed
measurement), Gaussian distribution and Dirac delta dis-
tribution (point-wise measurement). In the following, in
order to keep things simple we focus on the last choice.
Then, the state of the system y( · ) has to be reconstructed
using the observations (4).

Since the inherent feature of such system representation
is its infinite dimensionality, therefore in practical engi-
neering setting related to DPSs, most often we are forced
to provide the accurate finite dimensional approximation
of the system (1)-(3) to make it useful in the control
design. There exist a number of dedicated numerical ap-
proaches to address this issue such as the method of finite
differences, or modern techniques of boundary or finite
element. Especially, the FEM become very popular with
great number of numerical libraries and solvers due its
flexibility, accuracy and stability, establishing a standard
computational treatment of DPSs. However, to guarantee
the proper accuracy we have to cope with large scale
system. This constitutes the great disadvantage in the
context of control systems as it is very hard to provide the
online schemes due to heavy computational complexity.
Therefore the alternative method is proposed based on
the reservoir computing technique build on the echo-state
network which imitates, to some extent, the concept of
FEM with the potential of fast on-line reconstruction of
the DPS state with a comparable accuracy.

3. ECHO-STATE NEURAL NETWORK

Reservoir computing constitutes a machine learning con-
cept transforming inputs into a high dimensional space
by means of the reservoir. The reservoir is formed using
non-linear neurons connected recurrently. The Echo-State
Network (ESN) proposed by Jaeger (2001) is well recog-
nized representative of reservoir computing. The desirable
advantage here is to provide dynamic characteristic of
the model and at the same time avoiding the vanishing
gradient problem during model training. In this work we
consider the ESN model of the form:

x(k + 1) = fh (W
xx(k) +W uu(k + 1))

,
(5)

ŷ(k) = fo

(
W outx(k)

)
(6)

where x(k) ∈ Rn, u(k) ∈ Rq and ŷ(k) ∈ Rm represent
the state, input and network output, respectively, W x ∈
Rn×n, W u ∈ Rn×q are the reservoir and input weight
matrices selected randomly, W out ∈ Rm×n is the output
weight matrix, fh : Rn → Rn and fo : Rm → Rm stand
for the vector-valued activation functions of hidden and
output neurons, respectively.

To achieve a sufficient level of approximation, the reservoir
should ensure a diverse set of dynamic relations. Therefore,
the reservoir is selected to include hundreds of processing
units but connected sparsely and randomly. In a typical
application, only a few percent of possible connections
between neurons is implemented. The key concept of ESN
is the echo-state property (ESP) relying on the idea that
the effect of initial conditions should vanish as time passes.
To guarantee ESP the state matrix should be selected in
such a way as to satisfy the following condition (Jaeger,
2001; Yildiz et al., 2012):

σmax(W
x) < 1, (7)

where σmax is the largest singular value of the state matrix
W x.

The training procedure of ESN is very simple as only the
output weights are subject of training. The only thing we

need to do is to collect input-output pairs and to generate
the response of the reservoir on the input data. Then,
the output weight matrix can be derived off-line using the
psuedoinverse operation as follows:

W out = ((X + µI)−Y )T, (8)

where X = [x(0),x(1), . . . ,x(N)] is the state collection
matrix , Y = f−1

o ([y(0),y(1), . . . ,y(N)]), is the teacher
output collection matrix, f−1

o represents the inverse of
the function fo, the operator − represents the matrix
pseudoinverse and finally µ is a regularization parameter
(I stands for the identity matrix). The regularization is
introduces in order to improve the generalization abilities
of the model (Patan and Patan, 2022b).

The considered kind of neural networks, due to a large
number of processing units connected using recurrent
links, is represented by the state vector of a large size.
That is the reason, that ESN is suitable to represent
DPS for which state-space is infinite dimensional. In our
previous works we introduced the idea of spatial domain
partitioning (Patan and Patan, 2022a,b). The main idea is
to split the entire spatial domain into smaller regular areas
and to arrange to each area a sensor measuring the system
output (Fig. 1a). In the presented example the spatial
domain was divided into four areas. One sensor is assigned
to each area, where Si, i = 1, . . . , 4 represents the sensor
notation. To facilitate model design process, we assumed
that each sensor measures the output of the system in
the center of the sector assigned to it (xci , i = 1, . . . , 4)
as portrayed in Fig. 1b. Moreover we get a point-wise
measurement at the spatial point xci and the output of
the system observed by the i-th sensor can be represented
in the following way:

zi(k) = y(xci , k). (9)

The data set {zi(k), i = 1, . . . , 4, k = 0, . . . , N} constitutes
the target training patterns. The excitation of the system
has the form of a spatially distributed input. Taking into
account an assumption that the distribution of actuation
located at the spatial point x as well as its evolution in time
are known, we are able to represent the spatial actuation
using a properly selected number of point-wise actuations.
The input spatial space is divided into sub-regions. To each
of them a point-wise actuation is assigned located exactly
in the center. As a result, the chosen number of point-wise
actuations constitutes the size of the network input space
and dimensionality of data.

However, it should be kept in mind that the neural network
model has to properly learn spatial as well as time charac-
teristics of DPS. Here, we applied the idea of reservoir par-
titioning proposed in the work Patan and Patan (2022b)

(a) (b)

Fig. 1. Example of system spatial partitioning: sensing idea
(a), output representation (b).

Fig. 2. Partitioning concept of input space (left) and
spatial reservoir (right).

and portrayed in Fig. 2. Processing units inside the reser-
voir are divided into several partitions, which number is
equal to the number of point-wise actuations. Each group
of units receives excitation from a particular actuator as
depicted in Fig. 2 by the blue-dashed lines. For the clarity
of presentation, only connections from one actuator are
marked there. Which is important, the reservoir is still
sparsely connected, and units from different partitions are
still interconnected via recurrent links as illustrated at the
right hand side of Fig. 2.

The idea of reservoir partitioning can be easily applied to
the classical ESN using block-diagonal input matrixW u =
diag(W 1,W 2, . . . ,WR2), where W i, i = 1, . . . , R2 is
the input matrix connecting the i-th actuation with the i-
th reservoir partition, R2 denotes the number of partitions.
We need to guarantee that each partition will have the
similar number of processing units. Assuming, that np is
the number of neurons in each partition, the total number
of neurons in the reservoir will be np ·R2.

When solving DPS, e.g. using FEM, the derived outputs
of the system are spatially interpolated in order to achieve
smooth output space and to be able to determine the
output of the system in any spatial point of the domain
Ω. In the proposed approach we applied the similar pro-
cedure. After ESN training the estimated system outputs
ŷi provided by the neural network are properly arranged
according to scheme presented in Fig. 1b and are subject
of interpolation. Additionally, we need to take into account
boundary conditions which are assumed to be zero. The
presented procedure matches the level of system parti-
tioning illustrated in Fig. 1b. The input grid used during
interpolation is dependent on the number and locations of
point-wise actuations. However, it should be stressed that
nodes placed on the border of the system as well as on
the corners are also used. For more details the interested
reader is referred to Patan and Patan (2022a).

4. PROPOSED CONTROL SCHEME

In this study we applied a very simple iterative learning
control scheme given as follows:

up+1(k) = up(k) + Lep(k), (10)

where the index p stands for the trial (iteration), ep(k) is
the tracking error defined as ep(k) = yref (k)− ŷp(k), and
L is the learning gain. In spite of the fact that ILC (10) has
standard linear P-type form it should be noted that in this
paper we deal with the control of spatio-temporal systems
where the tracking error ep(k) has the multidimensional
form. Moreover, contrary to existing approaches proposed
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need to do is to collect input-output pairs and to generate
the response of the reservoir on the input data. Then,
the output weight matrix can be derived off-line using the
psuedoinverse operation as follows:
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where X = [x(0),x(1), . . . ,x(N)] is the state collection
matrix , Y = f−1

o ([y(0),y(1), . . . ,y(N)]), is the teacher
output collection matrix, f−1

o represents the inverse of
the function fo, the operator − represents the matrix
pseudoinverse and finally µ is a regularization parameter
(I stands for the identity matrix). The regularization is
introduces in order to improve the generalization abilities
of the model (Patan and Patan, 2022b).

The considered kind of neural networks, due to a large
number of processing units connected using recurrent
links, is represented by the state vector of a large size.
That is the reason, that ESN is suitable to represent
DPS for which state-space is infinite dimensional. In our
previous works we introduced the idea of spatial domain
partitioning (Patan and Patan, 2022a,b). The main idea is
to split the entire spatial domain into smaller regular areas
and to arrange to each area a sensor measuring the system
output (Fig. 1a). In the presented example the spatial
domain was divided into four areas. One sensor is assigned
to each area, where Si, i = 1, . . . , 4 represents the sensor
notation. To facilitate model design process, we assumed
that each sensor measures the output of the system in
the center of the sector assigned to it (xci , i = 1, . . . , 4)
as portrayed in Fig. 1b. Moreover we get a point-wise
measurement at the spatial point xci and the output of
the system observed by the i-th sensor can be represented
in the following way:

zi(k) = y(xci , k). (9)

The data set {zi(k), i = 1, . . . , 4, k = 0, . . . , N} constitutes
the target training patterns. The excitation of the system
has the form of a spatially distributed input. Taking into
account an assumption that the distribution of actuation
located at the spatial point x as well as its evolution in time
are known, we are able to represent the spatial actuation
using a properly selected number of point-wise actuations.
The input spatial space is divided into sub-regions. To each
of them a point-wise actuation is assigned located exactly
in the center. As a result, the chosen number of point-wise
actuations constitutes the size of the network input space
and dimensionality of data.

However, it should be kept in mind that the neural network
model has to properly learn spatial as well as time charac-
teristics of DPS. Here, we applied the idea of reservoir par-
titioning proposed in the work Patan and Patan (2022b)
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Fig. 1. Example of system spatial partitioning: sensing idea
(a), output representation (b).

Fig. 2. Partitioning concept of input space (left) and
spatial reservoir (right).

and portrayed in Fig. 2. Processing units inside the reser-
voir are divided into several partitions, which number is
equal to the number of point-wise actuations. Each group
of units receives excitation from a particular actuator as
depicted in Fig. 2 by the blue-dashed lines. For the clarity
of presentation, only connections from one actuator are
marked there. Which is important, the reservoir is still
sparsely connected, and units from different partitions are
still interconnected via recurrent links as illustrated at the
right hand side of Fig. 2.

The idea of reservoir partitioning can be easily applied to
the classical ESN using block-diagonal input matrixW u =
diag(W 1,W 2, . . . ,WR2), where W i, i = 1, . . . , R2 is
the input matrix connecting the i-th actuation with the i-
th reservoir partition, R2 denotes the number of partitions.
We need to guarantee that each partition will have the
similar number of processing units. Assuming, that np is
the number of neurons in each partition, the total number
of neurons in the reservoir will be np ·R2.

When solving DPS, e.g. using FEM, the derived outputs
of the system are spatially interpolated in order to achieve
smooth output space and to be able to determine the
output of the system in any spatial point of the domain
Ω. In the proposed approach we applied the similar pro-
cedure. After ESN training the estimated system outputs
ŷi provided by the neural network are properly arranged
according to scheme presented in Fig. 1b and are subject
of interpolation. Additionally, we need to take into account
boundary conditions which are assumed to be zero. The
presented procedure matches the level of system parti-
tioning illustrated in Fig. 1b. The input grid used during
interpolation is dependent on the number and locations of
point-wise actuations. However, it should be stressed that
nodes placed on the border of the system as well as on
the corners are also used. For more details the interested
reader is referred to Patan and Patan (2022a).

4. PROPOSED CONTROL SCHEME

In this study we applied a very simple iterative learning
control scheme given as follows:

up+1(k) = up(k) + Lep(k), (10)

where the index p stands for the trial (iteration), ep(k) is
the tracking error defined as ep(k) = yref (k)− ŷp(k), and
L is the learning gain. In spite of the fact that ILC (10) has
standard linear P-type form it should be noted that in this
paper we deal with the control of spatio-temporal systems
where the tracking error ep(k) has the multidimensional
form. Moreover, contrary to existing approaches proposed
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Fig. 3. General structure of iterative learning control based
on neural networks.

to date to control such kind of systems, e.g. (Patan
et al., 2018), here the excitation signal is developed by
means of a novel approach based on distributed neural
network model. The ultimate idea is shown in Fig. 3. The
control signal is developed by means of plate displacement
predictions provided by a neural network model. In order
to catch spatio-temporal behavior of the plate a reservoir
computing model described in Section 3 is used. The
model can be preliminarily trained. However, in order
to provide a high quality representation of the plate
displacement, the proposed approach makes it possible
to adapt neural model to actual working conditions of
the control system. To realize this goal after each trial
available data is recorded and stored in the memory
and then used to adapt the neural network parameters.
In order to prevent the so-called catastrophic forgetting
of the previously remembered data, the neural network
parameters are adapted according to exponential moving
average as follows:

W out
new = W out

old (1− λ) +W outλ (11)

where λ is a parameter taking a value from the interval
(0, 1), and the matrix W out is calculated using (8).

The crucial problem is to select the value of the gain L.
We applied a very simple solution with the scalar gain L.
Our first approach was to select L using a trial-and-error
method. We found out that setting L as follows:

L(p) = −(17000e−0.02p + 3000), (12)

provides the convergence of the tracking error. It is obvious
that selecting L in this way is troublesome and time-
consuming. Moreover, there is no proof that using the
learning gain (12), the monotonic convergence will be
ensured. Therefore, we have tested also a second approach
proposed in the book of Xu and Tan (2003):

L(p) =
2

α1 + α2
, 0 < α1 <

∂fo

∂up
≤ α1. (13)

However, it should be noted that the learning gain L se-
lected according to (13) guarantees the monotonic conver-
gence of the tracking error for lumped-parameter systems
with one output, under pretty common assumptions such
as Lipschitz continuity, identical initialization conditions
for each trial and existence of the unique control.

5. ILLUSTRATIVE EXAMPLE

As for illustrative example we consider the vibrations
of the thin clamped elastic membrane made from alu-
minum. The considered distributed-parameter system is

represented by the following hyperbolic partial differential
equation with the biharmonic operator (Polyanin, 2002):

ρ
∂2y(x, t)

∂t2
+ κ∇4y(x, t) = u(x, t), (14)

where y(x, t) is the transverse displacement at a spatial
point x and a time instant t, ρ stands for the mass density
per unit area, κ represents the elasticity coefficient, u(x, t)
is a pressure field distributed over the domain Ω. The
investigated system has the shape of square with the side
of the length equal to 1m and the thickness of d = 0.003m,
ρ = 2700, κ is represented by the formula:

κ =
Ed3

12(1− ν2)
, (15)

where E = 7.11 · 1010 stands for the elasticity modulus,
ν = 0.3 represents the Poisson’s ratio. Since the plate
is clamped, the following conditions at the boundary ∂Ω
holds:

y(x, t) = 0 x ∈ ∂Ω. (16)

The initial conditions are as follows:

y(x, 0) = 0, ẏ(x, 0) = 0, x ∈ Ω. (17)

In this study, our objective is to determine a temporal
pressure field applied to the membrane at the consecutive
trials providing the reference displacement given by the
spatial profile of the elliptic paraboloid with the magnitude
increasing linearly for 5 seconds, and then vanishing within
the next 5 seconds given by the formula:

yref (t)=10−3

(
1− |t−100|

100

)
e−20((x1−0.4)2+(x2−0.6)2). (18)

The length of each trial was equal to 20 seconds. The
sampling time was set to 0.1 second. Then, the reference
profile consisted of 201 samples. All experiments were
carried out using the Matlab 2018a software using a
laptop equipped with Intel Core i7 of the 8th generation,
16GB RAM running under Windows 11. In this study
we performed a series of experiments including control
of the plate by means of both ESN and FEM as well
as investigations regarding the selection of the learning
gain. Each experiment was conducted for 300 trials and
the control quality was expressed in the form of the norm
of the tracking error.

5.1 Model design

The first step of the procedure is to configure both sens-
ing and reservoir partitioning. Based on our knowledge
acquired during conducting experiments on the similar
topic (Patan and Patan, 2022b), we decided to divide each
spatial variable into R = 5 subsections. In consequence,
the entire spatial domain was partitioned into R2 = 25
sectors. To each sector a point-wise sensor was assigned
located at the sector center. Thus, the number of outputs
was equal to 25. In turn, to each partition a point-wise
actuation was allocated giving 25 input signals.

The ESN parameters were selected carrying out a series
of experiments. The best modeling results were observed
setting the number of neurons in the reservoir partition
np = 10 giving 250 units in the entire reservoir; sparsity
index of neurons connection equal to 20%; and the largest
singular value of the state matrix σmax = 0.95. Moreover,
the function fo was set as a linear one.

a) Reference profile

b) ESN model-based control

c) FEM-based control

Fig. 4. Control for selected time instances: reference profile
(a); ESN-based control (b); FEM-based control (c).

To properly identify the spatio-temporal characteristics
of the clamped plate training set including time-varying
excitations located at different locations was formed. Each
excitation was applied to the plate and the plate dis-
placement was recorded by sensors. Thus input-output
data set was prepared for training purposes. The inputs
and outputs were linearly scaled to fall into the interval
[−10, 10]. Details concerning data generation can be found
in Patan and Patan (2022b). The training was carried
out using the rule (8) with the regularization parameter
µ = 0.1 which assured good generalization results of ESN.

5.2 Iterative learning control

The first experiment was carried out using ESN and the
learning gain of the form (12). Designed ESN was used to
realize ILC according to the scheme presented in Fig. 3.
After each trial the output weights of the model were
updated by the rule (11). The forgetting factor λ set
to 0.05 provided an acceptable balance between already
remembered data and new ones. The control results are
presented in Fig. 4. The first row includes the reference
profile in the selected time instances. The second row
shows the outputs of ESN for the same time instances.
The control system works well because we can observe that
the predicted plate displacement follows the desired profile
closely. The convergence of the tracking error norm for this
case is shown in Fig. 5 using the blue–solid line. Clearly,
we can observe some slight fluctuation in the error curve.

In the second experiment we used FEM to solve the system
represented by PDE of the form (14) and on this basis to
design the control system. As was mentioned in Introduc-
tion FEM is widely used to provide accurate approxima-
tion of the continuous distributed systems (Patan et al.,
2018). To achieve accurate results, the system (14) was
spatially discretized on the spatial grid of the size 21× 21.
As a result, a spatial mesh consisting of 441 nodes and 800
triangles was obtained. In this case it is assumed that the

measurements can be taken on the nodes of spatial mesh.
Thus, in this scenario the number of sensors is significantly
greater (800) than in the previously investigated case (25).
The system was controlled using ILC (10) but the learning
gain was selected in a different way. Simply, using the for-
mula (12) leaded to unstable work of FEM and numerical
problems when solving the system (14). Then, we proposed
a less varying gain as follows:

L(p) = −(5000e−0.012p + 2500). (19)

The achieved results are shown in the third row of Fig. 4.
Clearly, results are comparable to achievements of ESN-
based ILC. The convergence of the tracking error is por-
trayed in Fig. 5 using red–dashed line. The control perfor-
mance is a little bit more accurate than in the case of ESN-
based control. Moreover, one can see that it is possible to
obtain smaller value of the tracking error norm carrying
out more trials. However, it should be kept in mind that
in order to avoid numerical problems when using FEM we
need to develop more sophisticated rule for selecting the
learning gain than the formula (19).

The objective of the third experiment was to check the
control performance of ESN-based control when the learn-
ing gain (13) was used. The partial derivative of f0 with
respect to the control signal can be easily derived using
neural network model:

∂fo

∂up(k)
= W out ∂fh

∂up(k)
= W outf

′

hW
u. (20)

A derivative of hyperbolic tangent takes values from 0 to 1

(0 < f
′

h ≤ 1). Now, substituting f
′

h = 0 into (20) it yields

α1 = 0. In turn, putting f
′

h = 1 in (20) one can derive α2

as
α2 = W outW u. (21)

In fact, achieved α2 is a matrix of the size R2 × R2. In
this paper we simplified the procedure and determined the
common learning gain for all actuations as follows:

L(p) = 0.1
2

α2
, (22)

where α2 = max{W outW u}. In (22) we applied the
scaling factor 0.1 in order to achieve the convergence of
the tracking error at the very beginning. For this scenario,
the convergence of the tracking error is marked in Fig. 5
by the black–dash-dot line. In this case we observe a
superior convergence rate contrary to other scenarios.
However, after approximately 150 trials the convergence
rate begin to slow down, finally reached the tracking
error norm similar like in the case of the first scenario
investigated. Nevertheless, the advantage of this approach
is that the learning gain is selected automatically at
every trial analyzing influence of the control on the model
output.

The total time of experiment for ESN-based control was
approximately 47 seconds. However, if we exclude ESN
output weight updating process, the time of simulation
decreases to approximately 11 seconds. For the well trained
model there is no need to retrain it after each trail
but only on demand, let say every 10 trials. This is a
serious advantage of the proposed approach contrary to the
existing methods. For example, in the case of application
of FEM to control system design, working on the grid
21× 21, the 300 trials were performed with approximately
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a) Reference profile

b) ESN model-based control

c) FEM-based control

Fig. 4. Control for selected time instances: reference profile
(a); ESN-based control (b); FEM-based control (c).

To properly identify the spatio-temporal characteristics
of the clamped plate training set including time-varying
excitations located at different locations was formed. Each
excitation was applied to the plate and the plate dis-
placement was recorded by sensors. Thus input-output
data set was prepared for training purposes. The inputs
and outputs were linearly scaled to fall into the interval
[−10, 10]. Details concerning data generation can be found
in Patan and Patan (2022b). The training was carried
out using the rule (8) with the regularization parameter
µ = 0.1 which assured good generalization results of ESN.

5.2 Iterative learning control

The first experiment was carried out using ESN and the
learning gain of the form (12). Designed ESN was used to
realize ILC according to the scheme presented in Fig. 3.
After each trial the output weights of the model were
updated by the rule (11). The forgetting factor λ set
to 0.05 provided an acceptable balance between already
remembered data and new ones. The control results are
presented in Fig. 4. The first row includes the reference
profile in the selected time instances. The second row
shows the outputs of ESN for the same time instances.
The control system works well because we can observe that
the predicted plate displacement follows the desired profile
closely. The convergence of the tracking error norm for this
case is shown in Fig. 5 using the blue–solid line. Clearly,
we can observe some slight fluctuation in the error curve.

In the second experiment we used FEM to solve the system
represented by PDE of the form (14) and on this basis to
design the control system. As was mentioned in Introduc-
tion FEM is widely used to provide accurate approxima-
tion of the continuous distributed systems (Patan et al.,
2018). To achieve accurate results, the system (14) was
spatially discretized on the spatial grid of the size 21× 21.
As a result, a spatial mesh consisting of 441 nodes and 800
triangles was obtained. In this case it is assumed that the

measurements can be taken on the nodes of spatial mesh.
Thus, in this scenario the number of sensors is significantly
greater (800) than in the previously investigated case (25).
The system was controlled using ILC (10) but the learning
gain was selected in a different way. Simply, using the for-
mula (12) leaded to unstable work of FEM and numerical
problems when solving the system (14). Then, we proposed
a less varying gain as follows:

L(p) = −(5000e−0.012p + 2500). (19)

The achieved results are shown in the third row of Fig. 4.
Clearly, results are comparable to achievements of ESN-
based ILC. The convergence of the tracking error is por-
trayed in Fig. 5 using red–dashed line. The control perfor-
mance is a little bit more accurate than in the case of ESN-
based control. Moreover, one can see that it is possible to
obtain smaller value of the tracking error norm carrying
out more trials. However, it should be kept in mind that
in order to avoid numerical problems when using FEM we
need to develop more sophisticated rule for selecting the
learning gain than the formula (19).

The objective of the third experiment was to check the
control performance of ESN-based control when the learn-
ing gain (13) was used. The partial derivative of f0 with
respect to the control signal can be easily derived using
neural network model:
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∂up(k)
= W outf

′

hW
u. (20)

A derivative of hyperbolic tangent takes values from 0 to 1

(0 < f
′

h ≤ 1). Now, substituting f
′

h = 0 into (20) it yields

α1 = 0. In turn, putting f
′

h = 1 in (20) one can derive α2

as
α2 = W outW u. (21)

In fact, achieved α2 is a matrix of the size R2 × R2. In
this paper we simplified the procedure and determined the
common learning gain for all actuations as follows:

L(p) = 0.1
2

α2
, (22)

where α2 = max{W outW u}. In (22) we applied the
scaling factor 0.1 in order to achieve the convergence of
the tracking error at the very beginning. For this scenario,
the convergence of the tracking error is marked in Fig. 5
by the black–dash-dot line. In this case we observe a
superior convergence rate contrary to other scenarios.
However, after approximately 150 trials the convergence
rate begin to slow down, finally reached the tracking
error norm similar like in the case of the first scenario
investigated. Nevertheless, the advantage of this approach
is that the learning gain is selected automatically at
every trial analyzing influence of the control on the model
output.

The total time of experiment for ESN-based control was
approximately 47 seconds. However, if we exclude ESN
output weight updating process, the time of simulation
decreases to approximately 11 seconds. For the well trained
model there is no need to retrain it after each trail
but only on demand, let say every 10 trials. This is a
serious advantage of the proposed approach contrary to the
existing methods. For example, in the case of application
of FEM to control system design, working on the grid
21× 21, the 300 trials were performed with approximately
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Fig. 5. Convergence of the considered ILC schemes.

132 seconds. Obviously, ESN-based ILC with a regular
model parameter updating process is approximately three
times faster than FEM-based ILC.

6. CONCLUDING REMARKS

The paper proposes the approach for the modeling and
control of distributed-parameter systems using the echo-
state network. The main outcome of the developed method
is that it is less computationally expensive than frequently
used finite element method and at the same time provides
the comparable control quality. This is a serious advantage
of the proposed method because in real control engineering
practice, the distributed-parameter systems need to be
processed in the real-time. Another interesting property of
neural-network-based control is that the model can be re-
trained after some number of operation cycles keeping the
high level of approximation of the distributed-parameter
system all the time.

However, there is a room for improvements. As it is our
first work about ILC of distributed systems represented
via echo-state network, a very simple form of learning
controller was used. Especially, more effort is needed in
terms of the learning gain determining as well as providing
convergence conditions of proposed control strategy.
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