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INTRODUCTION

The optimization problem, in general, can be formulated as follows:

w*:argmgb){cf(:c)‘(ci(:c)gO,izl,...,m,), (0.1)

where x* is searched optimum solution of an objective function f(x), ¢;(x) denotes
an i'" constraint and U/ is a space of solutions.

Most of conventional optimization methods are based on, so called, hard se-
lection, where new base points for further exploration are generated basing on the
best obtained points. Such a strategy usually ends trapped in the local optimum,
and there is almost no chance to leave this area and achieve better results, so
the global optimization ability is strongly limited. There are many algorithms
proposed in the literature which try to overcome this problem. Most of them
can be assigned to two classes of algorithms: enumerative methods and stochastic
methods.

First of them is dedicated to discrete and finite sets of possible solutions, and
usually consists in examination of all solutions in order to choose the best one.
This is, of course, an inefficient technique, especially in the case of large systems,
where a full review is impossible to do in a reasonable time. Thus, methods of
heuristic search can be used (c.f. (Schalkoff 1990)). Their efficacy, when applied to
particular problems, is often highly dependent on the way they exploit the domain
— specific knowledge since in and of themselves they are unable to overcome the
combinatorial explosion to which search processes are so vulnerable.

Stochastic optimization methods are mainly applied to searching for the global
optimum of the multi-modal and multi-dimensional objective functions, for which
the derivative is difficult or impossible to compute. The simple computer im-
plementation is also an advantage of these methods, however, they are time-
consuming. Most of the stochastic methods are composed of two parts: global
and local one. First of them determines starting points for the local search. Usu-
ally these points are randomly chosen from the domain. The local optimization
is carried out applying classical gradient methods or stochastic methods, which
randomly modifies current points usually using the normal distribution. Among
stochastic methods one can list several classes of these techniques, e.g., the pure
random search (Monte Carlo methods), multiple random start, clustering meth-
ods, random direction methods, search concentration methods (c.f. (Birge and
Louveaux 1997, Zielinski and Neumann 1983)). The main disadvantage of stochas-
tic methods lies on their chaotic manner, which does not take into consideration
information contained in previously evaluated points.

An alternative way for global optimum finding are Evolutionary Algorithms
(EAs). The evolution is the natural way of development. Species acquire their



properties and abilities by the natural selection, seemingly a blind process, which
allows mainly well fitted individuals to survive and procreate. This mechanism
allows to transfer the profitable features to next generations, thus, we have some
kind of “intelligent” selection. But, the nature does not restrict itself to select only
the best individuals in the population. Weakly fitted individuals have a chance to
introduce their offspring to the next generation, too. Their descendants are often
gifted with attributes unknown in the current population, and which can be useful
in the future. Therefore, it is luring to introduce to optimization techniques the
soft selection rule instead of the hard one, i.e. there is a possibility of choosing
worse points as base points for further search. It occurs that the soft selection
accelerates the probability of escaping from a local optimum trap.

The soft selection is the base rule in the EAs, the extremely effective technique
of the computation intelligence systems applied to the global optimization. A very
rich bibliography (c.f. (Angeline and Kinnear 1996, Arabas 2001, Béck 1995, Back
et al. 1997, Dasgupta and Michalewicz 1997, Davis 1987, Fogel 1995, Fogel
1998, Galar 1990, Goldberg 1989, Holland 1992, Michalewicz 1996, Mitchel 1996,
Osyczka 2002, Schwefel 1995) proves this mimicked search process of natural evo-
lution is a very robust and effective direct algorithm of the global optimization or,
rather, adaptation.

The aim of this monograph is to present selected basic properties of evolu-
tionary algorithms in the global optimization and chosen applications in the neural
networks design problem and the fault diagnosis of industrial processes.

The book is parted into six main chapters which are preceded by introduction
and ended by conclusions and two appendices.

Chapter 1 contains a description of the general outline of the evolutionary
algorithm, presents the “classical” forms of the most known EA representatives:
Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Program-
ming (EP), and Evolutionary Strategies (ES). Emphasis is put on the Evolutionary
Search with Soft Selection (ESSS) algorithm, which is the subject of majority of re-
search studies described in this book. The ESSS algorithm is based on probably the
simplest selection—mutation model of Darwinian evolution. The n-dimensional real
space is the search process domain, on which some non-negative fitness function is
defined. At the beginning the population of points is selected from the domain and,
next, it is iteratively transformed by the selection and mutation operations. As a
selection operator the well-known proportional selection (roulette method) is cho-
sen. Coordinates of selected parents are mutated by adding normally-distributed
random values.

Next chapters contain results which are based on the author’s research.

Techniques which accelerate the exploration abilities of the ESSS algorithm
are the subject of Chapter 2. These techniques are parted into three classes:
methods adapting the algorithm parameters, methods modifying evolutionary op-
erators, and methods, which modify the objective function during the searching
process. The first class contains algorithms which adapt the standard deviation
of Gaussian mutation (ESSS with Simple Variance Adaptation, ESSS-SVA) and
population size (ESSS with Varying Population Size, ESSS-VPS). The ESSS-SVA



algorithm is based on a concept of an evolutionary trap. When population fluc-
tuates around a local peak of an adaptation landscape, the standard deviation of
the Gaussian mutation increases. This fact decreases the mean fitness of the pop-
ulation and facilitates the population escape towards a neighbouring peak. The
idea of the ESSS-VPS algorithm is similar to the GAVaPS algorithm (Arabas et
al. 1994), each individual contains additional parameter: a life time, which de-
pends on the relation between the individual fitness and the mean fitness of the
current population. The second class of techniques contains the ESSS algorithm
with Forced Direction of Mutation (ESSS-FDM) and algorithms with local selec-
tions. The ESSS-FDM is distinct from other algorithms of the ESSS family that
the expected vector of the Gaussian mutation is not equal to zero, its direction is
parallel to the latest drift of population. In the case of the local selection, each
individual competes with elements which are located a given radius away. De-
pending on a method of a surrounding radius determination three algorithms are
defined: the ESSS with Local Selection (ESSS-LS), ESSS with Mixed Selection
(ESSS-MS), and ESSS with Adaptive radius of Local Selection (ESSS-ALS). The
third class of exploration techniques is represented by the ESSS algorithm with
Impatience and Polarization mechanism (ESSS-IP), which has been proposed by
Galar and Kopciuch (1999), and erosion mechanism (ESSS with Deterioration of
the Objective Function, ESSS-DOF). The erosion mechanism consists in gradual
deterioration of a currently occupied local peak of the adaptation landscape by the
population. Parameters of the erosion factor depend on the current location and
distribution of the population. This idea was firstly introduced by Beasley et al.
(1993), but it has not been developed yet. The simulation analysis of effectiveness
of considered exploration mechanisms ends the chapter.

Chapter 3 concerns the analysis of Gaussian and Cauchy mutation, their
influence on the effectiveness of phenotypic evolutionary algorithms. The author
distinguishes two effects: surrounding effect and symmetry effect, which affect the
EAs efficacy. Modified versions of Cauchy and Gaussian mutations are proposed,
implemented in the ESSS and EP algorithms, and compared using simulating
experiments.

The evolutionary adaptation in non-stationary environments is the subject
of Chapter 4. There is an attempt at classification of non-stationary adaptation
tasks taking into account different criteria. As far as the intensity of changes is
considered three types of environment changes are distinguished: adiabatic, indi-
rect and turbulent changes. In the case of adiabatic changes, classical methods
of local optimization are effective. Along with increasing intensity of changes,
usefulness of evolutionary algorithms increases. In the case of turbulent changes,
the evolutionary process could not keep up with a running global optimum loca-
tion and searches an ascent of some function averaged over some time interval.
The adaptation tasks in non-stationary environments can be also classified tak-
ing account of the problem specification, e.g. tracing processes, an optimization
in a mega-epoch, keeping solutions on an acceptable level, and so on. Different
problem specifications require different quality measures for applied adaptation
algorithms. A short analysis of algorithms quality measures known from literature
and proposed by the author is presented and illustrated.



The problem of neural models design is considered in Chapter 5. The Dynamic
Multi-Layer Perceptron (DMLP), whose units are based on Ayoubi’es Dynamic
Neural Model (DNM) and organized into the standard feedforward architecture, fo-
cuses the author’s attention. The problem of a neural network design can be viewed
as a pair of optimization tasks: a learning process and an architecture optimiza-
tion. Both tasks have different nature and need different optimization methods.
The learning process belongs to continuous optimization tasks, which is usually
connected with nonlinear, multi-modal objective functions, especially in the case
of the DMLP. Therefore, techniques based on the gradient-descent method, like
the extended dynamic back-propagation learning, are ineffective. Evolutionary al-
gorithms approaches, especially based on the ESSS-FDM algorithm, turn out very
effective learning methods. The space of neural networks architectures is discrete
and can be represented by an infinite digraph. However, there are many instances
of evolutionary approaches to the optimal neural model architecture allocation in
the literature, they are not so efficient as presented heuristic search methods: the
A* algorithm and Tabu Search technique.

Applications of evolutionary algorithms to the fault diagnosis systems design
is discussed in Chapter 6. The diagnosis of industrial processes has been intensively
studied by the research group of Institute of Control and Computation Engineering
of University of Zielona Goéra for the last ten years. This chapter is based on results
of the author and co—workers’ research. Designing the fault diagnosis systems for
complex dynamic systems is usually connected with the lack of a mathematical
model, or with the fact that such a model is unsatisfactory. Recently, artificial
intelligence methods have attracted researches’ attention. It is worth noticing that
the process of designing fault diagnosis systems, using both analytical and artificial
intelligence methods, can be reduced to a set of complex optimization problems.
They are usually nonlinear, multimodal and, not so rarely, multi-objective. So,
the conventional algorithms are insufficient to solve them. Evolutionary algorithms
seem to be an attractive tool for searching an optimal solution. Although there are
few applications of evolutionary algorithms to fault diagnosis systems, a discussion
of existing solution is presented. The emphasis is put on genetic programming
approaches to residual generation module of a Fault Detection and Isolation (FDI)
system.

It is a pleasure to express my sincere thanks to a number of people. First
of all, T am grateful to professor Jozef Korbicz for his continuous support and
advice. I wish to thank professors Roman Galar and Robert Schaefer for their
active interest in my research and many stimulating suggestions, professor Dariusz
Ucinski, dr. Krzysztof Patan, dr. Krzysztof Trojanowski, and dr. Marcin Witczak
for discussions and co—operation, which bears many joint publications.

I wish to express my special gratitude to my wife Beata for her continuous
patience, understanding and support in hard times during preparing this book and
over the common years.

Zielona Gora, December 2002 Andrzej Obuchowicz



Chapter 1

EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are a broad class of stochastic adaptation algo-
rithms, inspired by biological evolution, the process that allows populations of
organisms to adapt to their surrounding environment. The concept of evolution
was introduced in XIX century by Charles Darwin and Johann Gregor Mendel
and, complemented with further details, are still widely acknowledged as valid.

In 1859, Darwin published his theory of natural selection or survival of the
fittest. The idea is: not every organism can be held, only those which can adapt
and win the competition for food and shelter are able to survive. Almost at the
same time (1865) Mendel published short monograph about experiments in plants
hybridisation. He observed how traits of different parents are combined in an off-
spring by sexual reproduction. Darwinian evolutionary theory and Mendel inves-
tigations of heredity in plants became foundations of evolutionary search methods.

Structure and properties of evolutionary algorithms are discussed in several
books (Angeline and Kinnear 1996, Biack 1995, Béck et al. 1997, Dasgupta and
Michalewicz 1997, Davis 1987, Fogel 1995, Fogel 1998, Galar 1990, Goldberg 1989,
Holland 1992, Michalewicz 1996, Mitchel 1996, Schwefel 1995). The articles con-
cerned with evolutionary computation are published in many scientific journals.
There are at least 20 international conferences closely connected with evolutionary
methods. Due to a large number of available publications it is impossible to present
all of plenty of different evolutionary algorithms and their components, where their
authors tried to improve the algorithm efficiency in the case of given problem to
be solved. In this chapter, the main components of evolutionary algorithms are
reminded and different basic forms of them briefly discussed.

1.1. Basic concepts of evolutionary search

In nature, individuals in a population compete with each other for resource such
as food, water and shelter. Also, members of the same species often compete
to attract a mate. Those individuals which are most successful in surviving and
attracting mates will have relatively larger numbers of offspring. Poorly performing
individuals will produce few or even no offspring at all. This means that the
information (genes), slightly mutated, from the highly adapted individuals will
spread to an increasing number of individuals in each successive generation. In
this way, species evolve to became more and more suited to their environment.



6 1.2. Standard evolutionary algorithms

In order to describe a general outline of the evolutionary algorithm let us
introduce few useful concepts and notations (Atmar 1992, Fogel 1999). An evolu-
tionary algorithm is based on the collective learning process within a population
P(t) ={ar € G| k = 1,2,...,n} of n individuals, each of which represents a
genotype (an underlying genetic coding), a search point in a, so called, genotype
space G. The environment delivers a quality information (fitness value) of the
individual dependent on its phenotype (the manner of response contained in the
behavior, physiology and the morphology of the organism). The fitness function
® : D — R is defined on a phenotype space D. So, each individual can be viewed as
a duality of its genotype and phenotype, and some decoding function, epigenesis,
£:G — D' C D is needed.

At the beginning, a population is arbitrary initialized and evaluated
(Tab. 1.1). Next, the randomized processes of reproduction, recombination, mu-
tation and succession are iteratively repeated until a given termination crite-
rion ¢ : G" — {true,false} are satisfied. Reproduction, called also preselection,
ssp : G" — G"" is a randomized process (deterministic in some algorithms) of 7’
parents selection from 7 individuals of the current population. This process is
controlled by a set 6, of parameters. Recombination mechanism (omitted in some
realization) rg, : Ggn - Q””, controlled by additional parameters 6,, allows the
mixing of parental information while passing it to their descendants. Mutation
me,, : g“” — gn” introduces innovation into current descendants, 6,, is again a
set of control parameters. Succession, also called postselection sy : G" x gn' - gn
is applied to choose a new generation of individuals from parents and descendants.

1.2. Standard evolutionary algorithms

Despite similarities of various evolutionary computation techniques, there are also
many differences between them. It is generally accepted that any evolution-
ary algorithm to solve a problem must have five basic components (Davis 1987,
Michalewicz 1999):

e a representation of solutions to the problem,
e a way to create an initial population of solution,
e an evaluation function, rating solution in terms of their fitness,

e selection and variation operators that alter the composition of children dur-
ing reproduction and mutation,

e values for the parameters (population size, probabilities of applying variation
operators, etc.)

The duality of the genotype and the phenotype suggest two main approaches
to simulated evolution dedicated to global optimization problems in R": genotypic
and phenotypic simulations (Fogel 1999). In genotypic simulations, attention is
focused on genetic structures. The candidate solutions are described as being



1. Evolutionary algorithms

Tab.1.1. The outline of an evolutionary algorithm

1. Initiation

A. Random generation

P(0)={a} | k=1,2,...,n}.

B. Evaluation
P(0) = ®(P(0)) = {¢) = ®(&£(al)) | k=1,2,...,n}.

C.t=1.

1I. Repeat:

A. Reproduction
P'(t) =5 (P(t)) ={a", [k=1,2,...,n'}.

B. Recombination

P"(t) =1y, (P'(t)) = {a"} | k=1,2,....7"}.

C. Mutation
P"(t) = my,, (P”(t)) = {a"'fC |k=1,2,.. .,n”}.

D. Evaluation

P(t) = (P"(1) = {8, = B(¢(@™L)) [ k=1,2,....n"}.

E. Succession

P(t+1) =57 (P)UP"®) = {al |k=1,2,...,n}.
F.t=t+1.

Until ~ (.(P(t)) = true).
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analogous to chromosomes. All the searching process is provided in the genotype
space G. However, in order to calculate the individual fitness, its chromosome must
be decoded to its phenotype. Two main streams of instances of such evolutionary
algorithms, can nowadays be identified:

e Genetic Algorithms (GA) (De Jong 1975, Goldberg 1989, Grefenstette 1986,
Holland 1975, Michalewicz 1996),

e Genetic Programming (GP) (Kinnear 1994, Koza 1992).

In the phenotypic simulations, attention is focused on the behaviors of the can-
didate solutions in a population. All searching operations, selection, reproduction
and mutation, are constructed in the phenotype space D. This type of simula-
tions characterizes a strong behavioral link between a parent and its offspring.
Nowadays, there are two main streams of instances of “phenotypic" evolutionary
algorithms:

e Evolutionary Programming (EP) (Fogel et al. 1991, Fogel 1992, Fogel 1999,
Fogel et al. 1966, Yao and Liu 1999),

e Evolutionary Strategies (ES) (Rechenberg 1965, Schwefel 1981).

In this book emphasis is put on an Evolutionary Search with Soft Selection algo-
rithm (ESSS) (Galar 1985, Galar 1989, Galar 1990, Galar and Karcz-Duleba 1994),
which is some simplified version of the ES. Basic ideas of GA, GP, EP and ES al-
gorithms are presented below. The ESSS algorithm is the subject of the next
section.

1.2.1. Genetic algorithms

GAs are probably the best know evolutionary algorithms, receiving remarkable
attention all over the world. The basic principles of GAs were first laid down rig-
orously by Holland (1975), and are well described in many texts (e.g. (Béck
and Schwefel 1993, Beasley et al. 1993a, Beasley et al. 1993b, Dasgupta and
Michalewicz 1997, Davis 1987, Davis 1991, Goldberg 1989, Grefenstette 1986,
Grefenstette 1990, Michalewicz 1996).

Previously proposed form of GAs (De Jong 1975, Holland 1975), called Simple
GAs (SGAs) (Goldberg 1989) or canonical GAs (Béck and Schwefel 1993), operate
on binary strings of fixed-length [, i.e. the genotype space G is a [-dimensional
Hamming cube G = {0,1}!. SGAs are a natural technique of solving discrete
problems, especially in the case of finite cardinality of possible solutions. Such
a problem can be transformed to a pseudo-boolean fitness function, where GAs
can be used directly. In the case of continuous domains of optimization problems,
the function ¢ : D — G that encodes the variables of the solving problem into a
bit string, so called, a chromosome, is needed. The encoding function ( is non-
invertible and there does not exist the inverse function (~'. A decoding function
€ :G — D; C D generates only 2! representatives of solutions. This is a strong
limitation of SGAs.
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The parent selection sP is carried out by, so called, proportional method
(roulette method):

) L S
S (P(t)) = {ahl,ahQ,...,ahn} ¢ hp = min {h : ﬁ > Xk}, (1.1)
1=1 %1
where {xx = U(0,1) | k = 1,2,...,n} are uniformly-distributed, independent
random numbers from the interval [0,1). In this type of selection, the probability
that a given chromosome will be chosen as a parent is proportional to its fitness.
Because sampling is carried out with returns, it can be expected that well-fitted
individuals insert a few of their copies in the temporary population P’(t).
Chromosomes from P’(t) are recombined. In the case of SGA the crossover is
the recombination operation. Chromosomes from P’(t) are joined into pairs. The
decision that a given pair will be recombined is taken with the given probability
0. If the decision is positive, an i-th position in the chromosome is randomly
chosen and the information from the position (i + 1) to the end of chromosomes
is exchanged in the pair:

{ (al,ag,...,al) } N { (al,...,ai,bi+1,...,bl) }
(bl,bg,...,bl) (bl,...,bi,ai+1,...,al)

New obtained temporary population P"(¢) is mutated. The individuals mu-
tation myg, is done separately for each bit in a chromosome. The bit value is
changed to the opposite one with the given probability 6,,. Obtained population
is the population of a new generation.

Historically, the first attempt to the formal description of the asymptotic
characteristics of the SGA was proposed by Holland (1975). The combined effect
of selection, crossover and mutation give so-called reproductive schema growth
equation (Schaefer 2002):

¢ (Sa t) _ @ _ o(S)
(S, 1)) 2 0(S,) =g (1= 0o =7 ) (1= ), (1.2)
where S is a schema defined over the alphabet of 3 symbols (‘0’,‘1’ . and ‘x’ of length
l; each schema represents all strings which match it on all positions other than
‘*"); n(S,t) denotes the number of strings in a population at the time ¢ matched by
schema Sj; () is a symbol of an expectation value; 6(S) is the defining length of the
schema S — the distance between the first and the last fixed string positions; o(S)
denotes the order of the schema S — the number of 0 and 1 positions presented
in the schema; ®(S,t) is defined as the average fitness of the all strings in the
population at the time ¢ matched by the schema S; and ®(¢) is the average fitness
taken over all individuals in the population at the time ¢.

The equation (1.2) tells us about the expected number of strings matching
a schema S in the next generation as a function of the actual number of strings
matching the schema, the relative fitness of the schema, and its defining length
and order. It is clear that above-average schemata with short defining length and
low-order would still be sampled at exponentially increased rates.
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Fig. 1.1. The sample of the tree which represents the function f(z,y,2) = yz+sin(2nz).

The above approach, which was criticized many times (see (Grefenstette 1993,
Schaefer 2002)), can be treated as an attempt to evaluation of a numerical force
increasing of a population (Whitley 1994). Vose (1999) proves that Markov pro-
cesses, which model the genetic algorithms processing, are ergodic. This fact
implies the asymptotic correctness in the probabilistic sense and the asymptotic
guarantee of success (Schaefer 2002).

1.2.2. Genetic programming

Many trends of the SGA development are connected with the change of an indi-
vidual representation. One of them deserves particular attention: each individual
is a tree (Koza 1992). This little change in the GA gives evolutionary techniques
possibility of solving problems, which are not early efforted to solve. This type of
the GA is called the Genetic Programming (GP).

Two sets are needed to be defined before the GP starts: the set of terms
T and the set of operators F. In the initiation step, the population of trees is
randomly chosen. For each tree leaves are chosen from the set 7 and other nodes
are chosen from the set F. Depending on 7 and F definitions a tree can represent
a polyadic function, a logical sentence or a part of a programme code in a given
programming language. Figure 1.1 presents the sample tree for 7 = {z,y,2,2, 7}
and F = {x,+, —, sin}. The new type of an individual representation needs new
definitions of crossover and mutation operators, both of them are explained in
Fig. 1.2.

1.2.3. Evolutionary programming

Evolutionary programming resides in the “phenotypic" category of simulations. It
was devised by L.G. Fogel et al. (1966) in the mid-sixties for the evolution of finite
state machines in order to solve prediction tasks. The environment was described
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\O mutation

Fig. 1.2. Genetic operators for the GP.

as a sequence of symbols (from a finite alphabet) and a finite state machine had
to create a new symbol. The output symbol had to maximize some profit func-
tion, which was a measure of prediction accuracy. There are not preselection and
recombination operators. Each machine of the current population generates an
offspring by random mutation. There are five possible modes of random mutation
that naturally result from the description of the finite state machine: change an
output symbol, change a state transition, add a state, delete a state, or change
the initial state. Mutation are chosen with respect to a uniform distribution. The
best half number of parents and offspring were selected to survive.

The EP was extended by D.B. Fogel (1991, 1992) to work on real-valued object
variables based on normally distributed mutations. This algorithm was called the
meta-EP (Fogel et al. 1991) or the Classical EP (CEP) (Yao and Liu 1999). The
description shown in Table 1.2 is based on (Béck and Schwefel 1993, Yao and
Liu 1999).

In the meta-EP, an individual is represented by pair @ = (z, o), where x € R"
is a real-valued phenotype, o € R is a self-adapted standard deviation vector for
Gaussian mutation. For initialization, the EP assumes a bounded initial domains
Q, = [[ii[us,v) € R"™ and Q, = []7,[0,¢] C R with u; < v; and ¢ >
0. However, the search domain is extended to R" x R’ during the algorithm
processing. As a mutation operator a Gaussian mutation with a standard deviation
vector ascribed to an individual is used. All elements in the current population
are mutated. Individuals from both parent and offspring populations participate
in the new generation selection process. For each individual ag, g individuals are
chosen at random from P(¢) U P'(¢) and compared to a) with respect to their
fitness values. wy is a number, how many of the ¢ individuals are worse than ay,.
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Tab.1.2. The outline of the EP algorithm

1. Initiation
A. Random generation
P(0) = {a) = (2%,04(0)) [ k=1,2,...,n}.
z{ = RANDOM(%Q,), 6%\ = RANDOM (9,),
Q2 CR", Q, C R.
B. Evaluation
P(0) = ®(P(0)) = {¢} =®(2)) | k=1,2,...,n}.
C.t=1
1I. Repeat:
A. Mutation
P'(t)=m, . (P(t) = {a’, | k=1,2,...,0'}.
a'l; =k, + ot Ni(0,1), o'}, = ol exp (T'N(0,1) + 7N;(0,1)),
i=1,2,...,n,
where N(0,1) denotes a normally distributed one-dimensional random
number with mean zero and standard deviation one, N;(0,1) indicates
that the random number is generated anew for each component 4.
B. Evaluation
P'(t) = &(P'(t)) = {¢/,, = ®(="}) | k=1,2,...,n}.
C. Selection of new generation
Pt+1)=sp (P)UP'(t) ={a™ |k=1,2,...,n}.
Val € P(t)U P'(t),
a!, - {al, = RANDOM (P(t) UP'()) |l =1,2,...,q},
wl = i, 0(8(a}) - B(a). 6(0) = {? ey
P(t + 1) « n individuals with the best score w.
D.t=t+1.
Until ~ (.(P(t)) = true).
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7 individuals having highest score wy are selected from 2n parents and offspring
to form new population P(t + 1).

The analysis of the classical EP algorithm (Fogel 1992) giving a proof of
the global convergence with probability one for the resulting algorithm, and the
result is derived from defining a Markov chain over the discrete state space that
is obtained from a reduction of the abstract search space R"™ to the finite set of
numbers representable on the digital computer.

1.2.4. Evolutionary strategies

The second well-known ,phenotypical” algorithms are Evolutionary Strategies
which have been introduced in mid-sixties by Rechenberg (1965) and Schwefel
(1981). The description of the ES presented in this subsection is based on the
article (Béck and Schwefel 1993). The general form of the ES relies on the indi-
vidual representation in the form of a pair: @ = (x,C), where £ € R" is a point
in a searching space, and the fitness value of the individual a is calculated directly
from the objective function: ®(a) = f(x). C is the covariance matrix for the
n-dimensional normal distribution N (0, C), having probability density function

p(Z) = m exp <— %zT((jlz), (13)

where 2z € R". To assure positive-definiteness of the C, it is described by two
vectors: vector of standard deviations o (c; = 0?) and vector of rotation angles
a (c; = 3(0? - o) tan2a;;). So, @ = (x,0,a) is used to denote a complete
individual.

There is no separated operation of selection of parents in ESs, this selection
is strongly connected with the recombination mechanism. Different recombination
mechanisms can be used in ESs to create A new individuals. Recombination rules

of determining an individual a’ = (', 6', @') have the following form:

( Qp.i without recombination
Qp,; O G ; discrete recombination
a; =13 ap;+ x(asi—ap;) intermediate recombination (1.4)
Qp;,i O G, i global discrete recomb.
| @p;,i + Xi(as,,i — ap,,i) global intermediate recomb.

where indices p and s denote two parent individuals selected at random from P(t),
and x € [0, 1] is uniform random variable. For global variants, for each component
of a the parents p;, s; as well as y; are determined anew. Empirically, discrete
recombination on object variables and intermediate recombination on strategy
parameters have been observed to give best results (Bick and Schwefel 1993).
Each recombined individual @' is subject to mutation. Firstly, strategy pa-
rameters are mutated, and then new object variables are calculated using new
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standard deviations and rotation angles:

o" = {olexp(r'N(0,1) + 7N;(0,1)) | i = 1,2,...,n}
o' = {a;+BN;(0,1)|j=1,2,...,n(n—-1)/2} (1.5)
' = a2'+N(0,0",a"),

where factors 7/, 7 and 8 are rather robust exogenous parameters, which are
suggested to set as follows: 7/ ~ 1/y/2v/n, T ~ 1/3/2n and B ~ 0.0873 (5° in
radians).

Selection in ESs are completely deterministic. There exist two possible strate-
gies:

e (u+ A)-ES — selecting p best individuals out of the union of u parents and
A offsprings;

e (u, \)-ES — selecting u best individuals out of the set of A offsprings (A > ).

Although, the (u 4+ A)-ES is elitist and guarantees a monotonously improving
performance, the effectiveness of global optimum searching is worse than in the
case of (u, \)-ES, therefore the second one is recommended nowadays.

Under some restrictions it is possible to prove the convergence theorem for
the evolutionary strategies (Béck et al. 1991). Let the covariance matrix C be re-
duced to the standard deviation vector which possesses all components identical,
ie. o ={0,...,0} and 6 > 0, and remains unchanged during the process. If the
optimization problem with ®,, > —oc (minimization) or ®,, < oo (maximiza-
tion) is regular then the evolutionary process converges to the global optimum in
infinite limit of time with probability one.

1.3. Evolutionary search with soft selection (ESSS)

The ESSS algorithm was introduced by Galar (1989) relying on probably the sim-
plest model of the Darwinian phenotypical evolution (Galar 1985). This selection-
mutation process is executed in a multi-dimensional real space, on which fitness
function is defined. At the beginning, a population of points is randomly cho-
sen from the searching space and is iteratively changed by selection and mutation
operators. As a selection operator the well-known proportional selection is used.
Selected elements are mutated by adding a normally distributed random vector.

1.3.1. Phenotypic model of evolution

A basic phenotype evolution model was proposed by Galar (1985). The founda-
tions of this model are as follows:

e There exists an environment of invariant properties which have a limited
capacity.
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e There exists a population of reproducing elements (individuals of the same
species). The elements of the population are characterized by a set of features
(phenotype quantitative features). The set of feature values determines the
type of an element (phenotype). Each type is assigned to its fitness.

e The assumption that each element occupies only one place in the environ-
ment is also made. The elements "live" in the environment for some length
of time (generation), and then a new generation is produced out of the actual
one (reproduction).

e The new generation is created by selecting parent elements from the actual
generation and changing their features (asezual reproduction).

e The choice of parents is accomplished by soft selection being a random pro-
cess. Each parent element has a chance of allocating a descendant in the
environment with probability proportional to the element quality.

e The descendant elements are not perfect copies of the parent elements. Type
differences result from clear random mutation.

Basing on the above assumptions, the evolution is a motion of individuals in
the phenotype space called also the adaptation landscape. This motion is caused
by selection and mutation processes. Selection leads to concentration of the in-
dividuals around the best ones, but mutation introduces diversity of phenotypes
and disperses the population in the landscape.

1.3.2. ESSS algorithm

Assumptions described above can be formalized by the algorithm presented in Ta-
ble 1.3. A real, n-dimensional, searching space (an adaptation landscape) R" is
given. A fitness function ® to be maximized is also defined on this adaptation
landscape. Previously, an initial population P(0) of n elements is randomly gen-
erated. If the ESSS algorithm is used to solve the optimization problem in R"
without constrains, the concept that an initial population has to be ‘uniformly
distributed’ in the search space has no sense. One of the possible and rational so-
lution is to create an initial population by adding 7 times a normally-distributed
random vector to a given initial point ) € R". The fitness ¢} = ®(xY) is cal-
culated for each element z{ of the population (k = 1,2,...,n). The searching
process consists in generating a sequence of n-element populations. A new pop-
ulation P(t + 1) is created based only on the previous population P(t). In order
to generate a new element wffl, a parent element is selected and mutated. Both
selection and mutation are random processes. Each element @ can be chosen as a
parent with a probability proportional to its fitness ¢! (the roulette method (1.1)).
A new element a:’,;le is obtained by adding a normally-distributed random value
to each entry of the selected parent:

(m§c+1)i: (m);lk)z-i-N(O;a) i:]-a---anz (16)
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Tab.1.3. The outline of the ESSS algorithm

Input data
1 — population size;
tmax — maximum number of iterations (epochs);
o — standard deviation of mutation;
® : R" — R, — non-negative fitness function, n — number of features;
mg — initial point.
1. Initialize
(a) P(0) = {a0,29,...,20} : (), = (20), + N(0,0)
1=1,2,....n; k=1,2,....n
(b) 6§ = @ (ap)
2. Repeat:
(a) Evaluation
(P(P(t)) = {(bﬁ,(bé ceey ’757} where ¢l = <I>(a:§c), k=1,2,...,n.
(b) Selection

bt
{hl,hg,...,hn} where hy, :min{h: %iﬂiiz% > Ck}

and {Cx}]_, are random numbers uniformly distributed in [0, 1).
(¢) Mutation

P(t) = P(t+1);

(i), = (x},), + N(0,0), i=12,...,n; k=1,2,...,n

Until  (¢(P(t)) = true).
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where the standard deviation ¢ is a parameter to be selected. It is important to
note that there is no recombination (crossover) operator in the ESSS. However,
the recombination operator is biologically motivated (Mendel’s experiments) and
possesses great importance in EAs based on the genotypic representation of in-
dividuals, in the case of phenotype simulations of evolution, which are based on
floating point representation of individuals, the mutation seems to be the crucial
operator of the evolutionary process (Fogel 1995, Fogel 1999, Galar 1989).

Numerical tests of the ESSS algorithm (Galar 1989) have proved essential
advantages of soft selection in a global optimum finding in comparison with hard
selection in which only the best individuals are chosen and only local optima are
attained. The ESSS algorithm does not constitute an optimization algorithm in
the sense of reaching extrema with a desired accuracy. The evolution process is
not asymptotically convergent to an optimum and the interpolation effectiveness
of soft selection is rather weak. The evolution leads next generations to an elevated
response surface, rather than to maxima. In spite of that, search advantages of
the ESSS algorithm suggest that this algorithm can be of real practical use in
numerical packages for global optimization, especially when combined with local
optimization algorithms.

First attempt at the ESSS convergence analysis was presented in (Karcz-
Duleba 1992, Karcz-Duleba 1997, Karcz-Duleba 2001a), where dynamics of infinite
populations in a landscape of unimodal and bimodal fitness functions is considered.
Galar and Karcz-Duleba (1994) propose to consider the evolution dynamics in
the state space of the population. The population state space is nn-dimensional.
Because the evolution dynamics is independent on the elements’ sequence in the
population, the population state space does not cover all the R™" space but only
some convex, compact and multi-lateral subspace of R™. Analytical results for the
population of two elements, obtained by using population state space description,
are presented in (Karcz-Duleba 2001).

1.4. Summary

The evolutionary algorithm is distinguished by two main characteristics. Unlike
other classes of optimization algorithms the EA operates on the population of
individuals. In this way the knowledge about the environment is discovered simul-
taneously by many individuals, verifies information inherited from ancestors and
is passed down from generation to generation. Species acquire their individual
characteristics due to the survival of well fitted ones, that is seemingly a blind
mechanism where only individuals well adapted to presence can survive and pro-
create. However, the nature does not select only the best individuals to procreate,
sometimes even a weakly adapted one has a possibility of creating an offspring
which can possess a feature without parallel in the population. This is the second
evolution characteristic, called soft selection. If we give up the hard selection and
use the soft one instead, assuming that weakly-adapted points (in the sense of the
values of the objective function) can be selected to create offsprings, the possibility
of the global optimum finding increases.
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Although evolutionary algorithms have been successfully implemented to
many practical problems, there have a number failures as well, and there is little
understanding of what features of these domain make them appropriate or inap-
propriate for these algorithms. Because of the simple form of the ESSS algorithm,
it seems to be useful material for transformation and analysis, which will be help-
ful to understand the nature of evolution algorithms. This is a task for the next
chapters of this part of the book.



Chapter 2

NATURAL EXPLORATION MECHANISMS

If the adaptation landscape is composed of multi-dimensional hills, valleys, sad-
dles and ridges, it is easy to prove that the Darwinian-type evolution has a cyclic
nature (Galar 1989). Each cycle consists of two phases: active and latent. In rela-
tive short-lived active phases, the population of individuals climbs an adaptation
slope to a neighbourhood of a local peak. The latent phase is a quasi-stationary
state with sporadic fluctuations, such a phenomenon is known in biology as so
called ,Miiller’s catch” (Miiller 1964): the population is trapped around the lo-
cal optimum of the fitness, almost all mutations give worse fitted offsprings. If
the occupied hill possesses a higher neighbour, the fluctuations can contribute to
cross a saddle and a new active phase starts. The cyclic nature of evolution is
consistent with the theory of ,punctuated equilibria” (Eldredge and Gould 1972)
which claims that the evolution is not evolve with steady motion but irregular —
stepwise.

In order to illustrate the ESSS process, a sum of three two-dimensional Gauss-
ian peaks

d(x) = %exp(—S((l—azl)Q-va))+exp(—5(w%+wg))+

+gexp(—5(aﬁ+(l—$2)2)) (2.1)

was chosen as a fitness function (Fig. 2.1a). The searching process can be split
into two cyclically interchanged phases: an active phase (exploitation) and a latent
phase (exploration) (Fig. 2.1b). In the short-lived active phase the concentrated
population moves toward a local pick of the fitness. In the long-standing latent
phase the trapped population fluctuates around the top in the search for a saddle
of the adaptation landscape.

Long-time execution of the ESSS algorithm is caused, among other things,
by long time intervals of the latent phases which result from the fact that the
selection process prefers new offsprings allocated in well-exploited areas around
the occupied peak. This is, of course, a drawback to this approach in the context
of the effectiveness of the global optimization process. In order to overcome this
problem, a natural idea is to exclude the neighbourhood of the occupied peak
in the exploration process and to propose and analyze some mechanisms which
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would try to accelerate the saddle crossing and shorten the time spent on the
latent phase. There are many instances of this idea in the specialized literature
(Béck et al. 1997, Goldberg 1989, Michalewicz 1996, Schaefer 2002).

There are three ways of influence on the ESSS algorithm processing
(Obuchowicz 2003a):

e adaptation of algorithm parameters;
e modification of evolutionary operators;
e inclusion of the population influence on the fitness function.

In this chapter a few methods, which increase the ESSS exploration abilities,
divided into three above classes, are presented.

2.1. Adaptation of algorithm parameters

The efficiency of the ESSS algorithm depends on values of input parameters: the
standard deviation of mutation ¢ and the population size n (Table 1.3). Both pa-
rameters can be adapted during the algorithm execution. This idea is not novelty.
The adaptation of the mutation standard deviations are included in the standard
versions of the ES (Béck and Schwefel 1993, Schwefel 1981) and the EP (Fogel et
al. 1991). Standard deviations in the ES and the EP algorithms are self-adapted
and changed randomly and continuously being subject to the same low as in the
case of variables of the objective function. Unlike these algorithms, the adaptation
of the standard deviation in the modified ESSS algorithm, called the ESSS-SVA
(the ESSS with Simple Variance Adaptation), is controlled by the actual state of
population (Obuchowicz and Patan 1997a). There is proposed a completely new
mechanism, called trap test, which monitored whether the population is trapped
around a local peak of the fitness function. The varying population size was firstly
proposed for the GA algorithm by Arabas and coworkers in their GAVaPS algo-
rithm (Arabas et al. 1994). Each individual is extended by a new parameter: the
life-time, the value of which depends on the individual fitness. This technique,
slightly modified, is implemented in the ESSS-VPS (the ESSS with Varying Pop-
ulation Size) algorithm (Obuchowicz and Korbicz 1999).

2.1.1. Adaptation of the standard deviation of mutation

Idea. When the population is trapped around a local peak, the standard deviation
of mutation increases. This fact results in a larger variance of the population and
a worse mean fitness. In this way, the mean fitness of the population decreases to
a saddle level and the possibility of saddle crossing increases.

ESSS-SVA algorithm. When compared to ESSS, the ESSS-SVA algorithm is
enriched by an additional mechanism which consists of three new procedures:

1. Trap test. The objective of this procedure is to determine whether the pop-
ulation quality changed substantially for a given number of epochs ¢7. The
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test is positive if the population displacement for the last ¢ epochs is of the
same order as the mutation variance o;.

2. Adaptation of the mutation variance. This procedure is started if an evo-
lutionary trap is detected. The variance of the normal distribution used in
mutation is multiplied by a constant a > 1.

3. Return to the initial variance — If no evolutionary trap is detected, the vari-
ance of the normal distribution is set to the initial, relatively low value.

The ESSS-SVA algorithm can be written in the following form (see Table 1.3):
1. Initiation
2. Repeat

(a) Estimation;
(b) Choice of the best element in the history;

(c) If Trap Test then Adaptation of the mutation variance else Return to
the initial variance;

(d) Selection;
(e) Mutation;

Until ¢t > tmax-

Illustrative example. In order to validate the performance of the ESSS-SVA
process, let us consider again the sum of three two-dimensional Gaussian peaks as
a fitness function (2.1). From the results shown in Fig. 2.2 it is easy to see that
the applied SVA mechanism accelerates the effectiveness of saddle crossing.

2.1.2. Adaptation of the population size

Idea. When the population fluctuates around a local peak of the fitness function,
individuals weakly fitted but geographically allocated closely to the saddle, seem
to have a greater chance to create descendants in the other side of the saddle. The
probability that such an individual will be selected as a parent increases when
the population size is low, in other words, it has fewer rivals with better fitness.
On the other hand the fluctuations of small population around a local peak are
higher and the efficiency of local fitness maximum allocation is low. Therefore,
the following hypothesis can be advanced that if the population size 7 is large, the
process possesses a high quality of local fitness maximum allocation, but its ability
of saddle crossing is poor in comparison with the ESSS algorithm with small value
of 7.

ESSS-VPS algorithm. The value of 5 is adapted in the ESSS-VPS algorithm.
An individual element ! in the ESSS-VPS algorithm is extended by adding one
component: the life-time 7/, i.e. the number of epochs in which the element z!
exists in population. The life-time 7} is specified at the moment of an element
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Fig. 2.2. The results of the ESSS-SVA searching process for the adaptation landscape
(2.1). Figures (a) and (b) illustrate relations between the fitness of the best
element in the population and the population variance, respectively, vs. epochs.
These results were obtained for n = 15, 09 = 0.03, @ = 1.1, ¢+ = 20 and

tmax = 300.
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Tab.2.1. Parameters used in simulations

Parameters Values
maximum of epoch (fmaz) 3000
initial population size (1) 5;10; 20; 50; 100
maximum life-time (7,,42) 4
standard deviation (o) 0.005;0.01;0.05;0.1;0.5

birth. It depends on the relation between an element’s fitness ® (z%) and the
fitness history of population. A few methods of determining 7} have been tested.
The following one was chosen in (Obuchowicz and Korbicz 1999):

¢t
i = [TmfmTkl , (2.2)
0

where T4, 18 an exogenous parameter, [z] returns the minimal integer value that
is still greater then z. Unlike genetic algorithms, where the varying population size
is a technique to avoid precocious convergence (Arabas et al. 1994), the population
size decreases when average fitness of the population increases, in the ESSS-VPS
algorithm the population size increases with average fitness of population and
decreases, when the population is trapped around the local optimum or average
population fitness decreases.

Illustrative example. Let us consider three two-variable functions from Ap-
pendix B: the ,drop wave” function f4(z1,2z2) (B4), Michalewicz’s function
fs(z1,22) (B5), and Rastringin’s function fr7(z1,22) (B7). All these functions
are strongly non-linear and multimodal. The fitness function has been chosen in
the form :

1\2
(o) = £ (o) = hun+ () 23
where fI .. =min(f (z})|k=1,...,n") is the minimal value of f taken over all

elements in the actual population of a size 5, and f is a given objective function
which has to be maximized. Such a fitness function is non-negative and its rel-
ative values in the actual population make the proportional selection effective.
Simulations have been done several times for all possible combinations of input
ESSS-VPS parameters contained in the Table 2.1. When the best set of parame-
ters was allocated, several starting points (mg) were tested. The best results have
been compared with the ESSS algorithms. Table 2.2 presents the percentages of
500 algorithm courses which have found the global optimum finding for three cho-
sen objective functions. Simulations show that the ESSS-VPS algorithm is slightly
better than the standard ESSS algorithm in localization of a global optimum of a
given objective function.
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Tab.2.2. Percentages of algorithms courses which have found the global optimum:
tmaz = 3000, no = 20, Tmaz = 4, starting points: (9,9) for f4, (3,3) for fs,
(4.5,4.5) for fr.

alg. ESSS ESSS-VPS
o |001]005]01]001]005] 0.1
fil 0] o | 8] 0o o010
s o | 10 88| 4 | 46 | 96
fo 1 0] 8 o8] o | 18 | 96

2.2. Modification of evolutionary operators

The ESSS algorithm is composed of two evolutionary operators: selection and
mutation. Many selection and mutation techniques known from the literature can
be implemented (cf. (Bick et al. 1997)), but methods presented below do not
violate the models paradigm (see section 1.3.1).

2.2.1. Forced direction of mutation

Idea. The ESSS with Forced Direction of Mutation (ESSS-FDM) algorithm,
firstly proposed by Obuchowicz and Korbicz (1998), has been designed as an adap-
tation algorithm in a time-varying landscape (Obuchowicz 1999b). The idea of
FDM mechanism is following: if natural conditions existing in the environment fa-
vor some direction of alteration in the phenotype space, this direction is preferred
not only by selection, but by mutation, too.

ESSS-FDM algorithm. The ESSS-FDM algorithm differs from the standard
ESSS one only in the modification step. The elements selected are mutated by
adding to each component ¢ a normally-distributed random variable with expec-
tation m; # 0. This is unlike the ESSS algorithm, where m; = 0 (see Table 1.3).
Accordingly we have

(¢) Mutation

P(t) —» P(t+1);

(i), = (=), + N(mi,0); i=1,2,...,n; k=12,...m

(@) == (b)),
U k=1
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Fig. 2.3. The fitness of the best element in the population vs. epochs; these results were
obtained for n = 20, 0 = 0.03, tmax = 1000 and p =0, p =05, p =1, p = 2,
© = 10, respectively from the top to the bottom panels.

Illustrative example. Let us consider the fitness function ® (x) = f; (x) (B1)
from Appendix B. The initial point is chosen as xJ = [—1,2]. Results for differ-
ent set of the ESSS-FDM algorithm parameters are presented in Fig. 2.2.1. The
mutation expectation vector m! depends on standard deviation of normal distri-
bution o and is parallel to the latest trends of the population drift. The exogenous
parameter pu, which is called the momentum, determines the proportion between
the standard deviation ¢ and the length of the vector m! : u = |[m!||/o. If p is
too small, there is essentially no difference between the ESSS and the ESSS-FDM
searching. In the case of a very large u (||mt|| > a), there is no possibility of
changing the direction of the population drift, which was chosen in the beginning
of the searching process.

2.2.2. Local selection

Idea. Almost all known evolutionary algorithms use a global selection, i.e., all
individuals in the current population compete with each other for placing as many
offspring individuals in the next generation as possible. In nature, such a selection
is impossible for population dispersed on a wide area. The natural selection is local
selection, where an individual only competes with rivals in its “ecological niche”.
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The idea of the local selection is as follows (Obuchowicz 2002a). Each indi-
vidual of the current population is a centre of a sphere with a given radius p. One
parent is selected from each of 7 spheres in accordance to the proportional selection
(the roulette method), i.e., individuals located inside a given sphere compete with
each other to become a parent. In this way the parent population of 7 individuals
are created. There are proposed three variants of evolutionary algorithms which
use the local selection.

ESSS algorithm with Local Selection (ESSS-LS). The ESSS-LS algorithm
differs from the ESSS algorithm (see Table 1.3) only in Selection step. At first n
sets of individuals are constructed

St={alePt): |\~ 2l <p}, j=12....n. (2.5)

The set S} contains the individual 2! and its neighbours located in the sphere
centered on w§ and the radius p, which is an input parameter of the algorithm.
It easy to see, that x! € S; & a:; € S!. From each set (5}5 |j=1,2,...,n) one
parent is randomly chosen. The probability pﬁj that the individual z! € S; will be
chosen as a parent has the form

¢;

. (2.6)
aicst i

pﬁj =
ESSS algorithm with Mixed Selection (ESSS-MS). In the ESSS-MS algo-
rithm, local and global selection operators are applied alternately. At first, the
local selection is used over #; iterations and next the global selection is used over
t, iterations. Both time intervals ¢; and ¢, are input parameters.
ESSS algorithm with Adapted Local Selection (ESSS-ALS). The selection
in the ESSS-ALS is local and almost the same as in the ESSS-LS. The ESSS-ALS
differs from the ESSS-LS only in representation of individual and definition of S;.
An individual in the ESSS-ALS algorithm is a pair (2}, p%), where p{ is initially
chosen at random from a given interval (0, ¢) with uniform distribution. Then the
equation (2.5) has a new form:

t_ ot ot t t C_
Sj={z; € P(t) : [|lz; —z;l| < pj} J=1,2,...,m, (2.7)

and hence the relation o} € S} & x} € S} is not still valid.
The mutation in the ESSS-ALS operates not, only on the phenotype :B;, but
also on the local radius pz-. A new radius is obtained as follows

P = |t + aN(0, 1) (2.8)

The experiment which compares described above techniques is presented in
Section 2.4.1.

2.3. Population influence on the fitness

There are strong interaction between populations of individuals and the environ-
ment in nature. On the one hand, the population fitness depends on an available
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amount of food and water. On the other hand, individuals can influence on the
environment in order to improve the living conditions or, sometimes, they destruct
it when the environment cannot provide too large number individuals of a given
species.

2.3.1. Impatience and polarization

Idea. Individuals weakly fitted but geographically allocated closely to the saddle,
seem to have a greater chance to create descendants in the other side of the saddle.
Thus, when the population does not achieve better values of the fitness function, an
impatience operator is activated. This operator modifies the fitness of individuals
so that the remote individuals from the centre of the population are rewarded. In
this way the population is dispersed like in the sharing method (Goldberg 1989). In
the case of the ESSS algorithm with the impatience operator new unexpected effect
occurs: the ,polarization”. Dispersed population assembles in two clusters located
on either side of the population centre and rotating around it. If the adaptation
landscape is regular then this phenomenon accelerates the saddle crossing.

Impatience operator. The impatience operator has been proposed by Galar and
Kopciuch (1999). It transforms the original fitness ®(x;) of the j-th individual to
the effective fitness ®.(x;) as follows:

®,(z;) = (-f +c> d(x;), (2.9)

where d; = [lz; — ()| and da = 3 3}, di.
The efficiency of the impatience and polarization (IP) effect has been tested
on the bimodal fitness function composed of the sum of two Gaussian peaks (Galar

and Kopciuch 1999). Obtained results suggest that:

e the IP effect affects on the decreasing of the number of iterations needed to
cross a saddle;

e the IP mechanism increases the saddle crossing efficiency for large popula-
tions, almost no effect has been noticed in the case of very small populations;

e the IP effect is profitable in the case of low dimensional landscapes.

2.3.2. Erosion

Idea. The great efficiency of saddle crossing of the ESSS algorithm and all its
modification described in this section is not a sufficient condition for scouring a
wide area of the searching space. There is a possibility that population of searching
individuals will fluctuate between two or more neighbouring local optima. There
exists natural phenomenon, which influences the rate of saddle crossing and pre-
vents searching individua from coming back to the previously inspected areas. This
phenomenon is known as the landscape deterioration by the evolutionary trapped
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population. Therefore, the population decreases its fitness itself indirectly search-
ing the escape way from the trap.

ESSS algorithm with Deterioration of the Objective Function (ESSS-
DOF). The ESSS-DOF influences on the topology of an objective function.

It contains an additional step which is composed of the following procedures
(Obuchowicz 1997):

e Trap test — the objective of this procedure is to determine whether the pop-
ulation quality changed substantially for a given number of epochs.

e Erosion — this procedure transforms the objective function ®(x) as follows:

d — for @ > ,
d(x) = () - Gl) for 2(z) 2 Gla), (2.10)
0 for ®(x) < G(x),
where G(x) is the deterioration peak chosen in the Gaussian form
1
Gla) = hexp(— 5<w—x>Tﬁr-1<m—x>), (2.11)

where h, x and T are a height, a central point and a correlation matrix of
the Gaussian deterioration peak, respectively.

The deterioration peak (2.11) has to approximate the currently occupied
local quality peak. If the population is trapped around the local optimum, it
can be assumed that the population distribution approximates the shape of this
peak. Thus, the parameters of the deterioration peak can be chosen in the form
(Obuchowicz 1997):

h = Ghax: (2.12)
= (z(t)), (2.13)
T = G, (2.14)

where ¢! . is the fitness of the best individual in the actual population P(t), (x(t))
and C; are the expectation vector and the covariance matrix of P(t), respectively.

Although, the ESSS-DOF algorithm is the most efficient in saddle crossing
in comparison with other methods based on ESSS, it possesses one main disad-
vantage. The deterioration function (2.11) does not approximate current quality
peak with the sufficient accuracy. If an evolutionary trap is detected, the modified
quality peak looks like a crater with steep slopes. The deterioration mechanism
should be performed several times until the population starts scouring another
landscape area. A large number of deterioration peaks used by the algorithm in-
fluences the computation time and space complexity. In (Obuchowicz 2000b) a
modified ESSS-DOF algorithm, named ESSS-DOF* has been proposed. Basing
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on analytical consideration contained in (Karcz-Duleba 2001a) it can be shown
that if the fitness function is chosen in the form of Gaussian peak:

O(z) = f[lexp < —

an infinite population in the latent phase can be modelled by the Gaussian density
function with the variance:

, 1, 27;\ > :
Viei = 50 1+4/14+ (= , i=1,2,...,n. (2.16)
! (2

The covariance matrix of the deterioration Gaussian peak (2.11) is approximated
using (2.16). This part of algorithm consists of four steps:

), (2.15)

2

i
2

27;

1. Calculate the covariance matrix C; of the actual population;

2. Find all eigenvectors and eigenvalues of the matrix C; in order to define an
orthonormal matrix U and a diagonal matrix diag(vZ]i = 1,2,...,n) such
that:

C; = Udiag(vili =1,2,...,n)UT; (2.17)

3. Calculate the variances of the deterioration peak (2.16):

2
=i (% -1); (215

o2
4. Calculate the covariance matrix T of the deterioration peak:

T = Udiag(r?|i = 1,2,...,n)U". (2.19)

Illustrative example. In order to validate the performance of the ESSS-DOF*
algorithm, let us consider the sum of three two-dimensional Gaussian peaks as a
fitness function (2.1). The ESSS-DOF* algorithm has a much greater convergence
rate than other algorithms from the ESSS family (Fig. 2.4). If the population
gets stuck in an evolutionary trap, the process of local peak erosion is started.
This effect decreases the average fitness of the population. The population fitness
reduces to a saddle level, and running away towards other quality peak is possible.
The deteriorated peak will never be attractive for the searching population. Two
disadvantages of ESSS-DOF* should be noted. First, if the algorithm approxi-
mates well the peak shape, then the fitness function after the erosion procedure
vanishes in the area occupied by the population. Consequently, the evolutionary
algorithm works like a typical stochastic one and its effectiveness in locating a new
peak substantially decreases. The other problem is that the population composed
of a finite number of individuals fluctuates around the local peak and may non
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Fig. 2.4.
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An exemplary ESSS-DOF search in the adaptation landscape (2.1): (a) the
fitness of the best element in the population vs. epochs for the ESSS-DOF”,
(b) the fitness of the best element in the population vs. epochs for the ESSS-
DOF; these results were obtained for n = 15, ¢ = 0.03, tmax = 3000 and
tT = 20 epochs.
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uniformly surround it at the time moment the erosion procedure fires. As a result,
the neighbouring peaks may be deteriorated. Figure 2.4a shows that the medium
peak of the adaptation landscape was aggravated by the lowest one. Fortunately,
the highest one remained intact. Taking account of the numerical complexity
and above disadvantages of the ESSS-DOF* algorithm, the ESSS-DOF algorithm
seems to be more lucrative.

2.4. Experimental comparisons

2.4.1. Local selection contra global selection

Many numerical simulations (about 800) with two two-variable objective functions
have been carried out. First function, Schwefel’s problem 2.22

fi(z1,m2) = [21] + |22| + |71 |[22],

(2.20)
min f; =0, argmin f; = (0,0),
is unimodal, while the second one, Rastringin’s function
fo(z1,72) = 27 + 23 — 10(cos(2mz1) + cos(27mxa) + 20,
(2.21)

min fo =0, argmin fo = (0,0),

is multimodal. The fitness function ®(z}) is calculated from the objective function
fi, which has to be minimized, using the formulae similar to (2.3)

1
O(z}) = fimax — filzh) + e (2.22)

= max(fi(z}) | k = 1,2,...,n) is the maximum value of f; taken

3

where ff ..
over all elements in the current population.

Schwefel’s problem 2.22. Population in the ESSS algorithms (Fig. 2.5) is fo-
cused around some centre (z}) with the standard deviation

(@} — (x}))?) ~ o

This algorithm is very effective in the optimum finding problem, the standard
deviation of mutation o controls the convergence rate of the algorithm.

The ESSS-LS algorithm performance strongly depends on the radius p of
the neighbourhood sphere. If p < o there is no selection. We get clear stochastic
expansion of the population independently of the objective function. If p > o then
the ESSS-LS algorithm reduces to the ESSS algorithm. The most interesting case
is p & o, where population is divided into few subpopulations which sporadically
exchange individuals and are explored on a wide area. However, the local selection
decreases the effectiveness of the algorithm in the case of an unimodal objective
function like the Schwefel’s problem 2.22.
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Fig. 2.5. Schwefel’s problem 2.22. Traces of the best elements locations of the ESSS
(a), the ESSS-LS (b), the ESSS-MS (c) and the ESSS-ALS (d) algorithms —
typical results (n = 20, o = 0.03, 3 = [2,2], p = 0.07, t7 = 20, tmax = 1000).

Mixed selection mechanism in the ESSS-MS algorithm joins the advantages
of both the local and global selection. Firstly it uses the local selection and allows
the population to divide it into small subpopulations and explore on a wide area.
After some generations the selection is changed from local to global and population
is focused on one or few subpopulation around the best obtained points. In the
case of the Schwefel’s problem the ESSS-MS effectiveness can be comparable with
the ESSS one.

The ESSS-ALS algorithm effectiveness is placed between the ESSS-LS and
ESSS-MS ones. During its processing the population autonomously divides into
few large subpopulations, which possess a high exploitation rate, and many small
ones with high exploration rate. Unlike the ESSS-MS algorithm, such a division
is not forced by exchanging local and global selection, which is controlled by a
researcher, but results from the implemented local selection with neighbourhood
sphere radius self-adapted during the algorithm processing.
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Fig. 2.6. Rastringin’s function. Traces of the best elements locations of the ESSS (a),
the ESSS-LS (b), the ESSS-MS (c) and the ESSS-ALS (d) algorithms — typical
results (n = 20, o = 0.03, =) = [2,2], p = 0.1, t7 = 20, tmax = 3000).

Rastringin’s function. However, three, proposed in this work, local selection
implementations rather interfere in quick local optimum allocation, their high
exploration rate makes them very effective in the case of multimodal objective
functions.

Figures 2.6 present the algorithms processing for the same standard deviation
of mutation ¢ and the same population size 5. The ESSS algorithm cannot leave
the local valley, in which the initial population has been created. The ESSS-LS,
ESSS-MS and ESSS-ALS algorithms successively explore consecutive valleys and
find the global optimum. The exploration rate of the ESSS-LS is the highest one
and the population disperses in many local valleys and none of them is preferred.
In the case of the ESSS-MS and the ESSS-ALS the population dispersion is guided
in the direction of global optimum.
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Tab.2.3. Parameter values used in the simulations

Algorithm Parameter Value

all tmax 3000

all 7 10, 20, 50

all o 0.015, 0.03,0.05,0.1

all x) [1,0,...,0]
ESSS-SVA o 1.1

ESSS-SVA, ESSS-DOF ts 10

ESSS-FDM I 0.3

2.4.2. Efficiency of saddle crossing
2.4.2.1. Experiment

Let us consider the problem described in Appendix A.

The aim of the experiment is to compare the effectiveness of the four evo-
lutionary algorithms (ESSS, ESSS-SVA, ESSS-FDM, and ESSS-DOF) in saddle
crossing problem. Two parameters are chosen as measures of this effectiveness.
The first one is the average number #. of epochs which is needed to cross the sad-
dle by a given algorithm. The second one p. is the percentage of runs in which the
global optimum was found in a given time tyax- In order to make the Gaussian
mutation to be independent on the landscape dimension (see the next chapter)
the mutation (1.6) is substituted by the following

NG

where the standard deviation o is a parameter to be selected.

The algorithms were processed over 400000 times: 500 times for 19 dimensions
(n= 2,3,...,20) and 12 combinations of the population size n and the standard
deviation of mutation o (see Table 2.3). Because of the numerical complexity of the
ESSS-DOF algorithm, the number of times it was processed its processing is lim-
ited to the following combinations of n and ¢ : = 20 and ¢ = 0.015,0.03,0.05,0.1;

o = 0.05 and n = 10, 20, 50.

(zit'), = (x},),+ N(O0,—=) i=1,...,n, (2.23)

2.4.2.2. Results for ESSS

The results obtained for the ESSS algorithm are comprehensively presented in
Figs. 2.7, 2.8 and 2.9. Analyzing those, the following conclusions can be drawn:

e The saddle crossing effectiveness of the ESSS algorithm is independent of the
adaptation landscape dimension. This result opposes the results presented in
(Galar 1989). The reason is different mutation operators in both approaches.
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Fig. 2.7. The ESSS algorithm with n = 10: the mean number of epochs ¢. needed to

cross the saddle (a) and percentages p. of the algorithm runs in which the
global optimum was found in 3000 (b) vs. the dimension of the adaptation
landscape n; (o = 0.015: crosses, ¢ = 0.03: stars, o = 0.05: diamonds,
o = 0.1: triangles).
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Fig. 2.8.
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The ESSS algorithm with n = 20: the mean number of epochs ¢. needed to
cross the saddle (a) and percentages p. of the algorithm runs in which the
global optimum was found in 3000 (b) vs. the dimension of the adaptation
landscape n; (0 = 0.015: crosses, ¢ = 0.03: stars, o = 0.05: diamonds,
o = 0.1: triangles).
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Fig. 2.9.
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The ESSS algorithm with n = 50: the mean number of epochs ¢. needed to
cross the saddle (a) and percentages p. of the algorithm runs in which the
global optimum was found in 3000 (b) vs. the dimension of the adaptation
landscape n; (0 = 0.015: crosses, ¢ = 0.03: stars, o = 0.05: diamonds,
o = 0.1: triangles).
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Galar (1989) modifies a selected parent according to the formulae (1.6) and
the mutation radius is dependent on the landscape dimension. In this work
the equation (2.23) is used.

e It is not surprising that the saddle crossing effectiveness decreases with the
standard deviation . If one chooses the standard deviation as a length unit,
the saddle width relatively increases when o decreases.

e A small population is better than a large one. For small values of o, i.e.
when percentage of successful algorithm runs p. < 100%, p. decreases and t,
increases when the population size n increases. For large o, t. is smaller in
the case of large populations, but the number of fitness function evaluations
is still larger.

The good ability of the ESSS algorithm with small population size in the
saddle crossing problem was reported in (Galar and Karcz-Duleba 1994), where
an extremely small population — of two individuals — was considered. On the
other hand, a small population, in comparison to a large one, localizes optimum
points with lower accuracy. Fitting of both input parameters n and o requires
some research experience.

2.4.2.3. Results for ESSS-SVA

Figs. 2.10, 2.11 and 2.12 present results obtained for the ESSS-SVA algorithm. One
can notice that the value of the initial standard deviation oy does not influence
significantly the effectiveness of the algorithm.

Unlike in the case of the ESSS algorithm, there exists a dependence between
the ESSS-SVA algorithm’s effectiveness and the dimension of the adaptation land-
scape. It is significant especially for small populations. The algorithm produces
satisfactory results in low-dimensional landscapes. When the dimension increases,
the algorithm’s effectiveness violently decreases and fluctuates around some steady
level for high dimensions. The researcher who wants apply the ESSS-SVA algo-
rithm to a given problem has to fit the size of the population several times higher
than the dimension of the searching space.

2.4.2.4. Results for ESSS-DOF

The most interesting simulating result for the ESSS-DOF algorithm is that the
population has to be at least a simplex in the n-dimensional searching space
(Fig. 2.13):

n>n+1l. (2.24)

If the above relation is not satisfied, then p. = 0%. No exceptions was noticed
during the simulations. This feature can be explained by the fact that one needs at
least n+ 1 points in order to approximate a convex of a fitness function. If only the
expression (2.24) is satisfied, the population size does not influence significantly
the ESSS-DOF algorithm’s effectiveness.
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Analyzing the relation between the ESSS-DOF algorithm’s effectiveness and
the standard deviation o (Fig. 2.14) one can distinguish three ranges. The first
one is the range of low standard deviations, where the ESSS-DOF algorithm effec-
tiveness of saddle crossing is pure. The second range of high values of o describes
a very effective algorithm searching. There exists some intermediate range for
which the algorithm effectiveness cannot be clearly characterized. Both ¢, and p.
stochastically fluctuate from low to high values and these results are not recurrent.

2.4.2.5. Results for ESSS-FDM

The best results of the ESSS-FDM algorithm in the saddle crossing problem were
obtained for large values of the standard deviation ¢ and the population size n
(Figs. 2.15,2.16 and 2.17). Relationships between the algorithm’s effectiveness and
both of the input parameters, o and 7, are not trivial or correlated. If & = 0.1, then
the best results are obtained for n = 50, but if ¢ = 0.015, then the effectiveness of
the large population is worse.

One can say that the population size is small or large only in comparison
with the landscape dimension. The dependence of the algorithm’s effectiveness on
the searching space dimension (Fig. 2.15a) clearly illustrates that the ESSS-FDM
algorithm works well if only > n and the value of the o is sufficiently high.

2.4.2.6. Comparison

The graphs presented in Figs. 2.18 + 2.29 comprehensively illustrate the compara-
tive characteristics of algorithms considered in this work. The following conclusions
are worth to noticing;:

e Generally, the ESSS-SVA algorithm seems to be the most effective one for the
saddle crossing problem. If it finds the global optimum, it needs the shortest
time to do it in comparison with other considered algorithms. However, in
some cases, described below, its effectiveness is very poor.

e In the case of small population sizes, the saddle crossing ability of the
ESSS-SVA and ESSS-FDM algorithms becomes worse with an increase
in the searching space dimension. FExtremely, the SVA and FDM mech-
anisms seem to disturb ESSS when input parameters are well adjusted
(Figs. 2.19, 2.21b, 2.24b, 2.25 and 2.27).

o The effectiveness of the ESSS-DOF algorithm is high in low dimensional
landscapes (Figs. 2.19a, 2.20,2.21, 2.23a, 2.25a, 2.26,2.27, 2.29a). Otherwise,
its values are like the effectiveness of the ESSS algorithm. The advantage of
the ESSS-DOF algorithm is that it does not return to previously occupied
peaks, but tries to explore new, unknown areas. This feature cannot occur
in the case of the chosen fitness function (Al).
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Fig. 2.14.
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Fig. 2.18.
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Fig. 2.20.
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Fig. 2.21.
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Fig. 2.22.
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Fig. 2.24. Percentages p. of algorithm runs in which the global optimum was found in
3000 epochs vs. the dimension of the adaptation landscape n for n = 10 :
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Fig. 2.25. Percentages p. of algorithm runs in which the global optimum was found in
3000 epochs vs. the dimension of the adaptation landscape n for n = 10
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Fig. 2.26. Percentages p. of algorithm runs in which the global optimum was found in
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Tab.2.4. Parameter values used in the simulations

Algorithm Parameters | Values
all tmax 1000
n 20
o 0.05
ESSS-SVA @ 1.1
ESSS-SVA and ESSS-DOF t 10
ESSS-FDM 7 0.3

2.4.3. Optimization of the chosen multi-dimensional functions
2.4.3.1. Experiment

Many simulations (about 1600) with eight two-variable objective functions were
carried out. Test functions used during simulations are listed below:

e function f; (sum of two Gaussian peaks) (B1)

e function f> (De Jong’s function F2) (B2),

e function f3 (De Jong’s function F5) (B3),

e function f; (the ,drop wave” function) (B4),

e function f5 (Michalewicz’s function) (B5)

e function fg (Shubert’s function) (B6)

Y

e function f7; (Rastringin’s function) (B7)

o~ o~ o~~~ o~~~

e function fs (Acley’s function) (B8)

All those functions have to be maximized and are strongly non-linear and
multimodal. The fitness function was chosen in the form (2.3), where nt = n =
const.

At first, simulations were carried out several times for different sets of input
parameters. When the best set of parameters was allocated for each algorithm
(see Table 2.4), several starting points were tested.

2.4.3.2. Results

The results are compared in Table 2.5. Analysis of the results shows that all mech-
anisms (SVA, FDM and DOF) applied to the standard ESSS algorithm accelerate
the crossing of the objective function saddles and increase the effectiveness of the
global optimum finding. Two algorithms, ESSS-SVA and ESSS-DOF, compete
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Tab.2.5. Percentages of runs in which the global optimum was found

function fi | o | fa|fa|fs| fo| fr]fs
ESSS 38 53 0 011212226 0
ESSS-SVA 100 | 88 |42 | 37 | 27 | 98 | 59 | 69
ESSS-FDM | 87 79 [ 58| 0 |13 |81 | 74| 0
ESSS-DOF | 100 | 100 | O 0 |41 39| 23| 13

to be the best. ESSS-SVA seems to be the most effective algorithm. It wins
with other algorithms in the case of almost all tested objective functions. But
ESSS-DOF wins in the case of a fitness function which consists of a group of con-
centrated local optimum peaks and other distant peaks (Michalewicz’s function
— f5). If the population in ESSS-SVA starts in the area of this local group, it
cyclically moves from peak to peak of the group and cannot achieve a remote one.
ESSS-DOF erodes peaks in turn and slowly, but consequently, leads toward the
global optimum.

2.5. Summary

Techniques of exploration in the ESSS algoritm can be divided into three classes:
techniques which adapt algorithm parameters (the ESSS-SVA and ESSS-VPS),
methods which modify evolutionary operators (the ESSS-FDM, ESSS-LS, ESSS-
MS and ESSS-ALS) and which modify the fitness function (the ESSS-TP and ESSS-
DOF).

However, most of proposed methods possess their equivalents in the literature,
there are some new proposals. First of all the trap-test procedure (the impatience
mechanism) is an original idea. This procedure decides on turning off or on the
exploration mechanism. This decision is dependent on the actual state of the
evolutionary process. The forced direction of mutation technique (ESSS-FDM)
is an original method which has not an equivalent in the literature. However,
the idea of the erosion technique can be found in (Beasley et al. 1993), the wide
simulation analysis of the proposed ESSS-DOF algorithm is firstly included in this
book.

The results of three types of comparison experiments were presented in this
work.

The aim of first experiment was to analyze a local selection mechanism, which
seems to be specific to natural selection, in the global parameter optimization.
Three variants of the local selection were implemented in the standard ESSS al-
gorithm: ESSS-LS, ESSS-MS and ESSS-ALS, and were compared with the ESSS
in the saddle crossing problem and two 2D optimization problems: the Schwefel’s
problem 2.22 and the Rastringin’s function. Simulation experiments show that
the ’local’ selection mechanisms are effective only for low landscape dimensions
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(in comparison to the size of population). The ESSS-ALS algorithm possesses
the highest exploration ability. Although, the local selection mechanism rather
decreases effectiveness of the evolutionary search in an optimum allocation in the
case of unimodal Schwefel problem, it accelerates the exploration rate of the algo-
rithm, which is helpful in global optimum searching of the Rastringin’s function.
Especially, the ESSS-MS and ESSS-ALS algorithms, which join the good exploita-
tion rate of the ESSS and the exploration rate of the ESSS-LS, seem to be good
tools for technical applications. Proposed method is close to the idea of diffusion
model. In the diffusion model, the number of competitors is constant and equal
for each individual in the base population. Here, some kind of niching is used.
The questions arise: is the ball-shaped neighbourhood the most appropriate for
all possible fitness functions (e.g., one might expect a negative answer when the
shapes of the attraction around the local maxima are highly deformed ellipsoids)
and what is the nature of the transition effect which is still incomprehensible.

The performance analysis of the algorithms mentioned above for the problem
of multi-dimensional saddle crossing was the subject of the second experiment.
Emphasis is put on the relation between the effectiveness of the algorithm and
the dimension of the adaptation landscape. Simulation results reveal that all
modified algorithms are usually better than the standard ones. In the case of a
low population size, the performance of ESSS-FDM, ESSS-SVA, and ESSS-DOF
became worse for an increasing standard deviation of mutation and was lost with
the standard ESSS algorithm. It is worth noticing that in the case of the ESSS-
DOF algorithm the population has to be a simplex, i.e. the size of the population
has to be larger than the problem dimension.

The aim of the third experiment was the effectiveness analysis of the algo-
rithms in the global parameter optimization. All modified algorithms are more
effective than standard ESSS. Especially, ESSS-SVA and ESSS-DOF seem to be
useful in technical applications.






Chapter 3

MULTI-DIMENSIONAL MUTATIONS IN
EAS BASED ON REAL-VALUED
REPRESENTATION

Most applications of evolutionary algorithms (EAs), which use the floating point
representation of population individuals, use the Gaussian mutation as a muta-
tion operator (Béck and Schwefel 1993, Fogel et al. 1966, Fogel 1994, Galar 1985,
Michalewicz 1996, Rechenberg 1965). A new individual x is obtained by adding a
normally distributed random value to each entry of a selected parent y:

.’Bizyi-FN(0,0'i), 1=1,...,n. (31)

The choice is usually justified by the central limit theorem. Mutations in nature
are caused by a variety of physical and chemical influences that are not identifiable
or measurable. These influences are considered as independent and identically dis-
tributed (i.i.d.) random perturbations whose normed sum approaches a Gaussian
random variable in the limit (Rudolph 1997). If the Lindeberg condition is obeyed,
i.e. the first two absolute moments are finite, then the Gaussian distribution is
the only limit distribution for normed sums of i.i.d. random variables. Taking
into consideration also other distributions, which have finite absolute moments
B(0 < B < 2), the limit distribution for normed i.i.d. variables may be generally
expressed as (Gutowski 2001, Mantegna and Stanley 1994):

1 o0
L(z) = ;/0 exp ( — yq’g) cos gxdyg, (3.2)

and is known as the symmetrical Lévy stable distribution of index B and scale
factor v(y > 0). The special case of (3.2) for § =1 (and y = 1 for simplicity) is
the Cauchy distribution with the probability density function (pdf) in the form

1 T
7724 (2 —u)?’

g(@) = (3.3)
While the univariate Cauchy distribution has a unique definition, there exist
at least two multivariate versions of the Cauchy distribution: the spherically sym-

metric Cauchy distribution (Obuchowicz 2001b, Shu and Hartley 1987), and the
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Cauchy distribution with independent univariate Cauchy random variables in each
dimension. In recent years, the latter Cauchy mutation has been successfully ap-
plied in the various evolutionary algorithms (Béck et al. 1997, Kappler 1998, Yao
and Liu 1996, Yao and Liu 1997, Yao and Liu 1999). In these cases, the normally
distributed random value N(0, 0;) (3.1) is substituted by a random variable of the
one-dimensional Cauchy distribution. The Cauchy pdf shape resembles that of the
Gaussian one, but it approaches the axis very slowly, increasing the probability of
the so called macro-mutations and the local optimum leaving.

Rudolph (1997) analytically analyzes the local convergence of simple (1+1) ES
and (1 + A\)ES with Gaussian, spherical and non-spherical Cauchy mutations. It
has been proved that the order of local convergence is identical for Gaussian and
spherical Cauchy distributions, whereas non-spherical Cauchy mutations lead to
slower local convergence. There are no comparing results of the saddle crossing
ability of EAs with spherical and non-spherical Cauchy mutations in the literature.
The influence of the choice of the reference frame on the effectiveness of EAs in
global optimization tasks is a very important problem that should in particular be
analyzed (the symmetry effect).

Another problem which seems to be imperceptible by the researches is related
to the probability that the distance from the mutated point @ and its offspring y
will be in the range ||z—y|| € [r,r+dr]. Although the pdfs of multivariate Gaussian
and non-spherical Cauchy mutations of the type (3.1) have their optimum in the
mutated point, it is easy to prove (Obuchowicz 2001a, Obuchowicz 2001b) that
the most probable location of the offspring is the nearest neighbourhood of the
parent individual only in the case of the one-dimensional mutation. In the case of
n-dimensional one, the most probable location moves from the center of mutation
to the “ring" of the radius proportional to the norm of the standard deviation
vector of mutation and to v/n — 1 (the surrounding effect).

The aim of this chapter is to present the results of simulation experiments
which compare the effectiveness of evolutionary algorithms with multivariate
Gaussian and Cauchy mutations (Obuchowicz 2003b). Four types of mutations
are considered, namely, spherical and non-spherical Cauchy mutations, and the
Gaussian mutation in its classical form (3.1) and in the new form, in which spher-
ically symmetric random vector is decomposed on the uniformly distributed ran-
dom direction and a normally distributed random radius. It is important to note
that the surrounding effect does not obligate in the case of multivariate spherical
Cauchy and modified Gaussian distributions. Implemented EAs are based on two
types of evolutionary models: the ESSS (Tab. 1.3) and EP (Tab. 1.2). The main
difference between these two types of EAs is that the standard deviation of mu-
tation is adapted in EP but not in ESSS. Thus, it is possible to analyze whether
the adapted standard deviation reduces the surrounding effect or not.
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Fig. 3.1. Two-dimensional Gaussian density function, o = 1.

3.1. Surrounding and symmetry effects

A mutation function which describes the transformation of an element y into « in
accordance with the Gaussian mutation (3.1) has the form

stz —9) =[] o= (- 25 00). (3.4

Let us scale the reference frame using o; (i = 1,2,...,n) as a unit length in the
ith direction; then the length of the vector

i —Yi
r=qr;= ———
g

i:l,?,...,n} (3.5)

can represent the distance between the base and offspring vectors. Thus, the
equation (3.4) has the following form:

== (7)o (-57) 5
(r—y)=|—) exp| — =r7 |, .
ga ) N b D)
where r = ||7|| and 0 = (][], ai)l/n. The two-dimensional version of (3.6) with
y =0 and o0 =1 is presented in Fig. 3.1.

The probability dPs that the point obtained after mutation will be located
in the volume ([z;, z; + dz;]"|i = 1,...,n) is equal to

dPg = ga(x — y)dw, (3.7)

where dw = dx1dxs ... dx,.
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Let us consider the relationship between the probability dPg and the distance
between the base and mutated points. In order to do it, the n-spherical reference
frame with the origin in the base point y will be introduced. Transformation
equations have the following forms:

r1 = rcos(ay),

ro = rsin(ar)cos(as),

rg = rsin(ay)sin(az) cos(ag), (3.8)
rn = rsin(ay)sin(az)...sin(a,-1),

where ap_1 € [0,27) and (o; € [0,m)]i=1,...,n —2).
Using (3.8) in (3.7), the probability dPg can be obtained from the equation

1\" 1
aP; = (—%> exp (= 512 )"t drat = go(r)aran, (39)

where dQ = [} (sin”f("“)(ai)dai) is the infinitely small n-dimensional solid
angle. Due to non-negative values of the radius and the sinus function in the
interval [0,7), the magnitude operator of the transformation Jacobian can be
omitted. It is very interesting that for a small r the value of the probability
dPg is low. The most probable distance r* is not equal to 0 but

r*(n) = argmaxgg(r) = vn —1 (3.10)

and r*(n) — oo as n — oc. Therefore, in the case of the n-dimensional (n >
2) Gaussian mutation, the probability that the offspring will be located closely
to its parent is low and decreases with n. This fact influences the exploitation
effectiveness of EAs in the case of large landscape dimensions (the surrounding
effect).

In order to confirm the above results, a simulation experiment is done. 108
points are generated in accordance to (3.1) for dimensions n = 2,3,4,5, o4 =
09 = -+ = gy = 1 for each one-dimensional mutation and the base point y =
0. Histograms of the distances between the base and points mutated according
to (3.1) (Fig. 3.2a) show that the probability of point location in the nearest
neighbourhood of the base point is low and decreases with n. Maximum points of
histograms are obtained in r*(n) = v/n — 1.

The presented effect of the multi-dimensional Gaussian mutation is caused by
the following fact. The volume of the subspace dw' = drdaidas . . . day,_1 depends
on the radius r: dV = dSdr ~ r"~'dr, where dS is the area of the n-dimensional
spherical sector (Fig. 3.3). The probability that the mutated point & € dw' is
proportional to the probability density ga(r) in this subspace and to the dV.
Fig. 3.4 illustrates the result of this product in the 2D landscape.
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Fig. 3.2. Histograms of the distances between the base and 10° points mutated according
to Gaussian (a) and non-spherical Cauchy (b) mutations; n = 2 — solid line,
n = 3 — dotted line, n = 4 — dashed line, n = 5 — dash-dotted line, other
characteristics in the text.

rsinol

dal

dr

\ 4

Fig. 3.3. The subspace dw’ in 3D landscape. It is ease to calculate that dV =
r? sin(aq )drdaidas.
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Fig. 3.4. Linear increase of perimeter with r (dashed line) and the Gaussian probability
density function (dotted line) as factors creating the relationship between the
probability that ||z — y|| € [r,r + dr] vs. r (solid line) in the case of the
two-dimensional landscape,(oc = 1).

Similar results are obtained in the case of the multi-variate non-spherical
Cauchy mutation (Fig. 3.2b). Here, a new individual « is obtained by adding a
random value to each entry of a selected parent y:

=y +C0,7), i=1,....n, (3.11)

where C(u, 7) is a random value obtained according to the one-dimensional Cauchy
mutation with the pdf defined by (3.3). The shape of the one-dimensional Cauchy
pdf is centered at u and resembles that of the Gaussian density function, but
approaches the axis so slowly that the variance is infinite and an expectation
does not exist. The comparison between one-dimensional Cauchy and Gaussian
density functions is presented in Fig. 3.5a. A mutation function describing the
transformation of the vector y into  in accordance with the multi-dimensional
non-spherical Cauchy mutation has the form

golz —y) =" H M(;—’_W (3.12)

The Cauchy mutation of type (3.12) has a non-spherical symmetry (Fig. 3.5b)
and prefers directions parallel to the axis of the reference frame. Therefore the
effectiveness of evolutionary algorithms, which uses the mutation described by
(3.12), depends on the choice of the reference frame (the symmetry effect).
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Fig. 3.5. (a) One-dimensional Gaussian (solid line) and Cauchy (dashed line) probability
density functions (¢ =1, 7 =1 and u = 0). (b) Four one-dimensional sections
of the four-dimensional Cauchy density function, along the directions [1,0,0,0]
(dotted line), [1,1,0,0] (dashed line), [1,1,1,0] (solid line) and [1,1,1,1] (dash-
dotted line) (7 = 1 and u = 0).

3.2. Spherically Symmetric Distributions

Fang et al. (Fang et al. 1990) prove that a spherically symmetric random vector

Z can be decomposed via

Z =rU,

(3.13)

where U is uniformly distributed on the surface of an n-dimensional hyperball (e.i.
a random direction), and r is a random variable representing the random radius
of the hyperball. The vector U can be obtained from the formulae

Ui
Us
Us

cos(ay),
sin(ay) cos(as),

sin(aq ) sin(az) cos(ag) (3.14)

Y

sin(ay) . ..sin(a,—2) cos(ap—1),

sin(ay) ... sin(ap—2) sin(ap—1),

and a,_; is a uniformly distributed random angle (a,_1 = UJ0, 27]), and other
angles {ap——1 € [0,7)|k =1,...,n — 2} are randomly chosen with the pdfs

flan 1) = Kpsin®(a, 1), k=1,2,...,n—2, (3.15)
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where
1350204 1) .
Kkzl 2:4-... -2 for k= 2I.

T3-5-...-(2—1)
In order to obtain a new modified Gaussian mutation or a spherical Cauchy
mutation, the random variable r can be chosen as

r=N(0,0) (3.16)
or

r=C(0,7), (3.17)
respectively.

The probability dPyo corresponding to the modified Gaussian mutation can
be calculated from the following formulae:

K r?
dPyo = ——exp | — —= | sin" (o) sin® 3 () . . . sin(ay o2 )dw',
vo = Za—exp (= 5z ) s sin” (o) . sina )
(3.18)
and for the spherical Cauchy mutation:
K
dPco = ?ﬁ sin” % () sin" " (ag) . . . sin(@, _o)dw’, (3.19)

where dw' = drdoidas . . . day,—1 and

if n is even,

n—2 9
K=J[K,={ ==
H ’ (n;l)'n,l if n is odd.
k=1 (25t)izna™s

Fig. 3.6 presents histograms of distances ||z — y|| for 10° points generated
in accordance with both the proposed mutation and dimensions n = 2,7. The
probability of point location decreases with r and is independent of the landscape
dimension. The same histograms can be obtained for whatever n.

3.3. Effectiveness of EA vs. mutation type: experimental stud-
ies

3.3.1. Evolutionary algorithms used in simulations

Two classes of evolutionary algorithms are used in simulation experiments. The
first one is based on the ESSS algorithm, and the following four evolutionary
algorithms of this class are considered:
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Fig. 3.6. Histograms of the distances between the base and 10® mutated points gener-
ated in accordance with the modified Gaussian mutation (a) and the spherical
Cauchy mutation (b); n = 2 — crosses, n = 7 — circles, 0 =1 and 7 = 1.

ESSS-G : the ESSS algorithm with the standard Gaussian mutation (1.6);

ESSS-GN : the ESSS algorithm with the Gaussian mutation and the standard
deviation o/4/n (2.23);

ESSS-GO : the ESSS algorithm with the modified Gaussian mutation (3.13)
(3.16);

ESSS-C : the ESSS algorithm with the non-spherical Cauchy mutation (3.11);

ESSS-CO : the ESSS algorithm with the spherical Cauchy mutation (3.13)
(3.17).

The second class contains algorithms based on the EP algorithm

e CEP : the classical evolutionary programming algorithm with the Gaussian
mutation (Fogel et al. 1991);

e CEPS : the CEP algorithm with the modified Gaussian mutation (3.13)
(3.16);

e FEP : the fast EP algorithm with the non-spherical Cauchy mutation (3.11)
(Yao and Liu 1997);

e FEPS : the FEP algorithm with the spherical Cauchy mutation (3.13) (3.17).

Apart from the different selection technique, the EP-class algorithms posses the
adaptation mechanism of standard deviation of the mutation operator.
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3.3.2. Local optimum allocation

Let us choose the ‘quadratic function with noise’ (Yao and Liu 1999) as a unimodal
objective function to be minimized:

fulx) = Xn:za:f + random|0, 1). (3.20)

i=1

Algorithms based on the ESSS algorithm (ESSS-G, ESSS-GO, ESSS-C and
ESSS-CO) localized the optimum so quickly that differences in their efficiency are
on the level of a statistical error. This fact is mainly caused by the proportional
selection, which prevails over mutation operators in the sense of their influence on
the local optimum localization. So, the attention is focused on the four variants
of the EP-class algorithms: CEP, CEPS, FEP and FEPS. The following param-
eters are used in the simulations: the population size n = 50, the initial area for
variances Q, = H?zl[O, 0.5], the initial area for population 2, = Hle[—o.s, 0.3],
the maximum number of epochs ¢ = 5000 and the number of sparing partners
g = 10. Each algorithm is started 50 times.

The surrounding effect in the EP-class algorithms clearly manifests itself in
this experiment. The CEPS and FEPS algorithms reach the optimum surroundings
significantly faster than their classical originals. Figure 3.7b presents the epochs
of the first success, i.e. the first epoch in which the objective function value of one
of the population elements is lower than 0.1. For clarity of graphs, samples have
been sorted. The advantage of the CEPS and FEPS algorithms over the CEP and
FEP algorithms is significant. As it has been anticipated the surrounding effect
increases with the landscape dimension (Fig. 3.8). In the case of the 5D landscape,
average courses of all algorithms considered are similar (Fig. 3.8a). Disproportion
between the pairs CEPS-FEPS and CEP-FEP enlarges in the case of the 30D
landscape (Fig. 3.8b). This experiment illustrates that offspring in the CEPS and
FEPS algorithms are located closely to their parents with higher probability than
in the case of CEP and FEP (Fig. 3.7), for which attractiveness of the parents’
surroundings decreases with the landscape dimension (Fig. 3.8).

3.3.3. Sensitivity to narrow peaks

Let us consider the following five-dimensional fitness function:

®,,(z) = %exp <—5§;x3) +exp (—100((@«1 —0.4)2+Z5:x§)>. (3.21)

=2

The two-dimensional equivalent of this function is presented in Fig. 3.9. It con-
sists of two Gaussian peaks. The first one is high and slim, the second one is
low and wide. The distance between both peaks is not very large in comparison
with the standard deviation of mutation chosen in the experiment and fixed as
o = 0.05. Three algorithms are tested: ESSS-G, ESSS-GN and ESSS-GO. All of
them start with a population generated by an n-time mutation of an initial point
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Fig. 3.7.
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The objective function value of the best element in the current population vs.
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the first success (fu(x) < 0.1) for 45 runs of algorithms (sorted) (b) — results
obtained for 5D version of (3.20)
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Fig. 3.8. The objective function value of the best element in the current population vs.
epochs, results averaged over 50 samples for 5D (a) and 30D (b) versions of

(3.20).
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Fig. 3.9. The two-dimensional version of the fitness function (3.21).

xz§ =[-1,—1,—1,—1,—1]. Other algorithm parameters are chosen as follows: the
population size = 20, the maximum number of epochs t,.x = 2000.

All algorithms are processed 500 times. Typical algorithm proceedings are
illustrated in Fig. 3.10. The standard ESSS-G algorithm has trouble finding the
global optimum. If there is a dominant element in the population located in
the narrow peak, its successors are generated outside this peak. It follows from
the fact that the most probable distance between parent and successor elements
r* =ov/n—1=0.1(3.10) is of the same order as vj,. In the case of the ESSS-GN
algorithm, r* = o1/(n — 1) /n ~ 0.045. The evolved population does not locate an
element in the higher peak so easily as in the case of the ESSS-G algorithm. But
if it does, this peak is occupied for a short time. The ESSS-GO algorithm is most
effective on the narrow peak localization. It finds it quickly and does not lose it.

The presented numerical experiment shows that the standard Gaussian mu-
tation decreases the evolutionary algorithm’s sensitivity on narrow peaks. It is
caused by the surrounding effect. The evolutionary algorithm with the proposed
modified Gaussian mutation ends in full success.

In order to analyze the efficiency of the evolutionary algorithm, which adapts
its mutation parameters during its processing, the four variants of the EP algo-
rithm are tested: CEP, CEPS, FEP and FEPS. The following parameters are
used in the simulations: the population size n = 50, the initial area for variances
Q, = [1_,[0,0.5], the initial area for population Q, = [T°_,[~0.2,0.2], the maxi-
mum number of epochs tax = 2000 and the number of sparing partners ¢ = 10.
Each algorithm is started 500 times. Figure 3.11 presents the mean fitness of the
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Fig. 3.10. The fitness (3.21) of the best element in the population vs. epochs; ESSS-G
(a), ESSS-GN (b) and ESSS-GO (c).

Tab.3.1. Percentages of successful algorithm runs

algorithm  successes [%)]

CEP 74
CEPS 64
FEP 78
FEPS 60

best element in the population vs. epochs. Unlike the ESSS-class algorithms, se-
lection in the case of EP keeps the best elements from generation to generation.
This is the reason for the monotonic character of the curves in Fig. 3.11, which
presents the relation between the fitness of the best element in the population
and epochs. The population fluctuates around the best elements and only a sin-
gle macro-mutation can put offspring in the area of the higher peak. So, there
are many algorithm runs which end without success in tax = 2000 epochs, as
against to the ESSS-GO algorithm, which has found global optimum in all tests.
In the case of the fitness function (3.21), the percentages of successful runs of the
algorithms under consideration are described in Tab. 3.1. It can be seen that the
CEPS and FEPS algorithms, which use the spherical mutation (3.13) are less ef-
fective than the CEP and FEP algorithms. This fact suggests that in the case of
the mutation (3.13) a new formulae for adaptation mechanism is needed instead
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Fig. 3.11. The mean fitness (3.21) of the best element in the population vs. epochs for
four variants of the EP algorithm (a) and typical realizations of the CEP and
CEPS algorithms (b).
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of that presented in Table 1.2. The same conclusion is obtained via the theoretical
consideration by Rudolph (1997). The surrounding effect manifests itself only in
the character of the curve slopes in Fig. 3.11b. In the case of the CEPS algorithm,
when some element of population is located in the narrow global peak, the ex-
treme point is localized very quickly. Descendants of the element considered are
generated closely to their parent. In the case of the CEP algorithm, this process
proceeds more slowly. Most of the descendants are located outside the narrow
global peak.

3.3.4. Efficiency of saddle crossing

In order to analyze the mutation influence on the saddle crossing efficiency, let us
consider the problem described in Appendix A.

Firstly, let us consider the ESSS-G, ESSS-GN, ESSS-GO, ESSS-C and ESSS-
CO algorithms. An initial population is obtained by 1 mutations of the local
optimum point of the lower peak 3 = [1,0,...,0]. The goal is to cross the saddle
between both peaks. We assume that it is done when the weight mean of the
population E;(x) is located at the higher peak, i.e. (E(z; |i=1,2,...,n)) < 0.35.
Other algorithm parameters are chosen as follows: the population size = 20, the
maximum number of epochs tpax = 10°, ¢ = 7 = 0.05 (for Gaussian and Cauchy
mutations, respectively). All algorithms are tested for a set of dimensions of the
adaptation landscape n = 2,4.,6,...,40.

Relations between the mean number of epochs neccessary to cross the sad-
dle taken over 100 runs of the algorithms and the dimension of the adaptation
landscape for all algorithms are presented in Fig. 3.12. In the case of low dimen-
sions, algorithms with standard Gaussian and non-spherical Cauchy mutations are
substantially better than their modified versions. The most probable distances rq
between parent points and successors are less than the peak thickness v. The ESSS-
G and ESSS-C algorithms create more dispersed populations and their ability of
saddle crossing is greater. The ESSS-C algorithm is the most effective algorithm
for low dimensions, especially since the direction between both local and global
fitness optima is parallel to the direction of the axe of the reference frame and is
preferred by the non-spherical Cauchy mutation. The spherical Cauchy mutation
(the ESSS-CO algorithm) evenly hands out directions to mutated points and its
effectiveness initially decreases very quickly with n.

The surrounding effect manifests itself in a quick decrease in the ESSS-G
and ESSS-C algorithms’ efficiency. It is clearly visible in the case of the ESSS-C
algorithm, which is still the best for n = 10 and becomes the worst for n = 14.
The efficiency of the ESSS-GN and ESSS-GO algorithms is similar. Just in the
very high dimensions, ESSS-GO becomes better. The most interesting results,
especially for high landscape dimensions, are obtained for the spherical Cauchy
mutation.

The four versions of the EP algorithm (CEP, CEPS, FEP and FEPS) are
also tested in order to find the global optimum of the function (A1). All algo-
rithm parameters are the same as in the previous experiment concerning sen-
sitivity to the narrow peak apart from the initial area for population , =
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Fig. 3.12. The mean number of epochs needed to cross the saddle vs. the dimension of
the adaptation landscape.

[0.8,1.2] x H?:2[—0.2, 0.2]. Each algorithm is started 100 times for each dimension
ofn=1,2,...,20.

As it has been noted in the previous subsection, the saddle crossing efficiency
of the EP-class algorithms is closely related to their ability to perform macro-
mutations. Surprisingly, the searching process either finds the global peak in rela-
tively short time (Fig. 3.13b), or it does not find it at all in #myax = 100000 epochs
(Fig. 3.13a). This is a disadvantage of the EP-class algorithms in comparison
with the ESSS ones. Unexpectedly, the efficiency of the CEPS algorithm is much
higher than that of the CEP algorithm for low dimensions. This disproportion
disappears along with the dimension growth, when the saddle crossing efficiency
of both the CEPS and FEPS algorithms rapidly decreases. The FEP algorithm
seems to be least unreliable in the saddle crossing problem. It owes its success
to its non-spherical mutation, which prefers directions parallel to the axis of the
reference frame. The surrounding effect manifests itself in an exponential increase
in the mean number of epochs needed to cross a saddle by the CEP and FEP
algorithms with the landscape dimension (Fig. 3.13b). This relation is weaker in
the case of the CEPS and FEPS algorithms.

3.3.5. Symmetry problem

Let us consider the following series of four-dimensional fitness functions:

1
®)(x) = 3 €XP (= 5llzl*) +exp (= 5llz —al?), 1=1,2,3,4, (3.22)
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where a; = [1,0,0,0], as = [1/v/2,1/+/2,0,0], az = [1/v/3,1//3,1/+/3,0] and
as = [1/2,1/2,1/2,1/2] are global optimum locations. Distances between both
local and global optima are the same in all ®; and equal to unity.

The ESSS-C and ESSS-CO algorithms are tested in this experiment. The goal
is the same as in the previous simulations: to cross the saddle between both peaks.
Other algorithm parameters are chosen as follows: the population size = 20, the
maximum number of epochs tma, = 103, 7 = 0.05 and the initial point of searching
z$ =1[0,0,0,0].

Fig. 3.14 shows the relation between the mean number of epochs needed to
cross a saddle taken over 10 algorithms’ processing. It is easy to see that the
ESSS-C algorithm’s efficiency strongly depends on the direction of the global peak
location. In the case of the ESSS-CO algorithm the saddle crossing efficiency is
independent of this direction.

The symmetry effect in the EP-class algorithms is tested using five-
dimensional Ackley’s (n = 5):

1 n 2
Dy(x) =20+ e —20exp ( - gni—”) — exp (W) (3.23)

and generalized Rastringin’s function (n = 5):

Pr(x) = zn: (z7 — 10 cos(2mx;) + 10). (3.24)

i=1

Both functions have to be minimized. Next two functions ® 4, and ® g, are rotated
versions of ® 4 and ®p, i.e. both are obtained from ®4 and ®g after rotation
of the reference frame in the plane (z1,z2) through an angle equal to 7/4, and
in the plane (z2,z3) through an angle equal to 7/4, too. Both Ackley’s and
Rastringin’s functions are multimodal, but Rastringin’s function characterizes the
higher amplitude of changes and its valleys are deeper. Local optima of both
functions ® 4 (3.23) and ®R (3.24) are located in the nodes of the 5D-cubic net,
whose edges are parallel to the axes of the reference frame. This property is
disturbed in the case of ® 4, and ®g,.

The following parameters are used in the simulations: the population size
n = 50, the maximum number of epochs ¢y, = 10000, the number of sparing
partners ¢ = 10 and the initial area for variances Q, = H?:1[0,3]. The initial
areas for population are 0, = H?:l[_5'12= 5.12] in the case of &4 and P 4,, and
Q, = H?:1[_32=32] in the case of &g and ®g,. Each algorithm is started 50
times.

The CEP and FEP algorithms reveal their advantage over the CEPS and
FEPS algorithms in the case of ®4 (Fig. 3.15a). The surrounding effect in the
CEP algorithm makes it easier for the population to cross shallow saddles of ® 4.
The high effectiveness of the FEP algorithm follows from three main facts:

e high probability of macro-mutations (in the sense of phenomenon, not a new
operator) using the Cauchy distribution,
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Fig. 3.13. Percentages of the successful runs (a) and the mean number of epochs needed
to cross the saddle taken over all successful runs (b) of four versions of the
EP algorithm vs. the landscape dimension.
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Fig. 3.14. The mean number of epochs needed to cross the saddle vs. the global optimum
location.

e Cauchy mutation preference of the direction parallel to axes of the reference
frame, and

e the surrounding effect.

If the second property is desired in the case of the fitness function ® 4, it becomes
inconvenient in the case of ® 4, (Fig. 3.15b), where only efficiency of the CEPS
algorithm is kept on the same level as in the case of ® 4. The dependence of the
FEP algorithm on the choice of the reference frame also manifests itself if one
compares results obtained for both versions ® and ® g, of Rastringin’s function

(Fig. 3.16).

3.4. Summary

Two important properties of the Gaussian and Cauchy mutations, called the sur-
rounding effect and the symmetry effect, are considered in details in this chapter.
Both of them are overcome in the modified versions of Gaussian and Cauchy mu-
tations. Here the direction of the mutation is first randomly chosen with uniform
distribution and then the distance between the base and mutated points is ran-
domly chosen with the one-dimensional Gaussian or Cauchy distribution.

Four experiments are reported on in this chapter. As examples of evolutionary
algorithms Evolutionary Search with Soft Selection and Evolutionary Program-
ming are used. The first one is probably the simplest selection-mutation model of
evolution. The second one is the well-known Evolutionary Programming, proposed
by Fogel (1966, 1992).

Convergence to a local optimum is analyzed in the first experiment, where four
algorithms of the EP-class are tested. The performed simulations prove the influ-
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Fig. 3.15. The fitness of the best element in the current population vs. epochs; results
averaged over 50 samples for 5D Ackley’s function ®4 (a) and its rotated

version @4, (b).
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Fig. 3.16 . The fitness of the best element in the current population vs. epochs; results
averaged over 50 samples for 5D Rastringin’s function ®r (a) and its rotated

version ® g, (b).
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ence of the surrounding effect on the convergence rate of evolutionary algorithms
based on classical Gaussian and Cauchy mutations.

The second experiment illustrates the exploitation performance of the evolu-
tionary algorithms considered. Evolutionary search with standard Gaussian muta-
tion is least effective in localizing narrow peaks because of the surrounding effect.
Only application of the modified Gaussian mutation proposed in this work guar-
antees success. In order to analyze the efficiency of the evolutionary algorithm,
which adapts its mutation parameters during its processing, the four variants of
the EP algorithm are tested. It can be seen that the CEPS and FEPS algorithms,
which use the spherical mutation (3.13), are less effective than the CEP and FEP
algorithms. This suggests that in the case of the mutation (3.13), a new formulae
for the adaptation mechanism is needed instead of that applied in the classical
form of the EP algorithm.

The third experiment presents the influence of the landscape dimension on the
exploration efficiency of the algorithms. The measure of this efficiency is the mean
number of generations needed to cross a saddle between two Gaussian peaks. It is
not surprising that, in the case of the ESSS-class algorithms, standard Gaussian
and Cauchy mutations give the best results in the case of low dimensions. The
surrounding effect accelerates their capability of saddle-crossing. Unfortunately,
the efficiency of the ESSS-G and ESSS-C algorithms rapidly decreases when the
landscape dimension increases. Gaussian peaks become too narrow for these algo-
rithms. Application of modified Gaussian and spherical Cauchy mutations again
successfully overcomes this problem, as those are the most effective algorithms in
high landscape dimensions. However, their efficiency in low dimensions is poor in
comparison with standard mutations. When evolutionary algorithms with adapted
mutation parameters are used, the disadvantage of the classical form of Gaussian
and Cauchy mutations disappears. The surrounding effect is decreased by the
adaptation mechanism.

The last experiment discloses the influence of the selection of the reference
frame on the global optimization effectiveness of evolutionary algorithms which
use the non-spherical Cauchy mutation.

The presented simulation results do not prove the advantage of multi-
dimensional Gaussian and Cauchy mutations in their modified forms over their
usually used classical versions. One can only say that these are different types
of mutation operators, and each of them can be preferred for a different class of
problems.






Chapter 4

EVOLUTIONARY ADAPTATION
IN NON-STATIONARY ENVIRONMENTS

In recent years the problem of adaptation in time-varying landscapes has been
intensively studied by many groups of researches. The number of publications
successively grows. This domain of research is important and current from point
of view of many technical branches, e.g. the optimal control, the learning pro-
cess of neural networks, the fault detection in dynamic systems. Unfortunately,
diverse methodology and terminology make most of research solutions incompara-
ble. In this chapter some proposal of ordered view on optimization and adaptation
problems in non-stationary environments are introduced. Some taxonomy of non-
stationary environments as well as measures of adaptation algorithms quality are
also proposed.

4.1. Non-stationary environments
A non-stationary optimization problem in general can be formulated as follows:

max f (@, t)|(ci(z,t) <0,i=1,...,m,x € U(t)), (4.1)
where f(z,t) is an objective function, ¢;(x,t) denotes an it?
is a space of solutions.

Non-stationary problems can be classified under a number of criteria. The
first one is a physical structure of the space of solutions U(t): is it discrete or
continuous? A domain structure determines a class of possible measures of evolu-
tionary algorithms performance.

In general f(z,t), ¢;(x,t) and U(t) can be time varying simultaneously. But
physically it occurs very seldom. The first attempt to classification of all possible
cases, which elements of the sequence (f, {c;}*,,U) are varying in time, is provided
in (Trojanowski and Michalewicz 1999b). An extension of this classification is
proposed in (Trojanowski and Obuchowicz 2001) (Table 4.1).

Changes of the domain, e.g. changes of the number of dimensions or of dimen-
sions’ boundaries significantly modify the nature of the problem. For example, for
binary representation of solutions, changes of the domain modify resolution and

constraint and U(t)
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Tab.4.1. Classification of changes in a process. The symbol @) denotes the case where
the set of constrains is empty; static — there are no change in time; varying
— there are some changes in time.

No. | objective | constrains | space of solutions
function

M,y static 0 static
Moy static static static
Ms; static varying static
My | varying 0 static
Ms | wvarying static static
Mg varying varying static
My static ) varying
Mg static static varying
My static varying varying
Mg | wvarying 0 varying
M1 | wvarying static varying
Mis | wvarying varying varying

precision of the algorithm so there is a need for modification of individual repre-
sentation. Thus, in the case of such change, we usually have to re-start the search
procedure and to tune the optimization tool to the new problem after the change
has occurred. For the sake of that, we assume that the domain is constant and do
not discuss this form of changes in further text.

There are a number of criteria along which non-stationary environments can
be categorized (Branke 1999):

e frequency of changes;

e severity of changes;

e predictability of changes;
e regularity of changes.

Frequency of changes. The environment can change with different frequency,
from continuous in time to very rare sudden changes which are preceded by station-
ary state of the environment. An example of a environment with the continuous
changed can be the optimal control problem in the case of a real system affected
by an ageing process, or a time optimal trajectory planning for mobile robots in
the case of moving obstruction.
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Severity of changes. The nature of changes can manifest in their speed and
range. The classification under this criteria is difficult because of estimation sub-
jectivity whether changes are sudden or adiabatic, wide or local. In the case of
model My (Tab. 4.1), where the fitness function is varying in time, some mea-
sure of changes in a given subspace {2 C i/ and a given time interval T can be
introduced (Trojanowski and Obuchowicz 2001)

e continuous domain
(let f(mst) € L2(Q),Vt)

2

1) o (fat) — fl,t = T))"dw

M(Q,T,t) = 4.2
( ’ ’) T f___f9f2(a:,t)dw ( )
where dw = dxidzs .. .dz,;
e discrete domain
2
iat - Z’t_T
M@ T, 0 = L Seien ([(@0) — flait = T))" (4.3)

T Ywieq [P (i)

The measure M (2,T,t) describes the average speed of relative fitness changes in
subspace 2 taken over the time interval 7" which can be considered as a sampling
interval, i.e. the time interval between two successive calculations of the fitness
function. One may define two constants ©, and ©. (0, < 0.) for given searching
problem in order to classify changes of the fitness function:

e M(Q,T,t) < ©, — the adiabatic changes (S;), which guarantee approxi-
mately stationary state of evolutionary search. The population “keeps up"
with the changed optimum. There are usually no quality differences between
this problem and stationary problems.

e O, < M(Q,T,t) < ©, — the indirect changes (Sy). It is the most interesting
case. An effectiveness of the searching process significantly depends on a
chosen searching strategy and its input parameters.

e M(Q,T,t) > ©. — the turbulent changes (S3). In this case, usually the
search procedure have to be restarted and tuned to the completely new
problem after the change has occurred.

Parameters ©, and ©. have, rather, informal nature and are not well defined.
The ability of classifying, to which of changes type: Si,S» or S3, a given problem
belongs, allows to choose a class of optimization methods to solve the problem
and choose a measure of a given methods effectiveness. If a given problem belongs
to the class Sy, global optimum is usually moved to such a point which is close
enough to be found again without a risk of becoming trapped in a local optimum.
Then it is possible to use standard optimization methods, like gradient methods,
to follow the optimum point during all the processing time. Here, evolutionary
computation method is computationally rather too expensive to use.
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From an evolutionary point of view, Sy is the most interesting class. The
changes are too difficult and therefore computationally too expensive for the clas-
sical optimization methods, but not too difficult for evolutionary methods, which
may solve the problem because of their softness and concurrent searching, espe-
cially when we are satisfied even if the solution is suboptimal only.

The turbulent changes S; are usually unable to control (e.g. the changes
of square error function in the on-line neural network training process where a
sequence of training patterns is randomly chosen from a training set). Any opti-
mization process can not keep up the optimum peak track. Applied adaptation
algorithms usually find hills of a form of objective function averaged over searching
time

Predictability of changes. If changes of the problem components appear in
real-world optimization tasks continuously or at least periodically, then values of
proposed solutions vary in time and thus a continuous search process is needed.
In general, non-stationary optimization task belongs to one of four main groups
(Mothes 1967):

1. Deterministic situations, where full information about the values of environ-
ment parameters now and in the future is available.

2. Probabilistic situations, where the values of environment parameters are not
known, however they are predictable, because probability distributions of
these parameters are known.

3. Uncertain situations, where environment parameters are unknown and un-
predictable.

4. Conflict situations, where the environment parameters are controlled by our
antagonists (cases, where a game theory is used).

The subject of our interest is the third group of situations. A large number of
real world problems belongs to this group, and examples of such non-stationary
and unpredictable problems can be easily found around us (Trojanowski and
Michalewicz 1999b, Trojanowski and Michalewicz 1999c).

Regularity of changes. Investigating properties of optimization tools applied to
problems varying in time, it is also necessary to study and classify different forms
of changes. Changes of the problem components can be classified in many ways,
for example (Trojanowski and Michalewicz 1999b):

— regularity of changes (i.e. cyclic and non-cyclic ones);
— continuous vs. discrete changes in time;
— continuous vs. discrete changes in the search space.

Obviously, not every problem varying in time can be optimized with evolu-
tionary algorithms, e.g. situations where immediate reaction is needed, but there
is still a large group of cases (like e.g. control and management of electric energy
sources by a dispatcher day by day).
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4.2. Quality rates for adaptation algorithms

In evolutionary computation community, some measures for obtained results have
been proposed; these measures exploit the iterational nature of the search process
and the presence of continuously modified and improved population of solutions.
One of the first measures were on-line and off-line performance proposed by De
Jong (1975).

e Off-line performance — is the best value in the current population aver-
aged over the entire run. It represents the efficiency of the algorithm in a
given time of run.

¢ On-line performance — is the average of all evaluation of the entire run.
It shows the impact of the population on the focus of the search.

These two measures, although designed for static environments, were employed in
experiments with non-stationary ones (Béck 1998, Grefenstette 1992, Vavak and
Fogarty 1996, Vavak et al. 1997).

In other publications, authors visually compared graphs of the best objective
function value measured during the entire search process (or graphs of the mean
value obtained from series of experiments) (Angeline 1997, Bick and Schutz 1996,
Branke 1999, Cedeno and Vemuri 1997, Cobb and Grefenstette 1993, Dasgupta
and McGregor 1992, Ghosh et al. 1998, Goldberg and Smith 1987, Grefenstette
1992, Grefenstette 1999, Lewis et al. 1998, Mori et al. 1997, Mori et al. 1996, Mori
et al. 1998, Ng and Wong 1995, Vavak and Fogarty 1996). In some papers graphs
of average values of all individuals or of the worst individual in the population were
also analyzed (Cobb and Grefenstette 1993, Goldberg and Smith 1987, Dasgupta
and McGregor 1992, Mori et al. 1997, Mori et al. 1996, Mori et al. 1998). Both
these methods were based on the measures of off-line and on-line performance.

Before a form of a quality rate for searching algorithm in the non-stationary
environments is chosen, a researcher has to decide what kind of results will be
satisfying, what type of searching process should be applied. Four main types of
searching processes can be distinguished. Let us assume that the fitness function
is equal to the objective function ®(x,t) = f(x,t).

Cy: A tracing process. — This type of the searching process is dedicated
mainly to adiabatic problems (S1). The goal of the searching process of the
type Cy is to keep solutions closed to the optimum one as well as possible.
Most of publications of the non-stationary optimization consider such a type
of searching process. Applied measures of searching algorithms are usually
based on measures for stationary environments.

An interesting measure based on the off-line performance is an adaptation
performance described in (Mori et al. 1997, Mori et al. 1996). It was evalu-
ated according to the formula:

tmaz

Mot = — Zq)"“t(t) (4.4)

tmax i—1 <I)ozflt(t),
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where: t;,q, is the length of the entire search process, ®.5:(t) — the fitness
of the best individual in the population at the time ¢, ®,p, (¢t) — the optimum
fitness in the search space at the time t.

This formula was later modified slightly to:

! = « s 45
Had tmaz =1 (bopt (t) ( )

where (for the maximization problem):

1: if (}best(t) =
0.5, if (Pbest(t) <

In (Feng et al. 1998), two benchmarks measuring relative closeness of the
best found solution to the global optimum were proposed: optimality iop
and accuracy fiq.. optimality fi,, represents closeness of the value of the
best obtained solution ®(xg) to the value of optimum ®,,, e.g. for the
maximization problem, we have the following formulae:

, 4.6
<I)o;rJt - <I>mz'n ( )

Hop =

where ®,,,;, = mingey ®(x). The accuracy p,. represents the relative close-
ness of the found solution x to the global optimum solution x,,: and it is
defined with following formula:

p(wopta 130)
p(mmaz: mmzn)

flae =1 — (4.7)

where o = argmaxgey P(x), Tmaz and Tn;, are the lower and upper
bounds of the search range, and p(a,b) is a distance measure in U, e.g. if
U C R” then p(a,b) =||la — b]|.

Although authors did not use these measures to non-stationary optimization
evaluation, the closeness to the optimum during the search process is an
interesting value which seems to be helpful in comparisons between applica-
tions and is easy to control in experiments. The evolutionary approach to
non-stationary optimization presented in (Obuchowicz 1999b) uses measure
which idea is closely related to the measure pq.:

1 tmax
oo = —— 3 popu(t), 2 (1)), (48)
mazx t=1

where xo(t) is the best point of population in the time ¢ and @, (t) =
argmaxgcy (x,t).
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CQZ

Cg:

An optimization in a mega-epoch. — This type of searching process
concerns tasks, in which consecutive changes in the environment are signif-
icant but occur rather seldom (ones in a ‘mega-epoch’). The goal is to find
the optimum before a new change occurs.

For estimations of non-stationary optimization results, the following two
measures:  accuracy (pqce) and adaptability (paqe) were proposed in
(Trojanowski and Michalewicz 1999a, Trojanowski and Michalewicz 1999c).
They are based on a measure proposed by De Jong (1975): off-line per-
formance but evaluate the difference between the value of the current best
individual and the optimum value instead of evaluation of the value of just
the best individual. Accuracy is a measure dedicated exclusively to dynamic
environments. It is a difference between the value of the current best indi-
vidual in the population of the “just before the change" generation and the
optimum value averaged over the entire run:

1 K
Hace = E ;(erri,r—l)- (4.9)

Adaptability measures a difference between the value of the current best
individual of each generation and the optimum value averaged over the entire
run:

K T—1

paao = 3 | = S (erris)| (4.10)

i=1 7j=0

where: err; ; is the difference between the value of the current best individual
in the population of the j-th generation after the last change (j € [0, 7 — 1]),
and the optimum value for the fitness landscape after the i-th change (i €
[0, K —1]), 7 — the number of generations between two consecutive changes,
K — the number of changes of the fitness landscape during the run.
Clearly, the lower values of measure (for both accuracy and adaptability)
correspond to the better results. In particular, a value of 0 for accuracy
means that the algorithm found the optimum every time before the landscape
was changed (i.e. 7 generations were sufficient to track the optimum). On
the other hand, a value of 0 for adaptability means that the best individual
in the population was at the optimum for all generations, i.e. the optimum
was never lost by the algorithm.

Keeping solutions on an acceptable level. — In many real technological
problems, e.g. in the on-line training of a dynamic neural networks (Korbicz
et al. 1998), in control systems (Bryson and Ho 1975) or in many problems
of the operational research, the optimal solution is not so necessary as the
solution of an acceptable quality. This problems usually are of the type Ss.
One has to be sure that the fitness of the actual best known solution will
not be worse than a given assumed level during all time long of a searching
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C4:

process. This acceptable level may, for example, describe non conflict run
of concurrent processes, guarantee the stability of the controlled dynamic
system.

The acceptability is a measure of unsatisfied realization in a quality space —
this is a mean deviation of the best fitness in time ¢ below the acceptable
level (Trojanowski and Obuchowicz 2001)

t
1 maz
Hacpt = P ; 6((I)acpt(t) - q)best(t))a (4'11)

where: t,4, is the length of the entire search process, ®pes:(t) — the fit-
ness of the best individual in the population at the time ¢, and ®qqp(t) is
the minimum satisfying value of the fitness (it can be varying in time) and
(Trojanowski and Obuchowicz 2001)

o( ) 0, if a <0,
a — =
a—>b, ifa>0b.

The acceptability distance pqcq is an equivalent of fi4.p in searching space
and is defined as follows:

1 tmaz

> 0(p(@opt (1), z0 (1)) — 1), (4.12)

t
max t=1

Macd =

where r is, so called, the acceptability radius which describes the maximum
acceptable distance between the best known solution and the actual optimum
point.

A process with averaged acceptability. — This type of searching pro-
cess is dedicated to turbulent problems (S3). A searching process is unable
to follow the optimum as well as to guarantee the acceptable solutions during
the algorithm processing. The only measure of the adaptation process is its
ability to find the solution with the best average fitness over all realization

of ®(x,t)(t =1,2,...,tmax). This measure can be expressed in the following
form
| tmas
Havae = Z p(x*, mo(t)), (4.13)
max t=1
where

tmaz

> <I>(:c,t)>.

t=1

x* = argmax <

max
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4.3. lllustrative simulations

4.3.1. Properties of the ESSS in the adiabatic and turbulent cases of landscape
non-stationarity

Let us consider the following one-dimensional non-stationary adaptation landscape
composed by two Gaussian peaks

&(z,t) = (0.5+ 0.5cos (wt/s))e (=0

+ (0.5 — 0.5 cos (it /s))e P(#+0)°) (4.14)
where t denotes time, s is a given positive parameter controlling the rate of change
of peaks highs.

Adaptation process is controlled by the ESSS algorithm (Trojanowski and
Obuchowicz 2001). Figure 4.1 illustrates the adiabatic function changes. The best
point of the population follows the global optimum during all time. The measures
for the obtained results dedicated for stationary problems can be applied. In the
case of the turbulent changes (Fig. 4.2) the global optimum is not monitored. The
population fluctuates around the point of the smallest changes of the objective
function. This feature is well known in the on-line training process of the artificial
neural networks (Korbicz et al. 1994)

4.3.2. Comparison of four algorithms from ESSS family

Let us consider the following time-varying 2D adaptation landscape:

d(x)

2mt 2mt
t o _ t ot :
2t = [2f,7] = {l-l—cos <360),S1n (360)} (4.16)

where ®(x) represents a Gaussian peak with expectation vector z*, which moves
around the circumference of unity radius, and covariance matrix C.

Four algorithms are used in the adaptation process: ESSS, ESSS-FDM, ESSS-
VPS and the last ESSS-FV containing both FDM and VPS mechanisms. Simula-
tions have been carried out for various sets of input parameters, several times for
each set. Representative realizations of the considered algorithms are presented in
Figs. 4.3-4.6.

As a quality measure, the average distance between the best element of the
population and the top of the Gaussian peak is chosen (4.8). For all the consid-
ered algorithms, there exists a set of input parameters, which usually realizes a
satisfying quality factor of the adaptation process, although, the sensitivity of this
factor to slight changes in the optimal input parameters is different for each tested
algorithm.

The ESSS-FDM algorithm turns out to be least sensitive to input param-
eter disturbances. Thus, the search time for the optimal input parameters set

hexp [(:c - zt)T(C_1 (- zt)] , (4.15)
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Fig. 4.1. Adiabatic changes M([—2,2],1) ~ 2.86 x 10™°. The fitness (a) and location
(b) of the best element in the population vs. time, (5 = 20, o = 0.05, s = 250).
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Fig. 4.2. Turbulent changes M ([—2,2],1) ~ 1.84. The fitness (a) of the best element in
the population vs. time, and location of the mean point in the population vs.
time (b),(n =20, 0 = 0.01, s =1).
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Fig. 4.3. Realization of the ESSS algorithm in the time-varying landscape (4.15); input
parameters: n = 20, o = 0.5; the quality factor: u,. = 0.345; (a) evaluation of
the Gaussian peak (dotted line) and the best element of the population (solid
line); consecutive circles represent the results obtained every 50 iterations; (b)
fitness of the best element in population vs. iterations.
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Fig. 4.4. Realization of the ESSS-FDM algorithm in the time-varying landscape (4.15);
input parameters: n = 20, o = 0.8; p = 0.125; the quality factor: pu,. =
0.206; (a) evaluation of the Gaussian peak (dotted line) and the best element
of the population (solid line); consecutive circles represent the results obtained
every 50 iterations; (b) fitness of the best element in population vs. iterations.

was shortest in comparison with the remaining algorithms. This property of the
ESSS-FDM algorithm is used in dynamic neural networks learning process (see
section 5.4.2).
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Fig. 4.5. Realization of the ESSS-VPS algorithm in the time-varying landscape (4.15);
input parameters: n = 20, o = 0.8; the quality factor: pu,, = 0.280; (a)
evaluation of the Gaussian peak (dotted line) and the best element of the
population (solid line); consecutive circles represent the results obtained every
50 iterations; (b) fitness of the best element in population vs. iterations.
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Fig. 4.6. Realization of the ESSS-FV algorithm in the time-varying landscape (4.15);
input parameters: n = 20, o = 0.8, u = 7.5; the quality factor: pu.,. = 0.303;
(a) evaluation of the Gaussian peak (dotted line) and the best element of the
population (solid line); consecutive circles represent the results obtained every
50 iterations; (b) fitness of the best element in population vs. iterations.

4.4. Summary

For years, the evolutionary algorithms were applied mostly to the group of static
problems. A set of satisfying procedures for tuning and comparisons between
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different approaches was established during that time. However, nowadays a wider
group of problems, including non-stationary cases, is optimized with evolutionary
algorithms but still with the same old methods and procedures of results evaluation
and algorithms comparison. Because of the extension of optimized problems range,
these measures seem to be insufficient, and new measures for optimization tool
quality and for the non-stationary problem difficulty should be proposed.

In this chapter, an analysis and classification of these problems, review of the
existing measures and some propositions of new ones as well as the simulation
study of algorithms from the ESSS family in the non-stationary environment are
presented.



Chapter 5

OPTIMIZATION TASKS
IN NEURAL MODELS DESIGNING

Artificial Neural Networks (ANN) provide an excellent mathematical tool for deal-
ing with non-linear problems. They have an important property, according to
which any continuous non-linear relationship can be approximated with arbitrary
accuracy using a neural network with suitable architecture and weight parame-
ters (Korbicz et al. 1994). Their another attractive property is the self learning
ability. A neural network can extract the system features from historical train-
ing data using the learning algorithm, requiring a little or no a priori knowledge
about the process. This provides modelling of non-linear systems a great flexibility
(Fausett 1994, Hertz et al. 1991, Korbicz et al. 1994). These properties make the
ANN a very attractive tool in modelling and identification of dynamic processes,
adaptive control systems (Hunt et al. 1992, Miller et al. 1990), time series pre-
diction problems (Zhang and Man 1998), and diagnostics of industrial processes
(Frank and Koppen-Seliger 1997, Koivo 1994).

The application of ANNs in modelling and identification of dynamic pro-
cesses has been intensively studied for the last two decades (cf. (Korbicz et
al. 1998, Narendra and Parthasarathy 1990, Zhu and Paul 1995)). Attractiveness
of ANNs results from the fact that they are useful when there are no mathemat-
ical models of an investigated system, hence, analytical models and parameter-
identification algorithms cannot be applied. As opposed to a lot of ANN effective
applications, e.g. in the pattern recognition (cf. (Looney 1997, Sharkey 1999))
or in the approximation of the non-linear function (cf. (Hornik et al. 1989)), the
application of ANNs in modelling requires taking into consideration the dynamics
of the investigated processes.

One of the possible solutions is the application of recurrent neural networks
(Draye et al. 1996, Tsoi and Back 1994). The most general architecture of re-
current networks was proposed by Williams and Zipser (1989), where connections
between any neurons are permitted. Unfortunately, a practical realization of such
a network structure is very limited, mainly due to their instability and a very slow
convergence of the training process. The Elman recurrent network has less general
character but better characteristics of practical applications (Elman 1990). It is
worth noting that the standard recurrent neural networks are built using the static
McCulloch-Pitts neuron model (McCulloch and Pitts 1943), and their relatively

Y
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good dynamic properties are achieved by introduction of global feedbacks. Gen-
erally, such networks suffer from stability problems during training and require
complicated learning algorithms.

The alternative solution is the application of a neural network of the Multi-
layer Perceptron (MLP) structure but composed of dynamic neurons. In general
case, dynamic neuron models can be obtained by introducing one of the following
feedbacks: synapse feedback (Gupta and Rao 1993), output feedback (Fasconi et
al. 1992) or activation feedback (Tsoi and Back 1994) to the static McCulloch-
Pitts model. Another solution can be obtained by extension of a static model
by adding memory elements (Sastry et al. 1974). One of the most interesting so-
lutions of dynamic system modelling problem is the application of the Dynamic
Neural Model (DNM) which consists of an adder module, a linear dynamic sys-
tem - Infinite Impulse Response (IIR) filter, and a non-linear activation module
((Ayoubi 1994, Patan and Korbicz 1996)). The dynamic neuron models render
it possible to design a neural network with a structure similar to the well-known
MLP. Taking into account the fact that this structure has no feedbacks between
neurons, one can train it in a simpler way than the globally recurrent networks
(Campolucci et al. 1999).

The construction process of an ANN, which has to solve a given problem,
usually consists of four steps (Obuchowicz 2000a). First, a set of pairs of input
and output patterns, which should represent characteristics of a problem as well as
possible, is selected. Next, an architecture of the ANN, the number of units, their
ordering into layers or modules, synaptic connections and other structure param-
eters, are defined. At the third step, free parameters of the ANN (e.g. weights of
synaptic connections, slope parameters of activation functions) are automatically
trained using a set of training patterns. Finally, the obtained ANN is evaluated in
accordance with a given quality measure. The above process is repeated until the
quality measure of the ANN is satisfied. Therefore, two optimization processes
can be distinguished in the ANN construction process: an optimal architecture
designing and optimal ANN parameters allocation (learning process).

The relatively complex DNM allows to build an effective Dynamic MLP
(DMLP). The DMLP can have the same architecture as the MLP. The calculated
output error is propagated back to the input layer through hidden layers contain-
ing dynamic filters, similarly as in the standard Back-Propagation (BP) algorithm
(Werbos 1974, Korbicz et al. 1994). As a result, the Extended Dynamic Back-
Propagation algorithm may be defined (Patan 2000, Patan and Korbicz 1996).
This algorithm adjusts connection weights as well as IIR filter parameters. Unfor-
tunately, the training process of an DMLP which has to identify a dynamic system,
seems to be an optimization problem which is intrinsically related to a very rich
topology of the sum square-error function (Korbicz et al. 1998). The EDBP al-
gorithm usually finds one of the local unsatisfactory optima. Therefore, global
optimization methods, like stochastic algorithms (Patan and Obuchowicz 1999)
or evolutionary algorithms (Obuchowicz 1999a, Patan and Jesionka 1999), should
be implemented. High performance of a dynamic system neural modelling, which
has been trained by an evolutionary algorithm, has been observed by Obuchowicz
(1999a).
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However, there are effective methods of a training patterns selection, learn-
ing and an evaluation of the ANN, researchers usually allocate the ANN archi-
tecture rather on a basis of their intuition and experience than using an auto-
matic procedure. Experienced researcher has, usually, no problems with archi-
tecture design in the case of the MLP applied to the approximation of a given
low-dimensional non-linear function, however, there are many propositions of the
automatic MLP structure allocation methods (Alippi et al. 1997, Ash 1989, Born-
holdt and Graudenz 1991, Chauvin 1989, Doering et al. 1997, Fahlman and
Lebierre 1990, Frean 1990, Harp et al. 1989, Hassibi and Stork 1993, Koza
and Rice 1991, LeCun et al. 1990, Marshall and Harrison 1991, Mezard and
Nadal 1989, Miller et al. 1989, Obuchowicz 1998, Obuchowicz 2000a, Wang et
al. 1994). But, in the case of more complex modeled systems, high-dimensional or
dynamic, automatic algorithms become indispensable.

The significance of network architecture optimization increases when the
DMLP is taken into considerations. Dynamic nature of DMLP is very sensitive
to changes in the network structure and then a suitable selection of the DMLP
architecture is very important. The methods of the artificial intelligence searching,
like the simulated annealing (Obuchowicz 1998), the tabu search (Obuchowicz and
Patan 2003), the A* algorithm (Obuchowicz 1999c) and evolutionary algorithms
(Obuchowicz and Politowicz 1997) seem to be very attractive for this task.

5.1. Considered neural networks

The ANN is represented by a ordered pair NN = (NA,v) (Doering et al. 1997,
Obuchowicz 2000a). NA denotes the ANN architecture:

NA=({Vi|i=0,...,M},E). (5.1)

{Vili=0,...,M} is a family of M + 1 sets of neurons, called layers, including
at least two non-empty sets Vo and Vjs that define s = card(Vp) input and
sy = card(Vys) output units, respectively, £ is a set of connections between
neurons in the network. The vector v contains all free parameters of the network,
among which the set of weights of synaptic connections w : £ = R are.

In general, sets {V; | i = 0,..., M} have not to be disjunctive, thus, there
can be input units which are also outputs of the NN. Units which do not belong
to either V4 or Vis are called hidden neurons. If there are cycles of synaptic
connections in the set £, then we have a dynamic network.

5.1.1. Multi-Layer Perceptron

The most popular type of the neural network NN = (NA,v) is the MLP. The
MLP is based on the McCulloch-Pitts neurons (McCulloch and Pitts 1943) and
its architecture possesses following properties:

Vitj  VinV=0, (5.2)



106 5.1. Considered neural networks

M-1
= J Vi x Vi (5.3)
i=0
Layers in the MLP are disjunctive. The main task of the input units of the layer
Vo is preliminary input data processing u = {u, | p = 1,2,..., P} and passing
them onto units of the hidden layer. Data processing can comprise e.g. scaling,
filtering or signal normalization. Fundamental neural data processing is carried
out in hidden and output layers. It is necessary to notice that links between
neurons are designed in such a way that each element of the previous layer is
connected with each element of the next layer. There are no feedback connections.
Connections are assigned with suitable weight coefficients, which are determined,
for each separate case, depending on the task the network should solve.

The fundamental training algorithm for the MLP is the BP algorithm
(Rumelhart et al. 1986, Werbos 1974). This algorithm is of iterative type and
it is based on minimization of a sum-squared error utilizing optimization gradient
descent method. Unfortunately, the standard BP algorithm is slowly convergent,
however, is widely used and in a few recent years its numerous modifications and
extensions have been proposed (Swia¢ and Bilski 2000), e.g.: Chan’s and Fallside’s
algorithm (1997), the delta-delta algorithm (Jacobs 1988), Quickprop algorithm
(Fahlman 1988), Silva’s and Almeida’s algorithm (1990), Park’s,Yun’s and Kim’s
algorithm (1992), RPROP algorithm (Riedmiller and Braun 1992), and Levenberg-
Marquardt algorithm (Hagan and Menhaj 1994).

Neural networks with the MLP architecture owe their popularity to many
effective applications, e.g. in the pattern recognition problems (Looney 1997,
Sharkey 1999) and approximation of the non-linear functions (Hornik et al. 1989).
It is proved that using the MLP with only one hidden layer and suitable number
of neurons, it is possible to approximate any non-linear static relation with arbi-
trary accuracy (Cybenko 1989, Hornik et al. 1989). Thus, taking relatively simple
algorithms applied to the MLP learning into consideration, this type of networks
becomes a very attractive tool for building models of static systems.

5.1.2. Dynamic neural model

In this chapter, the general structure of a neuron model proposed by Ayoubi (1994)
is considered. Dynamics is introduced to the neuron in such a way that the neuron
activation depends on its internal states. It is done by introducing a linear dynamic
system — IIR filter — to the neuron structure (Fig. 5.1) which is called the Dynamic
Neuron Model. Three main operations are performed in this dynamic structure.
First of all, the weighted sum of inputs is calculated according to the formula :

¢(k) = w u(k), (5.4)

where w = {w, | p = 1,2,...,P} denotes the input weights vector, P is the
number of inputs, and w(k) = {up(k) | p = 1,2,..., P} is the input vector. The
weights perform a similar role as in static feed-forward networks. The weights
together with the activation function are responsible for approximation properties
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B

B

Fig. 5.2. Block scheme of nth order IIR filter.

of the model. Then this calculated sum ¢(k) is passed to the IIR filter. Here,
the filters under consideration are linear dynamic systems of different orders, viz.
the first, second and third order. The general structure of the n-th order IIR
filter is shown in Fig. 5.2. This filter consists of delay elements (denoted by z~1)
and feedback and feedforward paths weighted by the vector weights @ = {a; | i =
1,2,...,n}and b= {b; | i =1,2,...,n}, respectively. The behaviour of this linear
system can be described by the following difference equation:

p(k) = bop(k) +big(k —1) + -+ bad(k —n)

—arpk = 1) = —app(k —n),

(5.5)

where ¢(k) is the filter input, (k) is the filter output, and k is the discrete-time
index. Finally, the neuron output can be described by:

y(k) = F(Ao(k)), (5.6)

where F(-) is a non-linear activation function that produces the neuron output
y(k), and X is the slope parameter of the activation function. In the dynamic
neuron the slope parameter A as well as weights w and feedback a and feed-
forward b filter weights are trained during a learning process.
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1 M-1 M

Fig. 5.3. Architecture of the DMLP.

5.1.3. Dynamic MLP

Considering the dynamic neuron model described above, one can design more
complex structure - a neural network. Using the well-known MLP structure with
DNM units as nodes a network of dynamic neurons, called Dynamic MLP (DMLP),
is defined (Fig. 5.3). The DMLP presents an ordered pair (NA,v) . NA denotes
the network architecture (5.1)

NA =({Vi | m=0,1,..., M},
(5.7)
{oV' Im=1,2,....,M;5s=1,2,...,8m},E),

where {V,, | m = 0,1,...,M} is a family of M + 1 layers of DNM units. {o]" |
m=1,2...,M;s =1,2,...,8,} is a set of natural numbers, o™ denotes the
IIR dynamic order of the s-th DNM unit from the m-th layer, s,, = card(V}y).
&= U%;Ol Vimn X Viny1 is a set of edges that define the connections between units in
the network. The vector of network parameters v can be expressed in the following
way:

v=(w,{(a], b \]") [m=1,2,...,M;s=1,2,...,55}), (5.8)

where the set of weights w assigns a real value to each connection,

{(@™, b, A") |m=1,2,...,M;s=1,2,..., 8y} describes feedback and feedfor-
ward ITR synaptic vectors and the slope parameter, respectively, of the s-th DNM
unit from the m-th layer.

It can be proved by applying the Leontaritis and Bilings theorem (1985) that
the DMLP is a universal identifier. They proved that under some assumptions, any
nonlinear, discrete and time-invariant system can be represented by a simplified
version of the NARMAX model (Nonlinear Auto Regressive Moving Average with
eXogenous inputs).
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5.2. Problem statement

Let us consider the network which has to approximate a given function f(u). Let
® = {(u,y)} be a set of all possible (usually uncountably many) pairs of vectors
from the domain u € D C R® and from the range y € IV C R** which realize
the relation y = f(u). The goal is to construct a NN with an architecture NA°P!
and a set of parameters v°", which fulfills the relation yy, , = fna,v(u), that a
given cost function sup, ,)co J7(Yna,o,Yy) Will be minimized. So, the following
pair has to be found

(NAOpt,vOPt) = arg min { sup Jr (yNA’v,y)} (5.9)
(u,y)€P

Practically, the solution of the above problem is not possible to obtain because of

the infinite cardinality of the set ®. Thus, in order to estimate the solution, two

finite sets &1, &7 C ® are selected. The set & are used in the learning process

of the network of the architecture NA:

* = i J , 5.10
v* = argmin Lufggex% L (Ynaw y)} : (5.10)
where V is the space of network parameters. In general, cost functions of the learn-
ing Jr(Yna . y) and testing J7(yya ,,¥y) processes can have different definitions.
The set @7 is used in searching process of NA*, for which

NA* = arg min
NAc A

hax I (Yna,oes y)} ) (5.11)
where A is the space of neural network architectures. Obviously, the solutions of
both tasks, (5.10) and (5.11), need not necessary be unique. Than a definition of
an additional criterion is needed.

There are many definitions of the selection of the best neural network archi-
tecture. The most popular are (Obuchowicz 1998):

o minimization of the number of network free parameters. In this case, the
subset

As = {NA: Jp(ynan-y) <O} CA (5.12)

is looked for. The network with architecture NA € As and the smallest
number of training parameters is considered to be optimal. This criterion is
crucial, when the VLSI implementation of the neural network is planned.

e mazimization of the network generalization ability. The sets of training &,
and testing ®7 patters have to be disjunctive ®; N ®7 = (). Then, Jr is the
conformity measure between network reply on testing patterns and desired
outputs. Usually, both quality measures J;, and Jr are similarly defined

card(®L (1))

JL(T) (yNA,vay) = Z (yNA,v - 9)2- (5.13)
k=1



110 5.2. Problem statement

Restriction of the number of training parameters is the minor criterion in
this case. The above criterion is important for approximating networks or
neural models.

e mazximization of the noise immunity. This criterion is applied in networks
applied in classification or pattern recognition problems. The quality mea-
sure is the maximal noise level of the pattern which is still recognized by the
network.

Two first criterions are correlated. Gradually decreasing number of hidden
neurons and synaptic connections causes the drop of non-linearity level of the
network mapping, and then the network generalization ability increases. The third
criterion needs some redundancy of the network parameters. This fact usually
clashes with previous criterions. For the most part of publications, the second
criterion is chosen.

The quality of the estimates obtained via neural networks strongly depends
on selection finite training ®, and testing &7 sets. Small network structures may
not be to able to approximate the desired relation between inputs and outputs
with the satisfying accuracy. On the other hand, if the number of network free
parameters is to large (in comparison with card(®y)), then the function fya- - (u)
realized by the network strongly depends on the actual set of training patterns (the
bias/variance dilemma, (Geman et al. 1992)).

It is very important to note that the efficiency of the method of the neural net-
work architecture optimization strongly depends on the used learning algorithm.
In the case of multi-modal topology of the network error function, the effective-
ness of the classical learning algorithms based on the gradient descent method
(e.g. the BP algorithm and its modifications) is limited. These methods usually
localize some local optimum and the superior algorithm searching for the optimal
architecture receives wrong information about the learned network quality.

The problem of the optimal network design, described by relations (5.9), (5.10)
and (5.11), is applied to the stationary case and can be simply extended to the
problem of the design of the optimal dynamic neural model.

Let

y(k) = f(u(k),u(k_l),7u(k_n),y(k),y(k_1)a7y(k_nl)) (514)

is the response of a non-linear dynamic system f(-) on an input signal w(k). Let
¢ = {u: K — R*°} is a family of all possible maps (infinitely many) from the
set K of discrete time moments to the space R®® of input signals. The ultimate
goal of the construction of a neural model (with an architecture NA and a set of
network parameters v)

yNA,v(k) = fNA,U(u(k)vu(k_ l)a"'au(k_nNA)a

(5.15)
yNA,u(k)7 yNAm(k - 1)5 T yNA,u(k - n;VA))

of a dynamic system (5.14) is the minimization of a cost function
SUPy(k)ca JT (Ynao(k),y(k) | k € K). Thus one has to determine the following
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pair :

(NA°PY p°Pt) = arg min { sup J1(Ynao (k) y(k) | k € K)} (5.16)
u(k)EP

Similarly as in the static case, the solution of the (5.16) cannot be achieved
in real systems, because of infinite size of ®. Hence, two finite subsets ¢, &1 C
®:®; NPy = () are separated. The set &7, is used to determine the best vector
of parameter of a given network architecture NA:

v* = argmin { sup  J (Ynao(k),y(k) | k€ K)} (5.17)
veEY | u(k)edy ’

The set ®7 is used to determine the network architecture NA that realizes the

minimal cost within the set of all network architectures A = {NA}:

NA* = arg min
NAeA

sup T (e (90 | 1€ K)|. (5.1)
u(k:)E<I>T

5.3. ESSS algorithms in the MLP learning process

However, the emphasis of this part is put on the dynamic neural models design,
it is interesting to check the effectiveness of algorithms from the ESSS family
(Chapters 1 and 2), in the problem of the MLP learning. The MLP, which is usually
learned by BP algorithm, is a type of ANNs used the most often by researches and
engineers. The surface topology of the error function of the MLP is multimodal and
knowledge about it is limited. The BP algorithm, which is based on the gradient-
descent method, usually gets stuck in local minimum and is terminated too early.
Thus, global optimization algorithms, which are able to cross saddles of the error
function surface, may be an interesting solution. There is a reach bibliography on
genetic algorithms applications to neural network training. They are used in feed-
forward networks (Kwasnicka and Szerszon 1997, Montana and Davis 1989, Muselli
and Ridella 1991, Reeves and Steele 1992, Rutkowska et al. 1997, Yao 1993), and
Kohonen networks (Harp and Samad 1992).

The ESSS algorithm has been successfully applied to learn a simple MLP for
the XOR problem (Makuch et al. 1996). The aim of this section is to analyze
the efficiency of the ESSS and ESSS-SVA algorithms as learning methods of the
MLP with much complex structure than that of the XOR network (Obuchowicz
and Patan 1997b). An approximation of a two-variable version of the De Jong’s
function F3 (De Jong 1975) is chosen as an exemplary problem for an MLP. This
function has the form

flur,ug) = alu] + [ui]), (5.19)

where ui,us € (—5.12,5.12), |-] rounds a real number to the nearest integer
towards —oo, and a = 0.08 is a normalization factor such that f(uy,us) € (—1,1)
for argument values in the considered region.



112 5.3. ESSS algorithms in the MLP learning process

Tab.5.1. Efficiency of four tested learning methods of the MLP considered in the sense
of factor Jr (5.21). Percentage of simulations with Jr in a given interval.

algorithm BP | BPA | ESSS | ESSS-SVA

Jr < 0.1 0 | 47 4 32
01<Jr<025| 0 29 94 68

Jr > 0.25 100 | 24 2 0

The trained MLP consists of two input units, one output neuron, bias unit and
two hidden layers of seven and four neurons, respectively. A hyperbolic tangent
function is chosen as the activation function of each neuron. The initial weights are
chosen from a uniform distribution on the interval (—1,1). Similarly, a hundred
training pairs are chosen from a uniform distribution on the considered region of
U, u2.

The MLP is trained independently by four algorithms: BP (Rumelhart et
al. 1986), BP with adaptive learning rate (BPA) (Demuth and Beale 1993), the
ESSS and ESSS-SVA algorithms, in the off-line course, i.e. the sum of squared
errors of all training pairs is minimized. The fitness function for ESSS and ESSS-
SVA has to be non-negative and is chosen in the form:

n , , ) QN2
(ur,up) = nlp—al = Y (yaw(ul” ut)) - f@uf)), (5.20)

i=1

where n is the number of training pairs, (a,b)( = (—1,1)) is the interval of output
values, {((ugl),ugl)),f(ugl),ug’))) | i = 1,2,...,n} is a set of training pairs, and
{ynao@!? ul?) i =1,2,... n}is a set of network answers.

In order to compare the learning methods, a factor Jp is defined:

_ ffA (yNA,v(U1;U2) - f(Ul,U2))2dU1dU2
e ffA f2(U1=U2)dU1dU2 ’

where A is the input vector space.

In order to compare the efficiency of the proposed algorithms with the ex-
isting approaches, a number (about 400 experiments for each algorithm) of com-
putational experiments were carried out. The corresponding results are listed in
Table 5.1.

The BP algorithm cannot teach the network approximating the considered
function in all samples. It gets stuck in local minima. If the MLP is learned
successfully by the BPA algorithm, the optimal point in the weight space is usually
reached perfectly. But about a quarter of simulations gives bad results. In practice,
the ESSS and ESSS-SVA algorithms stop with success. In the case of the ESSS,
the accuracy of the global optimum location is weak. It results from the fact

(5.21)
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that the value of the standard deviation o of the normal distribution used in
parents’ modification (Table 1.3) is too large for a high accuracy of extreme fitting.
But decreasing of o decreases the efficiency of saddle crossing. The o-adaptation
mechanism used in the ESSS-SVA algorithm improves the searching accuracy.

Unfortunately, the ESSS and ESSS-SVA algorithms possess some critical de-
fect, which is the feature of all evolutionary methods. This is extremely long time
of searching the solution. They operate on populations of power from several
dozens to hundreds points of the multi-dimensional weight space. These feature of
the ESSS and ESSS-SVA methods suggests that a hybrid method, which combines
them with a method of local optimization, can be more efficient.

5.4. Learning techniques for DMLP

Let us consider an M-layered network with dynamic neurons described by differ-
entiable activation functions F(-). The activity u”*(k) of the s-th neuron in the
m-th layer is defined by

u(k) = F Am<2b Zw up! Zawws )

(5.22)

The main objective of the learning process is to adjust all the unknown net-
work parameters v (5.8) based upon a given training set of input-output pairs. The
MLP structure of the DMLP suggests that some kind of the BP algorithm can be
implemented. However, if an internal recurrence is presented (Fig. 5.1), the local-
ized calculation of the gradient becomes difficult, because the present output of
the network y 4 , (k) depends on the past outputs. In order to solve this problem,
the Dynamic BP algorithm (DBP) (Baldi 1995) with extension for the DMLP, so
called Extended DBP (EDBP) (Patan and Korbicz 1997, Korbicz et al. 1998), will
be discussed. The EDBP algorithm, similarly to the classical BP, usually finds one
of the local unsatisfactory optima. A multi-start version of the EDBP algorithm
very seldom ends up successfully (Obuchowicz and Patan 1998). Thus, algorithms
of global optimization should be implemented. Three types of the global opti-
mization algorithms were used in the DMLP learning process: genetic algorithms
(Patan and Jesionka 1999), stochastic algorithms (Patan and Obuchowicz 1999),
and the ESSS-FDM (Obuchowicz 1999a). The last two will be discussed in this
section.

5.4.1. Stochastic algorithms

In this section, an attempt to apply stochastic algorithms to training of the dy-
namic neural network is undertaken. A similar study for a simple multi-layer
perceptron was presented by Tu et al. (1995). In that work, however, simula-
tion was performed for a very simple XOR problem. In the case of modelling of
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dynamic non-linear processes, a sum-squared error surface is more complex and
multimodal. Pure stochastic algorithms to the DMLP training process was pro-
posed by Patan and Obuchowicz (1999) as a simple technique, which allows to
avoid the problem of the local character of the EDBP algorithm. In this section,
algorithms which have iterative character are considered. Assuming that the se-
quence v°, v, ..., v* is already appointed, a way of achieving next point v**! is
formulated (Zieliniski and Neumann 1983). All the algorithms described in this

section are characterized by a very simple structure.

5.4.1.1. Stochastic algorithms with randomly chosen direction of searching
(Algorithm A)

The principle of operation of these algorithms is that the direction of searching
is chosen in a random manner, and after that in this direction a step of suitable
length is performed. Two cases can be distinguished here: 1) the step rate is
established and 2) the step rate is changed during optimization procedure. Let
there be given two sequences (ar)r>0 : ax > 0 and (ex)r>0 : € > 0 A e L 0. Let
a vector sequence (5’“)1@0 b eU (8(0,1)), each ¢* is randomly chosen from
the spherical surface of radius equal to unity with the uniform distribution. The
stochastic algorithm with a given learning rate is defined by the formula:

. (5.23)

v

oh = vk +at® T (0" + art®) < Jp(wk) — ey,
otherwise,

where v is the vector of all network parameters, and Jz(v*) is the performance
index in the form of sum-square error:

P
T =3 (ynaer 0) —y0)” (5.24)

p=1

Taking into account equation (5.23), in the first case one can speak about “success",
and in the other case, — about “failure". A new, different from previous, point v*+?!,
only in the case of success is obtained. A point v* + a€" can be treated as a test
point. The quantity ay is the step rate, and gy, is the “improvement threshold".

5.4.1.2. Stochastic algorithms with an estimation of a gradient (Algorithm B)

The stochastic algorithm with an estimation of a gradient is defined according to
the formula:

k+1 k

vt = vk — a5 (vh), (5.25)

where (ar)r>0 is a given sequence, and ¢ ('uk) is an estimator of Vi ('uk), where
¢ (v*) = JL(*)/||JL(v*)||. This estimator can be expressed in the form:
Jr, (v")

¢ (v*) = TEACEI (5.26)
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where J;, ('uk) # 0 is the estimator of the V.J; at the point v*. Let (ck)r>0 :

¢k > 0 be a sequence of positive numbers, and (€*),>0 : € € U (S(0,1)) be a
vector sequence of independent random directions with uniform distribution. The
estimator Jp, ('uk) can be described as:

~ JI ('uk + ckﬁk) —Ji (v*)

Jr, (v*) ¢k (5.27)
Ck
It is necessary to note that in this case:
Aok k k k\] ¢k
o(v*) = sgn [JL (’U +cré ) —Jr (v )] I3 (5.28)

and the algorithm under consideration can be transformed to the formula:

b — akﬁk if JL('Uk + Cké'k) > JL(vk),

it — ok 4 apth it JL(vk+Ck£k) < Jp(v*), (5.29)

k otherwise.

v
In this case, the point v* + ck£k can be treated as a test point. This algorithm
admits points with better as well as worse quality (compare with (5.23)). Thus, it
takes the feature of crossing saddles in sum-square error landscape.

5.4.1.3. Stochastic algorithms with randomly chosen sample points
(Algorithm C)

Let there be two sequences (ry)r>o @ 7% > 0 and (ex)kz0 : €k > 0Aer | 0. Let
a vector sequence (5’“)1@0 ek e U (K(0,71)), each ¢* is randomly chosen from
the sphere of radius equal to r; with the uniform distribution. The stochastic
algorithm with a given learning rate is defined by the formula:

. (5.30)

otherwise.

oh = { ¢k TL(Eh) < Jo(v*) - e,
v

5.4.1.4. lllustrative example

Let us consider the following identification problem of a nonlinear dynamic system
described by the equation (Narendra and Parthasarathy 1990):

_ ylk = Dy(k = 2)y(k = 3)u(k — 1) (y(k - 3) = 1) + u(k)
y(k) = [ Ty . (5.31)

To solve this problem, the DMLP with one input and one output units, and one
hidden layer with five units has been applied (Patan and Korbicz 1996). All
the neurons have the second order IIR filter (the network of the ./\f127571 class), so
the considered network has 46 learning parameters. The network structures and
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learning parameters have been chosen experimentally. Training of the network
was carried out using, by turns: the stochastic algorithm with a randomly chosen
search direction (algorithm A), the stochastic algorithm with gradient estimation
(algorithm B), and the stochastic algorithm with randomly chosen sample points
(algorithm C) (Patan and Obuchowicz 1999). Illustrative examples of training
processing are presented in Fig. 5.4. As it can be seen, none of the proposed
algorithms is able to train the network accurately. In the best case the sum-
squared error was approximately equal to 0.65. This large error value does not
assure a high modelling quality. In spite of the fact that these algorithms fail,

some interesting remarks can be formulated.

Both algorithms A and B solve the training problem with an equivalent accu-
racy. Training with the algorithm A seems to be more stable. It results from the
fact that, unlike in the algorithm B, only the best vectors are accepted as a base
for the next searching in the algorithm A. The algorithm B sporadically crosses
saddles in sum-square error landscape, but benefits following from this fact are
not to be noticeable. The efficiency of the algorithm C is the worst. However, in
the case of the multi-layer perceptron training, it usually gives the best results. It
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probably follows from the fact that there is a very rich topology of the sum-square
error function, in the case of chosen non-linear system (5.31), and fitting a suit-
able algorithm parameters is very difficult. However, if an adaptation of algorithm
parameters is implemented, the fast stochastic algorithms might train the DMLP
with better efficiency. A very important remark is that the stochastic and gradient
algorithms can be combined. Thus, a hybrid method is obtained, within which
the stochastic algorithm can act as a mechanism which secures running away from
local minima.

5.4.2. Evolutionary algorithms

The idea of a soft algorithm application to DMLP learning process was first in-
troduced by Patan and Jesionka (2000, 1999). They used the genetic algorithm
to learn the DMLP which had to identify a dynamic system. In order to imple-
ment the GA to the DMLP training, the chromosome should contain information
about the weights w of synaptic connections between neurons, the feedback a and
the feed-forward b parameters for each neural IIR filter and the slope parame-
ters A for each DNM unit. The chromosome length depends on the number of
bits, which code each network parameter. The DMLP considered in (Patan and
Jesionka 1999) belongs to the class N} ; | (one input, five hidden and one output
units with the first order ITR). Thus we have 40 network parameters to adjust. Let
all the parameters be from the range [-1,1]. If each parameter is to be represented
with accuracy equal to 10~°, then we need 18 bits per network parameter and 720
bits per chromosome. If the size of population is equal to 200, then the algorithm
operates on 144 thousand bits per epoch (!).

The results obtained are not satisfying (Patan 2000). The GA is not an opti-
mization algorithm in the sense of reaching an optimum with a desired accuracy. It
is not asymptotically convergent to an optimum. Thus, the best element obtained
in the history of a GA processing is proposed to be the initial one for the local
optimization method, e.g. the EDBP algorithm. The resulting DMLP reveals
a high quality of system identification. This technique, which combines the GA
and EDBP algorithms gives a very good neural model. In order to evaluate the
modelling results the discrete version of the quality index (5.21) is defined in the
form (Obuchowicz and Patan 1998):

P 2
gy = S van ) —y@)” (5.32)

25:1 y*(p)

where P is the size of the testing set. The quality indices Jr (5.32) obtained for
the DMLP models learned using the GA and EDBP algorithms are lower several
times then these DMLP models, which have been learned by the EDBP algorithm
only (Patan 2000).

Besides unquestionable advantages, the GA has several drawbacks. First of
all, this algorithm is numerically complex, and training time is very long. More-
over, training using the GA can be performed only off-line. Therefore, the GAs
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should be applied in very difficult optimization problems, where classical methods
fail, and a very high modelling quality is required.

Some of the GA disadvantages which occur in the DMLP learning process
have been overcome using the ESSS-FDM algorithm (Obuchowicz 1999a, Korbicz
et al. 1999). Unlike the GA, the ESSS-FDM algorithms works using floating
point representation and there are no problems with the long chromosomes. The
ESSS-FDM algorithm has been successfully implemented in the case of a time-
varying performance index (Obuchowicz 1999b), thus the attempt at applying
this algorithm to the on-line learning process ends in success (Obuchowicz 1999a).

To model Narendra’s dynamic system (5.31), a DMLP network belonging to
class ./\/‘1275’1 was chosen (one hidden layer with five neurons). Each neuron contains
a second-order IIR filter. Hence, 52 adaptable parameters have to be adjusted in
the training process. The parameters of the ESSS-FDM algorithm were as follows:
the size of population 17 = 20; the momentum p = 0.0545; the maximum number
of iterations tyax = 5000; the variance of modification o = 0.075 for ¢ < 200 and
o = 0.015 for t > 200. A set of 500 training patterns for the on-line training
process was generated. Figure 5.5 shows the system and neural model outputs for
different chosen inputs.

In the case of the DMLP network trained with the ESSS-FDM algorithm, a
very good quality (Jr = 0.0058) was obtained for the testing signal

) {sin(27rk/250) for k< 250, (5.33)

0.8sin(27k/250) + 0.2sin(27k/25) for k > 250.

The obtained result is better than all known results for the Narendra’s system
(5.31) in the literature (Narendra and Parthasarathy 1990, Specht 1991, Patan
and Korbicz 1996, Obuchowicz and Patan 1998). From Fig. 5.5 it follows that the
performance of the system modelling is high for different inputs. Unfortunately,
the ESSS-FDM algorithm is more time-consuming than the EDBP one. Based
on this approach a good quality model of the dynamic process can be designed.
It was found that the DMLP network with ESSS-FDM learning algorithm can be
applied in the cases where high modelling quality is required and the learning time
does not matter. In other cases, the EDBP algorithm is recommended to train the
DMLP network.

5.5. The MLP architecture optimization

Let us consider the MLP network with two hidden layers and units with sigmoid
activation function (Fig. 5.6).

Four spaces can be distinguished: the input space i, and its successive pat-
terns Yp1 = Rp1(U), Vho = Rp2(Yn1) and Y = Ro(Vh2), where Rp1, Rp2 and R,
are mappings realized by both hidden and output layers, respectively. Numbers
of input and output units are defined by dimensions of input and output spaces.
The number of hidden units in both hidden layers depends on an approximation
problem solved by a network. Further consideration are based on the following
theorem (Wang et al. 1992):
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Fig. 5.6. The MLP network with three layers

Theorem 5.5.1. Let ®;, be a finite set of training pairs associated with finite
and compact manifolds. Let f be some continuous function. Taking into account
the space of three-level MLPs, there exists an unambiguous approzimation of the
canonical decomposition of the function f, if and only if the number of hidden
neurons in each hidden layer is equal to the dimension of subspace of the canonical
decomposition of the function f.

Theorem 5.5.1 gives necessary and sufficient conditions for existing of the MLP
approximation of the canonical decomposition of any continuous function. These
conditions are following. The &/ and Y must be fully represented by the training
set ®r. The network contains more than two hidden layers, which are enough
for implementation of the considered approximation of canonical decomposition
of any continuous function. The goal of the first hidden layer is to map the n-
dimensional input space U into the space Yp1 = Rp1(U), which is inverse image
of the output space in the sense of the function f. Thus, the mapping Vp1 — Y
is invertible. The number of units in the first hidden layer card(V;) is equal to a
dimension of the minimal space, which still fully represent input data, and is, in
general, lower than the dimension of input vectors.

Theorem 5.5.1 guarantees, that an approximation of the canonical form of
function f exists and is unambiguous. If card(V;) is higher than the dimension
of the canonical decomposition space of the function f, the network does not
approximate the canonical decomposition, but can still be the best approximation
of the function f. However, such an approximation is not unambiguous, and
depends on the initial condition of the learning process. On the other hand,
if the number card(V}) is too low, the obtained approximation is not optimal.
So, both deficiency and excess of neurons in the first hidden layer lead to poor
approximation.

As it has been pointed out above, the first layer reduces the dimension of the
actual input space to the level sufficient for the optimal approximation. Next two
layers, second hidden and output, are sufficient for realization such an approxima-
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tion (Cybenko 1989, Hornik et al. 1989). The number of units in the second hidden
layer card(V2) is determined by an assumed error of the approximation. Lowest
error needs higher card(V2). The crucial tradeoff one has to make is between the
learning capability of the MLP and fluctuations due to the finite sample size. If
card(V3) is too small, network might not be able to approximate well enough the
functional relationship between the input and target output. If card(V) is too
great (compared to the number of training samples), the realized network func-
tion will depend too much on the actual realization of the training set (Geman et
al. 1992).

The above consideration suggests, that the MLP can be used to approximation
of a canonical decomposition of any function specified on the compact topological
manifold. The following question comes to mind: why is the canonical decompo-
sition needed? Usually, essential variables, which fully describe the input-output
relation, are not precisely defined. Thus, the approximation of this relation can
be difficult. The existence of the first layer allows to transform a real data to the
form of the complete set of variables of an invertible mapping. If the input space
agrees with the inverse image of the approximated mapping, the first hidden layer
is unnecessary.

5.5.1. Methods classification

Procedures, which search the optimal ANN architecture, have been studied for
dozen or so years. Especially an escalation of papers took place in 1989-1991. At
that time almost all standard solutions were published. In subsequent years the
number of publications significantly decreases. Most of proposed methods were
dedicated to specific types of neural networks. But new results are still needed.

There are very rich bibliography items and various methods to solve this
problem. Recently, a variety of architecture optimization algorithms have been
proposed. They can be divided into three classes (Doering et al. 1997, Obuchowicz
2000a):

e bottom-up approaches,
e top-down approaches,
e discrete optimization methods.

Starting with a relatively small architecture, bottom-up procedures increase
the number of hidden units and thus increase the power of the growing network.
One of the first methods was proposed by Mezard and Nadal (1989). Their tiling
algorithm is dedicated for the MLP, which have to map Boolean functions of bi-
nary inputs. Creating subsequent layers neuron by neuron the tiling algorithm
successively reduces the number of training patters, which are not linearly separa-
ble. Similar approach was introduced by Frean (1990). Both algorithms give MLP
architectures in a finite time, and this architectures aspire to be almost optimal.
In (Hirose et al. 1991) the extension of the back-propagation algorithm has been
proposed. This algorithm allows to add or reduce hidden units depending on an
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actual position of the training process. Ash (1989), Setiono and Chi Kwong Hui
(1995) proposed that the training process of the sequential created networks is
initiated using values of parameters from previous obtained networks. Wang and
co-workers (1994) built an algorithm based on the their Theorem 5.5.1 (Wang et
al. 1992) , which describes necessary and sufficient conditions that there exists a
neural network approximation of an canonical decomposition of any continuous
function. The cascade-correlation algorithm (Fahlman and Lebierre 1990) builds
an ANN of original architecture. The bottom-up methods prove to be the most
flexible approach, though computationally expensive, complexity of all known al-
gorithms is exponential. Several bottom-up methods have been reported to train
even hard problems with a reasonable computational effort. The resulting network
architectures can hardly be proven to be optimal. But, a further criticism concerns
the insertion of hidden neurons as long as elements of the training set are misclas-
sified. Thus the resulting networks posses a poor generalization performance and
are disqualified for many applications.

Most of neural networks applications uses the neural model of binary, bipolar,
sigmoid or hyperbolic tangent activation function. A single unit of this type rep-
resents a hyperplane which separates its input space into two subspaces. Through
the serial-parallel units connections in network, the input space is divided into
subspaces which are polyhedral sets. The idea of the top-down methods is gradual
reduction of the hidden unit number in order to simplify shapes of the division of
the input space. In this way the generalization property can be improved. Three
classes of top-down application may be distinguished:

e sensitive methods,
e penalty function methods, and
e covariance analysis methods.

A sensitivity of an synaptic connection is a measure of the influence of this connec-
tion reduction on a quality measure of the network. First definitions of the sensi-
tivity measure was proposed by Mozer and Smolensky (1989) and Karnin (1990),
but the most known sensitivity algorithms are Optimal Brain Damage (LeCun et
al. 1990) and its extension: Optimal Brain Surgeon (Hassibi and Stork 1993). The
idea of the penalty function methods is modification of the quality measure of an
ANN by adding a factor which penalizes a network for the excess of architecture
elements (Chauvin 1989, Hertz et al. 1991). The topological optimization may be
provided by the distribution analysis of the eigenvalues of the covariance matrix
of output signals of hidden units. It is assumed that as many hidden units can be
reduced as there are eigenvalues negligently small (Weigend and Rumelhart 1991).
Alippi and co-workers (1997) transform the covariance matrix of output signals
of hidden units into diagonal matrix using, so called, virtual layer, and than the
generalization performance is improved by reducing virtual neurons with insignif-
icant output signals. The top-down approaches inherently assume knowledge of
a sufficiently complex network architecture that can always be provided for fi-
nite size training samples. Because the algorithms presented up to now can only
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handle special cases of redundancy reduction in a network architecture, they are
likely to result in a network that still oversized. In this case the cascade-reduction
method (Obuchowicz 1999d), where the obtained architecture using a given top-
down method is an initial architecture for next searching process, can be a good
solution.

The space of ANN architectures is an infinite discrete space and there are very
rich bibliography items about implementation of discrete optimization methods to
solve the ANN architecture optimization problem. In particular, evolutionary
algorithms, especially genetic algorithms, seem to have gained a strong attraction
within this context (c.f. (Bornholdt and Graudenz 1991, Harp et al. 1989, Kitano
1990, Koza and Rice 1991, Marshall and Harrison 1991, Miller et al. 1989, Nagao
et al. 1993, Obuchowicz and Politowicz 1997)). Nevertheless, implementations of
the A* algorithm (Doering et al. 1997, Obuchowicz 1999¢) and the Simulating
Annealing (Obuchowicz 2000a) deserve an attention.

One of the most interesting approaches, proposed by Doering and co-workers
(1997), where the crucial point certainly is the efficient use of information already
gained during training a sequence of network architectures. The A*-algorithm is
applied. It is known that it uses heuristic information in an optimal way and thus
is superior to all other algorithms working with the same heuristic information,
i.e., it finds the optimal architecture by exploring the smallest possible subset of
the search space.

5.5.2. Evolutionary algorithms approach to ANN architecture optimization

Application of the evolutionary algorithms to the construction process of neural
tools has just a history of a dozen or so years. Evolutionary algorithms can be
used in three types of problems:

e learning process of an ANN with fixed architecture;

e searching for an optimal ANN architecture, the learning process is done using
another method, e.g. the BP algorithm,;

e solving both above problems simultaneously.

The first type of problems was considered in Section 5.3, the others are the
subject of this point. Among all known EAs, genetic algorithms seem to be the
most natural tool for searching a discrete space of ANN architectures. This fact
results from the classical structure of a chromosome — a string of elements from
a discrete set, e.g. a binary set.

The most popular representation of the ANN architecture is a binary string
(Bornholdt and Graudenz 1991, Harp et al. 1989). At first, an initial architecture
NA.x must be chosen. This architecture must be sufficient to realization of
a desired input-output relation. The NA,.x defines the upper limit of searching
architectures complexity. Next, all units of the NA .« have to be numbered from 1
to N. In this way, the searching space of ANN architectures is limited to class of all
digraphs of N nodes. Any architecture NA (a graph) of this class is represented by
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its connection matrix V of elements equal to 0 or 1. If V;; = 1 then there exists the
sinaptic connection from ¢-th unit to j-th one, V;; = 0 otherwise. A chromosome
is built by rewriting the matrix V row by row to a bit string of length N2. Using
such a representation of an ANN architecture a standard GA algorithm can be
used (see Section 1.2.1).

It is easy to see, that the above representation can describe an ANN of any
architecture: the feedforward networks as well as recurrent ones. If a class of con-
sidered networks is limited to the MLP then the matrix V contains many elements
equal to 0 and cannot be changed during a searching process. Such a limitation
complicates genetic operations and occupies a wide memory in a computer. Thus,
the passing over this elements in the representation is sensible (Obuchowicz and
Politowicz 1997).

Usually, an ANN has from hundreds to thousands synaptic connections in
practical applications, and a binary code representing such an ANN architecture is
very long. This fact causes that standard genetic operations are not effective. The
convergence of the genetic process deteriorates with increasing the complexity of
the ANN architecture. Miller and coworkers (1989) propose genetic representation
of the ANN architecture in the form of the connection matrix V. The crossover
operator is defined as an exchange of randomly chosen rows or columns between
two matrices. In the case of the mutation, each bit is turned with some (very
small) probability.

Presented above methods of the genetic representation of the ANN architec-
ture are called direct encoding (Kitano 1990). This term informs that each bit
represents one synaptic connection in the ANN structure. The disadvantage of
these methods is too slow convergence of the genetic process, or lack of conver-
gence in the limit of very large architectures. Furthermore, if the initial architec-
ture NApmax is very complex, the result of such genetic searching process is not
so optimal as can be characterized by some compression level. The measure of
the method efficiency can be, so called, the compression index (Obuchowicz and
Politowicz 1997) defined by the form:

*

N

Nmazx

R =

x 100%, (5.34)

where n* is a number of synaptic connections in the resulted architecture, Jmax
is the maximal number of connections which is acceptable in a given architecture
representation.

In order to illustrate this compression ability of the genetic approach with
the direct encoding, let us consider the MLP, which implements logical conjunc-
tion (AND), inclusive OR and exclusive OR (XOR) of two bits. This problem is
described in the work (Obuchowicz and Politowicz 1997). The number of input
and output units is defined by the dimension of the input vector w € R* and the
output vector y € R®. For simplification the network architecture is limited to
one hidden layer (Fig. 5.7). The problem is reduced to the number v of hidden

neurons and the number n of synaptic connections determination. The definition
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bias

Fig. 5.7. The architecture of the network implementing three logical functions of two
bits.

of the quality criterion is defined as follows
Jr = By(NA) + 7t(NA), (5.35)

where t(INA) is the discrete learning time, 8 and v are weight parameters deciding,
which factor, the number of connection n(NNA) or the learning time ¢(NA) is more
essential.

Two evolutionary algorithms are used. First of them is the classical GA, which
works on the binary string of the length [, i.e. an individual belongs to the space
I ={0,1}!. The maximized fitness function is non-negative:

&(NA) = a — Jr(NA), (5.36)

where the cost Jr is defined by (5.35). As a stop condition, a maximum number of
iteration is set. The selection s : I* — I* generates two parent elements using the
roulette method. The one-point crossover occurs with the probability 8, = 0.6. The
mutation sporadically exchange one bit in the string with probability 6,, = 0.033
for each bit. The second algorithm, called Genetic-Evolutionary Search Algorithm
(GESA), has been proposed in (Obuchowicz and Politowicz 1997). It differs from
the classical GA in three facts. Unlike the GA, u parent elements are selected from
actual population of p elements by the roulette method. The crossover operator is
omitted. The probability of mutation 6, of the k-th element is not constant, but:

6 = 010 In <3 - 1) , (5.37)
&k

where oy, is an input parameter, and & € [0,1] is a uniformly distributed random
number. The learning process for each testing architecture is done using the BP
algorithm. Figure 5.8 illustrates the compression ability of both algorithms.

The alternative class of genetic representations of an ANN architectures is the
indirect encoding (Kitano 1990, Koza and Rice 1991, Marshall and Harrison 1991).
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Fig. 5.8. Fitness of the best individual in time in the case of the GA (a) and GESA (b)
for different values of v = 2,3,...,10 (v = 2 — the top curve, and v = 10 —
the bottom curve). For the efficiency comparison a = 0 in the equation (5.36).
The high of the curve fault is proportional to the compressing factor x (5.34)

In the work (Marshall and Harrison 1991) an individual contains binary encoded
parameters of an MLP architecture (the number of hidden layers, the number of
hidden neurons in each layer, etc.) and parameters of the BP algorithm used
for learning this MLP (the learning factor, the momentum factor, the desired
accuracy, the maximal number of iterations, etc.). A discrete finite set of values is
defined for each parameter, the cardinality of this set depends on the number of
bits assigned for a given parameter. In this case the genetic process searches not
only for the optimal architecture but for optimal training process, too.

The other proposition (Kitano 1990) is a graph-based encoding. Let the
searching space be limited to architectures, which contain 2”*! units at the most.
Then, the connection matrix can be represented by a tree of h levels, and each
node of this tree possesses four successors of is the leaf. Each leaf is one of the
16 possible matrices 2 x 2 of binary elements. Four leaves of a given node of the
level h — 1 define a 4 x 4 matrix, etc. In this way the root of the tree represents
the whole connection matrix. Crossover and mutation operators are defined in
the same way as in GP method (Fig. 1.2). Koza and Rice (1991) apply the GP
algorithm (see Section 1.2.2) for neural network design.

5.6. Optimization of the DMLP architecture

The significance of network architecture optimization increases when the DMLP
is taken into considerations. The number of free network parameters rapidly in-
creases when one substitutes standard McCulloch-Pitt’s neurons by the DNM
units. Thus, there is some quality difference between architecture allocation of
the MLP and the DMLP. Apart from setting an appropriate number of hidden
layers and the number of neurons in each of these layers, the dynamic order of
each particular neuron has to be established in the DMLP.
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5.6.1. Simulated annealing with cascade-reduction technique
5.6.1.1. Simulated annealing algorithm

Simulated Annealing (SA) (Kirkpatrick et al. 1992) is based on the observation
of the crystal annealing process, which has to reduce crystal defects. The system
state is represented by a point S in the space of feasible solutions of a given
optimization problem. The neighbouring state S’ of the state S differs from S
only in one parameter. The minimized objective function E is called the energy
by the physical analogy, and the control parameter T is called the temperature.
The SA algorithm is following:

1. Choose the initial state S = Sy and the initial temperature T" = Tj.

2. If the stop condition is satisfied then stop with the solution S else go to 3.
3. If the equilibrium state is achieved, go to 8 else go to 4.

4. Choose randomly a new neighbouring state S’ of the state S.

5. Calculate AE = E(S") — E(S).

6. If AE < 0or x < exp(—AE/T), where x is uniformly distributed random
number from the interval [0,1), then S = S".

7. Go to 3.
8. Update T and go to 2.

The non-negative temperature (7 > 0) allows to choose the state S', whose
energy is higher than the energy of the actual state S, as a base state for the
further search, and then, there is a chance to avoid getting stuck in a local op-
timum. Dislocations , which deteriorate the system energy, are controlled by the
temperature T'. Their range and occurring frequency decrease with 7' — 0. As the
equilibrium state can be chosen a state,when the energy almost does not change
(with a given accuracy, which is a function of temperature) in a given time inter-
val. This criterion is relatively strong and cannot be accomplished. So, usually,
a number of iteration is fixed for a given temperature. The initial temperature
is the measure of the maximal “thermal” fluctuations in the system. Usually, it
is assumed that the chance of achieving any system energy should be high in the
beginning of the searching process. The linear decreasing of the temperature is
not recommended. The linear annealing strategy causes the exponential decrease
of “thermal” fluctuations and the searching process usually gets stuck in a local
optimum. Two annealing strategies are recommended:

T
T(t,) =4 1+ntn (5.38)
OéT(tn_l)
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Fig. 5.9. (a) The minimal number of synaptic connections obtained using the GA (solid
line), the GESA (dashed line ) and the SA (dotted line) as a function of
maximal number of hidden units v (see Fig. 5.7); (b) The relationship between
the compression index & (5.34) and v.

where t,, is the number of temperature updating, and « € [0, 1] is a given constant.
The annealing strategy determines the stop condition. If the strategy (5.38) is
used, the process is stopped when the temperature is almost equal to 0 (T' < ¢).

Firstly, the simulated annealing algorithm was applied as a recreation process
of the Boltzmann machine (Korbicz et al. 1994). The SA implementations in
the learning of the MLP have not significant successes. But, it is very promising
algorithm in the case of searching for the optimal ANN architecture. In the work
(Obuchowicz 1998), the SA algorithm was compared with the GA and GESA (see
Section 5.5.2). Let the MLP architecture be represented in the same way like in
the GA and GESA, i.e. by a bit string, where each bit represents presence (1)
or absence (0) of the corresponding synaptic connection. A randomly generated
bit string is chosen as an initial solution S. The neighbouring solution S’ differs
from the S only by one bit. The annealing strategy is conducted in order to
the second formulae of (5.38), where a = 0.9 and the initial temperature Ty =
20. The algorithm ends if 7' < 0.05. Simulation experiments show that the SA
algorithm is more effective than the GA and GESA. Figure 5.9a presents the
relationship between the minimal numbers of connections (the global minimum
Nopt = 9) obtained by the GA, GESA, and SA, and the maximal permissible
number of hidden neurons v = 2,3,...,10 (15 < Nmax < 63). Figure 5.9b presents
the relationship between the compression index x (5.34) and v. The domination
of the SA algorithm is clearly seen.

5.6.1.2. Cascade reduction with simulated annealing

The main idea of cascade reduction is following (Obuchowicz 1999d). We start
with a network structure that is supposed to be sufficiently complex and reduce it
using a given algorithm. Thus, we obtain a network with 1*(0) parameters from
Nmax(0). In the next step we assume that nmax(1) = 7*(0) and apply reduction
again. This process is repeated until n*(k) = nmax(k)(= n*(k — 1)).
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Let us consider the dynamic system described by (5.31), which is modeled by
the DMLP network. The set of learning signals consists only one type of the input
signal — the white noise. The squared error

7= 5{ (rowee®) —y(8)”), (5:39)
is chosen as the cost function of the on-line learning process, which is proceeded by
the EDBP algorithm. The training ends up if J;, < 0.01 or the assumed maximum
number of iterations (kmax = 10000) is achieved. The map (5.33) is chosen as a
testing signal. The testing cost Jp is defined by (5.32).

Taking into account results obtained in previous Section (Fig. 5.9) the SA
algorithm seems to be the best choice as a reduction process. An architecture
of the DMLP network is encoded into a bit string, each bit represents absence
or presence of one free parameter of the DMLP network (weight of the synaptic
connection, the feedback ar feedforward parameter of the IIR filters, etc.). The
parameters of the SA algorithm are chosen as: a = 0.95, Ty = 0.5. For simplicity,
we assume that all DNM units possess second-order IIR filter. We start with the
network architecture N2q.10.; (one input unit, 10 units in the first hidden layer,
10 units in the second hidden layer, and one output unit — 246 free parameters).
The sequence of network structures obtained after each SA process is as follows:

N12:10:10:1(246) - N12:5:3:1(77) - N11:5:1(46) = M1 (14). (5.40)

The number of free parameters is described in brackets. Figure 5.10 presents the
responses of the dynamic system (5.31) and the resulting DMLP on the testing
signal (5.33). Unfortunately, the above DMLP architecture has been obtained
only a couple of times for dozens experiments. This fact proves that the EDBP
algorithm used to the network training usually finds unsatisfactory local minima
in the space of DMLP parameters.

5.6.2. Cascade network of dynamic neurons

The basic idea of the cascade-correlation algorithm is to reduce iteratively the
output error by inserting hidden units that correlate (or anti-correlate) well with
the error. By freezing the network while optimizing the new hidden unit candidate
the algorithm avoids the moving targets problem of the standard BP algorithm
(Fahlman and Lebierre 1990). Below, the cascade-correlation algorithm adapted
to the dynamic network and used in this work is described.

This algorithm starts without any hidden units. The direct input-output
connections are trained on-line using the gradient descent method. At this stage,
the EDBP algorithm reduced to the version of one DNM unit learning can be
applied. If the network performance is satisfactory, the procedure is stopped,
otherwise it attempts to reduce the residual errors further by adding a new hidden
DNM unit to the network. The unit creation process begins with a candidate unit
that receives trainable input connections from all of the networks external inputs
and from all pre-existing hidden units. The output of this candidate unit is not yet



130 5.6. Optimization of the DMLP architecture
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Fig. 5.10. Responses of the dynamic system (5.31) (solid line) and the DMLP of NV,
structure (dotted line) on the testing signal (5.33) (Jr = 0.011 (5.32))

connected to the active network. The adjusting of the candidate unit input weights
and its IIR parameters is performed to maximize the following performance index:

SM P

U= > (V= (V)i = (E) (5.41)

p=1

where sps is the number of output units, P is the number of training patterns,
(V) = (%) 25:1 V, and (E;) = (%) 25:1 E,i, V, denotes the response of the
candidate on the input v, and E,; is the output error on the input u,.

When a new DNM unit is added to the network, its adjusted parameters are
frozen, and all the output neurons parameters are trained again using the gradient
descent method. This cycle repeats until the output network error is acceptable.
In Fig. 5.11 an example of the neural network with two inputs and two outputs
is shown. It is called the Cascade Network of Dynamic Neurons (CNDN) (Patan
et al. 1999). Black dots denote adaptable weights between neurons. This is a
feed-forward series-parallel structure. Each neuron receives signals from all inputs
and all hidden neurons. Such a structure has some advantages in contradistinction
to the standard feed-forward networks. The first advantage is preventing moving
target problem. This problem often occurs in the standard feed-forward networks,
where each neuron adapts its parameters in a constantly changing environment
receiving only the input and output network data of small sizes. In fact, instead of a
quick adjustment of its parameters, the hidden neurons engage in a complex dance
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Fig. 5.11. Examples of cascade network with two inputs and two outputs.

around the constantly moving target. The more hidden neurons there are, the
harder it is to achieve a good learning quality. In a cascade network, each hidden
neuron is trained separately. Thus, it receives all input and output learning data
and that is why it can adjust its parameters in a correct way. The other advantage
is an optimal character of this structure. The hidden neurons are added to the
network one by one until the output network error is acceptable. In this way an
optimal neural network, in the sense of modelling quality, can be designed. It is
necessary to note that the proposed network is not optimal in the sense of the
number of hidden neurons or number of parameters either.

In order to illustrate the effectiveness of the neural model based on the CNDN,
let us consider the Two-Tank System, which consists of two cylindrical tanks with
identical cross sections being filled with water and with a delay spiral pipeline (see
Fig. 5.12). The nominal outflow @, is located at Tank 2. The pump driven by
a DC motor supplies Tank 1, where @; is the inflow of the liquid through pump
to Tank 1. Both the tanks are equipped with sensors for measuring the level of
the liquid (hy,hs). Valves Vi, Vo, V3, V4 and Vg are electronic switching ones.
The aim of the two-tank system control is to keep up the water level in Tank 2
constant.

The high modelling quality has been obtained for relatively small CNDN
architecture N3__; (the CNDN consists of 3 hidden DNM units and one output
DNM unit). Figure 5.13 compares the measured and model liquid levels in Tank 2.
Basing on the CNDN models for a set of possible faults in the two-tank system, the
effective fault diagnosis system has been proposed (Korbicz et al. 1999, Korbicz et
al. 2001).

5.6.3. Graph of the DMLP structures

The optimum DMLP architecture searching process can be more effective if the
space of the DMLP architectures will be ordered. Doering and coworkers (1997)
propose the ordering of the MLP architectures in the infinite graph (Fig. 5.14).
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Fig. 5.13. The measured (solid line) and modelled by the CNDN (dotted line) liquid
levels in Tank 2

The notation v1 — v2 used in Fig. 5.14 denotes that the network consists of v1
neurons in the 1st hidden layer and v2 neurons in the 2nd hidden layer. The
number of units in the input and output layers are defined by the dimensions of
the input and output spaces, respectively.

In the case of the space of the DMLP architectures the corresponding graph
G(A) is much complicated because of IIR filters existence in the DNM units
(Obuchowicz 1999c). The graph G(A) can be described by definition of the ex-
pansion operator I'(INA), which generates all successor of a given architecture NA.



5. Optimization

tasks in neural models designing 133

Increasing the number of neurons in 2nd layer

Increasing the number of layers

Fig. 5.14. The graph of the MLP structures.

The expansion operator I'(NA) creates the following successors.

1. Varying the number of hidden layers. Assume the DMLP architecture NA
(5.7). The architecture NA®") with inserted hidden layer with one DNM unit

v’ of zero

N4

order
= ({(viV|m=0,1,....,M +1},
O™ I m=1,2,.. , M+1;s=1,2... 5,}ED);
= Vpn, for m=0,1,...,M —1;
= Vg
= '} (5.42)
= o™  for m=01,....M—1, s=1,2,... 8n
= 0
= oM, for s=1,2,...,s041(= sm);
= EU{(U,U')‘UEV]\(}),l}

U{(v’,v)|v € V]\(}ll} \ {(v,,v+) ‘v, € VJ\(/})_l,v+ € V]\(}ll}

is the successor of NA.
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2. Varying the number of units in a hidden layer. Assume the architecture NA
(5.7) that has at least one hidden layer (M > 2). Then, all architectures
NA®) with an inserted unit v" in a i-th layer for i = 1,2,...,M —1

NA® = (V@ |m=0,1,...,M},

m

{0&2)m|m:1,2,...,M;s: 1,2,...,sm},8(2));

VR = V,,  for m#i;
v = viu{) (543)
0§2)m = o, for m#i, s=1,2,...,8n;
o = 0
£ = gu{(v,v")|ve VI u{(" v)|e V],

are successors of NA.

3. Varying the IIR order of the DNM unit. Assume the architecture NA (5.7).
Then, all architectures NA®) with increased order of the IIR filter in the
j-th DNM unit of the ¢-th layer i = 1,2,.... M, j=1,2,...,5;

NA®) = ({V,,|m=0,1,..., M},

oM = om for m#i, s=1,2,...,8y; (5.44)
OgB)Z = Oi, S 7&.71

(3)i i

0]. = Oj +1

are successors of NA.

Thus, T'(NA) maps an architecture NA with M — 1 hidden layers and N
processing DNM units onto M + N successors.

The searching process on the G(A) can be carried out by many ways. The
SA algorithm, the A* algorithm, and tabu search seem to be the most interesting
approaches.

5.6.4. Simulated annealing approach

Taking into account the encouraging results of the simulated annealing in the
cascade-reduction method, it is first proposed method for searching the optimal
DMLP architecture NA* in the graph G(A) (Obuchowicz and Patan 1998). Start-
ing with the random node S, the graph is searched by the SA algorithm (see
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Section 5.6.1). A node, which is directly connected with an actual base node S, is
treated as a neighbouring architecture S’.

Similarly as in Section 5.6.1, the dynamic system described by (5.31) is con-
sidered. The set of learning signals consists of only one type of the input signal:
the white noise. The squared error (5.39) is chosen as the cost function of the
on-line learning process, which is proceeded by the EDBP algorithm, for which
10000 learning patters have been generated. The training ends up if J;, < 0.01
or the assumed maximum number of iterations (kmax = 10000) is achieved. As a
testing signal the map (5.33) is chosen. The testing cost Jr defined by (5.32) is
treated as a energy function for the SA (Section 5.6.1).

The optimization process has been set in motion a few dozen times for different
initial DMLP architectures, different learning parameters, and different annealing
strategies. Unfortunately, obtained results are not reproducible. This problem
results from the fact, that the EDBP algorithm for a given network architecture
and a given set of learning parameters does not give the same results, but gets
stuck in different for each run local optimum of the square error function. The most
often obtained resulting architectures are N7,.; or N75; (Jr = 0.012 + 0.019).
However, it happens that the structures N2y, or N2,.5., (Jr = 0.025 = 0.035)
have been treated as “optimal”.

5.6.5. A* and Tabu Search approaches do DMLP architecture optimization
5.6.5.1. A* algorithm

The A* algorithm, first described in (Hart et al. 1968, Nilsson 1980), is a way
to implement best-first search to a problem graph. The algorithm will operate by
searching a directed graph in which each node n; represents a point in the problem
space. Each node will contain, in addition to a description of the problem state it
represents, an indication of how promising it is, a parent link that points back to
the best node from which it came, a list of the nodes that were generated from it.
The parent link will make it possible to recover the path to the goal once the goal
is found. The list of successors will make it possible, if a better path is found to
an already existing node, to propagate the improvement down to its successors.

A heuristic function f(n;) is needed that estimates the merits of each gen-
erated node. In the A* algorithm this cost function is defined as a sum of two
components:

f(ni) = g(ni) + h(ni), (5.45)

where g(n;) is the cost of the best path from the start node ng to the node n; and
it is known exactly to be the sum of the cost of each of the rules that were applied
along the best path from ng to n;, and h(n;) is the estimation of the addition cost
getting from the node n; to the nearest goal node. The function h(n;) contains
the knowledge about the problem.

The outline of the A* algorithm is described in many handbooks from the
domain of Artificial Intelligent. In this work the algorithm included in (Rich 1983)
is implemented.
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5.6.5.2. Tabu Search

The tabu search metaheuristic has been proposed by Glover (1986). This algo-
rithms models processes existing in the human memory. This memory is imple-
mented as a simple list of solutions explored recently. The algorithm starts from
a given solution z(, which is treated as actually the best solution z* < zy. The
tabu list is empty T := (). Next, the set of neighbouring solutions are generated
excluding solutions noted in the tabu list, and the best solution of this set is chosen
and is chosen as a new base point. If 2’ is better than z* then z* < z’. The actual
base point z' is added to the tabu list. This process is iteratively repeated until a
given criterion is satisfied.

There are many implementations of the Tabu Search idea, which differ be-
tween each other in the method of the tabu list managing, e.g. Tabu Naviga-
tion Method (TNM), Cancellation Sequence Method (CSM), Reverse Elimination
Method (REM). Particular description of these methods can be found in (Glover
and Laguna 1997).

5.6.5.3. Implementations

In order to apply the A* and Tabu Search algorithms to an architecture optimiza-
tion of the DMLP we have to define (Obuchowicz and Patan 2003):

e the optimization criterion — which is chosen in the form

2
Zk K (yNA o (k) — y(k))
I (Ynaw (k). y(k) | k € K) = =< ’ , (5.46)
(s, ) 2rex Y2 (F)
where y x4 .- (k) and y(k) are the output of the learned DMLP and desired
output, respectively.

e an expansion operator I'(NA) : A — 24 defined be equations (5.42)(5.44),
which maps any network architecture NA € A onto a set of successors.

Moreover, the following functions have to be defined for the A* algorithm
e the cost function g(NA, NA') assigned to each expansion operation:
V(NA') — y(NA)

gNANAY = |5 N — s(va)

: (5.47)

where v(NA) is the number of free parameters in the DMLP architecture
NA, and 6(NA) is the number of hidden layers in NA;

e the heuristic function h(NA)
I (Ynaw: (k). y(k) | k € K)
h(NA) = | Jr(Unago- (k) yk) [ kEK) || (5.48)
0

where NAq denotes the initial architecture of searching.
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Tab.5.2. Specification of the selected neural networks

Method
CHARACTERISTICS Tabu Search - list length A*
3 5 10
Network structure Niz,1,1 NfA,l N12,4,1 N12,5,1
1st layer filters orders (2) (2110) | (2110) | (21021)
2nd layer filters orders (0) (1) (1) (2)
Modelling quality 0.145051 | 0.139015 | 0.139015 | 0.123431

Because both g(NA, NA') and h(NA) are vector functions, the relation p<q must
be defined

p<q & (p1 < qi)or((p1 = q1)and(ps < ¢2)). (5.49)

5.6.6. Experimental comparison of the A* algorithm and Tabu Search

This section presents the experimental results achieved during selection of the op-
timal neural network structure using searching methods described in the previous
sections (Obuchowicz and Patan 2003). The neural network composed of dynamic
neuron models is used here to identify the dynamic non-linear process represented
by the following difference equation:
_ y(k) 3

ylk+1)= 1%y (k)2 + u(k)”, (5.50)
where u(k) and y(k) are the input and output of the process at the instant k,
respectively. The learning process is carried out off-line for 500 steps using the
Extended Dynamic Back-Propagation algorithm and a pseudo-random input uni-
formly distributed in the interval [—2,2]. The learning set consists of 200 patterns
and the learning rate is equal to 0.01. The training procedure of each examined
network structure is repeated four times in order to decrease a chance to get stuck
in local minima of an error function. Furthermore, each neuron in the network
has the hyperbolic tangent activation function.

The selection of the optimal neural network structure is performed using two
searching methods: the A* algorithm and the Tabu Search method. The second
algorithm is tested with different number of structures memorized, in turn 3, 5
and 10. Results achieved during experiments are presented in Table 5.2, where the
notation N;’, o denotes n-th layer neural network with r inputs, v hidden neurons
and s outputs, and (orl or2 ... orn) denotes that 1st neuron possesses orl order
filter, 2nd one — or2 order filter and n-th neuron — orn filter order.

Both searching methods start with the minimal network structure consisting
of the output neurons only. After that, the neural network is growing up. At
each algorithm step one parameter can be changed: the number of hidden layers
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(maximum 2 hidden layers) or the filter order (maximum 2nd order) or the number
of neurons in hidden layers. The Tabu Search algorithm makes is also possible to
reduce the network size. As one can see in Table 5.2, the best results have been
obtained using A* algorithm. The optimal network structure selected with this
method consists of two processing layers and five hidden neurons. It is worth noting
here that this method has been run on three computers and results obtained in the
each case are the same (the same network structure, quality and optimal path).
One can conclude that the algorithm generates credible results. The optimal path
generated with the A* algorithm is presented in Table 5.3. In order to find the
optimal neural network, 558 structures have been tested. Each next network has
a bigger size than the previous one.

Tab.5.3. Optimal path generated with the A, algorithm

Filters orders
Network No. | Network 1st layer 2nd layer | Modelling
structure | (hidden) (output) quality
0 Ni, - (0) 0.267325
2 Ni, - (1) 0.171869
3 Niia (0) (1) 0.144926
9 N, (1) (1) 0.249667
12 Niia (1) (2) 0.239527
20 Niay (10) (2) 0.151304
28 Nig, (100) (2) 0.152115
31 Nigq (1000) (2) 0.161490
118 Nigq (1100) (2) 0.168057
322 Niiq (1101) (2) 0.168039
426 Nigy (11010) (2) 0.208492
540 Nis, (11011) (2) 0.210782
543 N,y (21011) (2) 0.220161
558 Nisq (21021) (2) 0.123431

In the case of the Tabu Search method the results are also interesting. When
a short tabu list was used (length of 3), the algorithm demonstrated the periodic
behaviour. After every 23 structures it generates the same optimal neural network
of the Nfﬁm class. To avoid such a periodic behaviour, the longer tabu lists have
been applied (length of 5 and 10). Table 5.2 clearly shows that using longer tabu
lists, better results can be obtained. Moreover, in both cases the identical optimal
path has been achieved. The conclusion is, that further increasing size of the
tabu list does not yield better results. In Table 5.4 one can see the optimal path
generated with the Tabu Search method (list length equal to 3). First, the network
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Tab.5.4. The optimal path generated with the Tabu Search (list length — 3)

Filters orders
Network No. | Network | 1st layer | 2nd layer | Modelling
structure | (hidden) | (output) quality
0 Ni, - (0) 0.267325
2 Ni, - (1) 0.171863
3 N{ia (0) (1) 0.163588
9 Niia (1) (1) 0.163725
28 N{ia (1) (0) 0.147749
33 Niia (2) (0) 0.145051

is growing up, and for the network No. 28 the algorithm reduces the network size.
This phenomenon is very attractive and can cause that Tabu Search may be more
flexible method than the A* algorithm. In turn, Table 5.5 shows the optimal path
generated with the Tabu Search algorithm using the tabu list length of 10.

5.7. Summary

The problem of the neural model design has been considered in this chapter.
Two optimization tasks are distinguished in order to solve the main problem: the
learning process and the allocation of the optimal architecture of the ANN.

Locally recurrent neural networks, called the DMLP, are considered. This
network is composed of the DNM units, which contain an addition module be-
tween the adder and activation modules — the IIR filter. Therefore, basing on the
DNM units, one can build a dynamic neural network of the multilayer feedforward
architecture.

It has been shown that evolutionary algorithms are a very effective tool for
neural models learning both in the MLP and DMLP cases. Especially, results of
algorithms from the ESSS family seem to be very promising. Unfortunately, the
evolutionary approach to the ANN learning possesses some critical defect. This is
extremely long time of searching the solution. A hybrid method, which combines
EAs with a method of local optimization, like the EDBP, can be more efficient.

The neural model architecture optimization belongs to the class of discrete
optimization problems. However, there are many proposals of genetic approaches
to this tasks, experiments provide the conclusion that the heuristic search methods,
like the simulated annealing, A* algorithm and tabu search, effectively compete
with GA implementations. Especially in the case of the DMLP network, where
space of the of the network architectures is represented by a digraph, the results
obtained for the GA algorithm are so pure in comparison with other algorithms
that they are not presented in this chapter.
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Tab.5.5. The optimal path generated with the Tabu Search (list length — 10)

Filters orders
Network No. | Network | 1st layer | 2nd layer | Modelling
structure | (hidden) | (output) quality
0 Ni. - (0) 0.267325
2 Ni4 - (1) 0.171863
3 Ni1a (0) (1) 0.163588
9 NP (1) (1) 0.163725
38 Ni1a (2) (1) 0.152251
42 Niaa (20) (1) 0.167976
49 Nion (2 0) (2) 0.167494
54 Niai (2 1) (2) 0.151649
61 Nioj (21) (1) 0.151706
64 Nisn (210) (1) 0.159347
74 Niai (210) (0) 0.159677
80 Nisn (2 00) (0) 0.166961
84 Nisq (201) (0) 0.150898
88 Niai (201) (1) 0.156903
93 Nisa (211) (1) 0.161591
97 Nigi | (2110) (1) 0.139015

The effectiveness of an algorithm of an ANN architecture optimization
strongly depends on the effectiveness of a learning algorithm, which provides a
quality information of an ANN of a given architecture. in the case of the DMLP
networks, results of experiments presented in this chapter are obtained basing on
the EDBP algorithm as a learning method. This is a drawback of the presented
implementations, because of a low efficacy of the EDBP. Unfortunately, the ap-
plication of an evolutionary learning algorithm instead of the EDBP causes the
sudden increase of time complexity of considered architecture optimization meth-
ods.



Chapter 6

GENETIC PROGRAMMING APPROACH
TO THE FDI SYSTEM DESIGN

There is an increasing demand for modern technological processes to become safer
and more reliable. These requirements extend beyond normally accepted safety-
critical systems of nuclear reactors, chemical plants or aircraft to new system such
as autonomous vehicles or fast rail systems. The early detection of faults can
help avoid systems shut-down, breakdown and even catastrophes involving human
fatalities and material damage. Therefore, it is clear that the problem of fault
diagnosis constitutes an important subject (Korbicz et al. 2002).

During the last two decades many investigations were carried out using ana-
lytical approaches, based on quantitative models. The idea is to generate signals,
termed residuals, that reflect inconsistencies between nominal and faulty system
operation. Such signals are usually generated using analytical approaches (Chen
and Patton 1999, Patton et al. 2000). Requirements for precise and accurate ana-
lytical model imply that any resulting modelling error will affect the performance
of the resulting Fault Detection and Isolation (FDI) scheme (Frank 1998, Frank
and Koppen-Seliger 1997). This is particularly true for dynamically non-linear and
uncertain systems, which represent the majority of real processes. Therefore, a
number of researchers have seen artificial intelligence methods, like artificial neu-
ral networks (Himmelblau 1992, Korbicz et al. 1999, Korbicz et al. 2001, Patton
et al. 1994, Sorsa and Koivo 1992), fuzzy logic or neuro-fuzzy systems (Calado et
al. 2001, Koscielny et al. 1999a, Koscielny et al. 1999b, Pieczyniski 1999), expert
systems (Cholewa 2002, Fathi et al. 1992, Pieczynski 1999) as an alternative way
to represent knowledge about faults.

However, there are many techniques of non-analytical models construction, all
of them, sooner or later, reduce to a set of optimization problems, e.g. their struc-
ture optimization or parameter allocation. These problems are usually non-linear,
multimodal, sometimes multi-criteria. And standard local optimization methods
are insufficient. Evolutionary algorithms, especially, seem to be an attractive tool
to solve these problems (Obuchowicz and Korbicz 2002).
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Fig. 6.1. Automatic control system.

6.1. Basic concepts of fault diagnosis systems

A fault can generally be defined as an unexpected change in a system of interest,
e.g a sensor malfunction. All the unexpected variations that tend to degrade the
overall performance of a system can also be interpreted as faults. Contrary to the
term failure, which suggests complete breakdown of the system, the term fault is
used to denote a malfunction rather than a catastrophe.

Since a system can be split into three parts (Frank and Koppen-Seliger
1997) (Fig. 6.1): actuators, process components, and sensors, such a decompo-
sition leads directly to three classes of faults. Actuators faults can be viewed as
any malfunction of the equipment that actuate the system, e.g. a malfunction of
an electro-mechanical actuator for a diesel engine (Blanke et al. 1994). Component
faults can be interpreted as the case when some changes in the system make the
dynamic relation invalid, e.g. a leak in a tank in the two tank system. Sensors
faults can be viewed as serious measurements variations. The faults can commonly
be described as inputs. In addition, there is always a modelling uncertainty due to
unmodelled disturbances, noise and model mismatch. This may not be critical to
the process behaviour, but may obscure the fault detection by rising false alarms.

The automatic fault detection and isolation can be viewed as a sequential
process involving the symptom extraction and, basing on actual symptoms and/or
additional knowledge, the decision making about a fault occurrence (detection) and
its type, range and location (isolation) (Fig. 6.2). There are many fault diagnosis
methods. The choice of the method for a given diagnosis problem depends on its
type. Generally, two classes of the fault diagnosis systems can be distinguished
(Fig. 6.3). The first is based on the pattern recognition principle (Fig. 6.3a). These
methods are efficiently applied in the case of static diagnosed systems. Measured
signals are initially processed in the symptom extraction step using, e.g., the time
windows technique (Kowal and Korbicz 2000) or neural networks (Marciniak and
Korbicz 1999).

The second class is model-based FDI systems (Fig. 6.3b), where the quality of
the system strongly depends on the accuracy of its model. The residual generator
has to form a suitable signal (residual signal) basing on outputs of the system and
its model obtained for the same input signals. The appearance of any fault should
affect on the residual signal value. Basing on the residual signals, the system state
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Fig. 6.4. EAs in the FDI system design

is described in the residual evaluation module. In order to improve the isolation
ability of the model-based FDI system, the bank of the models are used, where
each model is sensitive to a different fault and of them represents the system in
the nominal conditions.

If residual signals are properly generated, the fault detection becomes a rel-
atively easy task. Since without fault detection it is impossible to perform fault
isolation, all efforts regarding an improvement of residual generation seem to be
justified. This is the main reason why the research effort of this work is oriented
towards fault detection and especially towards residual generation.

6.2. EA in the FDI system design

There are relatively few publications of the EA applications to the FDI systems
design. Proposed solutions (Chen and Patton 1999, Chen et al. 1996, Korbicz et
al. 1998, Obuchowicz 1999a, Obuchowicz and Korbicz 2002, Witczak et al. 1999,
Witczak et al. 2002) (Fig. 6.4) show the high efficiency of diagnosis systems which
design has been aided by EAs.

Optimal residual generation via genetic algorithm was firstly proposed by
Chen and coworkers (1996). The studied residual generator is based on full-order
observer. The residual response is affected by faults, disturbances, sensor and input
noises, and discrimination between them is very difficult. In order to make the
residual become insensitive to modelling uncertainty and sensitive to sensor faults a
number of performance indices, which are functions of gain and weighting matrices,
are defined. The maximization of the first index becomes the residual generator the
most sensitive of the faults in the required frequency range. Next indices describe
the influence of the sensor noise effect, the disturbance and the initial condition
effects and the input noise effect, respectively, on the residual signal and have to
be minimized. Some indices are defined in the frequency domain to account for the
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fact that modelling uncertainty effects and faults occupy different frequency bands.
The solution of the simultaneously provided optimizations procedures are obtained
using the method of inequalities (see (Chen and Patton 1999)). Such a multi-
objective optimization task cannot be solved by the conventional optimization
techniques. The genetic algorithm has been successfully applied.

Among artificial intelligence methods applied to design fault diagnosis systems
artificial neural networks are very popular, which are used for building of neu-
ral models as well as neural classifiers (Frank and Koppen-Seliger 1997, Képpen-
Seliger and Frank 1999, Korbicz et al. 1998). But, the construction of the neural
model is corresponded to two basic optimization problems: optimization of a neu-
ral network architecture and its training process, i.e. searching the optimal set
of network free parameters. Evolutionary algorithms are a very useful tool to
solve both problems, especially in the case of dynamic neural networks (Korbicz
et al. 1998, Obuchowicz 1999a, Obuchowicz 2000a). Neural networks approaches
to the FDI systems building and EAs approaches to the ANN construction are
themes of the previous chapters in this book.

The main objective of residual evaluation is to decide whether and where a
fault occurred with possible avoidance of wrong decisions causing false alarms.
In this case, many techniques can be applied (Frank and Koéppen-Seliger 1997),
which can be further improved by using the global optimization via evolutionary
algorithms, however, below shortly described opportunities of the EA approaches
to the symptom evaluation process are only the author’s proposals and they have
not be implemented, yet.

Efficiency of fault detection systems in the case of multi-dimensional symptom
vectors may be improved by pre-processing which leads to the partitioning of the
symptom domain into subdomains (clusters). Among many well-known prepro-
cessing methods, EAs characterize high clustering performance. Let us concern
with multi-dimensional real data that form a set of the so-called training pairs

Ta={p, = (" y") e R|q=1,..,p}. (6.1)

The goal is to perform an evolutionary cluster analysis of data in 73 to get at the
end a partitioning of 73. The number of clusters is not known in advance. To
evaluate each off-spring cluster in the population, different local fitness functions
may be used. They could be the maximal distance of the training pair of the
cluster from the cluster centroid, or a mean variation of all training pairs in the
cluster. Based on the local fitness function of the cluster one can build a global
fitness function (Kosinski et al. 1998)

A fuzzy inference system is often used as universal approximator for a prob-
lem of multi-dimensional data or as controller for some industrial applications
(Koppen-Seliger and Frank 1999). A fuzzy modelling approach consists of two
kinds of problem, configuring fuzzy rules and optimization of the shapes of mem-
bership functions, which are considered to be combinatorial and numerical op-
timization problems, respectively. The EA is able to be applied to both these
problems. In many research works (cf. (Carse et al. 1996)), however, the EA is
applied only to optimize the configuration of the fuzzy rules, while another opti-
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Fig. 6.5. The GP implementation considered in this chapter

mization algorithm, such as steepest descent method, is applied to optimize the
shapes of the membership functions.

The application of the artificial intelligence techniques leads to the concept
of the fault diagnosis expert system where analytical and heuristic information
as well as knowledge processing are combined (Frank and Kdéppen-Seliger 1997).
The expert system for fault diagnosis consists a knowledge base which usually in-
cludes a rule base. The construction of the rule base is the main problem for the
knowledge engineers, which has to implement, usually out of order, incomplete and
heuristic knowledge of human expert. In this case the fuzzy techniques seem to be
an effective tool to build the knowledge base. Unfortunately, there are many fault
diagnosis problems for which the human expert knowledge is insufficient and the
automatic optimal selection of the rule base is needed. Because of the exponential
complexity of the problem of the optimal searching there are no possibilities of
using a total review method. In this case, techniques of genetic algorithms and
genetic programming (Koza 1992) may become very effective tools, assuming that
decision rules are a set of complexes (Skowroriski 1998). Each complex is a con-
junction of selectors and each selector is a disjunction of the discrete attribute
values. In this case, the population of individuals is built of vectors of selectors.
The GA composes the rule base from the sets of attributes and their values. In
order to use the GP to create the rule base, two sets have to be defined. The first
one, terminal set, contains all possible premises and conclusions, the second one
contains logic operators. Each rule is represented by a structured tree, and GP is
used to find the best sets of rules. Contrary to the GA-based approach, where only
simple rules (triples) are considered, the GP-based approach makes it possible to
use arbitrary complex rules (Koza 1992)

The solutions proposed in this chapter are connected with two classes of the
FDI systems, which are based on:

e input/output models, and

e state observers.
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If the physical models are used, the identification problem reduces to an es-
timation of some parameters. This estimation does not seem to be a difficult
problem because these parameters have usually physical interpretations. Unfor-
tunately, the complexity of the modern industrial processes makes it impossible
to construct sufficiently exact physical models. In these cases the models, which
reflect the input/output behaviors of the system, are needed. There are many tech-
niques, which can be used to build such a model. Especially, neural networks are
very attractive and popular tool to non-linear system modelling (Korbicz 1997, Ko-
rbicz et al. 1999). These neural models are “black boxes” and give only qualitative
information. An alternative approach is the genetic programming technique. The
GP approaches to modelling of dynamic nonlinear systems: via choice of the gain
matrix of the robust nonlinear observer (Witczak et al. 1999), searching for the
MIMO NARX model (Multi Input Multi Output Nonlinear AutoRegresive with
eXogenous variable) (Witczak and Korbicz 2000), selection of the state space rep-
resentation of the system (Witczak et al. 2002), or via extended unknown input
observer (EUIO) design (Witczak et al. 2002) (Fig. 6.5). This four GP application
are presented in details in this chapter.

6.3. Tree representation of the function

All considered in this chapter GP approaches (Fig. 6.5) reduce to the problem of
searching of analytical forms of some nonlinear relations between a given set of
arguments & and output y

y = f(z). (6.2)

As it has already been mentioned (see section 1.2.2), a tree is the main in-
gredient underlying the GP algorithm. In order to adapt GP to searching the
function (6.2) it is necessary to represent it as a tree, or a set of trees in the case
of a vector function.

Firstly, two sets, the terminal 7 and function F sets, can be distinguished

T:{arl,a:2,...,xn,cl,c2,...,cs}, -7::{+7*=/7€1(')7---7€l(')}7 (63)

where (¢; | i =1,2,...,s) is a set of constants, and (§(-) | ¢ = 1,2,...,1) is a set
nonlinear univariate functions. The language of the trees in GP is formed by a
user-defined function F and terminal 7 set, which form nodes of the trees. The
function should be chosen so as they be a priori useful in solving the problem,
i.e. any knowledge concerning the system under consideration should be included
in the function set. This function set is very important and should be universal
enough to be capable of representing a wide range of nonlinear systems. The
terminals are usually variables or constants. Thus, the search space consists of all
the possible compositions that can be recursively formed from the elements of F
and 7. Selection of variables does not cause any problems, but the handling of
numerical parameters (constants) seems very difficult. Even though no constant
numerical values are in the terminal set T, they can be implicitly generated, e.g.
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Fig. 6.6. An exemplary tree of the two-variable function.

the number 0.5 can be expressed as z/(x 4+ z). Unfortunately, such an approach
leads to an increase in both the computational burden and evolution time. Another
way is to introduce a number of random constants into the terminal set, but this is
also an inefficient approach. An alternative way of handling numerical parameters,
which seems to be more suitable, is called node gains (Esparcia-Alcazar 1998). A
node gain is a numerical parameter associated to a node, which multiplies its
output value (see Fig. 6.6). Although this technique is straightforward, it leads
to an excessive number of parameters, i.e. there are parameters which are not
identifiable:

3p6P12P13$§> . (6.4)

Yy=n <p2 (P4(p9ﬂ71 + psx2) +p5p10p11x1x2)) +p D)
PrP14P15T7

Thus, it is necessary to develop a mechanism which prevents such situations hap-
pening. To tackle the parameters reduction problem, a few simple rules can be
established (Obuchowicz and Witczak 2002, Witczak et al. 2002)

%, /: A node of type either  or / has always parameters set to unity on the side
of its successors. If a node of the above type is a root node of a tree then
the parameter associated with it should be estimated.

+: A parameter associated with a node of type + is always equal to unity. If its
successor is not of type + then the parameter of the successor should be
estimated.

&: If a successor of the node of type £ is a leaf of a tree or is of type % or / then
the parameter of the successor should be estimated. If a node of type £ is a
root of a tree then the associated parameter should be estimated.

As an example, consider the tree shown in Fig. 6.6. Following the above rules, the
resulting parameter vector has only four elements p = (ps, po, ps,p3) (Fig. 6.7),

Y = pox1 + PsT2 + PsT1T2 + P37 /7. (6.5)
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Fig. 6.7. The tree of the function presented in Fig. 6.6 after reduction of the parameters
number.

It is obvious that, although these rules are not optimal in the sense of parameter
identifiability, their application reduces the dimension of the parameter vector
significantly thus making the parameter estimation process much easier. Moreover,
the introduction of parameterized trees reduces the terminal set to variables only,
i.e. constants are no longer necessary, and hence the terminal set is given by

T ={x1,22,...,2,}. (6.6)

In this way the evolutionary process of the GP searches only an optimal
structure of the function (6.2) represented by a tree, whose parameters have to be
estimated using another method. In the case of parameter estimation, many algo-
rithms can be employed, more precisely, as the GP function are usually non-linear
in their parameters, the choice reduces to one of non-linear optimization tech-
niques. Unfortunately, because trees are randomly generated, they can contain
linearly dependent parameters (even after the application of parameters reduc-
tion rules), and parameters which have very little influence on the model output.
In many cases, this may lead to a very pure performance of the gradient-based
algorithms. Owing to the above mentioned problems, the spectrum of possible
non-linear optimization techniques reduces to the gradient-free techniques which
usually require a large number of cost evaluations. On the other hand, the appli-
cation of stochastic gradient-free algorithms, apart from their simplicity, decreases
the chance to get stuck in a local optimum, and hence it may give more suitable
parameter estimates. Based on numerous computer experiments, it was found
that the extremely simple Adaptive Random Search (ARS) algorithm (Walter and
Pronzato 1997) is especially well-suited for that purpose.

6.4. Input/output representation of the system via the GP

6.4.1. Problem statement

The characterization of a class of possible candidate models from which the system
model will be obtained is an important preliminary task in any system identifi-
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cation procedure. Knowing that the system exhibits nonlinear characteristic, a
choice of nonlinear model set must be made. In this section, the NARX was se-
lected as the foundation for the identification methodology. The MIMO NARX
model has the following form

Yik = Gi (yl,k—la s ayl,k—’ﬂl,yﬂ e Ymok—1y- -4, ym,k—’ﬂm,ya
Ut k=153 UL k—ng s> Urk—15--- auhk—nr,uapi)a (67)
1=1,...,m.

Thus the system output is given by

Yi = Y + €k, (6.8)

where g consists of a structural deterministic error, caused by the model-reality
mismatch, and the measurement noise vy. The problem is to determine the set
of models M = {M; = (¢;(-),p") | i = 1,2,...,m}, where g;(-) are unknown
functions and p’ are corresponding parameters vectors, which have to be estimated.

One of the best known of the criteria which can be employed to select the
model structure and to estimate its parameters is the Akaike Information Criterion
(AIC) (Walter and Pronzato 1997), where the following quality index is minimized

1. N 1 . .
Jarc(M;) = §J(Mz'(Pl)) + — dimp’, (6.9)
nr
where
. nT
J(M;(p")) = lndetZskskT, (6.10)
k=1

p'=arg min,,: j(M;(p')) are obtained using the identification data set of nr pairs
of input/output measurements

6.4.2. The GP approach

In order to adapt GP to system identification it is necessary to represent the
model (6.7) as a tree, or a set of trees. Indeed, the MISO NARX model can be
easily put in the form of a tree, and hence to build the MIMO model (6.7) it is
necessary to use m trees. The function set F can be chosen in the form (6.3), the
terminal set is given by

T = {yl,k—la e 7y17k_n1,y’ e Ymk—1, -0 - aym,k—’ﬂm,ya
Ul’kfl, ey uLk,nlvu P ,’U,r’kfl, P ,urﬁk,nm}.

The remaining problem is to select appropriate lags in the input and output signals
of the model. For that purpose, it is possible to assume that each n, = n, = n.
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Thus the problem reduces to finding, throughout experiments, such n for which
the model is the best replica of the system.

If the terminal and function sets are given, populations of GP individuals
(trees) can be generated, i.e. the set M of possible model structures is created.
The algorithm works on a set of populations P = {Pi |i=1,.. .,m}. Each of
the above populations P; = {b;; | j = 1,...,n} is composed of a set of n trees b;;.
Thus, the GP searches concurrently each model M; (i = 1,...,m) of the set M
using m-th independent populations P; of n trees.

Since the number of populations is given, the GP algorithm can be started
(initiation) by randomly generating individuals (see section 1.2.2), i.e. 7 indi-
viduals are created in each population whose trees are of a desired depth ng.
Using (6.9), all considered models are estimated, estimation of the parameter
vector p of each individual is performed, according to (6.10) using the ARS algo-
rithm. If the model selected satisfies the prespecified requirements, the algorithm
is stopped. In the second step, the selection process is applied to create a new
intermediate population of “parent individuals”. For that purpose, various ap-
proaches can be employed, e.g. proportional selection, rank selection, tournament
selection (Koza 1992, Michalewicz 1996). The selection method used in this work
is the tournament selection. The individuals for the new populations (the next
generation) are produced through the application of crossover and mutation. To
apply crossover, random couples of individuals which have the same position in
each population are formed. Then, with a probability 6., each couple undergoes
crossover, i.e. a random crossover point (node) is selected and then the correspond-
ing sub-trees are exchanged. Mutation is implemented so that for each entry of
each individual, a sub-tree at a selected point is removed with probability 6, and
replaced with a randomly generated tree.

The GP algorithm is repeated until the best suited model satisfies the prespec-
ified requirements ¢(P(t)), or until the number of maximum admissible iterations
has been exceeded. It should also be pointed out that the simulation programme
must ensure robustness to unstable models. This can be easily attained when (6.10)
is bounded by a certain maximum admissible value. This means that each indi-
vidual which exceeds the above bound is penalized by stopping the calculation of
its fitness, and then J,,(M;) is set to a sufficiently large positive number. This
problem is especially important in the case of input-output representation of the
system. Unfortunately, the stability of the models resulting from this approach
is very difficult to prove. However, this is a common problem with non-linear
input-output models. To overcome this problem, an alternative state-space model
structure is presented in the subsequent section.

Another reason for using state-space models in fault diagnosis tasks is that
this kind of models can be employed together with robust observers, which makes
it possible to increase the reliability of the entire FDI system by minimizing the
influence of model uncertainty. This is, however, impossible to perform with the
non-linear input-output model structure.
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Tab.6.1. Specification of the process variables

F51 01 Thin juice flow at the inlet of the evaporation station
F51)2 Steam flow at the inlet of the evaporation station

LC51¢3  Juice level in the first section of the evaporation station

P51y3 Vapour pressure in the first section of the evaporation station
P51y4 Juice pressure at the inlet of the evaporation station

T5146 Input steam temperature

T51,7 Vapour temperature in the first section of the evaporation station
T5148 Juice temperature at the outlet of the first section of

the evaporation station
TC5195 Thin juice temperature at the outlet of the heater

6.4.3. System identification based on the data from the sugar factory

The real data from an industrial plant were employed to identify the input-output
model of the chosen part of the plant. The plant to be considered is the evaporation
station at the Lublin Sugar Factor S. A. (Poland) (Edelmayer 2000). Fig. 6.8
shows the scheme of the plant with all available process variables. These process
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Fig. 6.8. The scheme of the evaporation station.

variables are described in Tab. 6.1. The model to be obtained is the vapour model
(cf. Fig. 6.8): the input and output vectors: uy = (T'5107), y, = (P5103). The
data used for the training and test sets were collected, from two different shifts, in
November 1998. The data from the first one were used to the identification and
the data from the second one formed the validation data set. Unfortunately, the
data turned out to be sampled too fast (the sampling rate was 10s). Thus, every
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Fig. 6.9. The system (solid line) and model (dashed line) output for the identification
(left) and validation (right) data sets.

10-th value was picked, after proper prefiltering, resulting in the 700-th elements
identification and validation data sets. After this the offset levels were removed
with the use of MATLAB Identification Toolbox.

6.4.3.1. The vapour model

The objective of this section is to design the input-output vapour model using
GP technique. The parameters used during the identification process are: the
probability of the corssover §. = 0.8, the probability of the mutation 6,, = 0.01,
the population size n = 200, the initial depth of trees ng; = 10, F = {+, %, /}. The
best model structure obtained is given by

Uk = ((p2uk—2 + Pr1ik—2)ui_; + (Psur—20k—1 + Peus_o + P30i_;
+PaYk—1Uk—2 + Po)Uuk—1P7Uk—20%_1 + PsTr—1Us_s)/ (Pr0Tk—1
+p1193_1 + Pr2k—1Uk—2 + P13).

(6.11)

The response of the model obtained for both the identification and validation
data sets are given in Fig. 6.9. The comparative study performed for the ARX
and GP (NARX) models shows that the GP model is superior to the ARX models
(Witczak and Korbicz 2000). From this results it can be seen that the introduction
of the nonlinear model has significantly improved modelling performance.

The main drawback to the GP-based identification algorithm concerns its
convergence abilities. Indeed, it seems very difficult to establish the convergence
conditions which can guarantee the convergence of the proposed algorithm. On the
other hand, many examples treated in the literature, cf. (Esparcia-Alcazar 1998,
Gray et al. 1998, Koza 1992) and the references therein, as well as the authors’
experience with GP (Witczak et al. 2002) confirm its particular usefulness, in
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Fig. 6.10. The average fitness for the 50 runs of the algorithm.

spite of the lack of the convergence proof. In the case of the presented example,
the average fitness (mean-squared output error for the identification data set),
Fig. 6.10, for the 50 runs of the algorithm confirms the modelling abilities of the
approach.

Moreover, based on the fitness attained by each of the 50 models (resulting
from 50 runs) it is possible to obtain the histogram representing the fitness values
achieved (Fig. 6.11) as well as the fitness’s confidence region. Let a = 0.99 denote
the confidence level then the corresponding confidence region can be defined as

T € T = ta—ms i + o —= (6.12)

V50 V50

where j,, = 1.89 and s = 0.64 denote the mean and standard deviation of the
fitness of the 50 models, t, = 2.58 is the normal distribution quantile. According
to (6.12), the fitness’s confidence region is .J,,, € [1.65,2.12], which means that
there is 99% of probability that the true mean fitness .J,, belongs to this region.
On the other hand, owing to the multimodal properties of the identification index,
it can be observed (Fig. 6.11) that there are two optima resulting in models of
different quality. However, it should be pointed out that, on average (Fig. 6.10),
the algorithm converges to the optimum resulting in models of better quality. The
convergence abilities of the algorithm can be further increased by the application

of various parameter, e.g.: 6., 6,,, control strategies (Eiben et al. 1999).

The above results confirm that, even if there is no convergence proof, the
proposed approach can be successfully used to tackle the nonlinear system identi-
fication problem.
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Fig. 6.11. The histogram representing the fitness of 50 models.

6.5. Choice of the gain matrix for the robust non-linear observer
via the GP

6.5.1. Problem formulation

Consider a non-linear discrete system

Tpt1 = f(xk, up, wy),

(6.13)
Y = h (wkv vk) )

where uy, is the input, y,, is the output, xy is the state, w; and vy represents the
process and measurement noise, and h(-), f(-) are non-linear functions.

The problem is to estimate the state x of the system (6.13), where a set of
measured inputs and outputs and the model of the system are given. The classical
methods using different kinds of an approximation are often applied (Anderson
and Moore 1979, Korbicz and Bidyuk 1993) and can be given as follows

Ty = z; +Kpep, (6.14)
6]; = yk_h(ﬁ:klo)a
where €, denotes a priori output error, Zj is the state estimate and Kj is the
gain matrix.
The gain matrix Ky, of the observer (6.14) can be searched by various methods
(e.g.: the Kalman filter (wy and v are assumed to be independent, white, and
with normal probability distribution), the Luenberger’s observer etc.) which, in

Y
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large majority of them, consist of constant elements. In our approach the gain
matrix is composed of certain functions, i.e. each entry of the gain matrix is
a function, which depends on the a priori output error and the system input.
Therefore, it can be written as follows

&, =& + K (e, un) g - (6.15)

Thus , the main goal is to obtain an appropriate form of Kj, (e,;, uk) based on
a set of measured outputs and inputs and the mathematical model of the system.
Even if the mathematical model is uncertain and/or the initial state is far from
its expected it seems possible to obtain such K (e,;, uk) to ensure the best fitness
to the real system. For that purpose, the GP technique is exploited, where the
gain matrix is obtained off-line from a randomly created population by means of
evolutionary process.

6.5.2. Proposed algorithm

As it was mentioned in the previous section, each entry of the gain matrix is a
function, and it can be represented easily as a tree in the sense of the GP formalism.
It is important to note that the gain matrix consists of a list of trees. In order to

apply the GP algorithm (Section 1.2.2) the sets of terms 7 and operators F must
be defined:

T = {Ezauk} F= {+7_7*=/}'

Next, a fitness criterion must be determined. It is assumed that the fitness of the
gain matrices can be represented by a sum of normalized output errors (i.e., the
smaller sum the better fitness), which can be obtained by the following algorithm
(Witczak et al. 1999)

A: Set an initial a priori estimate &, and set £k =0, s = 0.

B: Measurement update

er = yr—h(2.0),
z, = z, + K (s;,uk) €
U = h(z,0),

s = s+C(Yp— )

C: Time update

Zi . = f(Zr,up,0)
If kK = ny then STOP else set k = k£ + 1 and go to STEP 1.

Where ¢, denotes the system output estimate, ( : D — Ry U {0}, where D is the
output space (e.g., ¢ (yr — ¥1) = (y — Qk)Q), n; Ts the number of data points,
and s is the sum of normalized output errors.

The structure of the algorithm used to obtain the gain matrix can be described
as follows (Witczak et al. 1999)
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A: Initiation
1. Choose ng, Oc, O, Mmaz, Ty Smin, Np, and set n = 0.

2. Create a random population of the gain matrices
{K} = RANDOM(T,F) |i=1,2,...,n},

(each entry in the gain matrix has an initial length (a number of nodes)
0
ny).

B: Calculate fitness
Using fitness calculation algorithm, for each gain matrix in the population
compute the sum of normalized output errors

(K = s [i=12,....n},

if min{s?|i=1,2,...,n} < Smin then STOP.

Set npest = sy, =min{s? [i=1,2,...,np}.

C: Selection

{]Kzn i=1,2,...,m} = {]K:'H—I i= 1727---777}
where the probability of being extracted is proportional to the fitness.

D: Crossover
For each entry in each gain matrix, repeat:

1. select random independent couples of the same entries in the gain matri-
ces (Klnﬁ,Kf;Lll), where i, j denote the (i, j)-th entry, k,1 € [1,...,n];
2. for each couple, select a random crossover point
leross € U(2,min{length(KZ;:,i),length(Kﬁ;"ll)});

3. exchange the sub-trees of the couple with probability 6..
E: Mutation

1. For each entry in each gain matrix, select a random mutation point
lnut € U(L, length(K[));

2. remove a sub-tree at the selected point [,,,; and replace it with a ran-
domly generated tree with probability 6,,;

3. If n = nmae — 1 then STOP else set n = n + 1 and go to step B.

where U denotes the uniform distribution, nJ is the initial length of the trees,
0. and 6,, are the crossover and mutation probabilities, respectively, n,q, is the
maximum number of iterations, l.,,ss and l,,,; are realization of random indepen-
dent variables with the uniform distribution (the crossover and mutation points),
Smin 1s the desired fitness value, npes is the index of the most fittest gain matrix
and 7 is the population size.
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6.5.3. lllustrative experiment

To illustrate the methodology of non-linear observers designing, consider a second
order discrete system described by equations (Witczak et al. 1999)

. - ary kT2 k z +z
Lk+1 = — — T1,k 1,k
) + x2,k +b ) fL
daz1 2k (6.16)
Togpy1 = T|—————"F—+(c—xap)ur | + T2k
G T
ye = (T1k+e€)Tok + Uk,

where 1 1,22 1 denote states, y;, is the output, vj is a realization of the random
independent variable representing the measurement noise, uy is the input signal,
a, b, ¢, d, and e are system’s parameters and 7 is the sampling period.

The input signal is given by
up = 0.07sin(0.317k) + 0.38.

The output measurement is corrupted by a noise v; with normal distribution
N(0,0.0002). The nominal values of the model parameters are equal to a = 0.55,
b =015 ¢ =08 d=20,e =001 and 7 = 0.5. The initial state is &y =
(0.21,0.37) for the system to be observed, and &; = (2.1, 1.6) for the observer.
For the sake of comparison, a usual Extended Kalman Filter (EKF) with the
same initial condition &, is employed. Moreover, parameters eploited during an
evolution of the gain matrices are: nj = 30, n = 40, Syin, = 0.001, 6. = 0.5,
0, = 0.0001. The population was learned over a sample of np = 200 simulated
measurements.

As shown in Fig 6.12, the estimated state x5 approaches the real state for the
proposed observer but not for the EKF. Further simulation results have shown that
the proposed observer has a larger domain of attraction that the EKF, i.e.; the
initial estimation error may be larger. As it was mentioned, even if the initial state
estimate is known there is still a problem of a model uncertainty, e.g. parameter
uncertainty.

Reconsider the non-linear system (6.16) and assume that the values of the
model parameters are slightly modified: a = 0.53, b = 0.17, ¢ = 0.78, d = 2.0,
e = 0.0099, and other parameters are the same as previously.

For the sake of comparison, it is assumed that the initial a priori state estimate
is close to the real state so as to ensure the stability of the EKF, i.e. 5 = 1. As
shown in Fig. 6.13, that state estimation error ey = x); — &y is closer zero for the
proposed observer that for the EKF. Further simulation results have shown that
the proposed observer is less sensitive to the model uncertainty that the EKF.
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6.6. The GP approach to state space representation of the sys-
tem

6.6.1. Design of state space models

Let us consider the following class of nonlinear discrete-time systems

Tpy1 = g(Tk, ug) + wy,

(6.17)
Y1 = Cxpq1 + vi.
Assume that the function g(-) has the form
g(@r, ur) = Alxy)zr + h(ug). (6.18)
Thus, the state-space model of the system (6.17) can be expressed as
Tr+1 = A& ) Zg, + h(uy), (6.19)
@k+1 = C’%kﬂ-
Without loss of generality, it is possible to assume that
A(zy) = diagfa; i (2x) |1 =1,2,...,n]. (6.20)

The problem reduces to identifying nonlinear functions a;;(&),hi(ur) (I =
1,...,n), and the matrix C. Assuming max;—1,.. n|a;;(&x)| < 1it can be shown
(Witczak et al. 2002) that the model (6.19) is globally asymptotically stable. This
implies that a; ;(Z) should have the following structure

ai,i(:i:k) = tanh(shi(ik))ai = 17'“;”7 (621)

where tanh(-) is a hyperbolic tangent function, and s;;(&x) is a function to be
determined.

In order to identify s;;(&), hi(ug) (i = 1,...,n), and the matrix C the GP
algorithm described in section 6.4 is applied. The fitness function is defined by
(6.9).

6.6.2. The apparatus model

Let us consider the system described in Section 6.4.3. The objective of this section
is to design the state-space apparatus model,

up = (T'5106, TC5145, F5101, F51¢2), y,, = (T'5108) (Tab. 6.1), according to the
approach described above. The parameters used in the GP algorithm are the same
as in Section 6.4.3.1. The best model structure obtained is given by

il,k+1 = tanh(81,1) + hy (uk), (6 22)
182,]@-1-1 = tanh(SQ’Q) + hg(’uk), .
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Fig. 6.14. The system (solid line) and model (dashed line) output for the identification
(left) and validation (right) data sets.

where
. Zok
S1,1 = —0.13:1327k $2,2 = — = = — =
) xl,k(a:?,ka:l,k —+ 22:%71622%7/6 + ]_)’
hi(ug) = (uik + (urk + 2ug g + wg pur ) (U1 + Ua g + us k+
Fug pur g))ug,p +us gk + (w1 g + (Ui g + va g + us p+
Ug, kU3, LU K
+uq pu uyp + —————— 4+ 2u
a,kut k) (U1 Uikt Unp 4,k))s
ha(ug) = w1 g + uo g,
and

C=1[0.21%107%,0.51].

The response of the model obtained for both the identification and validation
data sets is given in Fig. 6.14. The comparative study for the linear model and
the GP model has been performed in (Witczak et al. 2002). from this results it
can be seen that the proposed nonlinear state-space model identification approach
can be effectively applied to various system identification tasks. The average
fitness (mean-squared output error for the identification data set), Fig. 6.15, for
the 50 runs of the algorithm confirms the modelling abilities of the approach.
As previously, based on the fitness attained by each of the 50 models (resulting
from 50 runs) it is possible to obtain the histogram representing the fitness values
achieved (Fig. 6.16) as well as the fitness’s confidence region. According to (6.12),
the fitness’s confidence region is .J,,, € [0.06,0.78] (for: s = 0.2, j,, = 0.07), which
means that there is 99% of probability that the true mean fitness .J,, belongs to
this region. Similarly to the previous section, it can be observed (Fig. 6.16) that
there are two optima in the space of models. However, on average, the algorithm
is convergent to the optima resulting in models of better quality.
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Fig. 6.16. The histogram representing the fitness of 50 models.
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6.7. GP approach to the EUIO design

6.7.1. Problem formulation

Let us consider a class of nonlinear system described by the following equations

i1 =g(xr) + h(ur + Lok f)) + Erdi,

(6.23)
Yir1 = Corr@itr + Lokt Frgqs

where g(xy) is assumed to be continuously differentiable with respect to xx, f
states for the fault signal, d;, is the unknown input, and L; j, Ly 5, and E; are
their distribution matrices. Similarly to EKF (Anderson and Moore 1979), the
Unknown Input Observer (UIO) (Chen and Patton 1999) can be extended to the
class of nonlinear systems (6.23). This leads to the following structure of the
Extended UIO (EUIO) (Witczak et al. 2002):

Zry1/e = g(2k) + h(ug),

) ) (6.24)
Zpp1 = 1 k + Herr €176 + Kijpgren,

Witczak et al. (2002) performed a comprehensive convergence analysis with the
Lyapunov method. As a result they obtained the following conditions

oa(Ay) [ (1={)a(Pr)

7 (o) <m == (6.25)
a(Ar) \ 5 (Al,kIPZA{k)
and
_ o (CF) o (Cy) o (Re) ?
—I) <y = = 6.26
U(ak )_72 ((_f ((CZ)&((Ck)(_T((CkPk(C{-F]Rk) ( )
where P, is the state estimate covariance matrix, and
Hyg1 = B [(Ceg1 Er)" Cropn Ekrl (CryrEr)T. (6.27)
A, = 29@) (6.28)
Oy, T =2

Bearing in mind that oy, is a diagonal matrix, the above inequalities can be
expressed as

‘max |a;r| <y and max lai e — 1] < 2. (6.29)
n 1=

i=1,..., =1,...,

Since (Chen and Patton 1999)

Pr = Ay PRAT  + TiQi1 T + He R, HY (6.30)
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it is clear that an appropriate selection of the instrumental matrices Q¢ _; and Ry
may enlarge the bounds v; and 72, and consequently the domain of attraction.
Indeed, if the conditions (6.29) are satisfied then &j converges to @y.

The problem is to obtain an appropriate form of the instrumental matrices
Qr—1 and Ry in such a way as to ensure the convergence of the observer or ade-
quately to maximize the bounds of the diagonal elements of the matrix ay.

First, let us define the identification criterion consisting a necessary ingredient
of the Q,—; and Ry selection process. Since the instrumental matrices should be
chosen so as to satisfy (6.25), the selection of Q—; and Ry can be performed
according to

(Qr—1,Ry) =arg  max  jobs,1(q(er—1),7(ex)), (6.31)
a(er—1),r(ex)
where
ng—1
Jobs,1(q(ex—1),7(er)) = Z tracelPy,. (6.32)
k=0

On the other hand, owing to the FDI requirements, it is clear that the output error
should be near zero in the fault free mode. In this case, one can define another
identification criterion

(Qr—1,Ry) =arg  min  jops2(q(er—1),7(er)), (6.33)
q(€x-1),r(er)
where
ng—1
Jovs.2(a(ek—1),1(er)) = Y efex. (6.34)
k=0

Therefore, in order to join (6.31) and (6.33), the following identification criterion
is employed

(Qk—laRk) = arg min jObS73(q(€k—1)7r(€k)) (635)

q(er—1),r(er
where

) _ Jobs2(q(er—1),7(er))
Jobs,3(q(ex—1),7(ex)) = oot (a(En1),7(e8)) (6.36)

6.7.2. Increasing the convergence rate via GP

Unfortunately, an analytical derivation of the Q;_; and Ry matrices seems to be
an extremely difficult problem. However, it is possible to set the above matrices as
follows Qg—1 = B1I, Ry = p11, with 7 and S large enough. On the other hand,
it is well known that the convergence rate of such an EKF-like approach can be
increased by an appropriate selection of the covariance matrices Q¢ and Ry, i.e.
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the more accurate (near “true values) covariance matrices the better convergence
rate. This means that, in the deterministic case (wy = 0 and vj = 0), both the
matrices should be zero ones. Unfortunately, such an approach usually leads to
divergence of the observer as well as other computational problems. To tackle
this problem a compromise between convergence and convergence rate should by
established. This can be easily done by setting the instrumental matrices as

Qo1 = Pief epal+ 611,
(6.37)
Ry = BQE{E‘]C]I + (52]1,

with 1, B2 large enough, and é;, d; small enough. Although this approach is
very simple, it is possible to increase the convergence rate further. Indeed, the
instrumental matrices can be set as follows

Q-1 = ¢*(er-1)L,
(6.38)
]Rk = T2(Ek)]1

Y

where g(ex—1) and r(ey) are nonlinear functions of the output error ey, (the squares
are used to ensure the positive definiteness of Q1 and Ry,).

Thus, the problem reduces to identifying the above functions. To tackle
this problem the genetic programming can be employed. The unknown func-
tions q(ex—1) and 7(ex) can be expressed as a tree. In the case of ¢(-) and r(-)
the terminal sets are T = {ex_1} and T = {ex}, respectively. In both the cases,
the function set can be defined as F = {+,%,/,&(),...,&(-)}, where &(-) is
a nonlinear univariate function, and consequently the number of populations is
m = 2. Since the terminal and function sets are given, the approach described
in Section 6.4 can be easily adapted for the identification purpose of ¢(-) and r(-)
using the identification criterion (6.36).

6.7.3. State estimation and fault diagnosis of an induction motor using EUIO

The numerical example considered here is the fifth-order two-phase nonlinear
model of an induction motor which has already been the subject of a large num-
ber of various control design applications (see (Boutayeb and Aubry 1999) and the
references therein). Moreover, the above model, unlike the model of Section 6.6.2,
can be used by other researchers and hence a straightforward comparison to other
approaches can be realized.
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The complete discrete time model in stator fixed (a,b) reference frame is

1
T Ulk) + 0.01d1’k,

K
141 = T1,k + h(—y218 + 7 Tk + Kpxspaa, +
r OLg

K 1
T2 g+1 = T1,k + h(—’ngk + Kprsrasy + —xap + qu) + 0.01d17k,
T, oL,

1

T3 k1 = Ti g + h(T_'le — 3k — pxspTag) + di g,
T T

M 1
Tap+1 = T1 g + h(m—Tor — PTskT3r — == Tak) + di k.

T, T,
pM Ty,
T =xz1+h T3kTok — LakT1k) — —),
5,k+1 1,k (JLT( 3k T2k Ak T1k) J)
Y1,k+1 = T1,k+15 Y2,k+1 = T2,k+1-
(6.39)
where x = (21,5, -, Tn.k) = (isak; Isbk, Yrak, Yrbk, Wk ) represents the currents, the

rotor fluxes, and the angular speed, respectively. uj = (usak, uspk) is the stator
voltages control vector, p is the number of pair of poles, T, is the load torque.
The rotor time constant 7} and the remaining parameters are defined as

L, M? M Ry  R,M?

"R 7 L,L,’ oL, L2 | T oL, | oL,L2’

(6.40)

where Ry, R, and Lg, L, are stator and rotor per-phase resistances and induc-
tances, respectively, and J is the rotor moment inertia.

The numerical values of the above parameters are as follows: Ry = 0.18 ), R, =
0.15Q, M = 0.068 H, L, = 0.0699 H, L, = 0.0699 H, J = 0.0586 kgm?, T}, =
10 Nm, p = 1, and h = 0.1 ms. The initial condition for the observer and
the system are &; = (200,200, 50,50,300) and ®; = 0. The unknown input
distribution matrix is

E, =

T
001 0 1 0 0
, (6.41)

0 001 0 1 0

and hence, according to (6.27), the matrix Hj, is

T

1 0 100 0 0

Hj, = : (6.42)
01 0 100 0

The input signals are

Uy = 300 cos(0.03k), sk = 300sin(0.03k). (6.43)
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The unknown input is defined as
di x = 0.002sin(0.57k) cos(0.37k), 0.005sin(0.01k), (6.44)

and Py = 10°1.
Moreover, the following three cases concerning the selection of Q¢_; and Ry were
considered

Case 1: Classical approach (constant values),i.e. Q.1 = 0.1, R, =0.1

Case 2: Selection according to (6.37), i.e.

Qe = 10%¢] [ ep1140.011, Ry = 10e] eI + 0.011, (6.45)

Case 3: GP-based approach

In order to obtain the matrices Q_; and Ry using the GP-based approach (Case
3), a set of n; = 300 input-output measurements was generated according to (6.39).
As a result, the following form of the instrumental matrices were obtained

2
Q1 = (1025?,6_15%7,6_1 + 10121 41 + 103.45¢1 41 + 0.01) I,
2
Ri = (11253, +0.ler gea +0.12) L.

(6.46)

The parameters used in the GP algorithm were the same as in Section 6.4.3.1. It
should be also pointed out that the above matrices (6.46) are formed by simple
polynomials. This, however, may not be the case for other applications.

Simulation results (for all the cases) are shown in Fig. 6.17. The numerical values
of the optimization index (6.36) are as follows: Case 1 jobs = 1.49 % 10°, Case 2
jobs = 1.55, Case 3 jops = 1.2 x 10716, Both of the above results as well as the
plots shown in Fig. 6.17 confirm the relevance of the appropriate selection of the
gain matrices. Indeed, as it can be seen, the proposed approach is superior to the
classical technique of selecting the instrumental matrices Q¢—; and Ry.

6.8. Summary

Although there are few applications of evolutionary algorithms to fault diagnosis
systems, a discussion of existing solutions and their possibilities as well as the pos-
sibilities of further development have been presented in this chapter. Emphasis has
been put on genetic programming approaches to the residual generation module
design. In particular, it has been shown how to represent various model structures
as a parameterized trees and how to identify their structure as well as to estimate
their parameters. Both the input-output NARX and state-space model structures
are presented. Moreover, it has been proven that the proposed state-space model
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Fig. 6.17. The state estimation error norm |le||> for Case 1 (dash-dotted line), Case 2
(dotted line) and Case 3 (solid line).

identification scheme provides asymptotically stable models. The experimental
results, covering models construction of chosen parts of an evaporation station at
the Lublin Sugar Factory S.A., confirm the reliability and effectiveness of the pro-
posed framework. The main drawback to this approach is its computational cost
resulting in a relatively long identification time. However, the model construction
procedure is as usual realized off-line and hence the identification time is not very
important.

Another GP approach concerns the concept of the Extended Unknown Input Ob-
server. It can be shown, with the use of the Lyapunov approach, that the consid-
ered fault detection observer is convergent under certain conditions. Moreover, it
has been shown that an appropriate selection of the instrumental matrices Qp_1
and Ry strongly influences the convergence properties. To tackle the instrumen-
tal matrices selection problem a genetic programming based approach has been
proposed. It has been shown, by an example with an induction motor, that the
proposed observer can be a useful tool for both state estimation and fault diag-
nosis problems of nonlinear deterministic systems. This is mainly because of the
convergence properties of the observer which confirm its superiority to the classical
approaches.



Chapter 7

CONCLUDING REMARKS

Since the beginning of the human civilization the technological development has
been strongly inspired by the solutions existing in nature. A man building mod-
els of observed phenomena wants to detect the principles lying under them, and,
simultaneously, searches for methods and algorithms for his problems solving. Es-
pecially, one work of nature is worth noticing: the evolution. The evolution is the
creative strength of the animated nature. Thanks to this process the most incred-
ible and complicated organisms, which are adapted to live in almost all, even the
most extreme, conditions existing on Earth, have been created. The evolution owes
its power to its parallel processing and soft selection rules, which, implemented
in the algorithmic form, result in one of the most effective tool of Computational
Intelligence.

The applicability of EAs in global optimization tasks, both in the con-
tinuous and discrete domain, is not questionable. Many instances of success-
ful EA implementations are published every year (cf. (B&ack 1995, Béick et
al. 1997, Galar 1990, Osyczka 2002, Schaefer 2002)). The main disadvantage of
EAs is their computational complexity that these algorithms are suggested to be
optimization methods of “the last resort”, when other, conventional, techniques
have disappointed.

In this book, the emphasis is put on the ESSS algorithm, which, thanks to
its simplicity, seems to be a very attractive subject for research analyzing the
basic properties of the evolutionary concept in the global optimization problems.
The simply selection—mutation model contains the principal idea of the phenotype
evolution (Chapter 1). Basing on this model, properties of different techniques of
natural exploration have been tested and analyzed in details.

Two classes of exploration techniques in EAs can be distinguish in the liter-
ature: local and global ones. The first class is based on the idea that individuals
“live” independently and separated and only the natural selection and random
mutation control the evolutionary exploitation and exploration phenomena, re-
spectively. This rule is accepted in almost all known implementations of EAs.
Most of the solutions proposed in Chapter 2 possess a different and original char-
acter. Population evolve like a herd. It is subject to the selection and mutation
mechanisms as well as to some form of intelligence — “herd instinct” — which con-
trols some global behaviors. The trap test for the SVA, IP and DOF mechanisms
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as well as the FDM technique can be treated as some forms of this idea implemen-
tations. However, the ideas of most mechanisms proposed in this book are known,
but two of them: the erosion mechanism (ESSS-DOF) and the forced direction
of mutation (ESSS-FDM) are new. In the ESSS-DOF algorithm, the population
erodes a currently occupied peak. Owing to this fact, already exploited areas are
just unattractive for the population, which runs away toward new territories. This
method allows to search the widest area of the domain in a given number of itera-
tions in comparison with other considered techniques. The ESSS-FDM algorithm
has been mainly proposed for adaptation tasks in non-stationary environments.
Basing on it, the extremely effective learning method for the DMLP network has
been designed.

The multi-dimensional Gaussian mutation is the most popular mutation tech-
nique in evolutionary algorithms based on the floating point representation of in-
dividuals. In the case of a one-dimensional mutation, the most probable location
of the offspring is the nearest neighbourhood of the parent individual. But in the
case of n-dimensional one, the most probable location moves from the center of
mutation to the “ring” of the radius proportional to the norm of the standard de-
viation vector, which increases with landscape dimension whenever the standard
deviation of each entry is fitted.

In recent years, the multi-dimensional Cauchy mutation has attracted a lot of re-
search attention. Evolutionary algorithms which use the Cauchy mutations seem
to be more effective in comparison to algorithms with the Gaussian mutation, in
the case of most global optimization problems. But the multi-dimensional Cauchy
density function obtained as a product of n independent one-dimensional Cauchy
density functions is not isotropic. The convergence of the density function shape to
the zero value is different for different directions in the n-dimensional real space.
However, the non-spherical symmetry of the Cauchy mutation is well-known in
the statistical literature, the influence of the symmetry effect on a phenotype evo-
lutionary algorithm efficiency needs detailed studies. The author has not found
any mention of the surrounding effect, thus it is supposed that this problem is not
commonly known. Both phenomenons are investigated in Chapter 3. Simulation
experiments prove that both effects are profitable from the exploration property
point of view, but their exploitation abilities decrease with the increase of the
landscape dimension, especially in the case of narrow peaks. Proposed modified
versions of the Gaussian and Cauchy mutation are deprived of this disadvantage.

Evolutionary algorithms, especially in their phenotype manner, are very inter-
esting from economic analyzers point of view. There are many suggestions that so
called “free market” is subject of the evolution principle (Galar 1990). Simulations
of the simple phenotype evolution, like the ESSS algorithm, may be the source of
the information about economic trends and behaviors. The main characteristic of
the “economic environment” is its non-stationarity and continual interaction with
economic entities. Recently, the problem of adaptation in the non-stationary en-
vironments as well as the models of a population—environment interaction seem
to be very attractive for bigger and bigger number of researches. The number
of publication successively increases. Unfortunately, the diverse methodology and
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terminology cause most of results being not comparable. An analysis and classifi-
cation of these problems, review of the existing measures and some propositions of
new ones are presented in Chapter 4. We hope, that they can bring better under-
standing of the considered problem and optimization tool behavior, and therefore
provide more satisfying results.

The problem of the neural model designing is mainly connected with two opti-
mization processes (see Chapter 5): a learning process and an optimal architecture
allocation. The nature of the both processes is different. The learning process be-
longs to a class of global optimization in a multi-dimensional continuous domain.
The space of neural networks architectures is discrete and infinite.

In order to model a dynamic systems, a dynamic neural networks should be used.
One of the most interesting solution is application a locally recurrent neural net-
work: the DMLP. Such a network is organized in the well-known MLP structure
and dynamic is included in the particular DNM units. Similarly to the classical
MLP, the DMLP allows to construct the learning algorithm based on the BP prin-
ciple: the Extended Dynamic Back-Propagation algorithm. This algorithm trains
the weights of synaptic connections as well as feedforward and feedback parameters
of IIR filters contained in each DMN unit. The main disadvantage of the EDBP
algorithm is its local manner. As well as all algorithms based on the “gradient
descent” method, the EDBP usually gets stuck in one of local optima of a multi-
modal mean square error function. Thus, the methods of global optimization, like
evolutionary algorithms, can improve the effectiveness of learning process.

The discrete nature of the ANN architectures space suggests that the methods
of discrete optimization are a proper tool for allocation of the optimal neural
model architecture. Four of them: Simulating Annealing, Genetic Algorithms, A*
algorithm and Tabu Search, are intensively studied in this book. Simulation ex-
periments suggest that the A* algorithm seems to be the most attractive tool for
optimization of the DMLP architecture. All experiments prove that the efficiency
of the optimal architecture searching algorithms is strongly dependent on the ef-
ficiency of the learning method, the result of which influences a quality index of
a given architecture. If obtained set of trained network parameters is only a local
optimal solution and far of the global one, the information about a quality of a
considered network architecture can be falsified.

The last part of this book illustrates the applicability of EAs in the one of the
most important domains of the modern industrial processes: the fault diagnosis.
Presented examples prove that application of the EA technique, in particular the
GP method, to design of FDI systems significantly improve their effectiveness,
especially in the case when a non-linear dynamic system is diagnosed.

The following is a concise summary of the contribution provided by this work
to the evolutionary computing theory and application:

e Proposes a new mechanism, called trap test, which allows to detect the end
of the active phase of the evolutionary processing and to apply procedures,
which accelerate the exploration ability of the ESSS algorithm.

e Presents a concept of a population—environment interaction in the form the
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erosion technique (ESSS-DOF). This procedure prevents a cyclically visiting
of neighbouring peaks by a population.

Introduces a new modified version of Gaussian mutation (applied in the
ESSS-FDM algorithm) with the nonzero expectation vector, which is parallel
to the latest population drift.

Formulates and experimentally analyzes the geographically local selection
operator.

Investigates the influence of the surrounding and symmetry effects of the
Gaussian and Cauchy mutations on the effectiveness of phenotype EAs. Pro-
poses and analyzes modified version of Gaussian and Cauchy mutation de-
prived above effects.

Systematizes problems of the adaptation in non-stationary environments tak-
ing into account both the problem specification and intensity of an environ-
ment changes criteria.

Defines two new measures for algorithms processing in the non-stationary
environments: the “acceptability” and “acceptability distance”, which reward
algorithms keeping the adaptation process on an acceptable level.

Develops, basing on the ESSS-FDM algorithm, the on-line evolutionary
learning method for the DMLP network.

Proposes a cascade-reduction scheme for the genetic algorithm and simu-
lated annealing approach, based on the direct representation, to the ANN
architecture optimization.

Extends the digraph representation of the space of MLP structures, proposed
by Doering et al. (Doering et al. 1997), to the digraph representing the space
of DMLP architectures.

Investigates the applicability of the SA, A* and Tabu Search algorithms
to the DMLP architecture optimization through searching the digraph of
DMLP structures.

Systematizes existing application of the EAs in the FDI systems, and also
proposes possible directions of this task development.

Shows how to represent various model structures as a parameterized trees
and how to identify their structure using the GP algorithm as well as to
estimate their parameters.

Presents the methodology of the input-output MIMO NARX and asymp-
totically stable state-space models design using above version of the GP
approach.

Basing on the fact that instrumental matrices strongly influence the con-
vergence properties of the Extended Unknown Input Observer, proposes the
GP approach to the these matrices selection problem.



A Saddle crossing problem

In this book the saddle crossing problem is defined as follows. Let us consider the
sum of two Gaussian peaks
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n

B,.(z) = exp < - 52:::?) + %exp (— 5((1 —)? + Zx2)> (A1)

=2

where n is the landscape dimension. The function ®,.(x) is composed of two
Gaussian peaks. The lowest one possesses its optimum at the point (1,0, ...,0).
The global optimum is located at the point (0,0, ...,0).

It was assumed that the saddle is crossed by the population if the mean value
of the first entry taken over all elements

(1) = %Z (zr), < s~ 042, (A2)

k=1

it means that most individuals are located on the higher peak (Fig. A.2).

The initial point of searching for the algorithm tested is chosen in the local
optimum of the function ®,.(x). If the population did not crossed the saddle
during a given processing time tpyax, then, in order to calculate &, the crossing
time is fixed t0 tmax-



B Benchmarks for the global optimization problem

Function f; — sum of two Gaussian peaks. (Fig. A.1)

s, 2) = exp(—2} = a3) + 5 exp(~ (1 — 1)? = a3), (B1)

5 -5

Fig. B.1. De Jong’s function F2: f, (B2)
Function fo — De Jong’s function F2. (Fig. B.1)
fo(z1,22) = 3500 — 100(27 — 22)* — (1 — z1)?, (B2)

Function f; — De Jong’s function F5. (Fig. B.2)

25 2 _1y -1
fg(xl,a:Q):500—{0.002+Z[j+2(xi—aij)ﬁ] } : (B3)
j=1 i=1
(a1) = 32 16 0 16 32 -32 ... 0 16 32
Y 32 32 -32 —32 -32 —16 ... 32 32 32

Function f; — the ,drop wave” function. (Fig. B.3)

1+ cos (12 T2 +a:§)
5 (23 +23) +2

f4($1,332) =
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Fig. B.3. The function f4 (B4)

Function f; — Michalewicz’s function. (Fig. B.4)

fo(xy,20) = sin(ml)(sin(%))m + sin(azg)(sin(ﬁ))m, (B5)

7r
Function f; — Shubert’s function. (Fig. B.5)

fo(x1,29) = 200 + Zicos ((i+ 1)z +1) ) icos ((i + 1)za +1), (B6)

Function f; — Rastringin’s function. (Fig. B.6)

fr(z1,22) =100 — (23 + 23) — 10 (cos(2mz1) + cos(2mz5)) (B7)
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Function fs — Ackley’s function. (Fig. B.7)

1
fa(z1,20) = —e+20exp< 10\/:1:1 +a:2)

2 2
exp (cos( TT1) -;cos( 7r:c2)>.

(B8)
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