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INTRODUCTIONThe optimization problem, in general, 
an be formulated as follows:x? = argmaxx2U f(x)���
i(x) � 0; i = 1; : : : ;m; �; (0.1)where x? is sear
hed optimum solution of an obje
tive fun
tion f(x), 
i(x) denotesan ith 
onstraint and U is a spa
e of solutions.Most of 
onventional optimization methods are based on, so 
alled, hard se-le
tion, where new base points for further exploration are generated basing on thebest obtained points. Su
h a strategy usually ends trapped in the lo
al optimum,and there is almost no 
han
e to leave this area and a
hieve better results, sothe global optimization ability is strongly limited. There are many algorithmsproposed in the literature whi
h try to over
ome this problem. Most of them
an be assigned to two 
lasses of algorithms: enumerative methods and sto
hasti
methods.First of them is dedi
ated to dis
rete and �nite sets of possible solutions, andusually 
onsists in examination of all solutions in order to 
hoose the best one.This is, of 
ourse, an ine�
ient te
hnique, espe
ially in the 
ase of large systems,where a full review is impossible to do in a reasonable time. Thus, methods ofheuristi
 sear
h 
an be used (
.f. (S
halko� 1990)). Their e�
a
y, when applied toparti
ular problems, is often highly dependent on the way they exploit the domain� spe
i�
 knowledge sin
e in and of themselves they are unable to over
ome the
ombinatorial explosion to whi
h sear
h pro
esses are so vulnerable.Sto
hasti
 optimization methods are mainly applied to sear
hing for the globaloptimum of the multi-modal and multi-dimensional obje
tive fun
tions, for whi
hthe derivative is di�
ult or impossible to 
ompute. The simple 
omputer im-plementation is also an advantage of these methods, however, they are time-
onsuming. Most of the sto
hasti
 methods are 
omposed of two parts: globaland lo
al one. First of them determines starting points for the lo
al sear
h. Usu-ally these points are randomly 
hosen from the domain. The lo
al optimizationis 
arried out applying 
lassi
al gradient methods or sto
hasti
 methods, whi
hrandomly modi�es 
urrent points usually using the normal distribution. Amongsto
hasti
 methods one 
an list several 
lasses of these te
hniques, e.g., the purerandom sear
h (Monte Carlo methods), multiple random start, 
lustering meth-ods, random dire
tion methods, sear
h 
on
entration methods (
.f. (Birge andLouveaux 1997, Zieli«ski and Neumann 1983)). The main disadvantage of sto
has-ti
 methods lies on their 
haoti
 manner, whi
h does not take into 
onsiderationinformation 
ontained in previously evaluated points.An alternative way for global optimum �nding are Evolutionary Algorithms(EAs). The evolution is the natural way of development. Spe
ies a
quire their



2properties and abilities by the natural sele
tion, seemingly a blind pro
ess, whi
hallows mainly well �tted individuals to survive and pro
reate. This me
hanismallows to transfer the pro�table features to next generations, thus, we have somekind of �intelligent� sele
tion. But, the nature does not restri
t itself to sele
t onlythe best individuals in the population. Weakly �tted individuals have a 
han
e tointrodu
e their o�spring to the next generation, too. Their des
endants are oftengifted with attributes unknown in the 
urrent population, and whi
h 
an be usefulin the future. Therefore, it is luring to introdu
e to optimization te
hniques thesoft sele
tion rule instead of the hard one, i.e. there is a possibility of 
hoosingworse points as base points for further sear
h. It o

urs that the soft sele
tiona

elerates the probability of es
aping from a lo
al optimum trap.The soft sele
tion is the base rule in the EAs, the extremely e�e
tive te
hniqueof the 
omputation intelligen
e systems applied to the global optimization. A veryri
h bibliography (
.f. (Angeline and Kinnear 1996, Arabas 2001, Bä
k 1995, Bä
ket al. 1997, Dasgupta and Mi
halewi
z 1997, Davis 1987, Fogel 1995, Fogel1998, Galar 1990, Goldberg 1989, Holland 1992, Mi
halewi
z 1996, Mit
hel 1996,Osy
zka 2002, S
hwefel 1995) proves this mimi
ked sear
h pro
ess of natural evo-lution is a very robust and e�e
tive dire
t algorithm of the global optimization or,rather, adaptation.The aim of this monograph is to present sele
ted basi
 properties of evolu-tionary algorithms in the global optimization and 
hosen appli
ations in the neuralnetworks design problem and the fault diagnosis of industrial pro
esses.The book is parted into six main 
hapters whi
h are pre
eded by introdu
tionand ended by 
on
lusions and two appendi
es.Chapter 1 
ontains a des
ription of the general outline of the evolutionaryalgorithm, presents the �
lassi
al� forms of the most known EA representatives:Geneti
 Algorithms (GA), Geneti
 Programming (GP), Evolutionary Program-ming (EP), and Evolutionary Strategies (ES). Emphasis is put on the EvolutionarySear
h with Soft Sele
tion (ESSS) algorithm, whi
h is the subje
t of majority of re-sear
h studies des
ribed in this book. The ESSS algorithm is based on probably thesimplest sele
tion�mutation model of Darwinian evolution. The n-dimensional realspa
e is the sear
h pro
ess domain, on whi
h some non-negative �tness fun
tion isde�ned. At the beginning the population of points is sele
ted from the domain and,next, it is iteratively transformed by the sele
tion and mutation operations. As asele
tion operator the well�known proportional sele
tion (roulette method) is 
ho-sen. Coordinates of sele
ted parents are mutated by adding normally-distributedrandom values.Next 
hapters 
ontain results whi
h are based on the author's resear
h.Te
hniques whi
h a

elerate the exploration abilities of the ESSS algorithmare the subje
t of Chapter 2. These te
hniques are parted into three 
lasses:methods adapting the algorithm parameters, methods modifying evolutionary op-erators, and methods, whi
h modify the obje
tive fun
tion during the sear
hingpro
ess. The �rst 
lass 
ontains algorithms whi
h adapt the standard deviationof Gaussian mutation (ESSS with Simple Varian
e Adaptation, ESSS-SVA) andpopulation size (ESSS with Varying Population Size, ESSS-VPS). The ESSS-SVA



3algorithm is based on a 
on
ept of an evolutionary trap. When population �u
-tuates around a lo
al peak of an adaptation lands
ape, the standard deviation ofthe Gaussian mutation in
reases. This fa
t de
reases the mean �tness of the pop-ulation and fa
ilitates the population es
ape towards a neighbouring peak. Theidea of the ESSS-VPS algorithm is similar to the GAVaPS algorithm (Arabas etal. 1994), ea
h individual 
ontains additional parameter: a life time, whi
h de-pends on the relation between the individual �tness and the mean �tness of the
urrent population. The se
ond 
lass of te
hniques 
ontains the ESSS algorithmwith For
ed Dire
tion of Mutation (ESSS-FDM) and algorithms with lo
al sele
-tions. The ESSS-FDM is distin
t from other algorithms of the ESSS family thatthe expe
ted ve
tor of the Gaussian mutation is not equal to zero, its dire
tion isparallel to the latest drift of population. In the 
ase of the lo
al sele
tion, ea
hindividual 
ompetes with elements whi
h are lo
ated a given radius away. De-pending on a method of a surrounding radius determination three algorithms arede�ned: the ESSS with Lo
al Sele
tion (ESSS-LS), ESSS with Mixed Sele
tion(ESSS-MS), and ESSS with Adaptive radius of Lo
al Sele
tion (ESSS-ALS). Thethird 
lass of exploration te
hniques is represented by the ESSS algorithm withImpatien
e and Polarization me
hanism (ESSS-IP), whi
h has been proposed byGalar and Kop
iu
h (1999), and erosion me
hanism (ESSS with Deterioration ofthe Obje
tive Fun
tion, ESSS-DOF). The erosion me
hanism 
onsists in gradualdeterioration of a 
urrently o

upied lo
al peak of the adaptation lands
ape by thepopulation. Parameters of the erosion fa
tor depend on the 
urrent lo
ation anddistribution of the population. This idea was �rstly introdu
ed by Beasley et al.(1993), but it has not been developed yet. The simulation analysis of e�e
tivenessof 
onsidered exploration me
hanisms ends the 
hapter.Chapter 3 
on
erns the analysis of Gaussian and Cau
hy mutation, theirin�uen
e on the e�e
tiveness of phenotypi
 evolutionary algorithms. The authordistinguishes two e�e
ts: surrounding e�e
t and symmetry e�e
t, whi
h a�e
t theEAs e�
a
y. Modi�ed versions of Cau
hy and Gaussian mutations are proposed,implemented in the ESSS and EP algorithms, and 
ompared using simulatingexperiments.The evolutionary adaptation in non-stationary environments is the subje
tof Chapter 4. There is an attempt at 
lassi�
ation of non-stationary adaptationtasks taking into a

ount di�erent 
riteria. As far as the intensity of 
hanges is
onsidered three types of environment 
hanges are distinguished: adiabati
, indi-re
t and turbulent 
hanges. In the 
ase of adiabati
 
hanges, 
lassi
al methodsof lo
al optimization are e�e
tive. Along with in
reasing intensity of 
hanges,usefulness of evolutionary algorithms in
reases. In the 
ase of turbulent 
hanges,the evolutionary pro
ess 
ould not keep up with a running global optimum lo
a-tion and sear
hes an as
ent of some fun
tion averaged over some time interval.The adaptation tasks in non-stationary environments 
an be also 
lassi�ed tak-ing a

ount of the problem spe
i�
ation, e.g. tra
ing pro
esses, an optimizationin a mega-epo
h, keeping solutions on an a

eptable level, and so on. Di�erentproblem spe
i�
ations require di�erent quality measures for applied adaptationalgorithms. A short analysis of algorithms quality measures known from literatureand proposed by the author is presented and illustrated.



4 The problem of neural models design is 
onsidered in Chapter 5. The Dynami
Multi�Layer Per
eptron (DMLP), whose units are based on Ayoubi'es Dynami
Neural Model (DNM) and organized into the standard feedforward ar
hite
ture, fo-
uses the author's attention. The problem of a neural network design 
an be viewedas a pair of optimization tasks: a learning pro
ess and an ar
hite
ture optimiza-tion. Both tasks have di�erent nature and need di�erent optimization methods.The learning pro
ess belongs to 
ontinuous optimization tasks, whi
h is usually
onne
ted with nonlinear, multi-modal obje
tive fun
tions, espe
ially in the 
aseof the DMLP. Therefore, te
hniques based on the gradient-des
ent method, likethe extended dynami
 ba
k-propagation learning, are ine�e
tive. Evolutionary al-gorithms approa
hes, espe
ially based on the ESSS-FDM algorithm, turn out verye�e
tive learning methods. The spa
e of neural networks ar
hite
tures is dis
reteand 
an be represented by an in�nite digraph. However, there are many instan
esof evolutionary approa
hes to the optimal neural model ar
hite
ture allo
ation inthe literature, they are not so e�
ient as presented heuristi
 sear
h methods: theA? algorithm and Tabu Sear
h te
hnique.Appli
ations of evolutionary algorithms to the fault diagnosis systems designis dis
ussed in Chapter 6. The diagnosis of industrial pro
esses has been intensivelystudied by the resear
h group of Institute of Control and Computation Engineeringof University of Zielona Góra for the last ten years. This 
hapter is based on resultsof the author and 
o�workers' resear
h. Designing the fault diagnosis systems for
omplex dynami
 systems is usually 
onne
ted with the la
k of a mathemati
almodel, or with the fa
t that su
h a model is unsatisfa
tory. Re
ently, arti�
ialintelligen
e methods have attra
ted resear
hes' attention. It is worth noti
ing thatthe pro
ess of designing fault diagnosis systems, using both analyti
al and arti�
ialintelligen
e methods, 
an be redu
ed to a set of 
omplex optimization problems.They are usually nonlinear, multimodal and, not so rarely, multi-obje
tive. So,the 
onventional algorithms are insu�
ient to solve them. Evolutionary algorithmsseem to be an attra
tive tool for sear
hing an optimal solution. Although there arefew appli
ations of evolutionary algorithms to fault diagnosis systems, a dis
ussionof existing solution is presented. The emphasis is put on geneti
 programmingapproa
hes to residual generation module of a Fault Dete
tion and Isolation (FDI)system.It is a pleasure to express my sin
ere thanks to a number of people. Firstof all, I am grateful to professor Józef Korbi
z for his 
ontinuous support andadvi
e. I wish to thank professors Roman Galar and Robert S
haefer for theira
tive interest in my resear
h and many stimulating suggestions, professor DariuszU
i«ski, dr. Krzysztof Patan, dr. Krzysztof Trojanowski, and dr. Mar
in Wit
zakfor dis
ussions and 
o�operation, whi
h bears many joint publi
ations.I wish to express my spe
ial gratitude to my wife Beata for her 
ontinuouspatien
e, understanding and support in hard times during preparing this book andover the 
ommon years.Zielona Góra, De
ember 2002 Andrzej Obu
howi
z



Chapter 1
EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are a broad 
lass of sto
hasti
 adaptation algo-rithms, inspired by biologi
al evolution, the pro
ess that allows populations oforganisms to adapt to their surrounding environment. The 
on
ept of evolutionwas introdu
ed in XIX 
entury by Charles Darwin and Johann Gregor Mendeland, 
omplemented with further details, are still widely a
knowledged as valid.In 1859, Darwin published his theory of natural sele
tion or survival of the�ttest. The idea is: not every organism 
an be held, only those whi
h 
an adaptand win the 
ompetition for food and shelter are able to survive. Almost at thesame time (1865) Mendel published short monograph about experiments in plantshybridisation. He observed how traits of di�erent parents are 
ombined in an o�-spring by sexual reprodu
tion. Darwinian evolutionary theory and Mendel inves-tigations of heredity in plants be
ame foundations of evolutionary sear
h methods.Stru
ture and properties of evolutionary algorithms are dis
ussed in severalbooks (Angeline and Kinnear 1996, Bä
k 1995, Bä
k et al. 1997, Dasgupta andMi
halewi
z 1997, Davis 1987, Fogel 1995, Fogel 1998, Galar 1990, Goldberg 1989,Holland 1992, Mi
halewi
z 1996, Mit
hel 1996, S
hwefel 1995). The arti
les 
on-
erned with evolutionary 
omputation are published in many s
ienti�
 journals.There are at least 20 international 
onferen
es 
losely 
onne
ted with evolutionarymethods. Due to a large number of available publi
ations it is impossible to presentall of plenty of di�erent evolutionary algorithms and their 
omponents, where theirauthors tried to improve the algorithm e�
ien
y in the 
ase of given problem tobe solved. In this 
hapter, the main 
omponents of evolutionary algorithms arereminded and di�erent basi
 forms of them brie�y dis
ussed.1.1. Basi
 
on
epts of evolutionary sear
hIn nature, individuals in a population 
ompete with ea
h other for resour
e su
has food, water and shelter. Also, members of the same spe
ies often 
ompeteto attra
t a mate. Those individuals whi
h are most su

essful in surviving andattra
ting mates will have relatively larger numbers of o�spring. Poorly performingindividuals will produ
e few or even no o�spring at all. This means that theinformation (genes), slightly mutated, from the highly adapted individuals willspread to an in
reasing number of individuals in ea
h su

essive generation. Inthis way, spe
ies evolve to be
ame more and more suited to their environment.



6 1.2. Standard evolutionary algorithmsIn order to des
ribe a general outline of the evolutionary algorithm let usintrodu
e few useful 
on
epts and notations (Atmar 1992, Fogel 1999). An evolu-tionary algorithm is based on the 
olle
tive learning pro
ess within a populationP (t) = fak 2 G j k = 1; 2; : : : ; �g of � individuals, ea
h of whi
h represents agenotype (an underlying geneti
 
oding), a sear
h point in a, so 
alled, genotypespa
e G. The environment delivers a quality information (�tness value) of theindividual dependent on its phenotype (the manner of response 
ontained in thebehavior, physiology and the morphology of the organism). The �tness fun
tion� : D ! IR is de�ned on a phenotype spa
e D. So, ea
h individual 
an be viewed asa duality of its genotype and phenotype, and some de
oding fun
tion, epigenesis,� : G ! D0 � D is needed.At the beginning, a population is arbitrary initialized and evaluated(Tab. 1.1). Next, the randomized pro
esses of reprodu
tion, re
ombination, mu-tation and su

ession are iteratively repeated until a given termination 
rite-rion � : G� ! ftrue; falseg are satis�ed. Reprodu
tion, 
alled also presele
tion,sp�p : G� ! G�0 is a randomized pro
ess (deterministi
 in some algorithms) of �0parents sele
tion from � individuals of the 
urrent population. This pro
ess is
ontrolled by a set �p of parameters. Re
ombination me
hanism (omitted in somerealization) r�r : G�0 ! G�00 , 
ontrolled by additional parameters �r, allows themixing of parental information while passing it to their des
endants. Mutationm�m : G�00 ! G�00 introdu
es innovation into 
urrent des
endants, �m is again aset of 
ontrol parameters. Su

ession, also 
alled postsele
tion sn�n : G��G�00 ! G�is applied to 
hoose a new generation of individuals from parents and des
endants.1.2. Standard evolutionary algorithmsDespite similarities of various evolutionary 
omputation te
hniques, there are alsomany di�eren
es between them. It is generally a

epted that any evolution-ary algorithm to solve a problem must have �ve basi
 
omponents (Davis 1987,Mi
halewi
z 1999):� a representation of solutions to the problem,� a way to 
reate an initial population of solution,� an evaluation fun
tion, rating solution in terms of their �tness,� sele
tion and variation operators that alter the 
omposition of 
hildren dur-ing reprodu
tion and mutation,� values for the parameters (population size, probabilities of applying variationoperators, et
.)The duality of the genotype and the phenotype suggest two main approa
hesto simulated evolution dedi
ated to global optimization problems in IRn: genotypi
and phenotypi
 simulations (Fogel 1999). In genotypi
 simulations, attention isfo
used on geneti
 stru
tures. The 
andidate solutions are des
ribed as being
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Tab.1.1. The outline of an evolutionary algorithmI. InitiationA. Random generationP (0) = �a0k j k = 1; 2; : : : ; �	.B. EvaluationP (0)! ��P (0)� = ��0k = ����a0k�� j k = 1; 2; : : : ; �	.C. t = 1.II.Repeat:A. Reprodu
tionP 0(t) = sp�p�P (t)� = �a0tk j k = 1; 2; : : : ; �0	.B. Re
ombinationP 00(t) = r�r�P 0(t)� = �a00tk j k = 1; 2; : : : ; �00	.C. MutationP 000(t) = m�m�P 00(t)� = �a000tk j k = 1; 2; : : : ; �00	.D. EvaluationP 000(t)! ��P 000(t)� = ��tk = ����a000tk�� j k = 1; 2; : : : ; �00	.E. Su

essionP (t+ 1) = sn�n�P (t) [ P 000(t)� = �at+1k j k = 1; 2; : : : ; �	.F. t = t+ 1.Until ���P (t)� = true�.



8 1.2. Standard evolutionary algorithmsanalogous to 
hromosomes. All the sear
hing pro
ess is provided in the genotypespa
e G. However, in order to 
al
ulate the individual �tness, its 
hromosome mustbe de
oded to its phenotype. Two main streams of instan
es of su
h evolutionaryalgorithms, 
an nowadays be identi�ed:� Geneti
 Algorithms (GA) (De Jong 1975, Goldberg 1989, Grefenstette 1986,Holland 1975, Mi
halewi
z 1996),� Geneti
 Programming (GP) (Kinnear 1994, Koza 1992).In the phenotypi
 simulations, attention is fo
used on the behaviors of the 
an-didate solutions in a population. All sear
hing operations, sele
tion, reprodu
tionand mutation, are 
onstru
ted in the phenotype spa
e D. This type of simula-tions 
hara
terizes a strong behavioral link between a parent and its o�spring.Nowadays, there are two main streams of instan
es of �phenotypi
" evolutionaryalgorithms:� Evolutionary Programming (EP) (Fogel et al. 1991, Fogel 1992, Fogel 1999,Fogel et al. 1966, Yao and Liu 1999),� Evolutionary Strategies (ES) (Re
henberg 1965, S
hwefel 1981).In this book emphasis is put on an Evolutionary Sear
h with Soft Sele
tion algo-rithm (ESSS) (Galar 1985, Galar 1989, Galar 1990, Galar and Kar
z-Dul�ba 1994),whi
h is some simpli�ed version of the ES. Basi
 ideas of GA, GP, EP and ES al-gorithms are presented below. The ESSS algorithm is the subje
t of the nextse
tion.1.2.1. Geneti
 algorithmsGAs are probably the best know evolutionary algorithms, re
eiving remarkableattention all over the world. The basi
 prin
iples of GAs were �rst laid down rig-orously by Holland (1975), and are well des
ribed in many texts (e.g. (Bä
kand S
hwefel 1993, Beasley et al. 1993a, Beasley et al. 1993b, Dasgupta andMi
halewi
z 1997, Davis 1987, Davis 1991, Goldberg 1989, Grefenstette 1986,Grefenstette 1990, Mi
halewi
z 1996).Previously proposed form of GAs (De Jong 1975, Holland 1975), 
alled SimpleGAs (SGAs) (Goldberg 1989) or 
anoni
al GAs (Bä
k and S
hwefel 1993), operateon binary strings of �xed-length l, i.e. the genotype spa
e G is a l-dimensionalHamming 
ube G = f0; 1gl. SGAs are a natural te
hnique of solving dis
reteproblems, espe
ially in the 
ase of �nite 
ardinality of possible solutions. Su
ha problem 
an be transformed to a pseudo-boolean �tness fun
tion, where GAs
an be used dire
tly. In the 
ase of 
ontinuous domains of optimization problems,the fun
tion � : D ! G that en
odes the variables of the solving problem into abit string, so 
alled, a 
hromosome, is needed. The en
oding fun
tion � is non-invertible and there does not exist the inverse fun
tion ��1. A de
oding fun
tion� : G ! Dl � D generates only 2l representatives of solutions. This is a stronglimitation of SGAs.



1. Evolutionary algorithms 9The parent sele
tion sp is 
arried out by, so 
alled, proportional method(roulette method):sp�P (t)� = �ah1 ;ah2 ; : : : ;ah�	 : hk = min�h : Phl=1 �tlP�l=1 �tl > �k�; (1.1)where f�k = U(0; 1) j k = 1; 2; : : : ; �g are uniformly-distributed, independentrandom numbers from the interval [0; 1). In this type of sele
tion, the probabilitythat a given 
hromosome will be 
hosen as a parent is proportional to its �tness.Be
ause sampling is 
arried out with returns, it 
an be expe
ted that well-�ttedindividuals insert a few of their 
opies in the temporary population P 0(t).Chromosomes from P 0(t) are re
ombined. In the 
ase of SGA the 
rossover isthe re
ombination operation. Chromosomes from P 0(t) are joined into pairs. Thede
ision that a given pair will be re
ombined is taken with the given probability�r. If the de
ision is positive, an i-th position in the 
hromosome is randomly
hosen and the information from the position (i + 1) to the end of 
hromosomesis ex
hanged in the pair:( (a1; a2; : : : ; al)(b1; b2; : : : ; bl) )! ( (a1; : : : ; ai; bi+1; : : : ; bl)(b1; : : : ; bi; ai+1; : : : ; al) ):New obtained temporary population P 00(t) is mutated. The individuals mu-tation m�m is done separately for ea
h bit in a 
hromosome. The bit value is
hanged to the opposite one with the given probability �m. Obtained populationis the population of a new generation.Histori
ally, the �rst attempt to the formal des
ription of the asymptoti

hara
teristi
s of the SGA was proposed by Holland (1975). The 
ombined e�e
tof sele
tion, 
rossover and mutation give so-
alled reprodu
tive s
hema growthequation (S
haefer 2002):h�(S; t + 1)i � �(S; t)�(S; t)��(t) �1� �r Æ(S)l � 1�(1� �m)o(S); (1.2)where S is a s
hema de�ned over the alphabet of 3 symbols (`0',`1',and `?' of lengthl; ea
h s
hema represents all strings whi
h mat
h it on all positions other than`?'); �(S; t) denotes the number of strings in a population at the time t mat
hed bys
hema S; h�i is a symbol of an expe
tation value; Æ(S) is the de�ning length of thes
hema S � the distan
e between the �rst and the last �xed string positions; o(S)denotes the order of the s
hema S � the number of 0 and 1 positions presentedin the s
hema; �(S; t) is de�ned as the average �tness of the all strings in thepopulation at the time t mat
hed by the s
hema S; and ��(t) is the average �tnesstaken over all individuals in the population at the time t.The equation (1.2) tells us about the expe
ted number of strings mat
hinga s
hema S in the next generation as a fun
tion of the a
tual number of stringsmat
hing the s
hema, the relative �tness of the s
hema, and its de�ning lengthand order. It is 
lear that above-average s
hemata with short de�ning length andlow-order would still be sampled at exponentially in
reased rates.



10 1.2. Standard evolutionary algorithmsPSfrag repla
ements +sin �� y z2 � xFig. 1.1 . The sample of the tree whi
h represents the fun
tion f(x; y; z) = yz+sin(2�x).The above approa
h, whi
h was 
riti
ized many times (see (Grefenstette 1993,S
haefer 2002)), 
an be treated as an attempt to evaluation of a numeri
al for
ein
reasing of a population (Whitley 1994). Vose (1999) proves that Markov pro-
esses, whi
h model the geneti
 algorithms pro
essing, are ergodi
. This fa
timplies the asymptoti
 
orre
tness in the probabilisti
 sense and the asymptoti
guarantee of su

ess (S
haefer 2002).1.2.2. Geneti
 programmingMany trends of the SGA development are 
onne
ted with the 
hange of an indi-vidual representation. One of them deserves parti
ular attention: ea
h individualis a tree (Koza 1992). This little 
hange in the GA gives evolutionary te
hniquespossibility of solving problems, whi
h are not early e�orted to solve. This type ofthe GA is 
alled the Geneti
 Programming (GP).Two sets are needed to be de�ned before the GP starts: the set of termsT and the set of operators F . In the initiation step, the population of trees israndomly 
hosen. For ea
h tree leaves are 
hosen from the set T and other nodesare 
hosen from the set F . Depending on T and F de�nitions a tree 
an representa polyadi
 fun
tion, a logi
al senten
e or a part of a programme 
ode in a givenprogramming language. Figure 1.1 presents the sample tree for T = fx; y; z; 2; �gand F = f�;+;�; sing. The new type of an individual representation needs newde�nitions of 
rossover and mutation operators, both of them are explained inFig. 1.2.1.2.3. Evolutionary programmingEvolutionary programming resides in the �phenotypi
" 
ategory of simulations. Itwas devised by L.G. Fogel et al. (1966) in the mid-sixties for the evolution of �nitestate ma
hines in order to solve predi
tion tasks. The environment was des
ribed
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PSfrag repla
ements

rossover

mutationrandom subtreeFig. 1.2 . Geneti
 operators for the GP.as a sequen
e of symbols (from a �nite alphabet) and a �nite state ma
hine hadto 
reate a new symbol. The output symbol had to maximize some pro�t fun
-tion, whi
h was a measure of predi
tion a

ura
y. There are not presele
tion andre
ombination operators. Ea
h ma
hine of the 
urrent population generates ano�spring by random mutation. There are �ve possible modes of random mutationthat naturally result from the des
ription of the �nite state ma
hine: 
hange anoutput symbol, 
hange a state transition, add a state, delete a state, or 
hangethe initial state. Mutation are 
hosen with respe
t to a uniform distribution. Thebest half number of parents and o�spring were sele
ted to survive.The EP was extended by D.B. Fogel (1991, 1992) to work on real-valued obje
tvariables based on normally distributed mutations. This algorithm was 
alled themeta-EP (Fogel et al. 1991) or the Classi
al EP (CEP) (Yao and Liu 1999). Thedes
ription shown in Table 1.2 is based on (Bä
k and S
hwefel 1993, Yao andLiu 1999).In the meta-EP, an individual is represented by pair a = (x;�), where x 2 IRnis a real-valued phenotype, � 2 IRn+ is a self-adapted standard deviation ve
tor forGaussian mutation. For initialization, the EP assumes a bounded initial domains
x = Qni=1[ui; vi℄ � IRn and 
� = Qni=1[0; 
℄ � IRn+ with ui < vi and 
 >0. However, the sear
h domain is extended to IRn � IRn+ during the algorithmpro
essing. As a mutation operator a Gaussian mutation with a standard deviationve
tor as
ribed to an individual is used. All elements in the 
urrent populationare mutated. Individuals from both parent and o�spring populations parti
ipatein the new generation sele
tion pro
ess. For ea
h individual ak, q individuals are
hosen at random from P (t) [ P 0(t) and 
ompared to ak with respe
t to their�tness values. wk is a number, how many of the q individuals are worse than ak.



12 1.2. Standard evolutionary algorithms
Tab.1.2. The outline of the EP algorithmI. InitiationA. Random generationP (0) = �a0k = �x0k;�k(0)� j k = 1; 2; : : : ; �	.x0k = RANDOM(
x), �0k = RANDOM(
�),
x � IRn, 
� � IRn+.B. EvaluationP (0)! ��P (0)� = ��0k = ��x0k� j k = 1; 2; : : : ; �	.C. t = 1.II.Repeat:A. MutationP 0(t) = m�;� 0�P (t)� = �a0tk j k = 1; 2; : : : ; �0	.x0tki = xtki + �tkiNi(0; 1), �0tki = �tki exp �� 0N(0; 1) + �Ni(0; 1)�,i = 1; 2; : : : ; n,where N(0; 1) denotes a normally distributed one-dimensional randomnumber with mean zero and standard deviation one, Ni(0; 1) indi
atesthat the random number is generated anew for ea
h 
omponent i.B. EvaluationP 0(t)! ��P 0(t)� = ��0tk = ��x0tk� j k = 1; 2; : : : ; �	.C. Sele
tion of new generationP (t+ 1) = sn�n�P (t) [ P 0(t)� = �at+1k j k = 1; 2; : : : ; �	.8atk 2 P (t) [ P 0(t),atk ! �atkl = RANDOM�P (t) [ P 0(t)� j l = 1; 2; : : : ; q	,wtk =Pql=1 ���(xtk)��(xtkl)�, �(�) = (0 for � < 01 for � � 0 ,P (t+ 1) � individuals with the best s
ore wtk.D. t = t+ 1.Until ���P (t)� = true�.



1. Evolutionary algorithms 13� individuals having highest s
ore wk are sele
ted from 2� parents and o�springto form new population P (t+ 1).The analysis of the 
lassi
al EP algorithm (Fogel 1992) giving a proof ofthe global 
onvergen
e with probability one for the resulting algorithm, and theresult is derived from de�ning a Markov 
hain over the dis
rete state spa
e thatis obtained from a redu
tion of the abstra
t sear
h spa
e IRn to the �nite set ofnumbers representable on the digital 
omputer.1.2.4. Evolutionary strategiesThe se
ond well-known �phenotypi
al� algorithms are Evolutionary Strategieswhi
h have been introdu
ed in mid-sixties by Re
henberg (1965) and S
hwefel(1981). The des
ription of the ES presented in this subse
tion is based on thearti
le (Bä
k and S
hwefel 1993). The general form of the ES relies on the indi-vidual representation in the form of a pair: a = (x; C ), where x 2 IRn is a pointin a sear
hing spa
e, and the �tness value of the individual a is 
al
ulated dire
tlyfrom the obje
tive fun
tion: �(a) = f(x). C is the 
ovarian
e matrix for then-dimensional normal distribution N(0; C ), having probability density fun
tionp(z) =s 1(2�)n det(C ) exp�� 12zT C�1z�; (1.3)where z 2 IRn. To assure positive-de�niteness of the C , it is des
ribed by twove
tors: ve
tor of standard deviations � (
ii = �2i ) and ve
tor of rotation angles� (
ij = 12 (�2i � �2j ) tan 2�ij). So, a = (x;�;�) is used to denote a 
ompleteindividual.There is no separated operation of sele
tion of parents in ESs, this sele
tionis strongly 
onne
ted with the re
ombination me
hanism. Di�erent re
ombinationme
hanisms 
an be used in ESs to 
reate � new individuals. Re
ombination rulesof determining an individual a0 = (x0;�0;�0) have the following form:a0i = 8>>>>>>><>>>>>>>: ap;i without re
ombinationap;i or as;i dis
rete re
ombinationap;i + �(as;i � ap;i) intermediate re
ombinationapi;i or asi;i global dis
rete re
omb.api;i + �i(asi;i � api;i) global intermediate re
omb. (1.4)where indi
es p and s denote two parent individuals sele
ted at random from P (t),and � 2 [0; 1℄ is uniform random variable. For global variants, for ea
h 
omponentof a the parents pi, si as well as �i are determined anew. Empiri
ally, dis
retere
ombination on obje
t variables and intermediate re
ombination on strategyparameters have been observed to give best results (Bä
k and S
hwefel 1993).Ea
h re
ombined individual a0 is subje
t to mutation. Firstly, strategy pa-rameters are mutated, and then new obje
t variables are 
al
ulated using new



14 1.3. Evolutionary sear
h with soft sele
tion (ESSS)standard deviations and rotation angles:�00 = f�0i exp(� 0N(0; 1) + �Ni(0; 1)) j i = 1; 2; : : : ; ng�00 = f�0j + �Nj(0; 1) j j = 1; 2; : : : ; n(n� 1)=2g (1.5)x00 = x0 +N (0;�00;�00);where fa
tors � 0, � and � are rather robust exogenous parameters, whi
h aresuggested to set as follows: � 0 � 1=p2pn, � � 1=p2n and � � 0:0873 (5o inradians).Sele
tion in ESs are 
ompletely deterministi
. There exist two possible strate-gies:� (�+ �)-ES � sele
ting � best individuals out of the union of � parents and� o�springs;� (�; �)-ES � sele
ting � best individuals out of the set of � o�springs (� > �).Although, the (� + �)-ES is elitist and guarantees a monotonously improvingperforman
e, the e�e
tiveness of global optimum sear
hing is worse than in the
ase of (�; �)-ES, therefore the se
ond one is re
ommended nowadays.Under some restri
tions it is possible to prove the 
onvergen
e theorem forthe evolutionary strategies (Bä
k et al. 1991). Let the 
ovarian
e matrix C be re-du
ed to the standard deviation ve
tor whi
h possesses all 
omponents identi
al,i.e. � = f�; : : : ; �g and � > 0, and remains un
hanged during the pro
ess. If theoptimization problem with �opt > �1 (minimization) or �opt < 1 (maximiza-tion) is regular then the evolutionary pro
ess 
onverges to the global optimum inin�nite limit of time with probability one.1.3. Evolutionary sear
h with soft sele
tion (ESSS)The ESSS algorithm was introdu
ed by Galar (1989) relying on probably the sim-plest model of the Darwinian phenotypi
al evolution (Galar 1985). This sele
tion-mutation pro
ess is exe
uted in a multi-dimensional real spa
e, on whi
h �tnessfun
tion is de�ned. At the beginning, a population of points is randomly 
ho-sen from the sear
hing spa
e and is iteratively 
hanged by sele
tion and mutationoperators. As a sele
tion operator the well-known proportional sele
tion is used.Sele
ted elements are mutated by adding a normally distributed random ve
tor.1.3.1. Phenotypi
 model of evolutionA basi
 phenotype evolution model was proposed by Galar (1985). The founda-tions of this model are as follows:� There exists an environment of invariant properties whi
h have a limited
apa
ity.



1. Evolutionary algorithms 15� There exists a population of reprodu
ing elements (individuals of the samespe
ies). The elements of the population are 
hara
terized by a set of features(phenotype quantitative features). The set of feature values determines thetype of an element (phenotype). Ea
h type is assigned to its �tness.� The assumption that ea
h element o

upies only one pla
e in the environ-ment is also made. The elements "live" in the environment for some lengthof time (generation), and then a new generation is produ
ed out of the a
tualone (reprodu
tion).� The new generation is 
reated by sele
ting parent elements from the a
tualgeneration and 
hanging their features (asexual reprodu
tion).� The 
hoi
e of parents is a

omplished by soft sele
tion being a random pro-
ess. Ea
h parent element has a 
han
e of allo
ating a des
endant in theenvironment with probability proportional to the element quality.� The des
endant elements are not perfe
t 
opies of the parent elements. Typedi�eren
es result from 
lear random mutation.Basing on the above assumptions, the evolution is a motion of individuals inthe phenotype spa
e 
alled also the adaptation lands
ape. This motion is 
ausedby sele
tion and mutation pro
esses. Sele
tion leads to 
on
entration of the in-dividuals around the best ones, but mutation introdu
es diversity of phenotypesand disperses the population in the lands
ape.1.3.2. ESSS algorithmAssumptions des
ribed above 
an be formalized by the algorithm presented in Ta-ble 1.3. A real, n-dimensional, sear
hing spa
e (an adaptation lands
ape) IRn isgiven. A �tness fun
tion � to be maximized is also de�ned on this adaptationlands
ape. Previously, an initial population P (0) of � elements is randomly gen-erated. If the ESSS algorithm is used to solve the optimization problem in IRnwithout 
onstrains, the 
on
ept that an initial population has to be `uniformlydistributed' in the sear
h spa
e has no sense. One of the possible and rational so-lution is to 
reate an initial population by adding � times a normally-distributedrandom ve
tor to a given initial point x00 2 IRn. The �tness �0k = �(x0k) is 
al-
ulated for ea
h element x0k of the population (k = 1; 2; : : : ; �). The sear
hingpro
ess 
onsists in generating a sequen
e of �-element populations. A new pop-ulation P (t + 1) is 
reated based only on the previous population P (t). In orderto generate a new element xt+1k , a parent element is sele
ted and mutated. Bothsele
tion and mutation are random pro
esses. Ea
h element xtk 
an be 
hosen as aparent with a probability proportional to its �tness �tk (the roulette method (1.1)).A new element xt+1k is obtained by adding a normally-distributed random valueto ea
h entry of the sele
ted parent:�xt+1k �i = �xthk�i +N(0; �) i = 1; : : : ; n; (1.6)



16 1.3. Evolutionary sear
h with soft sele
tion (ESSS)
Tab.1.3. The outline of the ESSS algorithmInput data� � population size;tmax � maximum number of iterations (epo
hs);� � standard deviation of mutation;� : IRn ! IR+ � non-negative �tness fun
tion, n � number of features;x00 � initial point.1. Initialize(a) P (0) = �x01;x02; : : : ;x0�	 : �x0k�i = �x00�i +N(0; �)i = 1; 2; : : : ; n; k = 1; 2; : : : ; �(b) �00 = ��x00�2. Repeat:(a) Evaluation��P (t)� = ��t1; �t2; : : : ; �t�	 where qtk = ��xtk�; k = 1; 2; : : : ; �.(b) Sele
tion�h1; h2; : : : ; h�	 where hk = min�h : Phl=1 �tlP�l=1 �tl > �k�and f�kg�k=1 are random numbers uniformly distributed in [0; 1).(
) MutationP (t)! P (t+ 1);�xt+1k �i = �xthk�i +N(0; �); i = 1; 2; : : : ; n; k = 1; 2; : : : ; �.Until ���P (t)� = true�.



1. Evolutionary algorithms 17where the standard deviation � is a parameter to be sele
ted. It is important tonote that there is no re
ombination (
rossover) operator in the ESSS. However,the re
ombination operator is biologi
ally motivated (Mendel's experiments) andpossesses great importan
e in EAs based on the genotypi
 representation of in-dividuals, in the 
ase of phenotype simulations of evolution, whi
h are based on�oating point representation of individuals, the mutation seems to be the 
ru
ialoperator of the evolutionary pro
ess (Fogel 1995, Fogel 1999, Galar 1989).Numeri
al tests of the ESSS algorithm (Galar 1989) have proved essentialadvantages of soft sele
tion in a global optimum �nding in 
omparison with hardsele
tion in whi
h only the best individuals are 
hosen and only lo
al optima areattained. The ESSS algorithm does not 
onstitute an optimization algorithm inthe sense of rea
hing extrema with a desired a

ura
y. The evolution pro
ess isnot asymptoti
ally 
onvergent to an optimum and the interpolation e�e
tivenessof soft sele
tion is rather weak. The evolution leads next generations to an elevatedresponse surfa
e, rather than to maxima. In spite of that, sear
h advantages ofthe ESSS algorithm suggest that this algorithm 
an be of real pra
ti
al use innumeri
al pa
kages for global optimization, espe
ially when 
ombined with lo
aloptimization algorithms.First attempt at the ESSS 
onvergen
e analysis was presented in (Kar
z-Dul�ba 1992, Kar
z-Dul�ba 1997, Kar
z-Dul�ba 2001a), where dynami
s of in�nitepopulations in a lands
ape of unimodal and bimodal �tness fun
tions is 
onsidered.Galar and Kar
z-Dul�ba (1994) propose to 
onsider the evolution dynami
s inthe state spa
e of the population. The population state spa
e is n�-dimensional.Be
ause the evolution dynami
s is independent on the elements' sequen
e in thepopulation, the population state spa
e does not 
over all the IRn� spa
e but onlysome 
onvex, 
ompa
t and multi-lateral subspa
e of IRn�. Analyti
al results for thepopulation of two elements, obtained by using population state spa
e des
ription,are presented in (Kar
z-Dul�ba 2001).1.4. SummaryThe evolutionary algorithm is distinguished by two main 
hara
teristi
s. Unlikeother 
lasses of optimization algorithms the EA operates on the population ofindividuals. In this way the knowledge about the environment is dis
overed simul-taneously by many individuals, veri�es information inherited from an
estors andis passed down from generation to generation. Spe
ies a
quire their individual
hara
teristi
s due to the survival of well �tted ones, that is seemingly a blindme
hanism where only individuals well adapted to presen
e 
an survive and pro-
reate. However, the nature does not sele
t only the best individuals to pro
reate,sometimes even a weakly adapted one has a possibility of 
reating an o�springwhi
h 
an possess a feature without parallel in the population. This is the se
ondevolution 
hara
teristi
, 
alled soft sele
tion. If we give up the hard sele
tion anduse the soft one instead, assuming that weakly-adapted points (in the sense of thevalues of the obje
tive fun
tion) 
an be sele
ted to 
reate o�springs, the possibilityof the global optimum �nding in
reases.



18 1.4. SummaryAlthough evolutionary algorithms have been su

essfully implemented tomany pra
ti
al problems, there have a number failures as well, and there is littleunderstanding of what features of these domain make them appropriate or inap-propriate for these algorithms. Be
ause of the simple form of the ESSS algorithm,it seems to be useful material for transformation and analysis, whi
h will be help-ful to understand the nature of evolution algorithms. This is a task for the next
hapters of this part of the book.



Chapter 2
NATURAL EXPLORATION MECHANISMS

If the adaptation lands
ape is 
omposed of multi-dimensional hills, valleys, sad-dles and ridges, it is easy to prove that the Darwinian-type evolution has a 
y
li
nature (Galar 1989). Ea
h 
y
le 
onsists of two phases: a
tive and latent. In rela-tive short-lived a
tive phases, the population of individuals 
limbs an adaptationslope to a neighbourhood of a lo
al peak. The latent phase is a quasi-stationarystate with sporadi
 �u
tuations, su
h a phenomenon is known in biology as so
alled �Müller's 
at
h� (Müller 1964): the population is trapped around the lo-
al optimum of the �tness, almost all mutations give worse �tted o�springs. Ifthe o

upied hill possesses a higher neighbour, the �u
tuations 
an 
ontribute to
ross a saddle and a new a
tive phase starts. The 
y
li
 nature of evolution is
onsistent with the theory of �pun
tuated equilibria� (Eldredge and Gould 1972)whi
h 
laims that the evolution is not evolve with steady motion but irregular �stepwise.In order to illustrate the ESSS pro
ess, a sum of three two-dimensional Gauss-ian peaks�(x) = 12 exp�� 5�(1� x1)2 + x22��+ exp�� 5�x21 + x22��++ 32 exp�� 5�x21 + (1� x2)2�� (2.1)was 
hosen as a �tness fun
tion (Fig. 2.1a). The sear
hing pro
ess 
an be splitinto two 
y
li
ally inter
hanged phases: an a
tive phase (exploitation) and a latentphase (exploration) (Fig. 2.1b). In the short-lived a
tive phase the 
on
entratedpopulation moves toward a lo
al pi
k of the �tness. In the long-standing latentphase the trapped population �u
tuates around the top in the sear
h for a saddleof the adaptation lands
ape.Long-time exe
ution of the ESSS algorithm is 
aused, among other things,by long time intervals of the latent phases whi
h result from the fa
t that thesele
tion pro
ess prefers new o�springs allo
ated in well-exploited areas aroundthe o

upied peak. This is, of 
ourse, a drawba
k to this approa
h in the 
ontextof the e�e
tiveness of the global optimization pro
ess. In order to over
ome thisproblem, a natural idea is to ex
lude the neighbourhood of the o

upied peakin the exploration pro
ess and to propose and analyze some me
hanisms whi
h
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Fig. 2.1 . The 2D adaptation lands
ape used in the test (a); the �tness of the best elementin the population vs. epo
hs (b). These results were obtained for � = 15,� = 0:03, tmax = 4000 and x00 = [2;�1℄.



2. Natural exploration me
hanisms 21would try to a

elerate the saddle 
rossing and shorten the time spent on thelatent phase. There are many instan
es of this idea in the spe
ialized literature(Bä
k et al. 1997, Goldberg 1989, Mi
halewi
z 1996, S
haefer 2002).There are three ways of in�uen
e on the ESSS algorithm pro
essing(Obu
howi
z 2003a):� adaptation of algorithm parameters;� modi�
ation of evolutionary operators;� in
lusion of the population in�uen
e on the �tness fun
tion.In this 
hapter a few methods, whi
h in
rease the ESSS exploration abilities,divided into three above 
lasses, are presented.2.1. Adaptation of algorithm parametersThe e�
ien
y of the ESSS algorithm depends on values of input parameters: thestandard deviation of mutation � and the population size � (Table 1.3). Both pa-rameters 
an be adapted during the algorithm exe
ution. This idea is not novelty.The adaptation of the mutation standard deviations are in
luded in the standardversions of the ES (Bä
k and S
hwefel 1993, S
hwefel 1981) and the EP (Fogel etal. 1991). Standard deviations in the ES and the EP algorithms are self-adaptedand 
hanged randomly and 
ontinuously being subje
t to the same low as in the
ase of variables of the obje
tive fun
tion. Unlike these algorithms, the adaptationof the standard deviation in the modi�ed ESSS algorithm, 
alled the ESSS-SVA(the ESSS with Simple Varian
e Adaptation), is 
ontrolled by the a
tual state ofpopulation (Obu
howi
z and Patan 1997a). There is proposed a 
ompletely newme
hanism, 
alled trap test, whi
h monitored whether the population is trappedaround a lo
al peak of the �tness fun
tion. The varying population size was �rstlyproposed for the GA algorithm by Arabas and 
oworkers in their GAVaPS algo-rithm (Arabas et al. 1994). Ea
h individual is extended by a new parameter: thelife-time, the value of whi
h depends on the individual �tness. This te
hnique,slightly modi�ed, is implemented in the ESSS-VPS (the ESSS with Varying Pop-ulation Size) algorithm (Obu
howi
z and Korbi
z 1999).2.1.1. Adaptation of the standard deviation of mutationIdea. When the population is trapped around a lo
al peak, the standard deviationof mutation in
reases. This fa
t results in a larger varian
e of the population anda worse mean �tness. In this way, the mean �tness of the population de
reases toa saddle level and the possibility of saddle 
rossing in
reases.ESSS-SVA algorithm. When 
ompared to ESSS, the ESSS-SVA algorithm isenri
hed by an additional me
hanism whi
h 
onsists of three new pro
edures:1. Trap test. The obje
tive of this pro
edure is to determine whether the pop-ulation quality 
hanged substantially for a given number of epo
hs tT . The



22 2.1. Adaptation of algorithm parameterstest is positive if the population displa
ement for the last tT epo
hs is of thesame order as the mutation varian
e �t.2. Adaptation of the mutation varian
e. This pro
edure is started if an evo-lutionary trap is dete
ted. The varian
e of the normal distribution used inmutation is multiplied by a 
onstant � > 1.3. Return to the initial varian
e � If no evolutionary trap is dete
ted, the vari-an
e of the normal distribution is set to the initial, relatively low value.The ESSS-SVA algorithm 
an be written in the following form (see Table 1.3):1. Initiation2. Repeat(a) Estimation;(b) Choi
e of the best element in the history ;(
) If Trap Test then Adaptation of the mutation varian
e else Return tothe initial varian
e;(d) Sele
tion;(e) Mutation;Until t > tmax.Illustrative example. In order to validate the performan
e of the ESSS-SVApro
ess, let us 
onsider again the sum of three two-dimensional Gaussian peaks asa �tness fun
tion (2.1). From the results shown in Fig. 2.2 it is easy to see thatthe applied SVA me
hanism a

elerates the e�e
tiveness of saddle 
rossing.2.1.2. Adaptation of the population sizeIdea. When the population �u
tuates around a lo
al peak of the �tness fun
tion,individuals weakly �tted but geographi
ally allo
ated 
losely to the saddle, seemto have a greater 
han
e to 
reate des
endants in the other side of the saddle. Theprobability that su
h an individual will be sele
ted as a parent in
reases whenthe population size is low, in other words, it has fewer rivals with better �tness.On the other hand the �u
tuations of small population around a lo
al peak arehigher and the e�
ien
y of lo
al �tness maximum allo
ation is low. Therefore,the following hypothesis 
an be advan
ed that if the population size � is large, thepro
ess possesses a high quality of lo
al �tness maximum allo
ation, but its abilityof saddle 
rossing is poor in 
omparison with the ESSS algorithm with small valueof �.ESSS-VPS algorithm. The value of � is adapted in the ESSS-VPS algorithm.An individual element xtk in the ESSS-VPS algorithm is extended by adding one
omponent: the life-time � tk, i.e. the number of epo
hs in whi
h the element xtkexists in population. The life-time � tk is spe
i�ed at the moment of an element
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Fig. 2.2 . The results of the ESSS-SVA sear
hing pro
ess for the adaptation lands
ape(2.1). Figures (a) and (b) illustrate relations between the �tness of the bestelement in the population and the population varian
e, respe
tively, vs. epo
hs.These results were obtained for � = 15, �0 = 0:03, � = 1:1, tT = 20 andtmax = 300.



24 2.1. Adaptation of algorithm parametersTab.2.1. Parameters used in simulationsParameters Valuesmaximum of epo
h (tmax) 3000initial population size (�0) 5; 10; 20; 50; 100maximum life-time (�max) 4standard deviation (�) 0:005; 0:01; 0:05; 0:1; 0:5birth. It depends on the relation between an element's �tness � (xtk) and the�tness history of population. A few methods of determining � tk have been tested.The following one was 
hosen in (Obu
howi
z and Korbi
z 1999):� tk = ��max �tk�t+10 � ; (2.2)where �max is an exogenous parameter, dze returns the minimal integer value thatis still greater then z. Unlike geneti
 algorithms, where the varying population sizeis a te
hnique to avoid pre
o
ious 
onvergen
e (Arabas et al. 1994), the populationsize de
reases when average �tness of the population in
reases, in the ESSS-VPSalgorithm the population size in
reases with average �tness of population andde
reases, when the population is trapped around the lo
al optimum or averagepopulation �tness de
reases.Illustrative example. Let us 
onsider three two-variable fun
tions from Ap-pendix B: the �drop wave� fun
tion f4(x1; x2) (B4), Mi
halewi
z's fun
tionf5(x1; x2) (B5), and Rastringin's fun
tion f7(x1; x2) (B7). All these fun
tionsare strongly non-linear and multimodal. The �tness fun
tion has been 
hosen inthe form :� �xtk� = f �xtk�� f tmin +� 1�t�2 ; (2.3)where f tmin = min (f (xtk) jk = 1; : : : ; �t) is the minimal value of f taken over allelements in the a
tual population of a size �t, and f is a given obje
tive fun
tionwhi
h has to be maximized. Su
h a �tness fun
tion is non-negative and its rel-ative values in the a
tual population make the proportional sele
tion e�e
tive.Simulations have been done several times for all possible 
ombinations of inputESSS-VPS parameters 
ontained in the Table 2.1. When the best set of parame-ters was allo
ated, several starting points �x00� were tested. The best results havebeen 
ompared with the ESSS algorithms. Table 2.2 presents the per
entages of500 algorithm 
ourses whi
h have found the global optimum �nding for three 
ho-sen obje
tive fun
tions. Simulations show that the ESSS-VPS algorithm is slightlybetter than the standard ESSS algorithm in lo
alization of a global optimum of agiven obje
tive fun
tion.
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hanisms 25Tab.2.2. Per
entages of algorithms 
ourses whi
h have found the global optimum:tmax = 3000, �0 = 20, �max = 4, starting points: (9,9) for f4, (3,3) for f5,(4.5,4.5) for f7.alg. ESSS ESSS-VPS� 0.01 0.05 0.1 0.01 0.05 0.1f4 0 0 8 0 0 10f5 0 10 88 4 46 96f7 0 8 98 0 18 962.2. Modi�
ation of evolutionary operatorsThe ESSS algorithm is 
omposed of two evolutionary operators: sele
tion andmutation. Many sele
tion and mutation te
hniques known from the literature 
anbe implemented (
f. (Bä
k et al. 1997)), but methods presented below do notviolate the models paradigm (see se
tion 1.3.1).2.2.1. For
ed dire
tion of mutationIdea. The ESSS with For
ed Dire
tion of Mutation (ESSS-FDM) algorithm,�rstly proposed by Obu
howi
z and Korbi
z (1998), has been designed as an adap-tation algorithm in a time-varying lands
ape (Obu
howi
z 1999b). The idea ofFDM me
hanism is following: if natural 
onditions existing in the environment fa-vor some dire
tion of alteration in the phenotype spa
e, this dire
tion is preferrednot only by sele
tion, but by mutation, too.ESSS-FDM algorithm. The ESSS-FDM algorithm di�ers from the standardESSS one only in the modi�
ation step. The elements sele
ted are mutated byadding to ea
h 
omponent i a normally-distributed random variable with expe
-tation mi 6= 0. This is unlike the ESSS algorithm, where mi = 0 (see Table 1.3).A

ordingly we have(
) MutationP (t)! P (t+ 1);�xt+1k �i = �xt+1hk �i +N�mti ; ��; i = 1; 2; : : : ; n; k = 1; 2; : : : ; �;mti = �� hxtii � hxt�1i ikhxtii � hxt�1i i)k ; (2.4)hxtii = 1� �Xk=1 �xtk�i:



26 2.2. Modi�
ation of evolutionary operators

Fig. 2.3 . The �tness of the best element in the population vs. epo
hs; these results wereobtained for � = 20, � = 0:03, tmax = 1000 and � = 0, � = 0:5, � = 1, � = 2,� = 10, respe
tively from the top to the bottom panels.Illustrative example. Let us 
onsider the �tness fun
tion � (x) = f1 (x) (B1)from Appendix B. The initial point is 
hosen as x00 = [�1; 2℄. Results for di�er-ent set of the ESSS-FDM algorithm parameters are presented in Fig. 2.2.1. Themutation expe
tation ve
tor mt depends on standard deviation of normal distri-bution � and is parallel to the latest trends of the population drift. The exogenousparameter �, whi
h is 
alled the momentum, determines the proportion betweenthe standard deviation � and the length of the ve
tor mt : � = kmtk=�. If � istoo small, there is essentially no di�eren
e between the ESSS and the ESSS-FDMsear
hing. In the 
ase of a very large � �kmtk � ��, there is no possibility of
hanging the dire
tion of the population drift, whi
h was 
hosen in the beginningof the sear
hing pro
ess.2.2.2. Lo
al sele
tionIdea. Almost all known evolutionary algorithms use a global sele
tion, i.e., allindividuals in the 
urrent population 
ompete with ea
h other for pla
ing as manyo�spring individuals in the next generation as possible. In nature, su
h a sele
tionis impossible for population dispersed on a wide area. The natural sele
tion is lo
alsele
tion, where an individual only 
ompetes with rivals in its �e
ologi
al ni
he�.



2. Natural exploration me
hanisms 27The idea of the lo
al sele
tion is as follows (Obu
howi
z 2002a). Ea
h indi-vidual of the 
urrent population is a 
entre of a sphere with a given radius �. Oneparent is sele
ted from ea
h of � spheres in a

ordan
e to the proportional sele
tion(the roulette method), i.e., individuals lo
ated inside a given sphere 
ompete withea
h other to be
ome a parent. In this way the parent population of � individualsare 
reated. There are proposed three variants of evolutionary algorithms whi
huse the lo
al sele
tion.ESSS algorithm with Lo
al Sele
tion (ESSS-LS). The ESSS-LS algorithmdi�ers from the ESSS algorithm (see Table 1.3) only in Sele
tion step. At �rst �sets of individuals are 
onstru
tedStj = fxti 2 P (t) : kxti � xtjk < �g; j = 1; 2; : : : ; �: (2.5)The set Stj 
ontains the individual xtj and its neighbours lo
ated in the sphere
entered on xtj and the radius �, whi
h is an input parameter of the algorithm.It easy to see, that xti 2 Stj , xtj 2 Sti . From ea
h set (Stj j j = 1; 2; : : : ; �) oneparent is randomly 
hosen. The probability ptij that the individual xti 2 Stj will be
hosen as a parent has the formptij = �tiPxtl2Stj �tl : (2.6)ESSS algorithm with Mixed Sele
tion (ESSS-MS). In the ESSS-MS algo-rithm, lo
al and global sele
tion operators are applied alternately. At �rst, thelo
al sele
tion is used over tl iterations and next the global sele
tion is used overtg iterations. Both time intervals tl and tg are input parameters.ESSS algorithm with Adapted Lo
al Sele
tion (ESSS-ALS). The sele
tionin the ESSS-ALS is lo
al and almost the same as in the ESSS-LS. The ESSS-ALSdi�ers from the ESSS-LS only in representation of individual and de�nition of Stj .An individual in the ESSS-ALS algorithm is a pair (xtj ; �tj), where �0j is initially
hosen at random from a given interval (0; 
) with uniform distribution. Then theequation (2.5) has a new form:Stj = fxti 2 P (t) : kxti � xtjk < �tjg j = 1; 2; : : : ; �; (2.7)and hen
e the relation xti 2 Stj , xtj 2 Sti is not still valid.The mutation in the ESSS-ALS operates not only on the phenotype xtj , butalso on the lo
al radius �tj . A new radius is obtained as follows�t+1j = j�tj + �N(0; 1)j: (2.8)The experiment whi
h 
ompares des
ribed above te
hniques is presented inSe
tion 2.4.1.2.3. Population in�uen
e on the �tnessThere are strong intera
tion between populations of individuals and the environ-ment in nature. On the one hand, the population �tness depends on an available



28 2.3. Population in�uen
e on the �tnessamount of food and water. On the other hand, individuals 
an in�uen
e on theenvironment in order to improve the living 
onditions or, sometimes, they destru
tit when the environment 
annot provide too large number individuals of a givenspe
ies.2.3.1. Impatien
e and polarizationIdea. Individuals weakly �tted but geographi
ally allo
ated 
losely to the saddle,seem to have a greater 
han
e to 
reate des
endants in the other side of the saddle.Thus, when the population does not a
hieve better values of the �tness fun
tion, animpatien
e operator is a
tivated. This operator modi�es the �tness of individualsso that the remote individuals from the 
entre of the population are rewarded. Inthis way the population is dispersed like in the sharing method (Goldberg 1989). Inthe 
ase of the ESSS algorithm with the impatien
e operator new unexpe
ted e�e
to

urs: the �polarization�. Dispersed population assembles in two 
lusters lo
atedon either side of the population 
entre and rotating around it. If the adaptationlands
ape is regular then this phenomenon a

elerates the saddle 
rossing.Impatien
e operator. The impatien
e operator has been proposed by Galar andKop
iu
h (1999). It transforms the original �tness �(xj) of the j-th individual tothe e�e
tive �tness �e(xj) as follows:�e(xj) = � djdA + 
��(xj); (2.9)where dj = kxj � hxik and dA = 1� P�k=1 dk.The e�
ien
y of the impatien
e and polarization (IP) e�e
t has been testedon the bimodal �tness fun
tion 
omposed of the sum of two Gaussian peaks (Galarand Kop
iu
h 1999). Obtained results suggest that:� the IP e�e
t a�e
ts on the de
reasing of the number of iterations needed to
ross a saddle;� the IP me
hanism in
reases the saddle 
rossing e�
ien
y for large popula-tions, almost no e�e
t has been noti
ed in the 
ase of very small populations;� the IP e�e
t is pro�table in the 
ase of low dimensional lands
apes.2.3.2. ErosionIdea. The great e�
ien
y of saddle 
rossing of the ESSS algorithm and all itsmodi�
ation des
ribed in this se
tion is not a su�
ient 
ondition for s
ouring awide area of the sear
hing spa
e. There is a possibility that population of sear
hingindividuals will �u
tuate between two or more neighbouring lo
al optima. Thereexists natural phenomenon, whi
h in�uen
es the rate of saddle 
rossing and pre-vents sear
hing individua from 
oming ba
k to the previously inspe
ted areas. Thisphenomenon is known as the lands
ape deterioration by the evolutionary trapped
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hanisms 29population. Therefore, the population de
reases its �tness itself indire
tly sear
h-ing the es
ape way from the trap.ESSS algorithm with Deterioration of the Obje
tive Fun
tion (ESSS-DOF). The ESSS-DOF in�uen
es on the topology of an obje
tive fun
tion.It 
ontains an additional step whi
h is 
omposed of the following pro
edures(Obu
howi
z 1997):� Trap test � the obje
tive of this pro
edure is to determine whether the pop-ulation quality 
hanged substantially for a given number of epo
hs.� Erosion � this pro
edure transforms the obje
tive fun
tion �(x) as follows:�(x) = ( �(x)�G(x) for �(x) � G(x);0 for �(x) < G(x); (2.10)where G(x) is the deterioration peak 
hosen in the Gaussian formG(x) = h exp�� 12(x��)TT�1(x��)�; (2.11)where h, � and T are a height, a 
entral point and a 
orrelation matrix ofthe Gaussian deterioration peak, respe
tively.The deterioration peak (2.11) has to approximate the 
urrently o

upiedlo
al quality peak. If the population is trapped around the lo
al optimum, it
an be assumed that the population distribution approximates the shape of thispeak. Thus, the parameters of the deterioration peak 
an be 
hosen in the form(Obu
howi
z 1997): h = �tmax; (2.12)� = hx(t)i; (2.13)T = C t ; (2.14)where �tmax is the �tness of the best individual in the a
tual population P (t), hx(t)iand C t are the expe
tation ve
tor and the 
ovarian
e matrix of P (t), respe
tively.Although, the ESSS-DOF algorithm is the most e�
ient in saddle 
rossingin 
omparison with other methods based on ESSS, it possesses one main disad-vantage. The deterioration fun
tion (2.11) does not approximate 
urrent qualitypeak with the su�
ient a

ura
y. If an evolutionary trap is dete
ted, the modi�edquality peak looks like a 
rater with steep slopes. The deterioration me
hanismshould be performed several times until the population starts s
ouring anotherlands
ape area. A large number of deterioration peaks used by the algorithm in-�uen
es the 
omputation time and spa
e 
omplexity. In (Obu
howi
z 2000b) amodi�ed ESSS-DOF algorithm, named ESSS-DOF? has been proposed. Basing
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e on the �tnesson analyti
al 
onsideration 
ontained in (Kar
z-Dul�ba 2001a) it 
an be shownthat if the �tness fun
tion is 
hosen in the form of Gaussian peak:�(x) = nYi=1 exp�� x2i2�2i �; (2.15)an in�nite population in the latent phase 
an be modelled by the Gaussian densityfun
tion with the varian
e:�21;i = 12�2 1 +s1 +�2�i� �2!; i = 1; 2; : : : ; n: (2.16)The 
ovarian
e matrix of the deterioration Gaussian peak (2.11) is approximatedusing (2.16). This part of algorithm 
onsists of four steps:1. Cal
ulate the 
ovarian
e matrix C t of the a
tual population;2. Find all eigenve
tors and eigenvalues of the matrix C t in order to de�ne anorthonormal matrix U and a diagonal matrix diag(�2tiji = 1; 2; : : : ; n) su
hthat: C t = U diag(�2tiji = 1; 2; : : : ; n)UT ; (2.17)3. Cal
ulate the varian
es of the deterioration peak (2.16):�2i = �2ti��2ti�2 � 1�; (2.18)4. Cal
ulate the 
ovarian
e matrix T of the deterioration peak:T = U diag(�2i ji = 1; 2; : : : ; n)UT : (2.19)Illustrative example. In order to validate the performan
e of the ESSS-DOF?algorithm, let us 
onsider the sum of three two-dimensional Gaussian peaks as a�tness fun
tion (2.1). The ESSS-DOF? algorithm has a mu
h greater 
onvergen
erate than other algorithms from the ESSS family (Fig. 2.4). If the populationgets stu
k in an evolutionary trap, the pro
ess of lo
al peak erosion is started.This e�e
t de
reases the average �tness of the population. The population �tnessredu
es to a saddle level, and running away towards other quality peak is possible.The deteriorated peak will never be attra
tive for the sear
hing population. Twodisadvantages of ESSS-DOF? should be noted. First, if the algorithm approxi-mates well the peak shape, then the �tness fun
tion after the erosion pro
edurevanishes in the area o

upied by the population. Consequently, the evolutionaryalgorithm works like a typi
al sto
hasti
 one and its e�e
tiveness in lo
ating a newpeak substantially de
reases. The other problem is that the population 
omposedof a �nite number of individuals �u
tuates around the lo
al peak and may non
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Fig. 2.4 . An exemplary ESSS-DOF sear
h in the adaptation lands
ape (2.1): (a) the�tness of the best element in the population vs. epo
hs for the ESSS-DOF?,(b) the �tness of the best element in the population vs. epo
hs for the ESSS-DOF; these results were obtained for � = 15, � = 0:03, tmax = 3000 andtT = 20 epo
hs.
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omparisonsuniformly surround it at the time moment the erosion pro
edure �res. As a result,the neighbouring peaks may be deteriorated. Figure 2.4a shows that the mediumpeak of the adaptation lands
ape was aggravated by the lowest one. Fortunately,the highest one remained inta
t. Taking a

ount of the numeri
al 
omplexityand above disadvantages of the ESSS-DOF? algorithm, the ESSS-DOF algorithmseems to be more lu
rative.2.4. Experimental 
omparisons2.4.1. Lo
al sele
tion 
ontra global sele
tionMany numeri
al simulations (about 800) with two two-variable obje
tive fun
tionshave been 
arried out. First fun
tion, S
hwefel's problem 2.22f1(x1; x2) = jx1j+ jx2j+ jx1jjx2j;min f1 = 0; argmin f1 = (0; 0); (2.20)is unimodal, while the se
ond one, Rastringin's fun
tionf2(x1; x2) = x21 + x22 � 10(
os(2�x1) + 
os(2�x2) + 20;min f2 = 0; argmin f2 = (0; 0); (2.21)is multimodal. The �tness fun
tion �(xtk) is 
al
ulated from the obje
tive fun
tionfi, whi
h has to be minimized, using the formulae similar to (2.3)�(xtk) = f ti;max � fi(xtk) + 1�2 ; (2.22)where f ti;max = max(fi(xtk) j k = 1; 2; : : : ; �) is the maximum value of fi takenover all elements in the 
urrent population.S
hwefel's problem 2.22. Population in the ESSS algorithms (Fig. 2.5) is fo-
used around some 
entre hxtki with the standard deviationqh(xtk � hxtki)2i � �:This algorithm is very e�e
tive in the optimum �nding problem, the standarddeviation of mutation � 
ontrols the 
onvergen
e rate of the algorithm.The ESSS-LS algorithm performan
e strongly depends on the radius � ofthe neighbourhood sphere. If �� � there is no sele
tion. We get 
lear sto
hasti
expansion of the population independently of the obje
tive fun
tion. If �� � thenthe ESSS-LS algorithm redu
es to the ESSS algorithm. The most interesting 
aseis � � �, where population is divided into few subpopulations whi
h sporadi
allyex
hange individuals and are explored on a wide area. However, the lo
al sele
tionde
reases the e�e
tiveness of the algorithm in the 
ase of an unimodal obje
tivefun
tion like the S
hwefel's problem 2.22.
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Fig. 2.5 . S
hwefel's problem 2.22. Tra
es of the best elements lo
ations of the ESSS(a), the ESSS-LS (b), the ESSS-MS (
) and the ESSS-ALS (d) algorithms �typi
al results (� = 20, � = 0:03, x00 = [2; 2℄, � = 0:07, tT = 20, tmax = 1000).Mixed sele
tion me
hanism in the ESSS-MS algorithm joins the advantagesof both the lo
al and global sele
tion. Firstly it uses the lo
al sele
tion and allowsthe population to divide it into small subpopulations and explore on a wide area.After some generations the sele
tion is 
hanged from lo
al to global and populationis fo
used on one or few subpopulation around the best obtained points. In the
ase of the S
hwefel's problem the ESSS-MS e�e
tiveness 
an be 
omparable withthe ESSS one.The ESSS-ALS algorithm e�e
tiveness is pla
ed between the ESSS-LS andESSS-MS ones. During its pro
essing the population autonomously divides intofew large subpopulations, whi
h possess a high exploitation rate, and many smallones with high exploration rate. Unlike the ESSS-MS algorithm, su
h a divisionis not for
ed by ex
hanging lo
al and global sele
tion, whi
h is 
ontrolled by aresear
her, but results from the implemented lo
al sele
tion with neighbourhoodsphere radius self-adapted during the algorithm pro
essing.
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Fig. 2.6 . Rastringin's fun
tion. Tra
es of the best elements lo
ations of the ESSS (a),the ESSS-LS (b), the ESSS-MS (
) and the ESSS-ALS (d) algorithms � typi
alresults (� = 20, � = 0:03, x00 = [2; 2℄, � = 0:1, tT = 20, tmax = 3000).
Rastringin's fun
tion. However, three, proposed in this work, lo
al sele
tionimplementations rather interfere in qui
k lo
al optimum allo
ation, their highexploration rate makes them very e�e
tive in the 
ase of multimodal obje
tivefun
tions.Figures 2.6 present the algorithms pro
essing for the same standard deviationof mutation � and the same population size �. The ESSS algorithm 
annot leavethe lo
al valley, in whi
h the initial population has been 
reated. The ESSS-LS,ESSS-MS and ESSS-ALS algorithms su

essively explore 
onse
utive valleys and�nd the global optimum. The exploration rate of the ESSS-LS is the highest oneand the population disperses in many lo
al valleys and none of them is preferred.In the 
ase of the ESSS-MS and the ESSS-ALS the population dispersion is guidedin the dire
tion of global optimum.
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hanisms 35Tab.2.3. Parameter values used in the simulationsAlgorithm Parameter Valueall tmax 3000all � 10; 20; 50all � 0.015, 0:03; 0:05; 0:1all x00 [1; 0; : : : ; 0℄ESSS-SVA � 1:1ESSS-SVA, ESSS-DOF tt 10ESSS-FDM � 0:32.4.2. E�
ien
y of saddle 
rossing2.4.2.1. ExperimentLet us 
onsider the problem des
ribed in Appendix A.The aim of the experiment is to 
ompare the e�e
tiveness of the four evo-lutionary algorithms (ESSS, ESSS-SVA, ESSS-FDM, and ESSS-DOF) in saddle
rossing problem. Two parameters are 
hosen as measures of this e�e
tiveness.The �rst one is the average number t
 of epo
hs whi
h is needed to 
ross the sad-dle by a given algorithm. The se
ond one p
 is the per
entage of runs in whi
h theglobal optimum was found in a given time tmax. In order to make the Gaussianmutation to be independent on the lands
ape dimension (see the next 
hapter),the mutation (1.6) is substituted by the following�xt+1k �i = �xthk�i +N(0; �pn) i = 1; : : : ; n; (2.23)where the standard deviation � is a parameter to be sele
ted.The algorithms were pro
essed over 400000 times: 500 times for 19 dimensions(n = 2; 3; : : : ; 20) and 12 
ombinations of the population size � and the standarddeviation of mutation � (see Table 2.3). Be
ause of the numeri
al 
omplexity of theESSS-DOF algorithm, the number of times it was pro
essed its pro
essing is lim-ited to the following 
ombinations of � and � : � = 20 and � = 0:015; 0:03; 0:05; 0:1;� = 0:05 and � = 10; 20; 50.2.4.2.2. Results for ESSSThe results obtained for the ESSS algorithm are 
omprehensively presented inFigs. 2.7, 2.8 and 2.9. Analyzing those, the following 
on
lusions 
an be drawn:� The saddle 
rossing e�e
tiveness of the ESSS algorithm is independent of theadaptation lands
ape dimension. This result opposes the results presented in(Galar 1989). The reason is di�erent mutation operators in both approa
hes.
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Fig. 2.7 . The ESSS algorithm with � = 10: the mean number of epo
hs t
 needed to
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.8 . The ESSS algorithm with � = 20: the mean number of epo
hs t
 needed to
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.9 . The ESSS algorithm with � = 50: the mean number of epo
hs t
 needed to
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).



2. Natural exploration me
hanisms 39Galar (1989) modi�es a sele
ted parent a

ording to the formulae (1.6) andthe mutation radius is dependent on the lands
ape dimension. In this workthe equation (2.23) is used.� It is not surprising that the saddle 
rossing e�e
tiveness de
reases with thestandard deviation �. If one 
hooses the standard deviation as a length unit,the saddle width relatively in
reases when � de
reases.� A small population is better than a large one. For small values of �, i.e.when per
entage of su

essful algorithm runs p
 < 100%, p
 de
reases and t
in
reases when the population size � in
reases. For large �, t
 is smaller inthe 
ase of large populations, but the number of �tness fun
tion evaluationsis still larger.The good ability of the ESSS algorithm with small population size in thesaddle 
rossing problem was reported in (Galar and Kar
z-Dul�ba 1994), wherean extremely small population � of two individuals � was 
onsidered. On theother hand, a small population, in 
omparison to a large one, lo
alizes optimumpoints with lower a

ura
y. Fitting of both input parameters � and � requiressome resear
h experien
e.2.4.2.3. Results for ESSS-SVAFigs. 2.10, 2.11 and 2.12 present results obtained for the ESSS-SVA algorithm. One
an noti
e that the value of the initial standard deviation �0 does not in�uen
esigni�
antly the e�e
tiveness of the algorithm.Unlike in the 
ase of the ESSS algorithm, there exists a dependen
e betweenthe ESSS-SVA algorithm's e�e
tiveness and the dimension of the adaptation land-s
ape. It is signi�
ant espe
ially for small populations. The algorithm produ
essatisfa
tory results in low-dimensional lands
apes. When the dimension in
reases,the algorithm's e�e
tiveness violently de
reases and �u
tuates around some steadylevel for high dimensions. The resear
her who wants apply the ESSS-SVA algo-rithm to a given problem has to �t the size of the population several times higherthan the dimension of the sear
hing spa
e.2.4.2.4. Results for ESSS-DOFThe most interesting simulating result for the ESSS-DOF algorithm is that thepopulation has to be at least a simplex in the n-dimensional sear
hing spa
e(Fig. 2.13):� � n+ 1: (2.24)If the above relation is not satis�ed, then p
 = 0%. No ex
eptions was noti
edduring the simulations. This feature 
an be explained by the fa
t that one needs atleast n+1 points in order to approximate a 
onvex of a �tness fun
tion. If only theexpression (2.24) is satis�ed, the population size does not in�uen
e signi�
antlythe ESSS-DOF algorithm's e�e
tiveness.
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Fig. 2.10 . The ESSS-SVA algorithm with � = 10: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (�0 = 0:015: 
rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).
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Fig. 2.11 . The ESSS-SVA algorithm with � = 20: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (�0 = 0:015: 
rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).
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Fig. 2.12 . The ESSS-SVA algorithm with � = 50: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (�0 = 0:015: 
rosses, �0 = 0:03: stars, �0 = 0:05: diamonds,�0 = 0:1: triangles).



2. Natural exploration me
hanisms 43Analyzing the relation between the ESSS-DOF algorithm's e�e
tiveness andthe standard deviation � (Fig. 2.14) one 
an distinguish three ranges. The �rstone is the range of low standard deviations, where the ESSS-DOF algorithm e�e
-tiveness of saddle 
rossing is pure. The se
ond range of high values of � des
ribesa very e�e
tive algorithm sear
hing. There exists some intermediate range forwhi
h the algorithm e�e
tiveness 
annot be 
learly 
hara
terized. Both t
 and p
sto
hasti
ally �u
tuate from low to high values and these results are not re
urrent.2.4.2.5. Results for ESSS-FDMThe best results of the ESSS-FDM algorithm in the saddle 
rossing problem wereobtained for large values of the standard deviation � and the population size �(Figs. 2.15, 2.16 and 2.17). Relationships between the algorithm's e�e
tiveness andboth of the input parameters, � and �, are not trivial or 
orrelated. If � = 0:1, thenthe best results are obtained for � = 50, but if � = 0:015, then the e�e
tiveness ofthe large population is worse.One 
an say that the population size is small or large only in 
omparisonwith the lands
ape dimension. The dependen
e of the algorithm's e�e
tiveness onthe sear
hing spa
e dimension (Fig. 2.15a) 
learly illustrates that the ESSS-FDMalgorithm works well if only � > n and the value of the � is su�
iently high.2.4.2.6. ComparisonThe graphs presented in Figs. 2.18 � 2.29 
omprehensively illustrate the 
ompara-tive 
hara
teristi
s of algorithms 
onsidered in this work. The following 
on
lusionsare worth to noti
ing:� Generally, the ESSS-SVA algorithm seems to be the most e�e
tive one for thesaddle 
rossing problem. If it �nds the global optimum, it needs the shortesttime to do it in 
omparison with other 
onsidered algorithms. However, insome 
ases, des
ribed below, its e�e
tiveness is very poor.� In the 
ase of small population sizes, the saddle 
rossing ability of theESSS-SVA and ESSS-FDM algorithms be
omes worse with an in
reasein the sear
hing spa
e dimension. Extremely, the SVA and FDM me
h-anisms seem to disturb ESSS when input parameters are well adjusted(Figs. 2.19, 2.21b, 2.24b, 2.25 and 2.27).� The e�e
tiveness of the ESSS-DOF algorithm is high in low dimensionallands
apes (Figs. 2.19a, 2.20,2.21, 2.23a, 2.25a, 2.26,2.27, 2.29a). Otherwise,its values are like the e�e
tiveness of the ESSS algorithm. The advantage ofthe ESSS-DOF algorithm is that it does not return to previously o

upiedpeaks, but tries to explore new, unknown areas. This feature 
annot o

urin the 
ase of the 
hosen �tness fun
tion (A1).
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Fig. 2.13 . The mean number of epo
hs t
 needed to 
ross the saddle by the ESSS-DOFalgorithm vs. the dimension of the adaptation lands
ape n (a). Per
entagesp
 of the ESSS-DOF algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n (b). (� = 0:05and � = 10: 
rosses, � = 20: stars, � = 50: diamonds).
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Fig. 2.14 . The mean number of epo
hs t
 needed to 
ross the saddle by the ESSS-DOFalgorithm vs. the dimension of the adaptation lands
ape n (a). Per
entagesp
 of the ESSS-DOF algorithm runs in whi
h the global optimum was foundin 3000 epo
hs vs. the dimension of the adaptation lands
ape n (b). (� = 20and � = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds, � = 0:1:triangles).
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Fig. 2.15 . The ESSS-FDM algorithm with � = 10: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.16 . The ESSS-FDM algorithm with � = 20: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.17 . The ESSS-FDM algorithm with � = 50: the mean number of epo
hs t
 neededto 
ross the saddle (a) and per
entages p
 of the algorithm runs in whi
h theglobal optimum was found in 3000 (b) vs. the dimension of the adaptationlands
ape n; (� = 0:015: 
rosses, � = 0:03: stars, � = 0:05: diamonds,� = 0:1: triangles).
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Fig. 2.18 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 10 : (a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.19 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 10 : (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.20 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 20 : (a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.21 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 20 : (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.22 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 50 : (a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars,ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.23 . The mean number of epo
hs t
 needed to 
ross the saddle by the algorithms
onsidered in the work vs. the dimension of the adaptation lands
ape n for� = 50 : (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA: diamonds, ESSS-DOF: triangles).
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Fig. 2.24 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 10 :(a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.25 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 10: (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.26 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 20 :(a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.27 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 20: (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.28 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 50 :(a) � = 0:015, (b) � = 0:03; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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Fig. 2.29 . Per
entages p
 of algorithm runs in whi
h the global optimum was found in3000 epo
hs vs. the dimension of the adaptation lands
ape n for � = 50: (a) � = 0:05, (b) � = 0:1; (ESSS: 
rosses, ESSS-FDM: stars, ESSS-SVA:diamonds, ESSS-DOF: triangles).
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hanisms 61Tab.2.4. Parameter values used in the simulationsAlgorithm Parameters Valuesall tmax 1000� 20� 0.05ESSS-SVA � 1.1ESSS-SVA and ESSS-DOF tt 10ESSS-FDM � 0.32.4.3. Optimization of the 
hosen multi-dimensional fun
tions2.4.3.1. ExperimentMany simulations (about 1600) with eight two-variable obje
tive fun
tions were
arried out. Test fun
tions used during simulations are listed below:� fun
tion f1 (sum of two Gaussian peaks) (B1),� fun
tion f2 (De Jong's fun
tion F2) (B2),� fun
tion f3 (De Jong's fun
tion F5) (B3),� fun
tion f4 (the �drop wave� fun
tion) (B4),� fun
tion f5 (Mi
halewi
z's fun
tion) (B5),� fun
tion f6 (Shubert's fun
tion) (B6),� fun
tion f7 (Rastringin's fun
tion) (B7),� fun
tion f8 (A
ley's fun
tion) (B8)All those fun
tions have to be maximized and are strongly non-linear andmultimodal. The �tness fun
tion was 
hosen in the form (2.3), where �t = � =
onst.At �rst, simulations were 
arried out several times for di�erent sets of inputparameters. When the best set of parameters was allo
ated for ea
h algorithm(see Table 2.4), several starting points were tested.2.4.3.2. ResultsThe results are 
ompared in Table 2.5. Analysis of the results shows that all me
h-anisms (SVA, FDM and DOF) applied to the standard ESSS algorithm a

eleratethe 
rossing of the obje
tive fun
tion saddles and in
rease the e�e
tiveness of theglobal optimum �nding. Two algorithms, ESSS-SVA and ESSS-DOF, 
ompete



62 2.5. SummaryTab.2.5. Per
entages of runs in whi
h the global optimum was foundfun
tion f1 f2 f3 f4 f5 f6 f7 f8ESSS 38 53 0 0 12 22 26 0ESSS-SVA 100 88 42 37 27 98 59 69ESSS-FDM 87 79 58 0 13 81 74 0ESSS-DOF 100 100 0 0 41 39 23 13to be the best. ESSS-SVA seems to be the most e�e
tive algorithm. It winswith other algorithms in the 
ase of almost all tested obje
tive fun
tions. ButESSS-DOF wins in the 
ase of a �tness fun
tion whi
h 
onsists of a group of 
on-
entrated lo
al optimum peaks and other distant peaks (Mi
halewi
z's fun
tion� f5). If the population in ESSS-SVA starts in the area of this lo
al group, it
y
li
ally moves from peak to peak of the group and 
annot a
hieve a remote one.ESSS-DOF erodes peaks in turn and slowly, but 
onsequently, leads toward theglobal optimum.2.5. SummaryTe
hniques of exploration in the ESSS algoritm 
an be divided into three 
lasses:te
hniques whi
h adapt algorithm parameters (the ESSS-SVA and ESSS-VPS),methods whi
h modify evolutionary operators (the ESSS-FDM, ESSS-LS, ESSS-MS and ESSS-ALS) and whi
h modify the �tness fun
tion (the ESSS-IP and ESSS-DOF).However, most of proposed methods possess their equivalents in the literature,there are some new proposals. First of all the trap-test pro
edure (the impatien
eme
hanism) is an original idea. This pro
edure de
ides on turning o� or on theexploration me
hanism. This de
ision is dependent on the a
tual state of theevolutionary pro
ess. The for
ed dire
tion of mutation te
hnique (ESSS-FDM)is an original method whi
h has not an equivalent in the literature. However,the idea of the erosion te
hnique 
an be found in (Beasley et al. 1993), the widesimulation analysis of the proposed ESSS-DOF algorithm is �rstly in
luded in thisbook.The results of three types of 
omparison experiments were presented in thiswork.The aim of �rst experiment was to analyze a lo
al sele
tion me
hanism, whi
hseems to be spe
i�
 to natural sele
tion, in the global parameter optimization.Three variants of the lo
al sele
tion were implemented in the standard ESSS al-gorithm: ESSS-LS, ESSS-MS and ESSS-ALS, and were 
ompared with the ESSSin the saddle 
rossing problem and two 2D optimization problems: the S
hwefel'sproblem 2.22 and the Rastringin's fun
tion. Simulation experiments show thatthe 'lo
al' sele
tion me
hanisms are e�e
tive only for low lands
ape dimensions



2. Natural exploration me
hanisms 63(in 
omparison to the size of population). The ESSS-ALS algorithm possessesthe highest exploration ability. Although, the lo
al sele
tion me
hanism ratherde
reases e�e
tiveness of the evolutionary sear
h in an optimum allo
ation in the
ase of unimodal S
hwefel problem, it a

elerates the exploration rate of the algo-rithm, whi
h is helpful in global optimum sear
hing of the Rastringin's fun
tion.Espe
ially, the ESSS-MS and ESSS-ALS algorithms, whi
h join the good exploita-tion rate of the ESSS and the exploration rate of the ESSS-LS, seem to be goodtools for te
hni
al appli
ations. Proposed method is 
lose to the idea of di�usionmodel. In the di�usion model, the number of 
ompetitors is 
onstant and equalfor ea
h individual in the base population. Here, some kind of ni
hing is used.The questions arise: is the ball-shaped neighbourhood the most appropriate forall possible �tness fun
tions (e.g., one might expe
t a negative answer when theshapes of the attra
tion around the lo
al maxima are highly deformed ellipsoids)and what is the nature of the transition e�e
t whi
h is still in
omprehensible.The performan
e analysis of the algorithms mentioned above for the problemof multi-dimensional saddle 
rossing was the subje
t of the se
ond experiment.Emphasis is put on the relation between the e�e
tiveness of the algorithm andthe dimension of the adaptation lands
ape. Simulation results reveal that allmodi�ed algorithms are usually better than the standard ones. In the 
ase of alow population size, the performan
e of ESSS-FDM, ESSS-SVA, and ESSS-DOFbe
ame worse for an in
reasing standard deviation of mutation and was lost withthe standard ESSS algorithm. It is worth noti
ing that in the 
ase of the ESSS-DOF algorithm the population has to be a simplex, i.e. the size of the populationhas to be larger than the problem dimension.The aim of the third experiment was the e�e
tiveness analysis of the algo-rithms in the global parameter optimization. All modi�ed algorithms are moree�e
tive than standard ESSS. Espe
ially, ESSS-SVA and ESSS-DOF seem to beuseful in te
hni
al appli
ations.





Chapter 3
MULTI-DIMENSIONAL MUTATIONS INEAS BASED ON REAL-VALUEDREPRESENTATION

Most appli
ations of evolutionary algorithms (EAs), whi
h use the �oating pointrepresentation of population individuals, use the Gaussian mutation as a muta-tion operator (Bä
k and S
hwefel 1993, Fogel et al. 1966, Fogel 1994, Galar 1985,Mi
halewi
z 1996, Re
henberg 1965). A new individual x is obtained by adding anormally distributed random value to ea
h entry of a sele
ted parent y:xi = yi +N(0; �i); i = 1; : : : ; n: (3.1)The 
hoi
e is usually justi�ed by the 
entral limit theorem. Mutations in natureare 
aused by a variety of physi
al and 
hemi
al in�uen
es that are not identi�ableor measurable. These in�uen
es are 
onsidered as independent and identi
ally dis-tributed (i.i.d.) random perturbations whose normed sum approa
hes a Gaussianrandom variable in the limit (Rudolph 1997). If the Lindeberg 
ondition is obeyed,i.e. the �rst two absolute moments are �nite, then the Gaussian distribution isthe only limit distribution for normed sums of i.i.d. random variables. Takinginto 
onsideration also other distributions, whi
h have �nite absolute moments�(0 < � < 2), the limit distribution for normed i.i.d. variables may be generallyexpressed as (Gutowski 2001, Mantegna and Stanley 1994):L(x) = 1� Z 10 exp �� 
q�� 
os qxdq; (3.2)and is known as the symmetri
al Lévy stable distribution of index � and s
alefa
tor 
(
 > 0). The spe
ial 
ase of (3.2) for � = 1 (and 
 = 1 for simpli
ity) isthe Cau
hy distribution with the probability density fun
tion (pdf) in the formg(x) = 1� ��2 + (x� u)2 : (3.3)While the univariate Cau
hy distribution has a unique de�nition, there existat least two multivariate versions of the Cau
hy distribution: the spheri
ally sym-metri
 Cau
hy distribution (Obu
howi
z 2001b, Shu and Hartley 1987), and the



66Cau
hy distribution with independent univariate Cau
hy random variables in ea
hdimension. In re
ent years, the latter Cau
hy mutation has been su

essfully ap-plied in the various evolutionary algorithms (Bä
k et al. 1997, Kappler 1998, Yaoand Liu 1996, Yao and Liu 1997, Yao and Liu 1999). In these 
ases, the normallydistributed random value N(0; �i) (3.1) is substituted by a random variable of theone-dimensional Cau
hy distribution. The Cau
hy pdf shape resembles that of theGaussian one, but it approa
hes the axis very slowly, in
reasing the probability ofthe so 
alled ma
ro-mutations and the lo
al optimum leaving.Rudolph (1997) analyti
ally analyzes the lo
al 
onvergen
e of simple (1+1)ESand (1 + �)ES with Gaussian, spheri
al and non-spheri
al Cau
hy mutations. Ithas been proved that the order of lo
al 
onvergen
e is identi
al for Gaussian andspheri
al Cau
hy distributions, whereas non-spheri
al Cau
hy mutations lead toslower lo
al 
onvergen
e. There are no 
omparing results of the saddle 
rossingability of EAs with spheri
al and non-spheri
al Cau
hy mutations in the literature.The in�uen
e of the 
hoi
e of the referen
e frame on the e�e
tiveness of EAs inglobal optimization tasks is a very important problem that should in parti
ular beanalyzed (the symmetry e�e
t).Another problem whi
h seems to be imper
eptible by the resear
hes is relatedto the probability that the distan
e from the mutated point x and its o�spring ywill be in the range kx�yk 2 [r; r+dr℄. Although the pdfs of multivariate Gaussianand non-spheri
al Cau
hy mutations of the type (3.1) have their optimum in themutated point, it is easy to prove (Obu
howi
z 2001a, Obu
howi
z 2001b) thatthe most probable lo
ation of the o�spring is the nearest neighbourhood of theparent individual only in the 
ase of the one-dimensional mutation. In the 
ase ofn-dimensional one, the most probable lo
ation moves from the 
enter of mutationto the �ring" of the radius proportional to the norm of the standard deviationve
tor of mutation and to pn� 1 (the surrounding e�e
t).The aim of this 
hapter is to present the results of simulation experimentswhi
h 
ompare the e�e
tiveness of evolutionary algorithms with multivariateGaussian and Cau
hy mutations (Obu
howi
z 2003b). Four types of mutationsare 
onsidered, namely, spheri
al and non-spheri
al Cau
hy mutations, and theGaussian mutation in its 
lassi
al form (3.1) and in the new form, in whi
h spher-i
ally symmetri
 random ve
tor is de
omposed on the uniformly distributed ran-dom dire
tion and a normally distributed random radius. It is important to notethat the surrounding e�e
t does not obligate in the 
ase of multivariate spheri
alCau
hy and modi�ed Gaussian distributions. Implemented EAs are based on twotypes of evolutionary models: the ESSS (Tab. 1.3) and EP (Tab. 1.2). The maindi�eren
e between these two types of EAs is that the standard deviation of mu-tation is adapted in EP but not in ESSS. Thus, it is possible to analyze whetherthe adapted standard deviation redu
es the surrounding e�e
t or not.
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Fig. 3.1 . Two-dimensional Gaussian density fun
tion, � = 1.3.1. Surrounding and symmetry e�e
tsA mutation fun
tion whi
h des
ribes the transformation of an element y into x ina

ordan
e with the Gaussian mutation (3.1) has the formgG(x� y) = nYi=1 1p2��i exp�� (xi � yi)22�2i �: (3.4)Let us s
ale the referen
e frame using �i (i = 1; 2; : : : ; n) as a unit length in theith dire
tion; then the length of the ve
torr = �ri = xi � yi�i ����i = 1; 2; : : : ; n� (3.5)
an represent the distan
e between the base and o�spring ve
tors. Thus, theequation (3.4) has the following form:gG(x� y) = � 1p2���n exp�� 12r2�; (3.6)where r = krk and � = �Qni=1 �i�1=n. The two-dimensional version of (3.6) withy = 0 and � = 1 is presented in Fig. 3.1.The probability dPG that the point obtained after mutation will be lo
atedin the volume ([xi; xi + dxi℄nji = 1; : : : ; n) is equal todPG = gG(x� y)d!; (3.7)where d! = dx1dx2 : : : dxn.



68 3.1. Surrounding and symmetry e�e
tsLet us 
onsider the relationship between the probability dPG and the distan
ebetween the base and mutated points. In order to do it, the n-spheri
al referen
eframe with the origin in the base point y will be introdu
ed. Transformationequations have the following forms:r1 = r 
os(�1);r2 = r sin(�1) 
os(�2);r3 = r sin(�1) sin(�2) 
os(�3); (3.8): : :rn = r sin(�1) sin(�2) : : : sin(�n�1);where �n�1 2 [0; 2�) and (�i 2 [0; �)ji = 1; : : : ; n� 2).Using (3.8) in (3.7), the probability dPG 
an be obtained from the equationdPG =  1p2�!n exp�� 12r2�rn�1drd
 = gG(r)drd
; (3.9)where d
 = Qn�1i=1 � sinn�(i+1)(�i)d�i� is the in�nitely small n-dimensional solidangle. Due to non-negative values of the radius and the sinus fun
tion in theinterval [0; �), the magnitude operator of the transformation Ja
obian 
an beomitted. It is very interesting that for a small r the value of the probabilitydPG is low. The most probable distan
e r? is not equal to 0 butr?(n) = argmax gG(r) = pn� 1 (3.10)and r?(n) ! 1 as n ! 1. Therefore, in the 
ase of the n-dimensional (n �2) Gaussian mutation, the probability that the o�spring will be lo
ated 
loselyto its parent is low and de
reases with n. This fa
t in�uen
es the exploitatione�e
tiveness of EAs in the 
ase of large lands
ape dimensions (the surroundinge�e
t).In order to 
on�rm the above results, a simulation experiment is done. 106points are generated in a

ordan
e to (3.1) for dimensions n = 2; 3; 4; 5, �1 =�2 = � � � = �n = 1 for ea
h one-dimensional mutation and the base point y =0. Histograms of the distan
es between the base and points mutated a

ordingto (3.1) (Fig. 3.2a) show that the probability of point lo
ation in the nearestneighbourhood of the base point is low and de
reases with n. Maximum points ofhistograms are obtained in r?(n) = pn� 1.The presented e�e
t of the multi-dimensional Gaussian mutation is 
aused bythe following fa
t. The volume of the subspa
e d!0 = drd�1d�2 : : : d�n�1 dependson the radius r: dV = dSdr � rn�1dr, where dS is the area of the n-dimensionalspheri
al se
tor (Fig. 3.3). The probability that the mutated point x 2 d!0 isproportional to the probability density gG(r) in this subspa
e and to the dV .Fig. 3.4 illustrates the result of this produ
t in the 2D lands
ape.
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Fig. 3.2 . Histograms of the distan
es between the base and 106 points mutated a

ordingto Gaussian (a) and non-spheri
al Cau
hy (b) mutations; n = 2 � solid line,n = 3 � dotted line, n = 4 � dashed line, n = 5 � dash-dotted line, other
hara
teristi
s in the text.

Fig. 3.3 . The subspa
e d!0 in 3D lands
ape. It is ease to 
al
ulate that dV =r2 sin(�1)drd�1d�2.



70 3.1. Surrounding and symmetry e�e
ts
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Fig. 3.4 . Linear in
rease of perimeter with r (dashed line) and the Gaussian probabilitydensity fun
tion (dotted line) as fa
tors 
reating the relationship between theprobability that kx � yk 2 [r; r + dr℄ vs. r (solid line) in the 
ase of thetwo-dimensional lands
ape,(� = 1).Similar results are obtained in the 
ase of the multi-variate non-spheri
alCau
hy mutation (Fig. 3.2b). Here, a new individual x is obtained by adding arandom value to ea
h entry of a sele
ted parent y:xi = yi + C(0; �i); i = 1; : : : ; n; (3.11)where C(u; �) is a random value obtained a

ording to the one-dimensional Cau
hymutation with the pdf de�ned by (3.3). The shape of the one-dimensional Cau
hypdf is 
entered at u and resembles that of the Gaussian density fun
tion, butapproa
hes the axis so slowly that the varian
e is in�nite and an expe
tationdoes not exist. The 
omparison between one-dimensional Cau
hy and Gaussiandensity fun
tions is presented in Fig. 3.5a. A mutation fun
tion des
ribing thetransformation of the ve
tor y into x in a

ordan
e with the multi-dimensionalnon-spheri
al Cau
hy mutation has the formgC(x� y) = ��n nYi=1 �i�2i + (xi � yi)2 : (3.12)The Cau
hy mutation of type (3.12) has a non-spheri
al symmetry (Fig. 3.5b)and prefers dire
tions parallel to the axis of the referen
e frame. Therefore thee�e
tiveness of evolutionary algorithms, whi
h uses the mutation des
ribed by(3.12), depends on the 
hoi
e of the referen
e frame (the symmetry e�e
t).



3. Multi-dimensional mutations in EAs based on real-valued representation 71(a) (b)
−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 3.5 . (a) One-dimensional Gaussian (solid line) and Cau
hy (dashed line) probabilitydensity fun
tions (� = 1, � = 1 and u = 0). (b) Four one-dimensional se
tionsof the four-dimensional Cau
hy density fun
tion, along the dire
tions [1,0,0,0℄(dotted line), [1,1,0,0℄ (dashed line), [1,1,1,0℄ (solid line) and [1,1,1,1℄ (dash-dotted line) (� = 1 and u = 0).3.2. Spheri
ally Symmetri
 DistributionsFang et al. (Fang et al. 1990) prove that a spheri
ally symmetri
 random ve
torZ 
an be de
omposed viaZ = rU ; (3.13)where U is uniformly distributed on the surfa
e of an n-dimensional hyperball (e.i.a random dire
tion), and r is a random variable representing the random radiusof the hyperball. The ve
tor U 
an be obtained from the formulaeU1 = 
os(�1);U2 = sin(�1) 
os(�2);U3 = sin(�1) sin(�2) 
os(�3); (3.14): : :Un�1 = sin(�1) : : : sin(�n�2) 
os(�n�1);Un = sin(�1) : : : sin(�n�2) sin(�n�1);and �n�1 is a uniformly distributed random angle (�n�1 = U [0; 2�℄), and otherangles f�n�k�1 2 [0; �)jk = 1; : : : ; n� 2g are randomly 
hosen with the pdfsf(�n�k�1) = Kk sink(�n�k�1); k = 1; 2; : : : ; n� 2; (3.15)



72 3.3. E�e
tiveness of EA vs. mutation type: experimental studieswhere Kk = 12 3 � 5 � : : : � (2l+ 1)2 � 4 � : : : � 2l for k = 2l+ 1;Kk = 1� 2 � 4 � : : : � 2l3 � 5 � : : : � (2l � 1) for k = 2l:In order to obtain a new modi�ed Gaussian mutation or a spheri
al Cau
hymutation, the random variable r 
an be 
hosen asr = N(0; �) (3.16)or r = C(0; �); (3.17)respe
tively.The probability dPNO 
orresponding to the modi�ed Gaussian mutation 
anbe 
al
ulated from the following formulae:dPNO = Kp2�� exp�� r22�2� sinn�2(�1) sinn�3(�2) : : : sin(�n�2)d!0;(3.18)and for the spheri
al Cau
hy mutation:dPCO = K� ��2 + r2 sinn�2(�1) sinn�3(�2) : : : sin(�n�2)d!0; (3.19)where d!0 = drd�1d�2 : : : d�n�1 andK = n�2Yk=1Kk =8><>: �n�22 �!�n�22 ; if n is even;(n�1)!�n�12 �!2n� n�12 ; if n is odd:Fig. 3.6 presents histograms of distan
es kx � yk for 106 points generatedin a

ordan
e with both the proposed mutation and dimensions n = 2; 7. Theprobability of point lo
ation de
reases with r and is independent of the lands
apedimension. The same histograms 
an be obtained for whatever n.3.3. E�e
tiveness of EA vs. mutation type: experimental stud-ies3.3.1. Evolutionary algorithms used in simulationsTwo 
lasses of evolutionary algorithms are used in simulation experiments. The�rst one is based on the ESSS algorithm, and the following four evolutionaryalgorithms of this 
lass are 
onsidered:
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Fig. 3.6 . Histograms of the distan
es between the base and 106 mutated points gener-ated in a

ordan
e with the modi�ed Gaussian mutation (a) and the spheri
alCau
hy mutation (b); n = 2 � 
rosses, n = 7 � 
ir
les, � = 1 and � = 1.� ESSS-G : the ESSS algorithm with the standard Gaussian mutation (1.6);� ESSS-GN : the ESSS algorithm with the Gaussian mutation and the standarddeviation �=pn (2.23);� ESSS-GO : the ESSS algorithm with the modi�ed Gaussian mutation (3.13)(3.16);� ESSS-C : the ESSS algorithmwith the non-spheri
al Cau
hy mutation (3.11);� ESSS-CO : the ESSS algorithm with the spheri
al Cau
hy mutation (3.13)(3.17).The se
ond 
lass 
ontains algorithms based on the EP algorithm� CEP : the 
lassi
al evolutionary programming algorithm with the Gaussianmutation (Fogel et al. 1991);� CEPS : the CEP algorithm with the modi�ed Gaussian mutation (3.13)(3.16);� FEP : the fast EP algorithm with the non-spheri
al Cau
hy mutation (3.11)(Yao and Liu 1997);� FEPS : the FEP algorithm with the spheri
al Cau
hy mutation (3.13) (3.17).Apart from the di�erent sele
tion te
hnique, the EP-
lass algorithms posses theadaptation me
hanism of standard deviation of the mutation operator.



74 3.3. E�e
tiveness of EA vs. mutation type: experimental studies3.3.2. Lo
al optimum allo
ationLet us 
hoose the `quadrati
 fun
tion with noise' (Yao and Liu 1999) as a unimodalobje
tive fun
tion to be minimized:fu(x) = nXi=1 ix4i + random[0; 1): (3.20)Algorithms based on the ESSS algorithm (ESSS-G, ESSS-GO, ESSS-C andESSS-CO) lo
alized the optimum so qui
kly that di�eren
es in their e�
ien
y areon the level of a statisti
al error. This fa
t is mainly 
aused by the proportionalsele
tion, whi
h prevails over mutation operators in the sense of their in�uen
e onthe lo
al optimum lo
alization. So, the attention is fo
used on the four variantsof the EP-
lass algorithms: CEP, CEPS, FEP and FEPS. The following param-eters are used in the simulations: the population size � = 50, the initial area forvarian
es 
� = Q5i=1[0; 0:5℄, the initial area for population 
x = Q5i=1[�0:3; 0:3℄,the maximum number of epo
hs tmax = 5000 and the number of sparing partnersq = 10. Ea
h algorithm is started 50 times.The surrounding e�e
t in the EP-
lass algorithms 
learly manifests itself inthis experiment. The CEPS and FEPS algorithms rea
h the optimum surroundingssigni�
antly faster than their 
lassi
al originals. Figure 3.7b presents the epo
hsof the �rst su

ess, i.e. the �rst epo
h in whi
h the obje
tive fun
tion value of oneof the population elements is lower than 0:1. For 
larity of graphs, samples havebeen sorted. The advantage of the CEPS and FEPS algorithms over the CEP andFEP algorithms is signi�
ant. As it has been anti
ipated the surrounding e�e
tin
reases with the lands
ape dimension (Fig. 3.8). In the 
ase of the 5D lands
ape,average 
ourses of all algorithms 
onsidered are similar (Fig. 3.8a). Disproportionbetween the pairs CEPS�FEPS and CEP�FEP enlarges in the 
ase of the 30Dlands
ape (Fig. 3.8b). This experiment illustrates that o�spring in the CEPS andFEPS algorithms are lo
ated 
losely to their parents with higher probability thanin the 
ase of CEP and FEP (Fig. 3.7), for whi
h attra
tiveness of the parents'surroundings de
reases with the lands
ape dimension (Fig. 3.8).3.3.3. Sensitivity to narrow peaksLet us 
onsider the following �ve-dimensional �tness fun
tion:�np(x) = 12 exp��5 5Xi=1 x2i�+exp��100�(x1�0:4)2+ 5Xi=2 x2i��: (3.21)The two-dimensional equivalent of this fun
tion is presented in Fig. 3.9. It 
on-sists of two Gaussian peaks. The �rst one is high and slim, the se
ond one islow and wide. The distan
e between both peaks is not very large in 
omparisonwith the standard deviation of mutation 
hosen in the experiment and �xed as� = 0:05. Three algorithms are tested: ESSS-G, ESSS-GN and ESSS-GO. All ofthem start with a population generated by an �-time mutation of an initial point
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Fig. 3.7 . The obje
tive fun
tion value of the best element in the 
urrent population vs.epo
hs for the best realizations of the EP-
lass algorithms (a), and epo
hs ofthe �rst su

ess (fu(x) < 0.1) for 45 runs of algorithms (sorted) (b) � resultsobtained for 5D version of (3.20)
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Fig. 3.9 . The two-dimensional version of the �tness fun
tion (3.21).x00 = [�1;�1;�1;�1;�1℄. Other algorithm parameters are 
hosen as follows: thepopulation size � = 20, the maximum number of epo
hs tmax = 2000.All algorithms are pro
essed 500 times. Typi
al algorithm pro
eedings areillustrated in Fig. 3.10. The standard ESSS-G algorithm has trouble �nding theglobal optimum. If there is a dominant element in the population lo
ated inthe narrow peak, its su

essors are generated outside this peak. It follows fromthe fa
t that the most probable distan
e between parent and su

essor elementsr? = �pn� 1 = 0:1 (3.10) is of the same order as vh. In the 
ase of the ESSS-GNalgorithm, r? = �p(n� 1)=n � 0:045. The evolved population does not lo
ate anelement in the higher peak so easily as in the 
ase of the ESSS-G algorithm. Butif it does, this peak is o

upied for a short time. The ESSS-GO algorithm is moste�e
tive on the narrow peak lo
alization. It �nds it qui
kly and does not lose it.The presented numeri
al experiment shows that the standard Gaussian mu-tation de
reases the evolutionary algorithm's sensitivity on narrow peaks. It is
aused by the surrounding e�e
t. The evolutionary algorithm with the proposedmodi�ed Gaussian mutation ends in full su

ess.In order to analyze the e�
ien
y of the evolutionary algorithm, whi
h adaptsits mutation parameters during its pro
essing, the four variants of the EP algo-rithm are tested: CEP, CEPS, FEP and FEPS. The following parameters areused in the simulations: the population size � = 50, the initial area for varian
es
� =Q5i=1[0; 0:5℄, the initial area for population 
x =Q5i=1[�0:2; 0:2℄, the maxi-mum number of epo
hs tmax = 2000 and the number of sparing partners q = 10.Ea
h algorithm is started 500 times. Figure 3.11 presents the mean �tness of the
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Fig. 3.10 . The �tness (3.21) of the best element in the population vs. epo
hs; ESSS-G(a), ESSS-GN (b) and ESSS-GO (
).Tab.3.1. Per
entages of su

essful algorithm runsalgorithm su

esses [%℄CEP 74CEPS 64FEP 78FEPS 60best element in the population vs. epo
hs. Unlike the ESSS-
lass algorithms, se-le
tion in the 
ase of EP keeps the best elements from generation to generation.This is the reason for the monotoni
 
hara
ter of the 
urves in Fig. 3.11, whi
hpresents the relation between the �tness of the best element in the populationand epo
hs. The population �u
tuates around the best elements and only a sin-gle ma
ro-mutation 
an put o�spring in the area of the higher peak. So, thereare many algorithm runs whi
h end without su

ess in tmax = 2000 epo
hs, asagainst to the ESSS-GO algorithm, whi
h has found global optimum in all tests.In the 
ase of the �tness fun
tion (3.21), the per
entages of su

essful runs of thealgorithms under 
onsideration are des
ribed in Tab. 3.1. It 
an be seen that theCEPS and FEPS algorithms, whi
h use the spheri
al mutation (3.13) are less ef-fe
tive than the CEP and FEP algorithms. This fa
t suggests that in the 
ase ofthe mutation (3.13) a new formulae for adaptation me
hanism is needed instead
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tiveness of EA vs. mutation type: experimental studiesof that presented in Table 1.2. The same 
on
lusion is obtained via the theoreti
al
onsideration by Rudolph (1997). The surrounding e�e
t manifests itself only inthe 
hara
ter of the 
urve slopes in Fig. 3.11b. In the 
ase of the CEPS algorithm,when some element of population is lo
ated in the narrow global peak, the ex-treme point is lo
alized very qui
kly. Des
endants of the element 
onsidered aregenerated 
losely to their parent. In the 
ase of the CEP algorithm, this pro
esspro
eeds more slowly. Most of the des
endants are lo
ated outside the narrowglobal peak.3.3.4. E�
ien
y of saddle 
rossingIn order to analyze the mutation in�uen
e on the saddle 
rossing e�
ien
y, let us
onsider the problem des
ribed in Appendix A.Firstly, let us 
onsider the ESSS-G, ESSS-GN, ESSS-GO, ESSS-C and ESSS-CO algorithms. An initial population is obtained by � mutations of the lo
aloptimum point of the lower peak x00 = [1; 0; : : : ; 0℄. The goal is to 
ross the saddlebetween both peaks. We assume that it is done when the weight mean of thepopulation Et(x) is lo
ated at the higher peak, i.e. hE(xi j i = 1; 2; : : : ; n)i < 0:35.Other algorithm parameters are 
hosen as follows: the population size � = 20, themaximum number of epo
hs tmax = 105, � = � = 0:05 (for Gaussian and Cau
hymutations, respe
tively). All algorithms are tested for a set of dimensions of theadaptation lands
ape n = 2; 4; 6; : : : ; 40.Relations between the mean number of epo
hs ne

essary to 
ross the sad-dle taken over 100 runs of the algorithms and the dimension of the adaptationlands
ape for all algorithms are presented in Fig. 3.12. In the 
ase of low dimen-sions, algorithms with standard Gaussian and non-spheri
al Cau
hy mutations aresubstantially better than their modi�ed versions. The most probable distan
es r0between parent points and su

essors are less than the peak thi
kness v. The ESSS-G and ESSS-C algorithms 
reate more dispersed populations and their ability ofsaddle 
rossing is greater. The ESSS-C algorithm is the most e�e
tive algorithmfor low dimensions, espe
ially sin
e the dire
tion between both lo
al and global�tness optima is parallel to the dire
tion of the axe of the referen
e frame and ispreferred by the non-spheri
al Cau
hy mutation. The spheri
al Cau
hy mutation(the ESSS-CO algorithm) evenly hands out dire
tions to mutated points and itse�e
tiveness initially de
reases very qui
kly with n.The surrounding e�e
t manifests itself in a qui
k de
rease in the ESSS-Gand ESSS-C algorithms' e�
ien
y. It is 
learly visible in the 
ase of the ESSS-Calgorithm, whi
h is still the best for n = 10 and be
omes the worst for n = 14.The e�
ien
y of the ESSS-GN and ESSS-GO algorithms is similar. Just in thevery high dimensions, ESSS-GO be
omes better. The most interesting results,espe
ially for high lands
ape dimensions, are obtained for the spheri
al Cau
hymutation.The four versions of the EP algorithm (CEP, CEPS, FEP and FEPS) arealso tested in order to �nd the global optimum of the fun
tion (A1). All algo-rithm parameters are the same as in the previous experiment 
on
erning sen-sitivity to the narrow peak apart from the initial area for population 
x =
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hs needed to 
ross the saddle vs. the dimension ofthe adaptation lands
ape.[0:8; 1:2℄�Q5i=2[�0:2; 0:2℄. Ea
h algorithm is started 100 times for ea
h dimensionof n = 1; 2; : : : ; 20.As it has been noted in the previous subse
tion, the saddle 
rossing e�
ien
yof the EP-
lass algorithms is 
losely related to their ability to perform ma
ro-mutations. Surprisingly, the sear
hing pro
ess either �nds the global peak in rela-tively short time (Fig. 3.13b), or it does not �nd it at all in tmax = 100000 epo
hs(Fig. 3.13a). This is a disadvantage of the EP-
lass algorithms in 
omparisonwith the ESSS ones. Unexpe
tedly, the e�
ien
y of the CEPS algorithm is mu
hhigher than that of the CEP algorithm for low dimensions. This disproportiondisappears along with the dimension growth, when the saddle 
rossing e�
ien
yof both the CEPS and FEPS algorithms rapidly de
reases. The FEP algorithmseems to be least unreliable in the saddle 
rossing problem. It owes its su

essto its non-spheri
al mutation, whi
h prefers dire
tions parallel to the axis of thereferen
e frame. The surrounding e�e
t manifests itself in an exponential in
reasein the mean number of epo
hs needed to 
ross a saddle by the CEP and FEPalgorithms with the lands
ape dimension (Fig. 3.13b). This relation is weaker inthe 
ase of the CEPS and FEPS algorithms.3.3.5. Symmetry problemLet us 
onsider the following series of four-dimensional �tness fun
tions:�l(x) = 12 exp �� 5kxk2�+ exp �� 5kx� alk2�; l = 1; 2; 3; 4; (3.22)



82 3.3. E�e
tiveness of EA vs. mutation type: experimental studieswhere a1 = [1; 0; 0; 0℄, a2 = [1=p2; 1=p2; 0; 0℄, a3 = [1=p3; 1=p3; 1=p3; 0℄ anda4 = [1=2; 1=2; 1=2; 1=2℄ are global optimum lo
ations. Distan
es between bothlo
al and global optima are the same in all �l and equal to unity.The ESSS-C and ESSS-CO algorithms are tested in this experiment. The goalis the same as in the previous simulations: to 
ross the saddle between both peaks.Other algorithm parameters are 
hosen as follows: the population size � = 20, themaximum number of epo
hs tmax = 103, � = 0:05 and the initial point of sear
hingx00 = [0; 0; 0; 0℄.Fig. 3.14 shows the relation between the mean number of epo
hs needed to
ross a saddle taken over 103 algorithms' pro
essing. It is easy to see that theESSS-C algorithm's e�
ien
y strongly depends on the dire
tion of the global peaklo
ation. In the 
ase of the ESSS-CO algorithm the saddle 
rossing e�
ien
y isindependent of this dire
tion.The symmetry e�e
t in the EP-
lass algorithms is tested using �ve-dimensional A
kley's (n = 5):�A(x) = 20 + e� 20 exp�� 15 kxkn �� exp�Pni=1 
os(2�xi)n � (3.23)and generalized Rastringin's fun
tion (n = 5):�R(x) = nXi=1 �x2i � 10 
os(2�xi) + 10�: (3.24)Both fun
tions have to be minimized. Next two fun
tions �Ar and �Rr are rotatedversions of �A and �R, i.e. both are obtained from �A and �R after rotationof the referen
e frame in the plane (x1; x2) through an angle equal to �=4, andin the plane (x2; x3) through an angle equal to �=4, too. Both A
kley's andRastringin's fun
tions are multimodal, but Rastringin's fun
tion 
hara
terizes thehigher amplitude of 
hanges and its valleys are deeper. Lo
al optima of bothfun
tions �A (3.23) and �R (3.24) are lo
ated in the nodes of the 5D-
ubi
 net,whose edges are parallel to the axes of the referen
e frame. This property isdisturbed in the 
ase of �Ar and �Rr.The following parameters are used in the simulations: the population size� = 50, the maximum number of epo
hs tmax = 10000, the number of sparingpartners q = 10 and the initial area for varian
es 
� = Q5i=1[0; 3℄. The initialareas for population are 
x = Q5i=1[�5:12; 5:12℄ in the 
ase of �A and �Ar, and
x = Q5i=1[�32; 32℄ in the 
ase of �R and �Rr. Ea
h algorithm is started 50times.The CEP and FEP algorithms reveal their advantage over the CEPS andFEPS algorithms in the 
ase of �A (Fig. 3.15a). The surrounding e�e
t in theCEP algorithm makes it easier for the population to 
ross shallow saddles of �A.The high e�e
tiveness of the FEP algorithm follows from three main fa
ts:� high probability of ma
ro-mutations (in the sense of phenomenon, not a newoperator) using the Cau
hy distribution,
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Fig. 3.13 . Per
entages of the su

essful runs (a) and the mean number of epo
hs neededto 
ross the saddle taken over all su

essful runs (b) of four versions of theEP algorithm vs. the lands
ape dimension.
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ements a1 a2 a3 a4Fig. 3.14 . The mean number of epo
hs needed to 
ross the saddle vs. the global optimumlo
ation.� Cau
hy mutation preferen
e of the dire
tion parallel to axes of the referen
eframe, and� the surrounding e�e
t.If the se
ond property is desired in the 
ase of the �tness fun
tion �A, it be
omesin
onvenient in the 
ase of �Ar (Fig. 3.15b), where only e�
ien
y of the CEPSalgorithm is kept on the same level as in the 
ase of �A. The dependen
e of theFEP algorithm on the 
hoi
e of the referen
e frame also manifests itself if one
ompares results obtained for both versions �R and �Rr of Rastringin's fun
tion(Fig. 3.16).3.4. SummaryTwo important properties of the Gaussian and Cau
hy mutations, 
alled the sur-rounding e�e
t and the symmetry e�e
t, are 
onsidered in details in this 
hapter.Both of them are over
ome in the modi�ed versions of Gaussian and Cau
hy mu-tations. Here the dire
tion of the mutation is �rst randomly 
hosen with uniformdistribution and then the distan
e between the base and mutated points is ran-domly 
hosen with the one-dimensional Gaussian or Cau
hy distribution.Four experiments are reported on in this 
hapter. As examples of evolutionaryalgorithms Evolutionary Sear
h with Soft Sele
tion and Evolutionary Program-ming are used. The �rst one is probably the simplest sele
tion-mutation model ofevolution. The se
ond one is the well-known Evolutionary Programming, proposedby Fogel (1966, 1992).Convergen
e to a lo
al optimum is analyzed in the �rst experiment, where fouralgorithms of the EP-
lass are tested. The performed simulations prove the in�u-



3. Multi-dimensional mutations in EAs based on real-valued representation 85(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

10
1

10
2

epochs

fit
ne

ss
CEP 
CEPS
FEP 
FEPS

(b)

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

epochs

fit
ne

ss

CEP 
CEPS
FEP 
FEPS

Fig. 3.15 . The �tness of the best element in the 
urrent population vs. epo
hs; resultsaveraged over 50 samples for 5D A
kley's fun
tion �A (a) and its rotatedversion �Ar (b).
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e of the surrounding e�e
t on the 
onvergen
e rate of evolutionary algorithmsbased on 
lassi
al Gaussian and Cau
hy mutations.The se
ond experiment illustrates the exploitation performan
e of the evolu-tionary algorithms 
onsidered. Evolutionary sear
h with standard Gaussian muta-tion is least e�e
tive in lo
alizing narrow peaks be
ause of the surrounding e�e
t.Only appli
ation of the modi�ed Gaussian mutation proposed in this work guar-antees su

ess. In order to analyze the e�
ien
y of the evolutionary algorithm,whi
h adapts its mutation parameters during its pro
essing, the four variants ofthe EP algorithm are tested. It 
an be seen that the CEPS and FEPS algorithms,whi
h use the spheri
al mutation (3.13), are less e�e
tive than the CEP and FEPalgorithms. This suggests that in the 
ase of the mutation (3.13), a new formulaefor the adaptation me
hanism is needed instead of that applied in the 
lassi
alform of the EP algorithm.The third experiment presents the in�uen
e of the lands
ape dimension on theexploration e�
ien
y of the algorithms. The measure of this e�
ien
y is the meannumber of generations needed to 
ross a saddle between two Gaussian peaks. It isnot surprising that, in the 
ase of the ESSS-
lass algorithms, standard Gaussianand Cau
hy mutations give the best results in the 
ase of low dimensions. Thesurrounding e�e
t a

elerates their 
apability of saddle-
rossing. Unfortunately,the e�
ien
y of the ESSS-G and ESSS-C algorithms rapidly de
reases when thelands
ape dimension in
reases. Gaussian peaks be
ome too narrow for these algo-rithms. Appli
ation of modi�ed Gaussian and spheri
al Cau
hy mutations againsu

essfully over
omes this problem, as those are the most e�e
tive algorithms inhigh lands
ape dimensions. However, their e�
ien
y in low dimensions is poor in
omparison with standard mutations. When evolutionary algorithms with adaptedmutation parameters are used, the disadvantage of the 
lassi
al form of Gaussianand Cau
hy mutations disappears. The surrounding e�e
t is de
reased by theadaptation me
hanism.The last experiment dis
loses the in�uen
e of the sele
tion of the referen
eframe on the global optimization e�e
tiveness of evolutionary algorithms whi
huse the non-spheri
al Cau
hy mutation.The presented simulation results do not prove the advantage of multi-dimensional Gaussian and Cau
hy mutations in their modi�ed forms over theirusually used 
lassi
al versions. One 
an only say that these are di�erent typesof mutation operators, and ea
h of them 
an be preferred for a di�erent 
lass ofproblems.





Chapter 4
EVOLUTIONARY ADAPTATIONIN NON-STATIONARY ENVIRONMENTS

In re
ent years the problem of adaptation in time-varying lands
apes has beenintensively studied by many groups of resear
hes. The number of publi
ationssu

essively grows. This domain of resear
h is important and 
urrent from pointof view of many te
hni
al bran
hes, e.g. the optimal 
ontrol, the learning pro-
ess of neural networks, the fault dete
tion in dynami
 systems. Unfortunately,diverse methodology and terminology make most of resear
h solutions in
ompara-ble. In this 
hapter some proposal of ordered view on optimization and adaptationproblems in non-stationary environments are introdu
ed. Some taxonomy of non-stationary environments as well as measures of adaptation algorithms quality arealso proposed.4.1. Non-stationary environmentsA non-stationary optimization problem in general 
an be formulated as follows:max f(x; t)���
i(x; t) � 0; i = 1; : : : ;m;x 2 U(t)�; (4.1)where f(x; t) is an obje
tive fun
tion, 
i(x; t) denotes an ith 
onstraint and U(t)is a spa
e of solutions.Non-stationary problems 
an be 
lassi�ed under a number of 
riteria. The�rst one is a physi
al stru
ture of the spa
e of solutions U(t): is it dis
rete or
ontinuous? A domain stru
ture determines a 
lass of possible measures of evolu-tionary algorithms performan
e.In general f(x; t), 
i(x; t) and U(t) 
an be time varying simultaneously. Butphysi
ally it o

urs very seldom. The �rst attempt to 
lassi�
ation of all possible
ases, whi
h elements of the sequen
e (f; f
igmi=1;U) are varying in time, is providedin (Trojanowski and Mi
halewi
z 1999b). An extension of this 
lassi�
ation isproposed in (Trojanowski and Obu
howi
z 2001) (Table 4.1).Changes of the domain, e.g. 
hanges of the number of dimensions or of dimen-sions' boundaries signi�
antly modify the nature of the problem. For example, forbinary representation of solutions, 
hanges of the domain modify resolution and



90 4.1. Non-stationary environmentsTab.4.1. Classi�
ation of 
hanges in a pro
ess. The symbol ; denotes the 
ase wherethe set of 
onstrains is empty; stati
 � there are no 
hange in time; varying� there are some 
hanges in time.No. obje
tive 
onstrains spa
e of solutionsfun
tionM1 stati
 ; stati
M2 stati
 stati
 stati
M3 stati
 varying stati
M4 varying ; stati
M5 varying stati
 stati
M6 varying varying stati
M7 stati
 ; varyingM8 stati
 stati
 varyingM9 stati
 varying varyingM10 varying ; varyingM11 varying stati
 varyingM12 varying varying varyingpre
ision of the algorithm so there is a need for modi�
ation of individual repre-sentation. Thus, in the 
ase of su
h 
hange, we usually have to re-start the sear
hpro
edure and to tune the optimization tool to the new problem after the 
hangehas o

urred. For the sake of that, we assume that the domain is 
onstant and donot dis
uss this form of 
hanges in further text.There are a number of 
riteria along whi
h non-stationary environments 
anbe 
ategorized (Branke 1999):� frequen
y of 
hanges;� severity of 
hanges;� predi
tability of 
hanges;� regularity of 
hanges.Frequen
y of 
hanges. The environment 
an 
hange with di�erent frequen
y,from 
ontinuous in time to very rare sudden 
hanges whi
h are pre
eded by station-ary state of the environment. An example of a environment with the 
ontinuous
hanged 
an be the optimal 
ontrol problem in the 
ase of a real system a�e
tedby an ageing pro
ess, or a time optimal traje
tory planning for mobile robots inthe 
ase of moving obstru
tion.
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hanges. The nature of 
hanges 
an manifest in their speed andrange. The 
lassi�
ation under this 
riteria is di�
ult be
ause of estimation sub-je
tivity whether 
hanges are sudden or adiabati
, wide or lo
al. In the 
ase ofmodel M4 (Tab. 4.1), where the �tness fun
tion is varying in time, some mea-sure of 
hanges in a given subspa
e 
 � U and a given time interval T 
an beintrodu
ed (Trojanowski and Obu
howi
z 2001)� 
ontinuous domain(let f(x; t) 2 L2(
);8t)M(
; T; t) = 1T R : : : R
 �f(x; t)� f(x; t� T )�2d!R : : : R
 f2(x; t)d! ; (4.2)where d! = dx1dx2 : : : dxn;� dis
rete domainM(
; T; t) = 1T Pxi2
 �f(xi; t)� f(xi; t� T )�2Pxi2
 f2(xi; t) : (4.3)The measure M(
; T; t) des
ribes the average speed of relative �tness 
hanges insubspa
e 
 taken over the time interval T whi
h 
an be 
onsidered as a samplinginterval, i.e. the time interval between two su

essive 
al
ulations of the �tnessfun
tion. One may de�ne two 
onstants �a and �
 (�a < �
) for given sear
hingproblem in order to 
lassify 
hanges of the �tness fun
tion:� M(
; T; t) < �a � the adiabati
 
hanges (S1), whi
h guarantee approxi-mately stationary state of evolutionary sear
h. The population �keeps up"with the 
hanged optimum. There are usually no quality di�eren
es betweenthis problem and stationary problems.� �a < M(
; T; t) < �
 � the indire
t 
hanges (S2). It is the most interesting
ase. An e�e
tiveness of the sear
hing pro
ess signi�
antly depends on a
hosen sear
hing strategy and its input parameters.� M(
; T; t) > �
 � the turbulent 
hanges (S3). In this 
ase, usually thesear
h pro
edure have to be restarted and tuned to the 
ompletely newproblem after the 
hange has o

urred.Parameters �a and �
 have, rather, informal nature and are not well de�ned.The ability of 
lassifying, to whi
h of 
hanges type: S1;S2 or S3, a given problembelongs, allows to 
hoose a 
lass of optimization methods to solve the problemand 
hoose a measure of a given methods e�e
tiveness. If a given problem belongsto the 
lass S1, global optimum is usually moved to su
h a point whi
h is 
loseenough to be found again without a risk of be
oming trapped in a lo
al optimum.Then it is possible to use standard optimization methods, like gradient methods,to follow the optimum point during all the pro
essing time. Here, evolutionary
omputation method is 
omputationally rather too expensive to use.



92 4.1. Non-stationary environmentsFrom an evolutionary point of view, S2 is the most interesting 
lass. The
hanges are too di�
ult and therefore 
omputationally too expensive for the 
las-si
al optimization methods, but not too di�
ult for evolutionary methods, whi
hmay solve the problem be
ause of their softness and 
on
urrent sear
hing, espe-
ially when we are satis�ed even if the solution is suboptimal only.The turbulent 
hanges S3 are usually unable to 
ontrol (e.g. the 
hangesof square error fun
tion in the on-line neural network training pro
ess where asequen
e of training patterns is randomly 
hosen from a training set). Any opti-mization pro
ess 
an not keep up the optimum peak tra
k. Applied adaptationalgorithms usually �nd hills of a form of obje
tive fun
tion averaged over sear
hingtimePredi
tability of 
hanges. If 
hanges of the problem 
omponents appear inreal-world optimization tasks 
ontinuously or at least periodi
ally, then values ofproposed solutions vary in time and thus a 
ontinuous sear
h pro
ess is needed.In general, non-stationary optimization task belongs to one of four main groups(Mothes 1967):1. Deterministi
 situations, where full information about the values of environ-ment parameters now and in the future is available.2. Probabilisti
 situations, where the values of environment parameters are notknown, however they are predi
table, be
ause probability distributions ofthese parameters are known.3. Un
ertain situations, where environment parameters are unknown and un-predi
table.4. Con�i
t situations, where the environment parameters are 
ontrolled by ourantagonists (
ases, where a game theory is used).The subje
t of our interest is the third group of situations. A large number ofreal world problems belongs to this group, and examples of su
h non-stationaryand unpredi
table problems 
an be easily found around us (Trojanowski andMi
halewi
z 1999b, Trojanowski and Mi
halewi
z 1999
).Regularity of 
hanges. Investigating properties of optimization tools applied toproblems varying in time, it is also ne
essary to study and 
lassify di�erent formsof 
hanges. Changes of the problem 
omponents 
an be 
lassi�ed in many ways,for example (Trojanowski and Mi
halewi
z 1999b):� regularity of 
hanges (i.e. 
y
li
 and non-
y
li
 ones);� 
ontinuous vs. dis
rete 
hanges in time;� 
ontinuous vs. dis
rete 
hanges in the sear
h spa
e.Obviously, not every problem varying in time 
an be optimized with evolu-tionary algorithms, e.g. situations where immediate rea
tion is needed, but thereis still a large group of 
ases (like e.g. 
ontrol and management of ele
tri
 energysour
es by a dispat
her day by day).



4. Evolutionary adaptation in non-stationary environments 934.2. Quality rates for adaptation algorithmsIn evolutionary 
omputation 
ommunity, some measures for obtained results havebeen proposed; these measures exploit the iterational nature of the sear
h pro
essand the presen
e of 
ontinuously modi�ed and improved population of solutions.One of the �rst measures were on-line and o�-line performan
e proposed by DeJong (1975).� O�-line performan
e � is the best value in the 
urrent population aver-aged over the entire run. It represents the e�
ien
y of the algorithm in agiven time of run.� On-line performan
e � is the average of all evaluation of the entire run.It shows the impa
t of the population on the fo
us of the sear
h.These two measures, although designed for stati
 environments, were employed inexperiments with non-stationary ones (Bä
k 1998, Grefenstette 1992, Vavak andFogarty 1996, Vavak et al. 1997).In other publi
ations, authors visually 
ompared graphs of the best obje
tivefun
tion value measured during the entire sear
h pro
ess (or graphs of the meanvalue obtained from series of experiments) (Angeline 1997, Bä
k and S
hutz 1996,Branke 1999, Cedeno and Vemuri 1997, Cobb and Grefenstette 1993, Dasguptaand M
Gregor 1992, Ghosh et al. 1998, Goldberg and Smith 1987, Grefenstette1992, Grefenstette 1999, Lewis et al. 1998, Mori et al. 1997, Mori et al. 1996, Moriet al. 1998, Ng and Wong 1995, Vavak and Fogarty 1996). In some papers graphsof average values of all individuals or of the worst individual in the population werealso analyzed (Cobb and Grefenstette 1993, Goldberg and Smith 1987, Dasguptaand M
Gregor 1992, Mori et al. 1997, Mori et al. 1996, Mori et al. 1998). Boththese methods were based on the measures of o�-line and on-line performan
e.Before a form of a quality rate for sear
hing algorithm in the non-stationaryenvironments is 
hosen, a resear
her has to de
ide what kind of results will besatisfying, what type of sear
hing pro
ess should be applied. Four main types ofsear
hing pro
esses 
an be distinguished. Let us assume that the �tness fun
tionis equal to the obje
tive fun
tion �(x; t) = f(x; t).C1: A tra
ing pro
ess. � This type of the sear
hing pro
ess is dedi
atedmainly to adiabati
 problems (S1). The goal of the sear
hing pro
ess of thetype C1 is to keep solutions 
losed to the optimum one as well as possible.Most of publi
ations of the non-stationary optimization 
onsider su
h a typeof sear
hing pro
ess. Applied measures of sear
hing algorithms are usuallybased on measures for stationary environments.An interesting measure based on the o�-line performan
e is an adaptationperforman
e des
ribed in (Mori et al. 1997, Mori et al. 1996). It was evalu-ated a

ording to the formula:�ad = 1tmax tmaxXt=1 �best(t)�opt(t) ; (4.4)



94 4.2. Quality rates for adaptation algorithmswhere: tmax is the length of the entire sear
h pro
ess, �best(t) � the �tnessof the best individual in the population at the time t, �opt(t)� the optimum�tness in the sear
h spa
e at the time t.This formula was later modi�ed slightly to:�0ad = 1tmax tmaxXt=1 ��best(t)�opt(t) ; (4.5)where (for the maximization problem):� = ( 1; if �best(t) = �opt(t);0:5; if �best(t) < �opt(t):In (Feng et al. 1998), two ben
hmarks measuring relative 
loseness of thebest found solution to the global optimum were proposed: optimality �opand a

ura
y �a
. optimality �op represents 
loseness of the value of thebest obtained solution �(x0) to the value of optimum �opt, e.g. for themaximization problem, we have the following formulae:�op = �(x0)� �min�opt ��min ; (4.6)where �min = minx2U �(x). The a

ura
y �a
 represents the relative 
lose-ness of the found solution x0 to the global optimum solution xopt and it isde�ned with following formula:�a
 = 1� �(xopt;x0)�(xmax;xmin) : (4.7)where xopt = argmaxx2U �(x), xmax and xmin are the lower and upperbounds of the sear
h range, and �(a; b) is a distan
e measure in U , e.g. ifU � Rn then �(a; b) = ka� bk.Although authors did not use these measures to non-stationary optimizationevaluation, the 
loseness to the optimum during the sear
h pro
ess is aninteresting value whi
h seems to be helpful in 
omparisons between appli
a-tions and is easy to 
ontrol in experiments. The evolutionary approa
h tonon-stationary optimization presented in (Obu
howi
z 1999b) uses measurewhi
h idea is 
losely related to the measure �a
:�0a
 = 1tmax tmaxXt=1 ��xopt(t);x0(t)�; (4.8)where x0(t) is the best point of population in the time t and xopt(t) =argmaxx2U �(x; t).
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h. � This type of sear
hing pro
ess
on
erns tasks, in whi
h 
onse
utive 
hanges in the environment are signif-i
ant but o

ur rather seldom (ones in a 'mega-epo
h'). The goal is to �ndthe optimum before a new 
hange o

urs.For estimations of non-stationary optimization results, the following twomeasures: a

ura
y (�a

) and adaptability (�ada) were proposed in(Trojanowski and Mi
halewi
z 1999a, Trojanowski and Mi
halewi
z 1999
).They are based on a measure proposed by De Jong (1975): o�-line per-forman
e but evaluate the di�eren
e between the value of the 
urrent bestindividual and the optimum value instead of evaluation of the value of justthe best individual. A

ura
y is a measure dedi
ated ex
lusively to dynami
environments. It is a di�eren
e between the value of the 
urrent best indi-vidual in the population of the �just before the 
hange" generation and theoptimum value averaged over the entire run:�a

 = 1K KXi=1(erri;��1): (4.9)Adaptability measures a di�eren
e between the value of the 
urrent bestindividual of ea
h generation and the optimum value averaged over the entirerun: �ada = 1K KXi=1 24 1� ��1Xj=0(erri;j )35 ; (4.10)where: erri;j is the di�eren
e between the value of the 
urrent best individualin the population of the j-th generation after the last 
hange (j 2 [0; � � 1℄),and the optimum value for the �tness lands
ape after the i-th 
hange (i 2[0;K�1℄), � � the number of generations between two 
onse
utive 
hanges,K � the number of 
hanges of the �tness lands
ape during the run.Clearly, the lower values of measure (for both a

ura
y and adaptability)
orrespond to the better results. In parti
ular, a value of 0 for a

ura
ymeans that the algorithm found the optimum every time before the lands
apewas 
hanged (i.e. � generations were su�
ient to tra
k the optimum). Onthe other hand, a value of 0 for adaptability means that the best individualin the population was at the optimum for all generations, i.e. the optimumwas never lost by the algorithm.C3: Keeping solutions on an a

eptable level. � In many real te
hnologi
alproblems, e.g. in the on-line training of a dynami
 neural networks (Korbi
zet al. 1998), in 
ontrol systems (Bryson and Ho 1975) or in many problemsof the operational resear
h, the optimal solution is not so ne
essary as thesolution of an a

eptable quality. This problems usually are of the type S2.One has to be sure that the �tness of the a
tual best known solution willnot be worse than a given assumed level during all time long of a sear
hing
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ess. This a

eptable level may, for example, des
ribe non 
on�i
t runof 
on
urrent pro
esses, guarantee the stability of the 
ontrolled dynami
system.The a

eptability is a measure of unsatis�ed realization in a quality spa
e �this is a mean deviation of the best �tness in time t below the a

eptablelevel (Trojanowski and Obu
howi
z 2001)�a
pt = 1tmax tmaxXt=1 ���a
pt(t)��best(t)�; (4.11)where: tmax is the length of the entire sear
h pro
ess, �best(t) � the �t-ness of the best individual in the population at the time t, and �a
pt(t) isthe minimum satisfying value of the �tness (it 
an be varying in time) and(Trojanowski and Obu
howi
z 2001)�(a� b) = ( 0; if a � b;a� b; if a > b:The a

eptability distan
e �a
d is an equivalent of �a
pt in sear
hing spa
eand is de�ned as follows:�a
d = 1tmax tmaxXt=1 ���(xopt(t);x0(t)) � r�; (4.12)where r is, so 
alled, the a

eptability radius whi
h des
ribes the maximuma

eptable distan
e between the best known solution and the a
tual optimumpoint.C4: A pro
ess with averaged a

eptability. � This type of sear
hing pro-
ess is dedi
ated to turbulent problems (S3). A sear
hing pro
ess is unableto follow the optimum as well as to guarantee the a

eptable solutions duringthe algorithm pro
essing. The only measure of the adaptation pro
ess is itsability to �nd the solution with the best average �tness over all realizationof �(x; t)(t = 1; 2; : : : ; tmax). This measure 
an be expressed in the followingform �ava
 = 1tmax tmaxXt=1 ��x?;x0(t)�; (4.13)where x? = argmax� 1tmax tmaxXt=1 �(x; t)�:



4. Evolutionary adaptation in non-stationary environments 974.3. Illustrative simulations4.3.1. Properties of the ESSS in the adiabati
 and turbulent 
ases of lands
apenon-stationarityLet us 
onsider the following one-dimensional non-stationary adaptation lands
ape
omposed by two Gaussian peaks�(x; t) = (0:5 + 0:5 
os ��t=s))e�5(x�0:5)2+ (0:5� 0:5 
os ��t=s))e�5(x+0:5)2 ; (4.14)where t denotes time, s is a given positive parameter 
ontrolling the rate of 
hangeof peaks highs.Adaptation pro
ess is 
ontrolled by the ESSS algorithm (Trojanowski andObu
howi
z 2001). Figure 4.1 illustrates the adiabati
 fun
tion 
hanges. The bestpoint of the population follows the global optimum during all time. The measuresfor the obtained results dedi
ated for stationary problems 
an be applied. In the
ase of the turbulent 
hanges (Fig. 4.2) the global optimum is not monitored. Thepopulation �u
tuates around the point of the smallest 
hanges of the obje
tivefun
tion. This feature is well known in the on-line training pro
ess of the arti�
ialneural networks (Korbi
z et al. 1994)4.3.2. Comparison of four algorithms from ESSS familyLet us 
onsider the following time-varying 2D adaptation lands
ape:�(x) = h exp h�x� zt�T C�1�x� zt�i ; (4.15)zt = �zt1; zt2� = �1 + 
os�2�t360� ; sin�2�t360�� (4.16)where �(x) represents a Gaussian peak with expe
tation ve
tor zt, whi
h movesaround the 
ir
umferen
e of unity radius, and 
ovarian
e matrix C .Four algorithms are used in the adaptation pro
ess: ESSS, ESSS-FDM, ESSS-VPS and the last ESSS-FV 
ontaining both FDM and VPS me
hanisms. Simula-tions have been 
arried out for various sets of input parameters, several times forea
h set. Representative realizations of the 
onsidered algorithms are presented inFigs. 4.3�4.6.As a quality measure, the average distan
e between the best element of thepopulation and the top of the Gaussian peak is 
hosen (4.8). For all the 
onsid-ered algorithms, there exists a set of input parameters, whi
h usually realizes asatisfying quality fa
tor of the adaptation pro
ess, although, the sensitivity of thisfa
tor to slight 
hanges in the optimal input parameters is di�erent for ea
h testedalgorithm.The ESSS-FDM algorithm turns out to be least sensitive to input param-eter disturban
es. Thus, the sear
h time for the optimal input parameters set
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Fig. 4.1 . Adiabati
 
hanges M([�2; 2℄; 1) � 2:86 � 10�9. The �tness (a) and lo
ation(b) of the best element in the population vs. time, (� = 20, � = 0:05, s = 250).
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Fig. 4.2 . Turbulent 
hanges M([�2; 2℄; 1) � 1:84. The �tness (a) of the best element inthe population vs. time, and lo
ation of the mean point in the population vs.time (b),(� = 20, � = 0:01, s = 1).
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Fig. 4.3 . Realization of the ESSS algorithm in the time-varying lands
ape (4.15); inputparameters: � = 20, � = 0:5; the quality fa
tor: �0a
 = 0:345; (a) evaluation ofthe Gaussian peak (dotted line) and the best element of the population (solidline); 
onse
utive 
ir
les represent the results obtained every 50 iterations; (b)�tness of the best element in population vs. iterations.(a) (b)
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Fig. 4.4 . Realization of the ESSS-FDM algorithm in the time-varying lands
ape (4.15);input parameters: � = 20, � = 0:8; � = 0:125; the quality fa
tor: �0a
 =0:206; (a) evaluation of the Gaussian peak (dotted line) and the best elementof the population (solid line); 
onse
utive 
ir
les represent the results obtainedevery 50 iterations; (b) �tness of the best element in population vs. iterations.was shortest in 
omparison with the remaining algorithms. This property of theESSS-FDM algorithm is used in dynami
 neural networks learning pro
ess (seese
tion 5.4.2).
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Fig. 4.5 . Realization of the ESSS-VPS algorithm in the time-varying lands
ape (4.15);input parameters: � = 20, � = 0:8; the quality fa
tor: �0a
 = 0:280; (a)evaluation of the Gaussian peak (dotted line) and the best element of thepopulation (solid line); 
onse
utive 
ir
les represent the results obtained every50 iterations; (b) �tness of the best element in population vs. iterations.(a) (b)
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Fig. 4.6 . Realization of the ESSS-FV algorithm in the time-varying lands
ape (4.15);input parameters: � = 20, � = 0:8, � = 7:5; the quality fa
tor: �0a
 = 0:303;(a) evaluation of the Gaussian peak (dotted line) and the best element of thepopulation (solid line); 
onse
utive 
ir
les represent the results obtained every50 iterations; (b) �tness of the best element in population vs. iterations.4.4. SummaryFor years, the evolutionary algorithms were applied mostly to the group of stati
problems. A set of satisfying pro
edures for tuning and 
omparisons between



102 4.4. Summarydi�erent approa
hes was established during that time. However, nowadays a widergroup of problems, in
luding non-stationary 
ases, is optimized with evolutionaryalgorithms but still with the same old methods and pro
edures of results evaluationand algorithms 
omparison. Be
ause of the extension of optimized problems range,these measures seem to be insu�
ient, and new measures for optimization toolquality and for the non-stationary problem di�
ulty should be proposed.In this 
hapter, an analysis and 
lassi�
ation of these problems, review of theexisting measures and some propositions of new ones as well as the simulationstudy of algorithms from the ESSS family in the non-stationary environment arepresented.



Chapter 5
OPTIMIZATION TASKSIN NEURAL MODELS DESIGNING

Arti�
ial Neural Networks (ANN) provide an ex
ellent mathemati
al tool for deal-ing with non-linear problems. They have an important property, a

ording towhi
h any 
ontinuous non-linear relationship 
an be approximated with arbitrarya

ura
y using a neural network with suitable ar
hite
ture and weight parame-ters (Korbi
z et al. 1994). Their another attra
tive property is the self learningability. A neural network 
an extra
t the system features from histori
al train-ing data using the learning algorithm, requiring a little or no a priori knowledgeabout the pro
ess. This provides modelling of non-linear systems a great �exibility(Fausett 1994, Hertz et al. 1991, Korbi
z et al. 1994). These properties make theANN a very attra
tive tool in modelling and identi�
ation of dynami
 pro
esses,adaptive 
ontrol systems (Hunt et al. 1992, Miller et al. 1990), time series pre-di
tion problems (Zhang and Man 1998), and diagnosti
s of industrial pro
esses(Frank and Köppen-Seliger 1997, Koivo 1994).The appli
ation of ANNs in modelling and identi�
ation of dynami
 pro-
esses has been intensively studied for the last two de
ades (
f. (Korbi
z etal. 1998, Narendra and Parthasarathy 1990, Zhu and Paul 1995)). Attra
tivenessof ANNs results from the fa
t that they are useful when there are no mathemat-i
al models of an investigated system, hen
e, analyti
al models and parameter-identi�
ation algorithms 
annot be applied. As opposed to a lot of ANN e�e
tiveappli
ations, e.g. in the pattern re
ognition (
f. (Looney 1997, Sharkey 1999))or in the approximation of the non-linear fun
tion (
f. (Hornik et al. 1989)), theappli
ation of ANNs in modelling requires taking into 
onsideration the dynami
sof the investigated pro
esses.One of the possible solutions is the appli
ation of re
urrent neural networks(Draye et al. 1996, Tsoi and Ba
k 1994). The most general ar
hite
ture of re-
urrent networks was proposed by Williams and Zipser (1989), where 
onne
tionsbetween any neurons are permitted. Unfortunately, a pra
ti
al realization of su
ha network stru
ture is very limited, mainly due to their instability and a very slow
onvergen
e of the training pro
ess. The Elman re
urrent network has less general
hara
ter but better 
hara
teristi
s of pra
ti
al appli
ations (Elman 1990). It isworth noting that the standard re
urrent neural networks are built using the stati
M
Cullo
h-Pitts neuron model (M
Cullo
h and Pitts 1943), and their relatively



104good dynami
 properties are a
hieved by introdu
tion of global feedba
ks. Gen-erally, su
h networks su�er from stability problems during training and require
ompli
ated learning algorithms.The alternative solution is the appli
ation of a neural network of the Multi-layer Per
eptron (MLP) stru
ture but 
omposed of dynami
 neurons. In general
ase, dynami
 neuron models 
an be obtained by introdu
ing one of the followingfeedba
ks: synapse feedba
k (Gupta and Rao 1993), output feedba
k (Fas
oni etal. 1992) or a
tivation feedba
k (Tsoi and Ba
k 1994) to the stati
 M
Cullo
h-Pitts model. Another solution 
an be obtained by extension of a stati
 modelby adding memory elements (Sastry et al. 1974). One of the most interesting so-lutions of dynami
 system modelling problem is the appli
ation of the Dynami
Neural Model (DNM) whi
h 
onsists of an adder module, a linear dynami
 sys-tem - In�nite Impulse Response (IIR) �lter, and a non-linear a
tivation module((Ayoubi 1994, Patan and Korbi
z 1996)). The dynami
 neuron models renderit possible to design a neural network with a stru
ture similar to the well-knownMLP. Taking into a

ount the fa
t that this stru
ture has no feedba
ks betweenneurons, one 
an train it in a simpler way than the globally re
urrent networks(Campolu

i et al. 1999).The 
onstru
tion pro
ess of an ANN, whi
h has to solve a given problem,usually 
onsists of four steps (Obu
howi
z 2000a). First, a set of pairs of inputand output patterns, whi
h should represent 
hara
teristi
s of a problem as well aspossible, is sele
ted. Next, an ar
hite
ture of the ANN, the number of units, theirordering into layers or modules, synapti
 
onne
tions and other stru
ture param-eters, are de�ned. At the third step, free parameters of the ANN (e.g. weights ofsynapti
 
onne
tions, slope parameters of a
tivation fun
tions) are automati
allytrained using a set of training patterns. Finally, the obtained ANN is evaluated ina

ordan
e with a given quality measure. The above pro
ess is repeated until thequality measure of the ANN is satis�ed. Therefore, two optimization pro
esses
an be distinguished in the ANN 
onstru
tion pro
ess: an optimal ar
hite
turedesigning and optimal ANN parameters allo
ation (learning pro
ess).The relatively 
omplex DNM allows to build an e�e
tive Dynami
 MLP(DMLP). The DMLP 
an have the same ar
hite
ture as the MLP. The 
al
ulatedoutput error is propagated ba
k to the input layer through hidden layers 
ontain-ing dynami
 �lters, similarly as in the standard Ba
k-Propagation (BP) algorithm(Werbos 1974, Korbi
z et al. 1994). As a result, the Extended Dynami
 Ba
k-Propagation algorithm may be de�ned (Patan 2000, Patan and Korbi
z 1996).This algorithm adjusts 
onne
tion weights as well as IIR �lter parameters. Unfor-tunately, the training pro
ess of an DMLP whi
h has to identify a dynami
 system,seems to be an optimization problem whi
h is intrinsi
ally related to a very ri
htopology of the sum square-error fun
tion (Korbi
z et al. 1998). The EDBP al-gorithm usually �nds one of the lo
al unsatisfa
tory optima. Therefore, globaloptimization methods, like sto
hasti
 algorithms (Patan and Obu
howi
z 1999)or evolutionary algorithms (Obu
howi
z 1999a, Patan and Jesionka 1999), shouldbe implemented. High performan
e of a dynami
 system neural modelling, whi
hhas been trained by an evolutionary algorithm, has been observed by Obu
howi
z(1999a).



5. Optimization tasks in neural models designing 105However, there are e�e
tive methods of a training patterns sele
tion, learn-ing and an evaluation of the ANN, resear
hers usually allo
ate the ANN ar
hi-te
ture rather on a basis of their intuition and experien
e than using an auto-mati
 pro
edure. Experien
ed resear
her has, usually, no problems with ar
hi-te
ture design in the 
ase of the MLP applied to the approximation of a givenlow-dimensional non-linear fun
tion, however, there are many propositions of theautomati
 MLP stru
ture allo
ation methods (Alippi et al. 1997, Ash 1989, Born-holdt and Graudenz 1991, Chauvin 1989, Doering et al. 1997, Fahlman andLebierre 1990, Frean 1990, Harp et al. 1989, Hassibi and Stork 1993, Kozaand Ri
e 1991, LeCun et al. 1990, Marshall and Harrison 1991, Mezard andNadal 1989, Miller et al. 1989, Obu
howi
z 1998, Obu
howi
z 2000a, Wang etal. 1994). But, in the 
ase of more 
omplex modeled systems, high-dimensional ordynami
, automati
 algorithms be
ome indispensable.The signi�
an
e of network ar
hite
ture optimization in
reases when theDMLP is taken into 
onsiderations. Dynami
 nature of DMLP is very sensitiveto 
hanges in the network stru
ture and then a suitable sele
tion of the DMLPar
hite
ture is very important. The methods of the arti�
ial intelligen
e sear
hing,like the simulated annealing (Obu
howi
z 1998), the tabu sear
h (Obu
howi
z andPatan 2003), the A? algorithm (Obu
howi
z 1999
) and evolutionary algorithms(Obu
howi
z and Politowi
z 1997) seem to be very attra
tive for this task.5.1. Considered neural networksThe ANN is represented by a ordered pair NN = (NA;v) (Doering et al. 1997,Obu
howi
z 2000a). NA denotes the ANN ar
hite
ture:NA = (fVi j i = 0; : : : ;Mg; E): (5.1)fVi j i = 0; : : : ;Mg is a family of M + 1 sets of neurons, 
alled layers, in
ludingat least two non-empty sets V0 and VM that de�ne s0 = 
ard(V0) input andsM = 
ard(VM ) output units, respe
tively, E is a set of 
onne
tions betweenneurons in the network. The ve
tor v 
ontains all free parameters of the network,among whi
h the set of weights of synapti
 
onne
tions w : E ! IR are.In general, sets fVi j i = 0; : : : ;Mg have not to be disjun
tive, thus, there
an be input units whi
h are also outputs of the NN . Units whi
h do not belongto either V0 or VM are 
alled hidden neurons. If there are 
y
les of synapti

onne
tions in the set E , then we have a dynami
 network.5.1.1. Multi-Layer Per
eptronThe most popular type of the neural network NN = (NA;v) is the MLP. TheMLP is based on the M
Cullo
h-Pitts neurons (M
Cullo
h and Pitts 1943) andits ar
hite
ture possesses following properties:8i 6= j Vi \ Vj = ;; (5.2)



106 5.1. Considered neural networksE = M�1[i=0 Vi � Vi+1: (5.3)Layers in the MLP are disjun
tive. The main task of the input units of the layerV0 is preliminary input data pro
essing u = fup j p = 1; 2; : : : ; Pg and passingthem onto units of the hidden layer. Data pro
essing 
an 
omprise e.g. s
aling,�ltering or signal normalization. Fundamental neural data pro
essing is 
arriedout in hidden and output layers. It is ne
essary to noti
e that links betweenneurons are designed in su
h a way that ea
h element of the previous layer is
onne
ted with ea
h element of the next layer. There are no feedba
k 
onne
tions.Conne
tions are assigned with suitable weight 
oe�
ients, whi
h are determined,for ea
h separate 
ase, depending on the task the network should solve.The fundamental training algorithm for the MLP is the BP algorithm(Rumelhart et al. 1986, Werbos 1974). This algorithm is of iterative type andit is based on minimization of a sum-squared error utilizing optimization gradientdes
ent method. Unfortunately, the standard BP algorithm is slowly 
onvergent,however, is widely used and in a few re
ent years its numerous modi�
ations andextensions have been proposed (�wi¡¢ and Bilski 2000), e.g.: Chan's and Fallside'salgorithm (1997), the delta-delta algorithm (Ja
obs 1988), Qui
kprop algorithm(Fahlman 1988), Silva's and Almeida's algorithm (1990), Park's,Yun's and Kim'salgorithm (1992), RPROP algorithm (Riedmiller and Braun 1992), and Levenberg-Marquardt algorithm (Hagan and Menhaj 1994).Neural networks with the MLP ar
hite
ture owe their popularity to manye�e
tive appli
ations, e.g. in the pattern re
ognition problems (Looney 1997,Sharkey 1999) and approximation of the non-linear fun
tions (Hornik et al. 1989).It is proved that using the MLP with only one hidden layer and suitable numberof neurons, it is possible to approximate any non-linear stati
 relation with arbi-trary a

ura
y (Cybenko 1989, Hornik et al. 1989). Thus, taking relatively simplealgorithms applied to the MLP learning into 
onsideration, this type of networksbe
omes a very attra
tive tool for building models of stati
 systems.5.1.2. Dynami
 neural modelIn this 
hapter, the general stru
ture of a neuron model proposed by Ayoubi (1994)is 
onsidered. Dynami
s is introdu
ed to the neuron in su
h a way that the neurona
tivation depends on its internal states. It is done by introdu
ing a linear dynami
system � IIR �lter � to the neuron stru
ture (Fig. 5.1) whi
h is 
alled the Dynami
Neuron Model. Three main operations are performed in this dynami
 stru
ture.First of all, the weighted sum of inputs is 
al
ulated a

ording to the formula :�(k) = wTu(k); (5.4)where w = fwp j p = 1; 2; : : : ; Pg denotes the input weights ve
tor, P is thenumber of inputs, and u(k) = fup(k) j p = 1; 2; : : : ; Pg is the input ve
tor. Theweights perform a similar role as in stati
 feed-forward networks. The weightstogether with the a
tivation fun
tion are responsible for approximation properties



5. Optimization tasks in neural models designing 107
S

w1

w2

wP

..
.

u k1( )

y k( )u k2( )

u kP( )

f( )k
IIR l F( ).j( )kFig. 5.1 . General stru
ture of DNM with P inputs.

j( )k
z

-1z
-1 . . .

.

..

...

S

bn

an

a1

b2

b1

S S

S

f( )k

Fig. 5.2 . Blo
k s
heme of nth order IIR �lter.of the model. Then this 
al
ulated sum �(k) is passed to the IIR �lter. Here,the �lters under 
onsideration are linear dynami
 systems of di�erent orders, viz.the �rst, se
ond and third order. The general stru
ture of the n-th order IIR�lter is shown in Fig. 5.2. This �lter 
onsists of delay elements (denoted by z�1)and feedba
k and feedforward paths weighted by the ve
tor weights a = fai j i =1; 2; : : : ; ng and b = fbi j i = 1; 2; : : : ; ng, respe
tively. The behaviour of this linearsystem 
an be des
ribed by the following di�eren
e equation:'(k) = b0�(k) + b1�(k � 1) + � � �+ bn�(k � n)� a1'(k � 1)� � � � � an'(k � n); (5.5)where �(k) is the �lter input, '(k) is the �lter output, and k is the dis
rete-timeindex. Finally, the neuron output 
an be des
ribed by:y(k) = F ��'(k)�; (5.6)where F (�) is a non-linear a
tivation fun
tion that produ
es the neuron outputy(k), and � is the slope parameter of the a
tivation fun
tion. In the dynami
neuron the slope parameter � as well as weights w and feedba
k a and feed-forward b �lter weights are trained during a learning pro
ess.
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Fig. 5.3 . Ar
hite
ture of the DMLP.5.1.3. Dynami
 MLPConsidering the dynami
 neuron model des
ribed above, one 
an design more
omplex stru
ture - a neural network. Using the well-known MLP stru
ture withDNM units as nodes a network of dynami
 neurons, 
alled Dynami
 MLP (DMLP),is de�ned (Fig. 5.3). The DMLP presents an ordered pair (NA;v) . NA denotesthe network ar
hite
ture (5.1)NA =�fVm j m = 0; 1; : : : ;Mg;foms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E�; (5.7)where fVm j m = 0; 1; : : : ;Mg is a family of M + 1 layers of DNM units. foms jm = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg is a set of natural numbers, oms denotes theIIR dynami
 order of the s-th DNM unit from the m-th layer, sm = 
ard(Vm).E = SM�1m=0 Vm�Vm+1 is a set of edges that de�ne the 
onne
tions between units inthe network. The ve
tor of network parameters v 
an be expressed in the followingway: v = �w; f(ams ; bms ; �ms ) j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg�; (5.8)where the set of weights w assigns a real value to ea
h 
onne
tion,f(ams ; bms ; �ms ) j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg des
ribes feedba
k and feedfor-ward IIR synapti
 ve
tors and the slope parameter, respe
tively, of the s-th DNMunit from the m-th layer.It 
an be proved by applying the Leontaritis and Bilings theorem (1985) thatthe DMLP is a universal identi�er. They proved that under some assumptions, anynonlinear, dis
rete and time-invariant system 
an be represented by a simpli�edversion of the NARMAX model (Nonlinear Auto Regressive Moving Average witheXogenous inputs).



5. Optimization tasks in neural models designing 1095.2. Problem statementLet us 
onsider the network whi
h has to approximate a given fun
tion f(u). Let� = f(u;y)g be a set of all possible (usually un
ountably many) pairs of ve
torsfrom the domain u 2 D � IRs0 and from the range y 2 D 0 � IRsM whi
h realizethe relation y = f(u). The goal is to 
onstru
t a NN with an ar
hite
ture NAoptand a set of parameters vopt, whi
h ful�lls the relation yNA;v = fNA;v(u), that agiven 
ost fun
tion sup(u;y)2� JT (yNA;v;y) will be minimized. So, the followingpair has to be found�NAopt;vopt� = argmin � sup(u;y)2� JT �yNA;v;y��: (5.9)Pra
ti
ally, the solution of the above problem is not possible to obtain be
ause ofthe in�nite 
ardinality of the set �. Thus, in order to estimate the solution, two�nite sets �L;�T � � are sele
ted. The set �L are used in the learning pro
essof the network of the ar
hite
ture NA:v? = argminv2V � max(u;y)2�L JL�yNA;v;y��; (5.10)where V is the spa
e of network parameters. In general, 
ost fun
tions of the learn-ing JL(yNA;v;y) and testing JT (yNA;v;y) pro
esses 
an have di�erent de�nitions.The set �T is used in sear
hing pro
ess of NA?, for whi
hNA? = arg minNA2A� max(u;y)2�T JT �yNA;v? ;y��; (5.11)where A is the spa
e of neural network ar
hite
tures. Obviously, the solutions ofboth tasks, (5.10) and (5.11), need not ne
essary be unique. Than a de�nition ofan additional 
riterion is needed.There are many de�nitions of the sele
tion of the best neural network ar
hi-te
ture. The most popular are (Obu
howi
z 1998):� minimization of the number of network free parameters. In this 
ase, thesubset AÆ = �NA : JT �yNA;v? ;y� � Æ	 � A (5.12)is looked for. The network with ar
hite
ture NA 2 AÆ and the smallestnumber of training parameters is 
onsidered to be optimal. This 
riterion is
ru
ial, when the VLSI implementation of the neural network is planned.� maximization of the network generalization ability. The sets of training �Land testing �T patters have to be disjun
tive �L \�T = ;. Then, JT is the
onformity measure between network reply on testing patterns and desiredoutputs. Usually, both quality measures JL and JT are similarly de�nedJL(T )�yNA;v;y� = 
ard(�L(T ))Xk=1 �yNA;v � y�2: (5.13)



110 5.2. Problem statementRestri
tion of the number of training parameters is the minor 
riterion inthis 
ase. The above 
riterion is important for approximating networks orneural models.� maximization of the noise immunity. This 
riterion is applied in networksapplied in 
lassi�
ation or pattern re
ognition problems. The quality mea-sure is the maximal noise level of the pattern whi
h is still re
ognized by thenetwork.Two �rst 
riterions are 
orrelated. Gradually de
reasing number of hiddenneurons and synapti
 
onne
tions 
auses the drop of non-linearity level of thenetwork mapping, and then the network generalization ability in
reases. The third
riterion needs some redundan
y of the network parameters. This fa
t usually
lashes with previous 
riterions. For the most part of publi
ations, the se
ond
riterion is 
hosen.The quality of the estimates obtained via neural networks strongly dependson sele
tion �nite training �L and testing �T sets. Small network stru
tures maynot be to able to approximate the desired relation between inputs and outputswith the satisfying a

ura
y. On the other hand, if the number of network freeparameters is to large (in 
omparison with 
ard(�L)), then the fun
tion fNA?;v?(u)realized by the network strongly depends on the a
tual set of training patterns (thebias/varian
e dilemma, (Geman et al. 1992)).It is very important to note that the e�
ien
y of the method of the neural net-work ar
hite
ture optimization strongly depends on the used learning algorithm.In the 
ase of multi-modal topology of the network error fun
tion, the e�e
tive-ness of the 
lassi
al learning algorithms based on the gradient des
ent method(e.g. the BP algorithm and its modi�
ations) is limited. These methods usuallylo
alize some lo
al optimum and the superior algorithm sear
hing for the optimalar
hite
ture re
eives wrong information about the learned network quality.The problem of the optimal network design, des
ribed by relations (5.9), (5.10)and (5.11), is applied to the stationary 
ase and 
an be simply extended to theproblem of the design of the optimal dynami
 neural model.Let y(k) = f�u(k);u(k�1); : : : ;u(k�n);y(k);y(k�1); : : : ;y(k�n0)� (5.14)is the response of a non-linear dynami
 system f(�) on an input signal u(k). Let� = fu : K ! IRs0g is a family of all possible maps (in�nitely many) from theset K of dis
rete time moments to the spa
e IRs0 of input signals. The ultimategoal of the 
onstru
tion of a neural model (with an ar
hite
ture NA and a set ofnetwork parameters v)yNA;v(k) = fNA;v�u(k);u(k � 1); : : : ;u(k � nNA);yNA;v(k);yNA;v(k � 1); : : : ;yNA;v(k � n0NA)� (5.15)of a dynami
 system (5.14) is the minimization of a 
ost fun
tionsupu(k)2� JT �yNA;v(k);y(k) j k 2 K�. Thus one has to determine the following



5. Optimization tasks in neural models designing 111pair : (NAopt;vopt) = argmin � supu(k)2� JT �yNA;v(k);y(k) j k 2 K��: (5.16)Similarly as in the stati
 
ase, the solution of the (5.16) 
annot be a
hievedin real systems, be
ause of in�nite size of �. Hen
e, two �nite subsets �L;�T �� : �L \ �T = ; are separated. The set �L is used to determine the best ve
torof parameter of a given network ar
hite
ture NA:v� = argminv2V � supu(k)2�L JL�yNA;v(k);y(k) j k 2 K��: (5.17)The set �T is used to determine the network ar
hite
ture NA that realizes theminimal 
ost within the set of all network ar
hite
tures A = fNAg:NA� = arg minNA2A� supu(k)2�T JT �yNA;v�(k);y(k) j k 2 K��: (5.18)5.3. ESSS algorithms in the MLP learning pro
essHowever, the emphasis of this part is put on the dynami
 neural models design,it is interesting to 
he
k the e�e
tiveness of algorithms from the ESSS family(Chapters 1 and 2), in the problem of the MLP learning. The MLP, whi
h is usuallylearned by BP algorithm, is a type of ANNs used the most often by resear
hes andengineers. The surfa
e topology of the error fun
tion of the MLP is multimodal andknowledge about it is limited. The BP algorithm, whi
h is based on the gradient-des
ent method, usually gets stu
k in lo
al minimum and is terminated too early.Thus, global optimization algorithms, whi
h are able to 
ross saddles of the errorfun
tion surfa
e, may be an interesting solution. There is a rea
h bibliography ongeneti
 algorithms appli
ations to neural network training. They are used in feed-forward networks (Kwa±ni
ka and Szerszon 1997, Montana and Davis 1989, Muselliand Ridella 1991, Reeves and Steele 1992, Rutkowska et al. 1997, Yao 1993), andKohonen networks (Harp and Samad 1992).The ESSS algorithm has been su

essfully applied to learn a simple MLP forthe XOR problem (Maku
h et al. 1996). The aim of this se
tion is to analyzethe e�
ien
y of the ESSS and ESSS-SVA algorithms as learning methods of theMLP with mu
h 
omplex stru
ture than that of the XOR network (Obu
howi
zand Patan 1997b). An approximation of a two-variable version of the De Jong'sfun
tion F3 (De Jong 1975) is 
hosen as an exemplary problem for an MLP. Thisfun
tion has the formf(u1; u2) = ��bu1
+ bu1
�; (5.19)where u1; u2 2 (�5:12; 5:12), b�
 rounds a real number to the nearest integertowards �1, and � = 0:08 is a normalization fa
tor su
h that f(u1; u2) 2 (�1; 1)for argument values in the 
onsidered region.



112 5.3. ESSS algorithms in the MLP learning pro
essTab.5.1. E�
ien
y of four tested learning methods of the MLP 
onsidered in the senseof fa
tor JT (5.21). Per
entage of simulations with JT in a given interval.algorithm BP BPA ESSS ESSS-SVAJT � 0:1 0 47 4 320:1 < JT � 0:25 0 29 94 68JT > 0:25 100 24 2 0The trained MLP 
onsists of two input units, one output neuron, bias unit andtwo hidden layers of seven and four neurons, respe
tively. A hyperboli
 tangentfun
tion is 
hosen as the a
tivation fun
tion of ea
h neuron. The initial weights are
hosen from a uniform distribution on the interval (�1; 1). Similarly, a hundredtraining pairs are 
hosen from a uniform distribution on the 
onsidered region ofu1; u2.The MLP is trained independently by four algorithms: BP (Rumelhart etal. 1986), BP with adaptive learning rate (BPA) (Demuth and Beale 1993), theESSS and ESSS-SVA algorithms, in the o�-line 
ourse, i.e. the sum of squarederrors of all training pairs is minimized. The �tness fun
tion for ESSS and ESSS-SVA has to be non-negative and is 
hosen in the form:�(u1; u2) = njb� aj � nXi=1 �yNA;v(u(i)1 ; u(i)2 )� f(u(i)1 ; u(i)2 )�2; (5.20)where n is the number of training pairs, (a; b)� = (�1; 1)� is the interval of outputvalues, f((u(i)1 ; u(i)2 ); f(u(i)1 ; u(i)2 )) j i = 1; 2; : : : ; ng is a set of training pairs, andfyNA;v(u(i)1 ; u(i)2 ) j i = 1; 2; : : : ; ng is a set of network answers.In order to 
ompare the learning methods, a fa
tor JT is de�ned:JT = RR� �yNA;v(u1; u2)� f(u1; u2)�2du1du2RR� f2(u1; u2)du1du2 ; (5.21)where � is the input ve
tor spa
e.In order to 
ompare the e�
ien
y of the proposed algorithms with the ex-isting approa
hes, a number (about 400 experiments for ea
h algorithm) of 
om-putational experiments were 
arried out. The 
orresponding results are listed inTable 5.1.The BP algorithm 
annot tea
h the network approximating the 
onsideredfun
tion in all samples. It gets stu
k in lo
al minima. If the MLP is learnedsu

essfully by the BPA algorithm, the optimal point in the weight spa
e is usuallyrea
hed perfe
tly. But about a quarter of simulations gives bad results. In pra
ti
e,the ESSS and ESSS-SVA algorithms stop with su

ess. In the 
ase of the ESSS,the a

ura
y of the global optimum lo
ation is weak. It results from the fa
t



5. Optimization tasks in neural models designing 113that the value of the standard deviation � of the normal distribution used inparents' modi�
ation (Table 1.3) is too large for a high a

ura
y of extreme �tting.But de
reasing of � de
reases the e�
ien
y of saddle 
rossing. The �-adaptationme
hanism used in the ESSS-SVA algorithm improves the sear
hing a

ura
y.Unfortunately, the ESSS and ESSS-SVA algorithms possess some 
riti
al de-fe
t, whi
h is the feature of all evolutionary methods. This is extremely long timeof sear
hing the solution. They operate on populations of power from severaldozens to hundreds points of the multi-dimensional weight spa
e. These feature ofthe ESSS and ESSS-SVA methods suggests that a hybrid method, whi
h 
ombinesthem with a method of lo
al optimization, 
an be more e�
ient.5.4. Learning te
hniques for DMLPLet us 
onsider an M -layered network with dynami
 neurons des
ribed by di�er-entiable a
tivation fun
tions F (�). The a
tivity ums (k) of the s-th neuron in them-th layer is de�ned byums (k) = F 0��ms � nXi=0 bmis Sm�1Xp=1 wmspump (k � i)� nXi=1 amis 'ms (k � i)�1A(5.22)The main obje
tive of the learning pro
ess is to adjust all the unknown net-work parameters v (5.8) based upon a given training set of input-output pairs. TheMLP stru
ture of the DMLP suggests that some kind of the BP algorithm 
an beimplemented. However, if an internal re
urren
e is presented (Fig. 5.1), the lo
al-ized 
al
ulation of the gradient be
omes di�
ult, be
ause the present output ofthe network yNA;v(k) depends on the past outputs. In order to solve this problem,the Dynami
 BP algorithm (DBP) (Baldi 1995) with extension for the DMLP, so
alled Extended DBP (EDBP) (Patan and Korbi
z 1997, Korbi
z et al. 1998), willbe dis
ussed. The EDBP algorithm, similarly to the 
lassi
al BP, usually �nds oneof the lo
al unsatisfa
tory optima. A multi-start version of the EDBP algorithmvery seldom ends up su

essfully (Obu
howi
z and Patan 1998). Thus, algorithmsof global optimization should be implemented. Three types of the global opti-mization algorithms were used in the DMLP learning pro
ess: geneti
 algorithms(Patan and Jesionka 1999), sto
hasti
 algorithms (Patan and Obu
howi
z 1999),and the ESSS-FDM (Obu
howi
z 1999a). The last two will be dis
ussed in thisse
tion.5.4.1. Sto
hasti
 algorithmsIn this se
tion, an attempt to apply sto
hasti
 algorithms to training of the dy-nami
 neural network is undertaken. A similar study for a simple multi-layerper
eptron was presented by Tu et al. (1995). In that work, however, simula-tion was performed for a very simple XOR problem. In the 
ase of modelling of
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hniques for DMLPdynami
 non-linear pro
esses, a sum-squared error surfa
e is more 
omplex andmultimodal. Pure sto
hasti
 algorithms to the DMLP training pro
ess was pro-posed by Patan and Obu
howi
z (1999) as a simple te
hnique, whi
h allows toavoid the problem of the lo
al 
hara
ter of the EDBP algorithm. In this se
tion,algorithms whi
h have iterative 
hara
ter are 
onsidered. Assuming that the se-quen
e v0;v1; : : : ;vk is already appointed, a way of a
hieving next point vk+1 isformulated (Zieli«ski and Neumann 1983). All the algorithms des
ribed in thisse
tion are 
hara
terized by a very simple stru
ture.5.4.1.1. Sto
hasti
 algorithms with randomly 
hosen dire
tion of sear
hing(Algorithm A)The prin
iple of operation of these algorithms is that the dire
tion of sear
hingis 
hosen in a random manner, and after that in this dire
tion a step of suitablelength is performed. Two 
ases 
an be distinguished here: 1) the step rate isestablished and 2) the step rate is 
hanged during optimization pro
edure. Letthere be given two sequen
es (ak)k>0 : ak > 0 and ("k)k>0 : "k > 0 ^ "k # 0. Leta ve
tor sequen
e (�k)k>0 : �k 2 U (S(0; 1)), ea
h �k is randomly 
hosen fromthe spheri
al surfa
e of radius equal to unity with the uniform distribution. Thesto
hasti
 algorithm with a given learning rate is de�ned by the formula:vk+1 = ( vk + ak�k JL(vk + ak�k) < JL(vk)� "k;vk otherwise; (5.23)where v is the ve
tor of all network parameters, and JL(vk) is the performan
eindex in the form of sum-square error:JL(vk) = PXp=1 �yNA;vk(p)� y(p)�2 : (5.24)Taking into a

ount equation (5.23), in the �rst 
ase one 
an speak about �su

ess",and in the other 
ase, � about �failure". A new, di�erent from previous, point vk+1,only in the 
ase of su

ess is obtained. A point vk + ak�k 
an be treated as a testpoint. The quantity ak is the step rate, and "k is the �improvement threshold".5.4.1.2. Sto
hasti
 algorithms with an estimation of a gradient (Algorithm B)The sto
hasti
 algorithm with an estimation of a gradient is de�ned a

ording tothe formula:vk+1 = vk � ak'̂ �vk� ; (5.25)where (ak)k>0 is a given sequen
e, and '̂ �vk� is an estimator of r' �vk�, where' �vk� = JL(vk)=kJL(vk)k. This estimator 
an be expressed in the form:'̂ �vk� = ĴL �vk�

ĴL (vk) 

 ; (5.26)



5. Optimization tasks in neural models designing 115where ĴL �vk� 6= 0 is the estimator of the rJL at the point vk. Let (
k)k>0 :
k > 0 be a sequen
e of positive numbers, and (�k)k>0 : �k 2 U (S(0; 1)) be ave
tor sequen
e of independent random dire
tions with uniform distribution. Theestimator ĴL �vk� 
an be des
ribed as:ĴL �vk� = JL �vk + 
k�k�� JL �vk�
k �k: (5.27)It is ne
essary to note that in this 
ase:'̂(vk) = sgn hJL �vk + 
k�k�� JL �vk�i �k (5.28)and the algorithm under 
onsideration 
an be transformed to the formula:vk+1 = 8>><>>: vk � ak�k if JL(vk + 
k�k) > JL(vk);vk + ak�k if JL(vk + 
k�k) < JL(vk);vk otherwise: (5.29)In this 
ase, the point vk + 
k�k 
an be treated as a test point. This algorithmadmits points with better as well as worse quality (
ompare with (5.23)). Thus, ittakes the feature of 
rossing saddles in sum-square error lands
ape.5.4.1.3. Sto
hasti
 algorithms with randomly 
hosen sample points(Algorithm C)Let there be two sequen
es (rk)k>0 : rk > 0 and ("k)k>0 : "k > 0 ^ "k # 0. Leta ve
tor sequen
e (�k)k>0 : �k 2 U (K(0; rk)), ea
h �k is randomly 
hosen fromthe sphere of radius equal to rk with the uniform distribution. The sto
hasti
algorithm with a given learning rate is de�ned by the formula:vk+1 = ( �k JL(�k) < JL(vk)� "k;vk otherwise: (5.30)5.4.1.4. Illustrative exampleLet us 
onsider the following identi�
ation problem of a nonlinear dynami
 systemdes
ribed by the equation (Narendra and Parthasarathy 1990):y(k) = y(k � 1)y(k � 2)y(k � 3)u(k � 1)�y(k � 3)� 1�+ u(k)1 + y2(k � 2) + y2(k � 3) : (5.31)To solve this problem, the DMLP with one input and one output units, and onehidden layer with �ve units has been applied (Patan and Korbi
z 1996). Allthe neurons have the se
ond order IIR �lter (the network of the N 21;5;1 
lass), sothe 
onsidered network has 46 learning parameters. The network stru
tures and
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hniques for DMLP

Fig. 5.4 . Evolution of training: (a) algorithm A: ak = 0:1; "k = 0; k = 1; : : : ; 104; (b)and (
) algorithm B: ak = 0:1; 
k = 0:1; k = 1; : : : ; 104; (d) algorithm C:rk = 1; "k = 0; k = 1; : : : ; 5 � 104learning parameters have been 
hosen experimentally. Training of the networkwas 
arried out using, by turns: the sto
hasti
 algorithm with a randomly 
hosensear
h dire
tion (algorithm A), the sto
hasti
 algorithm with gradient estimation(algorithm B), and the sto
hasti
 algorithm with randomly 
hosen sample points(algorithm C) (Patan and Obu
howi
z 1999). Illustrative examples of trainingpro
essing are presented in Fig. 5.4. As it 
an be seen, none of the proposedalgorithms is able to train the network a

urately. In the best 
ase the sum-squared error was approximately equal to 0:65. This large error value does notassure a high modelling quality. In spite of the fa
t that these algorithms fail,some interesting remarks 
an be formulated.Both algorithms A and B solve the training problem with an equivalent a

u-ra
y. Training with the algorithm A seems to be more stable. It results from thefa
t that, unlike in the algorithm B, only the best ve
tors are a

epted as a basefor the next sear
hing in the algorithm A. The algorithm B sporadi
ally 
rossessaddles in sum-square error lands
ape, but bene�ts following from this fa
t arenot to be noti
eable. The e�
ien
y of the algorithm C is the worst. However, inthe 
ase of the multi-layer per
eptron training, it usually gives the best results. It
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t that there is a very ri
h topology of the sum-squareerror fun
tion, in the 
ase of 
hosen non-linear system (5.31), and �tting a suit-able algorithm parameters is very di�
ult. However, if an adaptation of algorithmparameters is implemented, the fast sto
hasti
 algorithms might train the DMLPwith better e�
ien
y. A very important remark is that the sto
hasti
 and gradientalgorithms 
an be 
ombined. Thus, a hybrid method is obtained, within whi
hthe sto
hasti
 algorithm 
an a
t as a me
hanism whi
h se
ures running away fromlo
al minima.5.4.2. Evolutionary algorithmsThe idea of a soft algorithm appli
ation to DMLP learning pro
ess was �rst in-trodu
ed by Patan and Jesionka (2000, 1999). They used the geneti
 algorithmto learn the DMLP whi
h had to identify a dynami
 system. In order to imple-ment the GA to the DMLP training, the 
hromosome should 
ontain informationabout the weights w of synapti
 
onne
tions between neurons, the feedba
k a andthe feed-forward b parameters for ea
h neural IIR �lter and the slope parame-ters � for ea
h DNM unit. The 
hromosome length depends on the number ofbits, whi
h 
ode ea
h network parameter. The DMLP 
onsidered in (Patan andJesionka 1999) belongs to the 
lass N 11;5;1 (one input, �ve hidden and one outputunits with the �rst order IIR). Thus we have 40 network parameters to adjust. Letall the parameters be from the range [-1,1℄. If ea
h parameter is to be representedwith a

ura
y equal to 10�5, then we need 18 bits per network parameter and 720bits per 
hromosome. If the size of population is equal to 200, then the algorithmoperates on 144 thousand bits per epo
h (!).The results obtained are not satisfying (Patan 2000). The GA is not an opti-mization algorithm in the sense of rea
hing an optimum with a desired a

ura
y. Itis not asymptoti
ally 
onvergent to an optimum. Thus, the best element obtainedin the history of a GA pro
essing is proposed to be the initial one for the lo
aloptimization method, e.g. the EDBP algorithm. The resulting DMLP revealsa high quality of system identi�
ation. This te
hnique, whi
h 
ombines the GAand EDBP algorithms gives a very good neural model. In order to evaluate themodelling results the dis
rete version of the quality index (5.21) is de�ned in theform (Obu
howi
z and Patan 1998):JT = PPp=1 �yNA;v(p)� y(p)�2PPp=1 y2(p) ; (5.32)where P is the size of the testing set. The quality indi
es JT (5.32) obtained forthe DMLP models learned using the GA and EDBP algorithms are lower severaltimes then these DMLP models, whi
h have been learned by the EDBP algorithmonly (Patan 2000).Besides unquestionable advantages, the GA has several drawba
ks. First ofall, this algorithm is numeri
ally 
omplex, and training time is very long. More-over, training using the GA 
an be performed only o�-line. Therefore, the GAs
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hite
ture optimizationshould be applied in very di�
ult optimization problems, where 
lassi
al methodsfail, and a very high modelling quality is required.Some of the GA disadvantages whi
h o

ur in the DMLP learning pro
esshave been over
ome using the ESSS-FDM algorithm (Obu
howi
z 1999a, Korbi
zet al. 1999). Unlike the GA, the ESSS-FDM algorithms works using �oatingpoint representation and there are no problems with the long 
hromosomes. TheESSS-FDM algorithm has been su

essfully implemented in the 
ase of a time-varying performan
e index (Obu
howi
z 1999b), thus the attempt at applyingthis algorithm to the on-line learning pro
ess ends in su

ess (Obu
howi
z 1999a).To model Narendra's dynami
 system (5.31), a DMLP network belonging to
lass N 21;5;1 was 
hosen (one hidden layer with �ve neurons). Ea
h neuron 
ontainsa se
ond-order IIR �lter. Hen
e, 52 adaptable parameters have to be adjusted inthe training pro
ess. The parameters of the ESSS-FDM algorithm were as follows:the size of population � = 20; the momentum � = 0:0545; the maximum numberof iterations tmax = 5000; the varian
e of modi�
ation � = 0:075 for t � 200 and� = 0:015 for t > 200. A set of 500 training patterns for the on-line trainingpro
ess was generated. Figure 5.5 shows the system and neural model outputs fordi�erent 
hosen inputs.In the 
ase of the DMLP network trained with the ESSS-FDM algorithm, avery good quality (JT = 0:0058) was obtained for the testing signalu(k) = (sin(2�k=250) for k � 250;0:8 sin(2�k=250) + 0:2 sin(2�k=25) for k > 250: (5.33)The obtained result is better than all known results for the Narendra's system(5.31) in the literature (Narendra and Parthasarathy 1990, Spe
ht 1991, Patanand Korbi
z 1996, Obu
howi
z and Patan 1998). From Fig. 5.5 it follows that theperforman
e of the system modelling is high for di�erent inputs. Unfortunately,the ESSS-FDM algorithm is more time-
onsuming than the EDBP one. Basedon this approa
h a good quality model of the dynami
 pro
ess 
an be designed.It was found that the DMLP network with ESSS-FDM learning algorithm 
an beapplied in the 
ases where high modelling quality is required and the learning timedoes not matter. In other 
ases, the EDBP algorithm is re
ommended to train theDMLP network.5.5. The MLP ar
hite
ture optimizationLet us 
onsider the MLP network with two hidden layers and units with sigmoida
tivation fun
tion (Fig. 5.6).Four spa
es 
an be distinguished: the input spa
e U , and its su

essive pat-terns Yh1 = Rh1(U), Yh2 = Rh2(Yh1) and Y = Ro(Yh2), where Rh1, Rh2 and Roare mappings realized by both hidden and output layers, respe
tively. Numbersof input and output units are de�ned by dimensions of input and output spa
es.The number of hidden units in both hidden layers depends on an approximationproblem solved by a network. Further 
onsideration are based on the followingtheorem (Wang et al. 1992):
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Quality index J=0,0058 Quality index J=0,01658

Quality index J=0,01639 Quality index J=0,06991

Quality index J=0,02006 Quality index J=0,0222

Fig. 5.5 . The system output (solid line) and the DMLP output (dotted line) to a set of
hosen inputs.
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Rh1 Rh2 RoU Yh1 Yh2 YFig. 5.6 . The MLP network with three layersTheorem 5.5.1. Let �L be a �nite set of training pairs asso
iated with �niteand 
ompa
t manifolds. Let f be some 
ontinuous fun
tion. Taking into a

ountthe spa
e of three-level MLPs, there exists an unambiguous approximation of the
anoni
al de
omposition of the fun
tion f , if and only if the number of hiddenneurons in ea
h hidden layer is equal to the dimension of subspa
e of the 
anoni
alde
omposition of the fun
tion f .Theorem 5.5.1 gives ne
essary and su�
ient 
onditions for existing of the MLPapproximation of the 
anoni
al de
omposition of any 
ontinuous fun
tion. These
onditions are following. The U and Y must be fully represented by the trainingset �L. The network 
ontains more than two hidden layers, whi
h are enoughfor implementation of the 
onsidered approximation of 
anoni
al de
ompositionof any 
ontinuous fun
tion. The goal of the �rst hidden layer is to map the n-dimensional input spa
e U into the spa
e Yh1 = Rh1(U), whi
h is inverse imageof the output spa
e in the sense of the fun
tion f . Thus, the mapping Yh1 ! Yis invertible. The number of units in the �rst hidden layer 
ard(V1) is equal to adimension of the minimal spa
e, whi
h still fully represent input data, and is, ingeneral, lower than the dimension of input ve
tors.Theorem 5.5.1 guarantees, that an approximation of the 
anoni
al form offun
tion f exists and is unambiguous. If 
ard(V1) is higher than the dimensionof the 
anoni
al de
omposition spa
e of the fun
tion f , the network does notapproximate the 
anoni
al de
omposition, but 
an still be the best approximationof the fun
tion f . However, su
h an approximation is not unambiguous, anddepends on the initial 
ondition of the learning pro
ess. On the other hand,if the number 
ard(V1) is too low, the obtained approximation is not optimal.So, both de�
ien
y and ex
ess of neurons in the �rst hidden layer lead to poorapproximation.As it has been pointed out above, the �rst layer redu
es the dimension of thea
tual input spa
e to the level su�
ient for the optimal approximation. Next twolayers, se
ond hidden and output, are su�
ient for realization su
h an approxima-



5. Optimization tasks in neural models designing 121tion (Cybenko 1989, Hornik et al. 1989). The number of units in the se
ond hiddenlayer 
ard(V2) is determined by an assumed error of the approximation. Lowesterror needs higher 
ard(V2). The 
ru
ial tradeo� one has to make is between thelearning 
apability of the MLP and �u
tuations due to the �nite sample size. If
ard(V2) is too small, network might not be able to approximate well enough thefun
tional relationship between the input and target output. If 
ard(V2) is toogreat (
ompared to the number of training samples), the realized network fun
-tion will depend too mu
h on the a
tual realization of the training set (Geman etal. 1992).The above 
onsideration suggests, that the MLP 
an be used to approximationof a 
anoni
al de
omposition of any fun
tion spe
i�ed on the 
ompa
t topologi
almanifold. The following question 
omes to mind: why is the 
anoni
al de
ompo-sition needed? Usually, essential variables, whi
h fully des
ribe the input-outputrelation, are not pre
isely de�ned. Thus, the approximation of this relation 
anbe di�
ult. The existen
e of the �rst layer allows to transform a real data to theform of the 
omplete set of variables of an invertible mapping. If the input spa
eagrees with the inverse image of the approximated mapping, the �rst hidden layeris unne
essary.5.5.1. Methods 
lassi�
ationPro
edures, whi
h sear
h the optimal ANN ar
hite
ture, have been studied fordozen or so years. Espe
ially an es
alation of papers took pla
e in 1989�1991. Atthat time almost all standard solutions were published. In subsequent years thenumber of publi
ations signi�
antly de
reases. Most of proposed methods werededi
ated to spe
i�
 types of neural networks. But new results are still needed.There are very ri
h bibliography items and various methods to solve thisproblem. Re
ently, a variety of ar
hite
ture optimization algorithms have beenproposed. They 
an be divided into three 
lasses (Doering et al. 1997, Obu
howi
z2000a):� bottom-up approa
hes,� top-down approa
hes,� dis
rete optimization methods.Starting with a relatively small ar
hite
ture, bottom-up pro
edures in
reasethe number of hidden units and thus in
rease the power of the growing network.One of the �rst methods was proposed by Mezard and Nadal (1989). Their tilingalgorithm is dedi
ated for the MLP, whi
h have to map Boolean fun
tions of bi-nary inputs. Creating subsequent layers neuron by neuron the tiling algorithmsu

essively redu
es the number of training patters, whi
h are not linearly separa-ble. Similar approa
h was introdu
ed by Frean (1990). Both algorithms give MLPar
hite
tures in a �nite time, and this ar
hite
tures aspire to be almost optimal.In (Hirose et al. 1991) the extension of the ba
k-propagation algorithm has beenproposed. This algorithm allows to add or redu
e hidden units depending on an
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hite
ture optimizationa
tual position of the training pro
ess. Ash (1989), Setiono and Chi Kwong Hui(1995) proposed that the training pro
ess of the sequential 
reated networks isinitiated using values of parameters from previous obtained networks. Wang and
o-workers (1994) built an algorithm based on the their Theorem 5.5.1 (Wang etal. 1992) , whi
h des
ribes ne
essary and su�
ient 
onditions that there exists aneural network approximation of an 
anoni
al de
omposition of any 
ontinuousfun
tion. The 
as
ade-
orrelation algorithm (Fahlman and Lebierre 1990) buildsan ANN of original ar
hite
ture. The bottom-up methods prove to be the most�exible approa
h, though 
omputationally expensive, 
omplexity of all known al-gorithms is exponential. Several bottom-up methods have been reported to traineven hard problems with a reasonable 
omputational e�ort. The resulting networkar
hite
tures 
an hardly be proven to be optimal. But, a further 
riti
ism 
on
ernsthe insertion of hidden neurons as long as elements of the training set are mis
las-si�ed. Thus the resulting networks posses a poor generalization performan
e andare disquali�ed for many appli
ations.Most of neural networks appli
ations uses the neural model of binary, bipolar,sigmoid or hyperboli
 tangent a
tivation fun
tion. A single unit of this type rep-resents a hyperplane whi
h separates its input spa
e into two subspa
es. Throughthe serial-parallel units 
onne
tions in network, the input spa
e is divided intosubspa
es whi
h are polyhedral sets. The idea of the top-down methods is gradualredu
tion of the hidden unit number in order to simplify shapes of the division ofthe input spa
e. In this way the generalization property 
an be improved. Three
lasses of top-down appli
ation may be distinguished:� sensitive methods,� penalty fun
tion methods, and� 
ovarian
e analysis methods.A sensitivity of an synapti
 
onne
tion is a measure of the in�uen
e of this 
onne
-tion redu
tion on a quality measure of the network. First de�nitions of the sensi-tivity measure was proposed by Mozer and Smolensky (1989) and Karnin (1990),but the most known sensitivity algorithms are Optimal Brain Damage (LeCun etal. 1990) and its extension: Optimal Brain Surgeon (Hassibi and Stork 1993). Theidea of the penalty fun
tion methods is modi�
ation of the quality measure of anANN by adding a fa
tor whi
h penalizes a network for the ex
ess of ar
hite
tureelements (Chauvin 1989, Hertz et al. 1991). The topologi
al optimization may beprovided by the distribution analysis of the eigenvalues of the 
ovarian
e matrixof output signals of hidden units. It is assumed that as many hidden units 
an beredu
ed as there are eigenvalues negligently small (Weigend and Rumelhart 1991).Alippi and 
o-workers (1997) transform the 
ovarian
e matrix of output signalsof hidden units into diagonal matrix using, so 
alled, virtual layer, and than thegeneralization performan
e is improved by redu
ing virtual neurons with insignif-i
ant output signals. The top-down approa
hes inherently assume knowledge ofa su�
iently 
omplex network ar
hite
ture that 
an always be provided for �-nite size training samples. Be
ause the algorithms presented up to now 
an only
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ial 
ases of redundan
y redu
tion in a network ar
hite
ture, they arelikely to result in a network that still oversized. In this 
ase the 
as
ade-redu
tionmethod (Obu
howi
z 1999d), where the obtained ar
hite
ture using a given top-down method is an initial ar
hite
ture for next sear
hing pro
ess, 
an be a goodsolution.The spa
e of ANN ar
hite
tures is an in�nite dis
rete spa
e and there are veryri
h bibliography items about implementation of dis
rete optimization methods tosolve the ANN ar
hite
ture optimization problem. In parti
ular, evolutionaryalgorithms, espe
ially geneti
 algorithms, seem to have gained a strong attra
tionwithin this 
ontext (
.f. (Bornholdt and Graudenz 1991, Harp et al. 1989, Kitano1990, Koza and Ri
e 1991, Marshall and Harrison 1991, Miller et al. 1989, Nagaoet al. 1993, Obu
howi
z and Politowi
z 1997)). Nevertheless, implementations ofthe A? algorithm (Doering et al. 1997, Obu
howi
z 1999
) and the SimulatingAnnealing (Obu
howi
z 2000a) deserve an attention.One of the most interesting approa
hes, proposed by Doering and 
o-workers(1997), where the 
ru
ial point 
ertainly is the e�
ient use of information alreadygained during training a sequen
e of network ar
hite
tures. The A?-algorithm isapplied. It is known that it uses heuristi
 information in an optimal way and thusis superior to all other algorithms working with the same heuristi
 information,i.e., it �nds the optimal ar
hite
ture by exploring the smallest possible subset ofthe sear
h spa
e.5.5.2. Evolutionary algorithms approa
h to ANN ar
hite
ture optimizationAppli
ation of the evolutionary algorithms to the 
onstru
tion pro
ess of neuraltools has just a history of a dozen or so years. Evolutionary algorithms 
an beused in three types of problems:� learning pro
ess of an ANN with �xed ar
hite
ture;� sear
hing for an optimal ANN ar
hite
ture, the learning pro
ess is done usinganother method, e.g. the BP algorithm;� solving both above problems simultaneously.The �rst type of problems was 
onsidered in Se
tion 5.3, the others are thesubje
t of this point. Among all known EAs, geneti
 algorithms seem to be themost natural tool for sear
hing a dis
rete spa
e of ANN ar
hite
tures. This fa
tresults from the 
lassi
al stru
ture of a 
hromosome � a string of elements froma dis
rete set, e.g. a binary set.The most popular representation of the ANN ar
hite
ture is a binary string(Bornholdt and Graudenz 1991, Harp et al. 1989). At �rst, an initial ar
hite
tureNAmax must be 
hosen. This ar
hite
ture must be su�
ient to realization ofa desired input-output relation. The NAmax de�nes the upper limit of sear
hingar
hite
tures 
omplexity. Next, all units of the NAmax have to be numbered from 1toN . In this way, the sear
hing spa
e of ANN ar
hite
tures is limited to 
lass of alldigraphs of N nodes. Any ar
hite
ture NA (a graph) of this 
lass is represented by
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hite
ture optimizationits 
onne
tion matrix V of elements equal to 0 or 1. If Vij = 1 then there exists thesinapti
 
onne
tion from i-th unit to j-th one, Vij = 0 otherwise. A 
hromosomeis built by rewriting the matrix V row by row to a bit string of length N2. Usingsu
h a representation of an ANN ar
hite
ture a standard GA algorithm 
an beused (see Se
tion 1.2.1).It is easy to see, that the above representation 
an des
ribe an ANN of anyar
hite
ture: the feedforward networks as well as re
urrent ones. If a 
lass of 
on-sidered networks is limited to the MLP then the matrix V 
ontains many elementsequal to 0 and 
annot be 
hanged during a sear
hing pro
ess. Su
h a limitation
ompli
ates geneti
 operations and o

upies a wide memory in a 
omputer. Thus,the passing over this elements in the representation is sensible (Obu
howi
z andPolitowi
z 1997).Usually, an ANN has from hundreds to thousands synapti
 
onne
tions inpra
ti
al appli
ations, and a binary 
ode representing su
h an ANN ar
hite
ture isvery long. This fa
t 
auses that standard geneti
 operations are not e�e
tive. The
onvergen
e of the geneti
 pro
ess deteriorates with in
reasing the 
omplexity ofthe ANN ar
hite
ture. Miller and 
oworkers (1989) propose geneti
 representationof the ANN ar
hite
ture in the form of the 
onne
tion matrix V. The 
rossoveroperator is de�ned as an ex
hange of randomly 
hosen rows or 
olumns betweentwo matri
es. In the 
ase of the mutation, ea
h bit is turned with some (verysmall) probability.Presented above methods of the geneti
 representation of the ANN ar
hite
-ture are 
alled dire
t en
oding (Kitano 1990). This term informs that ea
h bitrepresents one synapti
 
onne
tion in the ANN stru
ture. The disadvantage ofthese methods is too slow 
onvergen
e of the geneti
 pro
ess, or la
k of 
onver-gen
e in the limit of very large ar
hite
tures. Furthermore, if the initial ar
hite
-ture NAmax is very 
omplex, the result of su
h geneti
 sear
hing pro
ess is notso optimal as 
an be 
hara
terized by some 
ompression level. The measure ofthe method e�
ien
y 
an be, so 
alled, the 
ompression index (Obu
howi
z andPolitowi
z 1997) de�ned by the form:� = �?�max � 100%; (5.34)where �? is a number of synapti
 
onne
tions in the resulted ar
hite
ture, �maxis the maximal number of 
onne
tions whi
h is a

eptable in a given ar
hite
turerepresentation.In order to illustrate this 
ompression ability of the geneti
 approa
h withthe dire
t en
oding, let us 
onsider the MLP, whi
h implements logi
al 
onjun
-tion (AND), in
lusive OR and ex
lusive OR (XOR) of two bits. This problem isdes
ribed in the work (Obu
howi
z and Politowi
z 1997). The number of inputand output units is de�ned by the dimension of the input ve
tor u 2 IR2 and theoutput ve
tor y 2 IR3. For simpli�
ation the network ar
hite
ture is limited toone hidden layer (Fig. 5.7). The problem is redu
ed to the number � of hiddenneurons and the number � of synapti
 
onne
tions determination. The de�nition
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ements bias bias
u1u2

andorxorun 12�Fig. 5.7 . The ar
hite
ture of the network implementing three logi
al fun
tions of twobits.of the quality 
riterion is de�ned as followsJT = ��(NA) + 
t(NA); (5.35)where t(NA) is the dis
rete learning time, � and 
 are weight parameters de
iding,whi
h fa
tor, the number of 
onne
tion �(NA) or the learning time t(NA) is moreessential.Two evolutionary algorithms are used. First of them is the 
lassi
al GA, whi
hworks on the binary string of the length l, i.e. an individual belongs to the spa
eI = f0; 1gl. The maximized �tness fun
tion is non-negative:�(NA) = �� JT (NA); (5.36)where the 
ost JT is de�ned by (5.35). As a stop 
ondition, a maximum number ofiteration is set. The sele
tion s : I� ! I� generates two parent elements using theroulette method. The one-point 
rossover o

urs with the probability �r = 0:6. Themutation sporadi
ally ex
hange one bit in the string with probability �m = 0:033for ea
h bit. The se
ond algorithm, 
alled Geneti
-Evolutionary Sear
h Algorithm(GESA), has been proposed in (Obu
howi
z and Politowi
z 1997). It di�ers fromthe 
lassi
al GA in three fa
ts. Unlike the GA, � parent elements are sele
ted froma
tual population of � elements by the roulette method. The 
rossover operator isomitted. The probability of mutation �k of the k-th element is not 
onstant, but:�k = 0:1�m ln� 2�k � 1� ; (5.37)where �m is an input parameter, and �k 2 [0; 1℄ is a uniformly distributed randomnumber. The learning pro
ess for ea
h testing ar
hite
ture is done using the BPalgorithm. Figure 5.8 illustrates the 
ompression ability of both algorithms.The alternative 
lass of geneti
 representations of an ANN ar
hite
tures is theindire
t en
oding (Kitano 1990, Koza and Ri
e 1991, Marshall and Harrison 1991).
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hite
turePSfrag repla
ements 0
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�10�10 �20�20 �30�30 �40�40 �50�50 �60�60 20002000 40004000 60006000 80008000 1000010000Fig. 5.8 . Fitness of the best individual in time in the 
ase of the GA (a) and GESA (b)for di�erent values of � = 2; 3; : : : ; 10 (� = 2 � the top 
urve, and � = 10 �the bottom 
urve). For the e�
ien
y 
omparison � = 0 in the equation (5.36).The high of the 
urve fault is proportional to the 
ompressing fa
tor � (5.34)In the work (Marshall and Harrison 1991) an individual 
ontains binary en
odedparameters of an MLP ar
hite
ture (the number of hidden layers, the number ofhidden neurons in ea
h layer, et
.) and parameters of the BP algorithm usedfor learning this MLP (the learning fa
tor, the momentum fa
tor, the desireda

ura
y, the maximal number of iterations, et
.). A dis
rete �nite set of values isde�ned for ea
h parameter, the 
ardinality of this set depends on the number ofbits assigned for a given parameter. In this 
ase the geneti
 pro
ess sear
hes notonly for the optimal ar
hite
ture but for optimal training pro
ess, too.The other proposition (Kitano 1990) is a graph-based en
oding. Let thesear
hing spa
e be limited to ar
hite
tures, whi
h 
ontain 2h+1 units at the most.Then, the 
onne
tion matrix 
an be represented by a tree of h levels, and ea
hnode of this tree possesses four su

essors of is the leaf. Ea
h leaf is one of the16 possible matri
es 2 � 2 of binary elements. Four leaves of a given node of thelevel h � 1 de�ne a 4� 4 matrix, et
. In this way the root of the tree representsthe whole 
onne
tion matrix. Crossover and mutation operators are de�ned inthe same way as in GP method (Fig. 1.2). Koza and Ri
e (1991) apply the GPalgorithm (see Se
tion 1.2.2) for neural network design.5.6. Optimization of the DMLP ar
hite
tureThe signi�
an
e of network ar
hite
ture optimization in
reases when the DMLPis taken into 
onsiderations. The number of free network parameters rapidly in-
reases when one substitutes standard M
Cullo
h-Pitt's neurons by the DNMunits. Thus, there is some quality di�eren
e between ar
hite
ture allo
ation ofthe MLP and the DMLP. Apart from setting an appropriate number of hiddenlayers and the number of neurons in ea
h of these layers, the dynami
 order ofea
h parti
ular neuron has to be established in the DMLP.



5. Optimization tasks in neural models designing 1275.6.1. Simulated annealing with 
as
ade-redu
tion te
hnique5.6.1.1. Simulated annealing algorithmSimulated Annealing (SA) (Kirkpatri
k et al. 1992) is based on the observationof the 
rystal annealing pro
ess, whi
h has to redu
e 
rystal defe
ts. The systemstate is represented by a point S in the spa
e of feasible solutions of a givenoptimization problem. The neighbouring state S0 of the state S di�ers from Sonly in one parameter. The minimized obje
tive fun
tion E is 
alled the energyby the physi
al analogy, and the 
ontrol parameter T is 
alled the temperature.The SA algorithm is following:1. Choose the initial state S = S0 and the initial temperature T = T0.2. If the stop 
ondition is satis�ed then stop with the solution S else go to 3.3. If the equilibrium state is a
hieved, go to 8 else go to 4.4. Choose randomly a new neighbouring state S0 of the state S.5. Cal
ulate �E = E(S0)�E(S).6. If �E < 0 or � < exp(��E=T ), where � is uniformly distributed randomnumber from the interval [0; 1), then S = S0.7. Go to 3.8. Update T and go to 2.The non-negative temperature (T > 0) allows to 
hoose the state S0, whoseenergy is higher than the energy of the a
tual state S, as a base state for thefurther sear
h, and then, there is a 
han
e to avoid getting stu
k in a lo
al op-timum. Dislo
ations , whi
h deteriorate the system energy, are 
ontrolled by thetemperature T . Their range and o

urring frequen
y de
rease with T ! 0. As theequilibrium state 
an be 
hosen a state,when the energy almost does not 
hange(with a given a

ura
y, whi
h is a fun
tion of temperature) in a given time inter-val. This 
riterion is relatively strong and 
annot be a

omplished. So, usually,a number of iteration is �xed for a given temperature. The initial temperatureis the measure of the maximal �thermal� �u
tuations in the system. Usually, itis assumed that the 
han
e of a
hieving any system energy should be high in thebeginning of the sear
hing pro
ess. The linear de
reasing of the temperature isnot re
ommended. The linear annealing strategy 
auses the exponential de
reaseof �thermal� �u
tuations and the sear
hing pro
ess usually gets stu
k in a lo
aloptimum. Two annealing strategies are re
ommended:T (tn) = 8><>: T01 + ln tn�T (tn�1) ; (5.38)
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Fig. 5.9 . (a) The minimal number of synapti
 
onne
tions obtained using the GA (solidline), the GESA (dashed line ) and the SA (dotted line) as a fun
tion ofmaximal number of hidden units � (see Fig. 5.7); (b) The relationship betweenthe 
ompression index � (5.34) and �.where tn is the number of temperature updating, and � 2 [0; 1℄ is a given 
onstant.The annealing strategy determines the stop 
ondition. If the strategy (5.38) isused, the pro
ess is stopped when the temperature is almost equal to 0 (T < ").Firstly, the simulated annealing algorithm was applied as a re
reation pro
essof the Boltzmann ma
hine (Korbi
z et al. 1994). The SA implementations inthe learning of the MLP have not signi�
ant su

esses. But, it is very promisingalgorithm in the 
ase of sear
hing for the optimal ANN ar
hite
ture. In the work(Obu
howi
z 1998), the SA algorithm was 
ompared with the GA and GESA (seeSe
tion 5.5.2). Let the MLP ar
hite
ture be represented in the same way like inthe GA and GESA, i.e. by a bit string, where ea
h bit represents presen
e (1)or absen
e (0) of the 
orresponding synapti
 
onne
tion. A randomly generatedbit string is 
hosen as an initial solution S. The neighbouring solution S0 di�ersfrom the S only by one bit. The annealing strategy is 
ondu
ted in order tothe se
ond formulae of (5.38), where � = 0:9 and the initial temperature T0 =20. The algorithm ends if T < 0:05. Simulation experiments show that the SAalgorithm is more e�e
tive than the GA and GESA. Figure 5.9a presents therelationship between the minimal numbers of 
onne
tions (the global minimum�opt = 9) obtained by the GA, GESA, and SA, and the maximal permissiblenumber of hidden neurons � = 2; 3; : : : ; 10 (15 < �max < 63). Figure 5.9b presentsthe relationship between the 
ompression index � (5.34) and �. The dominationof the SA algorithm is 
learly seen.5.6.1.2. Cas
ade redu
tion with simulated annealingThe main idea of 
as
ade redu
tion is following (Obu
howi
z 1999d). We startwith a network stru
ture that is supposed to be su�
iently 
omplex and redu
e itusing a given algorithm. Thus, we obtain a network with �?(0) parameters from�max(0). In the next step we assume that �max(1) = �?(0) and apply redu
tionagain. This pro
ess is repeated until �?(k) = �max(k)(= �?(k � 1)).



5. Optimization tasks in neural models designing 129Let us 
onsider the dynami
 system des
ribed by (5.31), whi
h is modeled bythe DMLP network. The set of learning signals 
onsists only one type of the inputsignal � the white noise. The squared errorJL = 12D�yDMLP (k)� y(k)�2E; (5.39)is 
hosen as the 
ost fun
tion of the on-line learning pro
ess, whi
h is pro
eeded bythe EDBP algorithm. The training ends up if JL < 0:01 or the assumed maximumnumber of iterations (kmax = 10000) is a
hieved. The map (5.33) is 
hosen as atesting signal. The testing 
ost JT is de�ned by (5.32).Taking into a

ount results obtained in previous Se
tion (Fig. 5.9) the SAalgorithm seems to be the best 
hoi
e as a redu
tion pro
ess. An ar
hite
tureof the DMLP network is en
oded into a bit string, ea
h bit represents absen
eor presen
e of one free parameter of the DMLP network (weight of the synapti

onne
tion, the feedba
k ar feedforward parameter of the IIR �lters, et
.). Theparameters of the SA algorithm are 
hosen as: � = 0:95, T0 = 0:5. For simpli
ity,we assume that all DNM units possess se
ond-order IIR �lter. We start with thenetwork ar
hite
ture N 21:10:10:1 (one input unit, 10 units in the �rst hidden layer,10 units in the se
ond hidden layer, and one output unit � 246 free parameters).The sequen
e of network stru
tures obtained after ea
h SA pro
ess is as follows:N 21:10:10:1(246)! N 21:5:3:1(77)! N 11:5:1(46)! N 11:1:1(14): (5.40)The number of free parameters is des
ribed in bra
kets. Figure 5.10 presents theresponses of the dynami
 system (5.31) and the resulting DMLP on the testingsignal (5.33). Unfortunately, the above DMLP ar
hite
ture has been obtainedonly a 
ouple of times for dozens experiments. This fa
t proves that the EDBPalgorithm used to the network training usually �nds unsatisfa
tory lo
al minimain the spa
e of DMLP parameters.5.6.2. Cas
ade network of dynami
 neuronsThe basi
 idea of the 
as
ade-
orrelation algorithm is to redu
e iteratively theoutput error by inserting hidden units that 
orrelate (or anti-
orrelate) well withthe error. By freezing the network while optimizing the new hidden unit 
andidatethe algorithm avoids the moving targets problem of the standard BP algorithm(Fahlman and Lebierre 1990). Below, the 
as
ade-
orrelation algorithm adaptedto the dynami
 network and used in this work is des
ribed.This algorithm starts without any hidden units. The dire
t input-output
onne
tions are trained on-line using the gradient des
ent method. At this stage,the EDBP algorithm redu
ed to the version of one DNM unit learning 
an beapplied. If the network performan
e is satisfa
tory, the pro
edure is stopped,otherwise it attempts to redu
e the residual errors further by adding a new hiddenDNM unit to the network. The unit 
reation pro
ess begins with a 
andidate unitthat re
eives trainable input 
onne
tions from all of the networks external inputsand from all pre-existing hidden units. The output of this 
andidate unit is not yet
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Fig. 5.10 . Responses of the dynami
 system (5.31) (solid line) and the DMLP of N 11:1:1stru
ture (dotted line) on the testing signal (5.33) (JT = 0:011 (5.32))
onne
ted to the a
tive network. The adjusting of the 
andidate unit input weightsand its IIR parameters is performed to maximize the following performan
e index:	 = sMXi=1 ����� PXp=1(Vp � hV i)(Epi � hEii)����� (5.41)where sM is the number of output units, P is the number of training patterns,hV i = ( 1P )PPp=1 Vp and hEii = ( 1P )PPp=1Epi, Vp denotes the response of the
andidate on the input up and Epi is the output error on the input up.When a new DNM unit is added to the network, its adjusted parameters arefrozen, and all the output neurons parameters are trained again using the gradientdes
ent method. This 
y
le repeats until the output network error is a

eptable.In Fig. 5.11 an example of the neural network with two inputs and two outputsis shown. It is 
alled the Cas
ade Network of Dynami
 Neurons (CNDN) (Patanet al. 1999). Bla
k dots denote adaptable weights between neurons. This is afeed-forward series-parallel stru
ture. Ea
h neuron re
eives signals from all inputsand all hidden neurons. Su
h a stru
ture has some advantages in 
ontradistin
tionto the standard feed-forward networks. The �rst advantage is preventing movingtarget problem. This problem often o

urs in the standard feed-forward networks,where ea
h neuron adapts its parameters in a 
onstantly 
hanging environmentre
eiving only the input and output network data of small sizes. In fa
t, instead of aqui
k adjustment of its parameters, the hidden neurons engage in a 
omplex dan
e
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inputs

outputs

hidden
neurons

.
.
.

Fig. 5.11 . Examples of 
as
ade network with two inputs and two outputs.around the 
onstantly moving target. The more hidden neurons there are, theharder it is to a
hieve a good learning quality. In a 
as
ade network, ea
h hiddenneuron is trained separately. Thus, it re
eives all input and output learning dataand that is why it 
an adjust its parameters in a 
orre
t way. The other advantageis an optimal 
hara
ter of this stru
ture. The hidden neurons are added to thenetwork one by one until the output network error is a

eptable. In this way anoptimal neural network, in the sense of modelling quality, 
an be designed. It isne
essary to note that the proposed network is not optimal in the sense of thenumber of hidden neurons or number of parameters either.In order to illustrate the e�e
tiveness of the neural model based on the CNDN,let us 
onsider the Two-Tank System, whi
h 
onsists of two 
ylindri
al tanks withidenti
al 
ross se
tions being �lled with water and with a delay spiral pipeline (seeFig. 5.12). The nominal out�ow Qn is lo
ated at Tank 2. The pump driven bya DC motor supplies Tank 1, where Q1 is the in�ow of the liquid through pumpto Tank 1. Both the tanks are equipped with sensors for measuring the level ofthe liquid (h1; h2). Valves V1; V2; V3; V4 and VE are ele
troni
 swit
hing ones.The aim of the two-tank system 
ontrol is to keep up the water level in Tank 2
onstant.The high modelling quality has been obtained for relatively small CNDNar
hite
ture N3��1 (the CNDN 
onsists of 3 hidden DNM units and one outputDNM unit). Figure 5.13 
ompares the measured and model liquid levels in Tank 2.Basing on the CNDN models for a set of possible faults in the two-tank system, thee�e
tive fault diagnosis system has been proposed (Korbi
z et al. 1999, Korbi
z etal. 2001).5.6.3. Graph of the DMLP stru
turesThe optimum DMLP ar
hite
ture sear
hing pro
ess 
an be more e�e
tive if thespa
e of the DMLP ar
hite
tures will be ordered. Doering and 
oworkers (1997)propose the ordering of the MLP ar
hite
tures in the in�nite graph (Fig. 5.14).
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hite
ture
PUMP
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Fig. 5.12 . Two-tank system with a delay spiral pipeline.
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Fig. 5.13 . The measured (solid line) and modelled by the CNDN (dotted line) liquidlevels in Tank 2The notation �1 � �2 used in Fig. 5.14 denotes that the network 
onsists of �1neurons in the 1st hidden layer and �2 neurons in the 2nd hidden layer. Thenumber of units in the input and output layers are de�ned by the dimensions ofthe input and output spa
es, respe
tively.In the 
ase of the spa
e of the DMLP ar
hite
tures the 
orresponding graphG(A) is mu
h 
ompli
ated be
ause of IIR �lters existen
e in the DNM units(Obu
howi
z 1999
). The graph G(A) 
an be des
ribed by de�nition of the ex-pansion operator �(NA), whi
h generates all su

essor of a given ar
hite
ture NA.
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Fig. 5.14 . The graph of the MLP stru
tures.The expansion operator �(NA) 
reates the following su

essors.1. Varying the number of hidden layers. Assume the DMLP ar
hite
ture NA(5.7). The ar
hite
ture NA(1) with inserted hidden layer with one DNM unitv0 of zero orderNA(1) = �fV (1)m j m = 0; 1; : : : ;M + 1g;fo(1)ms j m = 1; 2; : : : ;M + 1; s = 1; 2; : : : ; smg; E(1)�;V (1)m = Vm; for m = 0; 1; : : : ;M � 1;V (1)M+1 = VM ;V (1)M = �v0	; (5.42)o(1)ms = oms ; for m = 0; 1; : : : ;M � 1; s = 1; 2; : : : ; sm;o(1)M1 = 0;o(1)M+1s = oMs ; for s = 1; 2; : : : ; sM+1(= sM );E(1) = E [ ��v; v0���v 2 V (1)M�1	[��v0; v���v 2 V (1)M+1	 n ��v�; v+���v� 2 V (1)M�1; v+ 2 V (1)M+1	is the su

essor of NA.
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hite
ture2. Varying the number of units in a hidden layer. Assume the ar
hite
ture NA(5.7) that has at least one hidden layer (M � 2). Then, all ar
hite
turesNA(2) with an inserted unit v00 in a i-th layer for i = 1; 2; : : : ;M � 1NA(2) = �fV (2)m j m = 0; 1; : : : ;Mg;fo(2)ms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E(2)�;V (2)m = Vm; for m 6= i;V (2)i = Vi [ fv00g; (5.43)o(2)ms = oms ; for m 6= i; s = 1; 2; : : : ; sm;o(2)isi+1 = 0;E(2) = E [ ��v; v00���v 2 V (2)i�1	 [ ��v00; v���v 2 V (2)i+1	;are su

essors of NA.3. Varying the IIR order of the DNM unit. Assume the ar
hite
ture NA (5.7).Then, all ar
hite
tures NA(3) with in
reased order of the IIR �lter in thej-th DNM unit of the i-th layer i = 1; 2; : : : ;M , j = 1; 2; : : : ; siNA(3) = �fVm j m = 0; 1; : : : ;Mg;fo(3)ms j m = 1; 2; : : : ;M ; s = 1; 2; : : : ; smg; E�;o(3)ms = oms ; for m 6= i; s = 1; 2; : : : ; sm; (5.44)o(3)is = ois; s 6= j;o(3)ij = oij + 1are su

essors of NA.Thus, �(NA) maps an ar
hite
ture NA with M � 1 hidden layers and Npro
essing DNM units onto M +N su

essors.The sear
hing pro
ess on the G(A) 
an be 
arried out by many ways. TheSA algorithm, the A? algorithm, and tabu sear
h seem to be the most interestingapproa
hes.5.6.4. Simulated annealing approa
hTaking into a

ount the en
ouraging results of the simulated annealing in the
as
ade-redu
tion method, it is �rst proposed method for sear
hing the optimalDMLP ar
hite
ture NA? in the graph G(A) (Obu
howi
z and Patan 1998). Start-ing with the random node S, the graph is sear
hed by the SA algorithm (see
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tion 5.6.1). A node, whi
h is dire
tly 
onne
ted with an a
tual base node S, istreated as a neighbouring ar
hite
ture S0.Similarly as in Se
tion 5.6.1, the dynami
 system des
ribed by (5.31) is 
on-sidered. The set of learning signals 
onsists of only one type of the input signal:the white noise. The squared error (5.39) is 
hosen as the 
ost fun
tion of theon-line learning pro
ess, whi
h is pro
eeded by the EDBP algorithm, for whi
h10000 learning patters have been generated. The training ends up if JL < 0:01or the assumed maximum number of iterations (kmax = 10000) is a
hieved. As atesting signal the map (5.33) is 
hosen. The testing 
ost JT de�ned by (5.32) istreated as a energy fun
tion for the SA (Se
tion 5.6.1).The optimization pro
ess has been set in motion a few dozen times for di�erentinitial DMLP ar
hite
tures, di�erent learning parameters, and di�erent annealingstrategies. Unfortunately, obtained results are not reprodu
ible. This problemresults from the fa
t, that the EDBP algorithm for a given network ar
hite
tureand a given set of learning parameters does not give the same results, but getsstu
k in di�erent for ea
h run lo
al optimum of the square error fun
tion. The mostoften obtained resulting ar
hite
tures are N 21:4:1 or N 21:5:1 (JT �= 0:012 � 0:019).However, it happens that the stru
tures N 21:10:1 or N 21:4:3:1 (JT �= 0:025� 0:035)have been treated as �optimal�.5.6.5. A??? and Tabu Sear
h approa
hes do DMLP ar
hite
ture optimization5.6.5.1. A??? algorithmThe A? algorithm, �rst des
ribed in (Hart et al. 1968, Nilsson 1980), is a wayto implement best-�rst sear
h to a problem graph. The algorithm will operate bysear
hing a dire
ted graph in whi
h ea
h node ni represents a point in the problemspa
e. Ea
h node will 
ontain, in addition to a des
ription of the problem state itrepresents, an indi
ation of how promising it is, a parent link that points ba
k tothe best node from whi
h it 
ame, a list of the nodes that were generated from it.The parent link will make it possible to re
over the path to the goal on
e the goalis found. The list of su

essors will make it possible, if a better path is found toan already existing node, to propagate the improvement down to its su

essors.A heuristi
 fun
tion f(ni) is needed that estimates the merits of ea
h gen-erated node. In the A? algorithm this 
ost fun
tion is de�ned as a sum of two
omponents:f(ni) = g(ni) + h(ni); (5.45)where g(ni) is the 
ost of the best path from the start node n0 to the node ni andit is known exa
tly to be the sum of the 
ost of ea
h of the rules that were appliedalong the best path from n0 to ni, and h(ni) is the estimation of the addition 
ostgetting from the node ni to the nearest goal node. The fun
tion h(ni) 
ontainsthe knowledge about the problem.The outline of the A? algorithm is des
ribed in many handbooks from thedomain of Arti�
ial Intelligent. In this work the algorithm in
luded in (Ri
h 1983)is implemented.
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hite
ture5.6.5.2. Tabu Sear
hThe tabu sear
h metaheuristi
 has been proposed by Glover (1986). This algo-rithms models pro
esses existing in the human memory. This memory is imple-mented as a simple list of solutions explored re
ently. The algorithm starts froma given solution x0, whi
h is treated as a
tually the best solution x�  x0. Thetabu list is empty T := ;. Next, the set of neighbouring solutions are generatedex
luding solutions noted in the tabu list, and the best solution of this set is 
hosenand is 
hosen as a new base point. If x0 is better than x� then x�  x0. The a
tualbase point x0 is added to the tabu list. This pro
ess is iteratively repeated until agiven 
riterion is satis�ed.There are many implementations of the Tabu Sear
h idea, whi
h di�er be-tween ea
h other in the method of the tabu list managing, e.g. Tabu Naviga-tion Method (TNM), Can
ellation Sequen
e Method (CSM), Reverse EliminationMethod (REM). Parti
ular des
ription of these methods 
an be found in (Gloverand Laguna 1997).5.6.5.3. ImplementationsIn order to apply the A? and Tabu Sear
h algorithms to an ar
hite
ture optimiza-tion of the DMLP we have to de�ne (Obu
howi
z and Patan 2003):� the optimization 
riterion � whi
h is 
hosen in the formJT �yNA;v?(k);y(k) j k 2 K� = Pk2K �yNA;v?(k)� y(k)�2Pk2K y2(k) ; (5.46)where yNA;v?(k) and y(k) are the output of the learned DMLP and desiredoutput, respe
tively.� an expansion operator �(NA) : A ! 2A de�ned be equations (5.42)�(5.44),whi
h maps any network ar
hite
ture NA 2 A onto a set of su

essors.Moreover, the following fun
tions have to be de�ned for the A? algorithm� the 
ost fun
tion g(NA;NA0) assigned to ea
h expansion operation:g(NA;NA0) = " 
(NA0)� 
(NA)Æ(NA0)� Æ(NA) # ; (5.47)where 
(NA) is the number of free parameters in the DMLP ar
hite
tureNA, and Æ(NA) is the number of hidden layers in NA;� the heuristi
 fun
tion h(NA)h(NA) = 264 JT �yNA;v?(k);y(k) j k 2 K�JT �yNA0;v?(k);y(k) j k 2 K�0 375 ; (5.48)where NA0 denotes the initial ar
hite
ture of sear
hing.
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i�
ation of the sele
ted neural networksMethodCHARACTERISTICS Tabu Sear
h � list length A?3 5 10Network stru
ture N21;1;1 N21;4;1 N21;4;1 N21;5;11st layer �lters orders (2) (2 1 1 0) (2 1 1 0) (2 1 0 2 1)2nd layer �lters orders (0) (1) (1) (2)Modelling quality 0:145051 0:139015 0:139015 0:123431Be
ause both g(NA;NA0) and h(NA) are ve
tor fun
tions, the relation p _�q mustbe de�nedp _�q , (p1 � q1)or�(p1 = q1)and(p2 � q2)�: (5.49)5.6.6. Experimental 
omparison of the A??? algorithm and Tabu Sear
hThis se
tion presents the experimental results a
hieved during sele
tion of the op-timal neural network stru
ture using sear
hing methods des
ribed in the previousse
tions (Obu
howi
z and Patan 2003). The neural network 
omposed of dynami
neuron models is used here to identify the dynami
 non-linear pro
ess representedby the following di�eren
e equation:y(k + 1) = y(k)1 + y(k)2 + u(k)3; (5.50)where u(k) and y(k) are the input and output of the pro
ess at the instant k,respe
tively. The learning pro
ess is 
arried out o�-line for 500 steps using theExtended Dynami
 Ba
k-Propagation algorithm and a pseudo-random input uni-formly distributed in the interval [�2; 2℄. The learning set 
onsists of 200 patternsand the learning rate is equal to 0.01. The training pro
edure of ea
h examinednetwork stru
ture is repeated four times in order to de
rease a 
han
e to get stu
kin lo
al minima of an error fun
tion. Furthermore, ea
h neuron in the networkhas the hyperboli
 tangent a
tivation fun
tion.The sele
tion of the optimal neural network stru
ture is performed using twosear
hing methods: the A? algorithm and the Tabu Sear
h method. The se
ondalgorithm is tested with di�erent number of stru
tures memorized, in turn 3, 5and 10. Results a
hieved during experiments are presented in Table 5.2, where thenotation Nnr;v;s denotes n-th layer neural network with r inputs, v hidden neuronsand s outputs, and (or1 or2 : : : orn) denotes that 1st neuron possesses or1 order�lter, 2nd one � or2 order �lter and n-th neuron � orn �lter order.Both sear
hing methods start with the minimal network stru
ture 
onsistingof the output neurons only. After that, the neural network is growing up. Atea
h algorithm step one parameter 
an be 
hanged: the number of hidden layers
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hite
ture(maximum 2 hidden layers) or the �lter order (maximum 2nd order) or the numberof neurons in hidden layers. The Tabu Sear
h algorithm makes is also possible toredu
e the network size. As one 
an see in Table 5.2, the best results have beenobtained using A? algorithm. The optimal network stru
ture sele
ted with thismethod 
onsists of two pro
essing layers and �ve hidden neurons. It is worth notinghere that this method has been run on three 
omputers and results obtained in theea
h 
ase are the same (the same network stru
ture, quality and optimal path).One 
an 
on
lude that the algorithm generates 
redible results. The optimal pathgenerated with the A? algorithm is presented in Table 5.3. In order to �nd theoptimal neural network, 558 stru
tures have been tested. Ea
h next network hasa bigger size than the previous one.Tab.5.3. Optimal path generated with the A? algorithmFilters ordersNetwork No. Network 1st layer 2nd layer Modellingstru
ture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718693 N21;1;1 (0) (1) 0.1449269 N21;1;1 (1) (1) 0.24966712 N21;1;1 (1) (2) 0.23952720 N21;2;1 (1 0) (2) 0.15130428 N21;3;1 (1 0 0) (2) 0.15211531 N21;4;1 (1 0 0 0) (2) 0.161490118 N21;4;1 (1 1 0 0) (2) 0.168057322 N21;4;1 (1 1 0 1) (2) 0.168039426 N21;5;1 (1 1 0 1 0) (2) 0.208492540 N21;5;1 (1 1 0 1 1) (2) 0.210782543 N21;5;1 (2 1 0 1 1) (2) 0.220161558 N21;5;1 (2 1 0 2 1) (2) 0.123431In the 
ase of the Tabu Sear
h method the results are also interesting. Whena short tabu list was used (length of 3), the algorithm demonstrated the periodi
behaviour. After every 23 stru
tures it generates the same optimal neural networkof the N21;1;1 
lass. To avoid su
h a periodi
 behaviour, the longer tabu lists havebeen applied (length of 5 and 10). Table 5.2 
learly shows that using longer tabulists, better results 
an be obtained. Moreover, in both 
ases the identi
al optimalpath has been a
hieved. The 
on
lusion is, that further in
reasing size of thetabu list does not yield better results. In Table 5.4 one 
an see the optimal pathgenerated with the Tabu Sear
h method (list length equal to 3). First, the network



5. Optimization tasks in neural models designing 139Tab.5.4. The optimal path generated with the Tabu Sear
h (list length � 3)Filters ordersNetwork No. Network 1st layer 2nd layer Modellingstru
ture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718633 N21;1;1 (0) (1) 0.1635889 N21;1;1 (1) (1) 0.16372528 N21;1;1 (1) (0) 0.14774933 N21;1;1 (2) (0) 0.145051is growing up, and for the network No. 28 the algorithm redu
es the network size.This phenomenon is very attra
tive and 
an 
ause that Tabu Sear
h may be more�exible method than the A? algorithm. In turn, Table 5.5 shows the optimal pathgenerated with the Tabu Sear
h algorithm using the tabu list length of 10.5.7. SummaryThe problem of the neural model design has been 
onsidered in this 
hapter.Two optimization tasks are distinguished in order to solve the main problem: thelearning pro
ess and the allo
ation of the optimal ar
hite
ture of the ANN.Lo
ally re
urrent neural networks, 
alled the DMLP, are 
onsidered. Thisnetwork is 
omposed of the DNM units, whi
h 
ontain an addition module be-tween the adder and a
tivation modules � the IIR �lter. Therefore, basing on theDNM units, one 
an build a dynami
 neural network of the multilayer feedforwardar
hite
ture.It has been shown that evolutionary algorithms are a very e�e
tive tool forneural models learning both in the MLP and DMLP 
ases. Espe
ially, results ofalgorithms from the ESSS family seem to be very promising. Unfortunately, theevolutionary approa
h to the ANN learning possesses some 
riti
al defe
t. This isextremely long time of sear
hing the solution. A hybrid method, whi
h 
ombinesEAs with a method of lo
al optimization, like the EDBP, 
an be more e�
ient.The neural model ar
hite
ture optimization belongs to the 
lass of dis
reteoptimization problems. However, there are many proposals of geneti
 approa
hesto this tasks, experiments provide the 
on
lusion that the heuristi
 sear
h methods,like the simulated annealing, A? algorithm and tabu sear
h, e�e
tively 
ompetewith GA implementations. Espe
ially in the 
ase of the DMLP network, wherespa
e of the of the network ar
hite
tures is represented by a digraph, the resultsobtained for the GA algorithm are so pure in 
omparison with other algorithmsthat they are not presented in this 
hapter.



140 5.7. SummaryTab.5.5. The optimal path generated with the Tabu Sear
h (list length � 10)Filters ordersNetwork No. Network 1st layer 2nd layer Modellingstru
ture (hidden) (output) quality0 N11;1 � (0) 0.2673252 N11;1 � (1) 0.1718633 N21;1;1 (0) (1) 0.1635889 N21;1;1 (1) (1) 0.16372538 N21;1;1 (2) (1) 0.15225142 N21;2;1 (2 0) (1) 0.16797649 N21;2;1 (2 0) (2) 0.16749454 N21;2;1 (2 1) (2) 0.15164961 N21;2;1 (2 1) (1) 0.15170664 N21;3;1 (2 1 0) (1) 0.15934774 N21;3;1 (2 1 0) (0) 0.15967780 N21;3;1 (2 0 0) (0) 0.16696184 N21;3;1 (2 0 1) (0) 0.15089888 N21;3;1 (2 0 1) (1) 0.15690393 N21;3;1 (2 1 1) (1) 0.16159197 N21;4;1 (2 1 1 0) (1) 0.139015The e�e
tiveness of an algorithm of an ANN ar
hite
ture optimizationstrongly depends on the e�e
tiveness of a learning algorithm, whi
h provides aquality information of an ANN of a given ar
hite
ture. in the 
ase of the DMLPnetworks, results of experiments presented in this 
hapter are obtained basing onthe EDBP algorithm as a learning method. This is a drawba
k of the presentedimplementations, be
ause of a low e�
a
y of the EDBP. Unfortunately, the ap-pli
ation of an evolutionary learning algorithm instead of the EDBP 
auses thesudden in
rease of time 
omplexity of 
onsidered ar
hite
ture optimization meth-ods.



Chapter 6
GENETIC PROGRAMMING APPROACHTO THE FDI SYSTEM DESIGN

There is an in
reasing demand for modern te
hnologi
al pro
esses to be
ome saferand more reliable. These requirements extend beyond normally a

epted safety-
riti
al systems of nu
lear rea
tors, 
hemi
al plants or air
raft to new system su
has autonomous vehi
les or fast rail systems. The early dete
tion of faults 
anhelp avoid systems shut-down, breakdown and even 
atastrophes involving humanfatalities and material damage. Therefore, it is 
lear that the problem of faultdiagnosis 
onstitutes an important subje
t (Korbi
z et al. 2002).During the last two de
ades many investigations were 
arried out using ana-lyti
al approa
hes, based on quantitative models. The idea is to generate signals,termed residuals, that re�e
t in
onsisten
ies between nominal and faulty systemoperation. Su
h signals are usually generated using analyti
al approa
hes (Chenand Patton 1999, Patton et al. 2000). Requirements for pre
ise and a

urate ana-lyti
al model imply that any resulting modelling error will a�e
t the performan
eof the resulting Fault Dete
tion and Isolation (FDI) s
heme (Frank 1998, Frankand Köppen-Seliger 1997). This is parti
ularly true for dynami
ally non-linear andun
ertain systems, whi
h represent the majority of real pro
esses. Therefore, anumber of resear
hers have seen arti�
ial intelligen
e methods, like arti�
ial neu-ral networks (Himmelblau 1992, Korbi
z et al. 1999, Korbi
z et al. 2001, Pattonet al. 1994, Sorsa and Koivo 1992), fuzzy logi
 or neuro-fuzzy systems (Calado etal. 2001, Ko±
ielny et al. 1999a, Ko±
ielny et al. 1999b, Pie
zy«ski 1999), expertsystems (Cholewa 2002, Fathi et al. 1992, Pie
zy«ski 1999) as an alternative wayto represent knowledge about faults.However, there are many te
hniques of non-analyti
al models 
onstru
tion, allof them, sooner or later, redu
e to a set of optimization problems, e.g. their stru
-ture optimization or parameter allo
ation. These problems are usually non-linear,multimodal, sometimes multi-
riteria. And standard lo
al optimization methodsare insu�
ient. Evolutionary algorithms, espe
ially, seem to be an attra
tive toolto solve these problems (Obu
howi
z and Korbi
z 2002).



142 6.1. Basi
 
on
epts of fault diagnosis systems
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Fig. 6.1 . Automati
 
ontrol system.6.1. Basi
 
on
epts of fault diagnosis systemsA fault 
an generally be de�ned as an unexpe
ted 
hange in a system of interest,e.g a sensor malfun
tion. All the unexpe
ted variations that tend to degrade theoverall performan
e of a system 
an also be interpreted as faults. Contrary to theterm failure, whi
h suggests 
omplete breakdown of the system, the term fault isused to denote a malfun
tion rather than a 
atastrophe.Sin
e a system 
an be split into three parts (Frank and Köppen-Seliger1997) (Fig. 6.1): a
tuators, pro
ess 
omponents, and sensors, su
h a de
ompo-sition leads dire
tly to three 
lasses of faults. A
tuators faults 
an be viewed asany malfun
tion of the equipment that a
tuate the system, e.g. a malfun
tion ofan ele
tro-me
hani
al a
tuator for a diesel engine (Blanke et al. 1994). Componentfaults 
an be interpreted as the 
ase when some 
hanges in the system make thedynami
 relation invalid, e.g. a leak in a tank in the two tank system. Sensorsfaults 
an be viewed as serious measurements variations. The faults 
an 
ommonlybe des
ribed as inputs. In addition, there is always a modelling un
ertainty due tounmodelled disturban
es, noise and model mismat
h. This may not be 
riti
al tothe pro
ess behaviour, but may obs
ure the fault dete
tion by rising false alarms.The automati
 fault dete
tion and isolation 
an be viewed as a sequentialpro
ess involving the symptom extra
tion and, basing on a
tual symptoms and/oradditional knowledge, the de
ision making about a fault o

urren
e (dete
tion) andits type, range and lo
ation (isolation) (Fig. 6.2). There are many fault diagnosismethods. The 
hoi
e of the method for a given diagnosis problem depends on itstype. Generally, two 
lasses of the fault diagnosis systems 
an be distinguished(Fig. 6.3). The �rst is based on the pattern re
ognition prin
iple (Fig. 6.3a). Thesemethods are e�
iently applied in the 
ase of stati
 diagnosed systems. Measuredsignals are initially pro
essed in the symptom extra
tion step using, e.g., the timewindows te
hnique (Kowal and Korbi
z 2000) or neural networks (Mar
iniak andKorbi
z 1999).The se
ond 
lass is model-based FDI systems (Fig. 6.3b), where the quality ofthe system strongly depends on the a

ura
y of its model. The residual generatorhas to form a suitable signal (residual signal) basing on outputs of the system andits model obtained for the same input signals. The appearan
e of any fault shoulda�e
t on the residual signal value. Basing on the residual signals, the system state



6. Geneti
 programming approa
h to the FDI system design 143
PSfrag repla
ements

faults disturban
esinput outputSystemSymptom extra
tionsymptomsDe
ision makingfault informationFig. 6.2 . S
hema of the FDI system(a) (b)
PSfrag repla
ements SystemModelResidual generationResidual evaluation Symptom extra
tionClassi�
ation

u(k)
y(k)

yM (k)r(k) s(k)f(k)
PSfrag repla
ements System ModelResidual generationResidual evaluationSymptom extra
tionClassi�
ation

u(k)
y(k) yM (k)r(k)s(k) f (k)Fig. 6.3 . S
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Fig. 6.4 . EAs in the FDI system designis des
ribed in the residual evaluation module. In order to improve the isolationability of the model-based FDI system, the bank of the models are used, whereea
h model is sensitive to a di�erent fault and of them represents the system inthe nominal 
onditions.If residual signals are properly generated, the fault dete
tion be
omes a rel-atively easy task. Sin
e without fault dete
tion it is impossible to perform faultisolation, all e�orts regarding an improvement of residual generation seem to bejusti�ed. This is the main reason why the resear
h e�ort of this work is orientedtowards fault dete
tion and espe
ially towards residual generation.6.2. EA in the FDI system designThere are relatively few publi
ations of the EA appli
ations to the FDI systemsdesign. Proposed solutions (Chen and Patton 1999, Chen et al. 1996, Korbi
z etal. 1998, Obu
howi
z 1999a, Obu
howi
z and Korbi
z 2002, Wit
zak et al. 1999,Wit
zak et al. 2002) (Fig. 6.4) show the high e�
ien
y of diagnosis systems whi
hdesign has been aided by EAs.Optimal residual generation via geneti
 algorithm was �rstly proposed byChen and 
oworkers (1996). The studied residual generator is based on full-orderobserver. The residual response is a�e
ted by faults, disturban
es, sensor and inputnoises, and dis
rimination between them is very di�
ult. In order to make theresidual be
ome insensitive to modelling un
ertainty and sensitive to sensor faults anumber of performan
e indi
es, whi
h are fun
tions of gain and weighting matri
es,are de�ned. The maximization of the �rst index be
omes the residual generator themost sensitive of the faults in the required frequen
y range. Next indi
es des
ribethe in�uen
e of the sensor noise e�e
t, the disturban
e and the initial 
onditione�e
ts and the input noise e�e
t, respe
tively, on the residual signal and have tobe minimized. Some indi
es are de�ned in the frequen
y domain to a

ount for the
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t that modelling un
ertainty e�e
ts and faults o

upy di�erent frequen
y bands.The solution of the simultaneously provided optimizations pro
edures are obtainedusing the method of inequalities (see (Chen and Patton 1999)). Su
h a multi-obje
tive optimization task 
annot be solved by the 
onventional optimizationte
hniques. The geneti
 algorithm has been su

essfully applied.Among arti�
ial intelligen
e methods applied to design fault diagnosis systemsarti�
ial neural networks are very popular, whi
h are used for building of neu-ral models as well as neural 
lassi�ers (Frank and Köppen-Seliger 1997, Köppen-Seliger and Frank 1999, Korbi
z et al. 1998). But, the 
onstru
tion of the neuralmodel is 
orresponded to two basi
 optimization problems: optimization of a neu-ral network ar
hite
ture and its training pro
ess, i.e. sear
hing the optimal setof network free parameters. Evolutionary algorithms are a very useful tool tosolve both problems, espe
ially in the 
ase of dynami
 neural networks (Korbi
zet al. 1998, Obu
howi
z 1999a, Obu
howi
z 2000a). Neural networks approa
hesto the FDI systems building and EAs approa
hes to the ANN 
onstru
tion arethemes of the previous 
hapters in this book.The main obje
tive of residual evaluation is to de
ide whether and where afault o

urred with possible avoidan
e of wrong de
isions 
ausing false alarms.In this 
ase, many te
hniques 
an be applied (Frank and Köppen-Seliger 1997),whi
h 
an be further improved by using the global optimization via evolutionaryalgorithms, however, below shortly des
ribed opportunities of the EA approa
hesto the symptom evaluation pro
ess are only the author's proposals and they havenot be implemented, yet.E�
ien
y of fault dete
tion systems in the 
ase of multi-dimensional symptomve
tors may be improved by pre-pro
essing whi
h leads to the partitioning of thesymptom domain into subdomains (
lusters). Among many well-known prepro-
essing methods, EAs 
hara
terize high 
lustering performan
e. Let us 
on
ernwith multi-dimensional real data that form a set of the so-
alled training pairsTd = fpq = (xq; yq) 2 IR j q = 1; :::; pg: (6.1)The goal is to perform an evolutionary 
luster analysis of data in Td to get at theend a partitioning of Td. The number of 
lusters is not known in advan
e. Toevaluate ea
h o�-spring 
luster in the population, di�erent lo
al �tness fun
tionsmay be used. They 
ould be the maximal distan
e of the training pair of the
luster from the 
luster 
entroid, or a mean variation of all training pairs in the
luster. Based on the lo
al �tness fun
tion of the 
luster one 
an build a global�tness fun
tion (Kosinski et al. 1998)A fuzzy inferen
e system is often used as universal approximator for a prob-lem of multi-dimensional data or as 
ontroller for some industrial appli
ations(Köppen-Seliger and Frank 1999). A fuzzy modelling approa
h 
onsists of twokinds of problem, 
on�guring fuzzy rules and optimization of the shapes of mem-bership fun
tions, whi
h are 
onsidered to be 
ombinatorial and numeri
al op-timization problems, respe
tively. The EA is able to be applied to both theseproblems. In many resear
h works (
f. (Carse et al. 1996)), however, the EA isapplied only to optimize the 
on�guration of the fuzzy rules, while another opti-
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onsidered in this 
haptermization algorithm, su
h as steepest des
ent method, is applied to optimize theshapes of the membership fun
tions.The appli
ation of the arti�
ial intelligen
e te
hniques leads to the 
on
eptof the fault diagnosis expert system where analyti
al and heuristi
 informationas well as knowledge pro
essing are 
ombined (Frank and Köppen-Seliger 1997).The expert system for fault diagnosis 
onsists a knowledge base whi
h usually in-
ludes a rule base. The 
onstru
tion of the rule base is the main problem for theknowledge engineers, whi
h has to implement, usually out of order, in
omplete andheuristi
 knowledge of human expert. In this 
ase the fuzzy te
hniques seem to bean e�e
tive tool to build the knowledge base. Unfortunately, there are many faultdiagnosis problems for whi
h the human expert knowledge is insu�
ient and theautomati
 optimal sele
tion of the rule base is needed. Be
ause of the exponential
omplexity of the problem of the optimal sear
hing there are no possibilities ofusing a total review method. In this 
ase, te
hniques of geneti
 algorithms andgeneti
 programming (Koza 1992) may be
ome very e�e
tive tools, assuming thatde
ision rules are a set of 
omplexes (Skowro«ski 1998). Ea
h 
omplex is a 
on-jun
tion of sele
tors and ea
h sele
tor is a disjun
tion of the dis
rete attributevalues. In this 
ase, the population of individuals is built of ve
tors of sele
tors.The GA 
omposes the rule base from the sets of attributes and their values. Inorder to use the GP to 
reate the rule base, two sets have to be de�ned. The �rstone, terminal set, 
ontains all possible premises and 
on
lusions, the se
ond one
ontains logi
 operators. Ea
h rule is represented by a stru
tured tree, and GP isused to �nd the best sets of rules. Contrary to the GA-based approa
h, where onlysimple rules (triples) are 
onsidered, the GP-based approa
h makes it possible touse arbitrary 
omplex rules (Koza 1992)The solutions proposed in this 
hapter are 
onne
ted with two 
lasses of theFDI systems, whi
h are based on:� input/output models, and� state observers.
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al models are used, the identi�
ation problem redu
es to an es-timation of some parameters. This estimation does not seem to be a di�
ultproblem be
ause these parameters have usually physi
al interpretations. Unfor-tunately, the 
omplexity of the modern industrial pro
esses makes it impossibleto 
onstru
t su�
iently exa
t physi
al models. In these 
ases the models, whi
hre�e
t the input/output behaviors of the system, are needed. There are many te
h-niques, whi
h 
an be used to build su
h a model. Espe
ially, neural networks arevery attra
tive and popular tool to non-linear system modelling (Korbi
z 1997, Ko-rbi
z et al. 1999). These neural models are �bla
k boxes� and give only qualitativeinformation. An alternative approa
h is the geneti
 programming te
hnique. TheGP approa
hes to modelling of dynami
 nonlinear systems: via 
hoi
e of the gainmatrix of the robust nonlinear observer (Wit
zak et al. 1999), sear
hing for theMIMO NARX model (Multi Input Multi Output Nonlinear AutoRegresive witheXogenous variable) (Wit
zak and Korbi
z 2000), sele
tion of the state spa
e rep-resentation of the system (Wit
zak et al. 2002), or via extended unknown inputobserver (EUIO) design (Wit
zak et al. 2002) (Fig. 6.5). This four GP appli
ationare presented in details in this 
hapter.6.3. Tree representation of the fun
tionAll 
onsidered in this 
hapter GP approa
hes (Fig. 6.5) redu
e to the problem ofsear
hing of analyti
al forms of some nonlinear relations between a given set ofarguments x and output yy = f(x): (6.2)As it has already been mentioned (see se
tion 1.2.2), a tree is the main in-gredient underlying the GP algorithm. In order to adapt GP to sear
hing thefun
tion (6.2) it is ne
essary to represent it as a tree, or a set of trees in the 
aseof a ve
tor fun
tion.Firstly, two sets, the terminal T and fun
tion F sets, 
an be distinguishedT = fx1; x2; : : : ; xn; 
1; 
2; : : : ; 
sg; F = f+; �; =; �1(�); : : : ; �l(�)g; (6.3)where (
i j i = 1; 2; : : : ; s) is a set of 
onstants, and (�i(�) j i = 1; 2; : : : ; l) is a setnonlinear univariate fun
tions. The language of the trees in GP is formed by auser-de�ned fun
tion F and terminal T set, whi
h form nodes of the trees. Thefun
tion should be 
hosen so as they be a priori useful in solving the problem,i.e. any knowledge 
on
erning the system under 
onsideration should be in
ludedin the fun
tion set. This fun
tion set is very important and should be universalenough to be 
apable of representing a wide range of nonlinear systems. Theterminals are usually variables or 
onstants. Thus, the sear
h spa
e 
onsists of allthe possible 
ompositions that 
an be re
ursively formed from the elements of Fand T . Sele
tion of variables does not 
ause any problems, but the handling ofnumeri
al parameters (
onstants) seems very di�
ult. Even though no 
onstantnumeri
al values are in the terminal set T , they 
an be impli
itly generated, e.g.
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x1x1x1x1 x2x2x2x2+ ++ ��� =p11
p1p2 p3p4 p5 p6 p7p8 p9 p10 p12 p13 p14 p15Fig. 6.6 . An exemplary tree of the two-variable fun
tion.the number 0:5 
an be expressed as x=(x + x). Unfortunately, su
h an approa
hleads to an in
rease in both the 
omputational burden and evolution time. Anotherway is to introdu
e a number of random 
onstants into the terminal set, but this isalso an ine�
ient approa
h. An alternative way of handling numeri
al parameters,whi
h seems to be more suitable, is 
alled node gains (Espar
ia-Al
azar 1998). Anode gain is a numeri
al parameter asso
iated to a node, whi
h multiplies itsoutput value (see Fig. 6.6). Although this te
hnique is straightforward, it leadsto an ex
essive number of parameters, i.e. there are parameters whi
h are notidenti�able:y = p1�p2�p4(p9x1 + p8x2) + p5p10p11x1x2)�+ p3 p6p12p13x22p7p14p15x21� : (6.4)Thus, it is ne
essary to develop a me
hanism whi
h prevents su
h situations hap-pening. To ta
kle the parameters redu
tion problem, a few simple rules 
an beestablished (Obu
howi
z and Wit
zak 2002, Wit
zak et al. 2002)�; =: A node of type either � or = has always parameters set to unity on the sideof its su

essors. If a node of the above type is a root node of a tree thenthe parameter asso
iated with it should be estimated.+: A parameter asso
iated with a node of type + is always equal to unity. If itssu

essor is not of type + then the parameter of the su

essor should beestimated.�: If a su

essor of the node of type � is a leaf of a tree or is of type � or = thenthe parameter of the su

essor should be estimated. If a node of type � is aroot of a tree then the asso
iated parameter should be estimated.As an example, 
onsider the tree shown in Fig. 6.6. Following the above rules, theresulting parameter ve
tor has only four elements p = (p8; p9; p5; p3) (Fig. 6.7),y = p9x1 + p8x2 + p5x1x2 + p3x22=x21: (6.5)
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x1x1x1x1 x2x2x2x2+ ++ ��� =1
11 p31 p5 1 1p8 p9 1 1 1 1 1Fig. 6.7 . The tree of the fun
tion presented in Fig. 6.6 after redu
tion of the parametersnumber.It is obvious that, although these rules are not optimal in the sense of parameteridenti�ability, their appli
ation redu
es the dimension of the parameter ve
torsigni�
antly thus making the parameter estimation pro
ess mu
h easier. Moreover,the introdu
tion of parameterized trees redu
es the terminal set to variables only,i.e. 
onstants are no longer ne
essary, and hen
e the terminal set is given byT = fx1; x2; : : : ; xng: (6.6)In this way the evolutionary pro
ess of the GP sear
hes only an optimalstru
ture of the fun
tion (6.2) represented by a tree, whose parameters have to beestimated using another method. In the 
ase of parameter estimation, many algo-rithms 
an be employed, more pre
isely, as the GP fun
tion are usually non-linearin their parameters, the 
hoi
e redu
es to one of non-linear optimization te
h-niques. Unfortunately, be
ause trees are randomly generated, they 
an 
ontainlinearly dependent parameters (even after the appli
ation of parameters redu
-tion rules), and parameters whi
h have very little in�uen
e on the model output.In many 
ases, this may lead to a very pure performan
e of the gradient-basedalgorithms. Owing to the above mentioned problems, the spe
trum of possiblenon-linear optimization te
hniques redu
es to the gradient-free te
hniques whi
husually require a large number of 
ost evaluations. On the other hand, the appli-
ation of sto
hasti
 gradient-free algorithms, apart from their simpli
ity, de
reasesthe 
han
e to get stu
k in a lo
al optimum, and hen
e it may give more suitableparameter estimates. Based on numerous 
omputer experiments, it was foundthat the extremely simple Adaptive Random Sear
h (ARS) algorithm (Walter andPronzato 1997) is espe
ially well-suited for that purpose.6.4. Input/output representation of the system via the GP6.4.1. Problem statementThe 
hara
terization of a 
lass of possible 
andidate models from whi
h the systemmodel will be obtained is an important preliminary task in any system identi�-
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ation pro
edure. Knowing that the system exhibits nonlinear 
hara
teristi
, a
hoi
e of nonlinear model set must be made. In this se
tion, the NARX was se-le
ted as the foundation for the identi�
ation methodology. The MIMO NARXmodel has the following formŷi;k = gi(ŷ1;k�1; : : : ; ŷ1;k�n1;y ; : : : ; ŷm;k�1; : : : ; ŷm;k�nm;y ;u1;k�1; : : : ; u1;k�n1;u ; : : : ; ur;k�1; : : : ; ur;k�nr;u ;pi);i = 1; : : : ;m: (6.7)Thus the system output is given byyk = ŷk + "k; (6.8)where "k 
onsists of a stru
tural deterministi
 error, 
aused by the model-realitymismat
h, and the measurement noise vk. The problem is to determine the setof models M = fMi = (gi(�);pi) j i = 1; 2; : : : ;mg, where gi(�) are unknownfun
tions and pi are 
orresponding parameters ve
tors, whi
h have to be estimated.One of the best known of the 
riteria whi
h 
an be employed to sele
t themodel stru
ture and to estimate its parameters is the Akaike Information Criterion(AIC) (Walter and Pronzato 1997), where the following quality index is minimizedJAIC(Mi) = 12j(Mi(p̂i)) + 1nT dimpi; (6.9)where j(Mi(pi)) = ln det nTXk=1 "k"Tk ; (6.10)p̂i = argminpi j(Mi(pi)) are obtained using the identi�
ation data set of nT pairsof input/output measurements6.4.2. The GP approa
hIn order to adapt GP to system identi�
ation it is ne
essary to represent themodel (6.7) as a tree, or a set of trees. Indeed, the MISO NARX model 
an beeasily put in the form of a tree, and hen
e to build the MIMO model (6.7) it isne
essary to use m trees. The fun
tion set F 
an be 
hosen in the form (6.3), theterminal set is given byT = fŷ1;k�1; : : : ; ŷ1;k�n1;y ; : : : ; ŷm;k�1; : : : ; ŷm;k�nm;y ;u1;k�1; : : : ; u1;k�n1;u ; : : : ; ur;k�1; : : : ; ur;k�nr;ug:The remaining problem is to sele
t appropriate lags in the input and output signalsof the model. For that purpose, it is possible to assume that ea
h ny = nu = n.
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es to �nding, throughout experiments, su
h n for whi
hthe model is the best repli
a of the system.If the terminal and fun
tion sets are given, populations of GP individuals(trees) 
an be generated, i.e. the set M of possible model stru
tures is 
reated.The algorithm works on a set of populations P = �Pi j i = 1; : : : ;m	. Ea
h ofthe above populations Pi = �bij j j = 1; : : : ; �	 is 
omposed of a set of � trees bij .Thus, the GP sear
hes 
on
urrently ea
h model Mi (i = 1; : : : ;m) of the set Musing m-th independent populations Pi of � trees.Sin
e the number of populations is given, the GP algorithm 
an be started(initiation) by randomly generating individuals (see se
tion 1.2.2), i.e. � indi-viduals are 
reated in ea
h population whose trees are of a desired depth nd.Using (6.9), all 
onsidered models are estimated, estimation of the parameterve
tor p of ea
h individual is performed, a

ording to (6.10) using the ARS algo-rithm. If the model sele
ted satis�es the prespe
i�ed requirements, the algorithmis stopped. In the se
ond step, the sele
tion pro
ess is applied to 
reate a newintermediate population of �parent individuals�. For that purpose, various ap-proa
hes 
an be employed, e.g. proportional sele
tion, rank sele
tion, tournamentsele
tion (Koza 1992, Mi
halewi
z 1996). The sele
tion method used in this workis the tournament sele
tion. The individuals for the new populations (the nextgeneration) are produ
ed through the appli
ation of 
rossover and mutation. Toapply 
rossover, random 
ouples of individuals whi
h have the same position inea
h population are formed. Then, with a probability �
, ea
h 
ouple undergoes
rossover, i.e. a random 
rossover point (node) is sele
ted and then the 
orrespond-ing sub-trees are ex
hanged. Mutation is implemented so that for ea
h entry ofea
h individual, a sub-tree at a sele
ted point is removed with probability �m andrepla
ed with a randomly generated tree.The GP algorithm is repeated until the best suited model satis�es the prespe
-i�ed requirements ��P(t)�, or until the number of maximum admissible iterationshas been ex
eeded. It should also be pointed out that the simulation programmemust ensure robustness to unstable models. This 
an be easily attained when (6.10)is bounded by a 
ertain maximum admissible value. This means that ea
h indi-vidual whi
h ex
eeds the above bound is penalized by stopping the 
al
ulation ofits �tness, and then Jm(Mi) is set to a su�
iently large positive number. Thisproblem is espe
ially important in the 
ase of input-output representation of thesystem. Unfortunately, the stability of the models resulting from this approa
his very di�
ult to prove. However, this is a 
ommon problem with non-linearinput-output models. To over
ome this problem, an alternative state-spa
e modelstru
ture is presented in the subsequent se
tion.Another reason for using state-spa
e models in fault diagnosis tasks is thatthis kind of models 
an be employed together with robust observers, whi
h makesit possible to in
rease the reliability of the entire FDI system by minimizing thein�uen
e of model un
ertainty. This is, however, impossible to perform with thenon-linear input-output model stru
ture.
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i�
ation of the pro
ess variablesF51_01 Thin jui
e �ow at the inlet of the evaporation stationF5102 Steam �ow at the inlet of the evaporation stationLC5103 Jui
e level in the �rst se
tion of the evaporation stationP5103 Vapour pressure in the �rst se
tion of the evaporation stationP5104 Jui
e pressure at the inlet of the evaporation stationT5106 Input steam temperatureT5107 Vapour temperature in the �rst se
tion of the evaporation stationT5108 Jui
e temperature at the outlet of the �rst se
tion ofthe evaporation stationTC5105 Thin jui
e temperature at the outlet of the heater6.4.3. System identi�
ation based on the data from the sugar fa
toryThe real data from an industrial plant were employed to identify the input-outputmodel of the 
hosen part of the plant. The plant to be 
onsidered is the evaporationstation at the Lublin Sugar Fa
tor S. A. (Poland) (Edelmayer 2000). Fig. 6.8shows the s
heme of the plant with all available pro
ess variables. These pro
ess
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BxFig. 6.8 . The s
heme of the evaporation station.variables are des
ribed in Tab. 6.1. The model to be obtained is the vapour model(
f. Fig. 6.8): the input and output ve
tors: uk = (T5107), yk = (P5103). Thedata used for the training and test sets were 
olle
ted, from two di�erent shifts, inNovember 1998. The data from the �rst one were used to the identi�
ation andthe data from the se
ond one formed the validation data set. Unfortunately, thedata turned out to be sampled too fast (the sampling rate was 10s). Thus, every
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Fig. 6.9 . The system (solid line) and model (dashed line) output for the identi�
ation(left) and validation (right) data sets.10-th value was pi
ked, after proper pre�ltering, resulting in the 700-th elementsidenti�
ation and validation data sets. After this the o�set levels were removedwith the use of MATLAB Identi�
ation Toolbox.6.4.3.1. The vapour modelThe obje
tive of this se
tion is to design the input-output vapour model usingGP te
hnique. The parameters used during the identi�
ation pro
ess are: theprobability of the 
orssover �
 = 0:8, the probability of the mutation �m = 0:01,the population size � = 200, the initial depth of trees nd = 10, F = f+; �; =g. Thebest model stru
ture obtained is given byŷk = ((p2uk�2 + p1ŷk�2)u2k�1 + (p5uk�2ŷk�1 + p6u2k�2 + p3ŷ2k�1+p4ŷk�1uk�2 + p9)uk�1p7uk�2ŷ2k�1 + p8ŷk�1u2k�2)=(p10ŷk�1+p11ŷ2k�1 + p12ŷk�1uk�2 + p13): (6.11)The response of the model obtained for both the identi�
ation and validationdata sets are given in Fig. 6.9. The 
omparative study performed for the ARXand GP (NARX) models shows that the GP model is superior to the ARX models(Wit
zak and Korbi
z 2000). From this results it 
an be seen that the introdu
tionof the nonlinear model has signi�
antly improved modelling performan
e.The main drawba
k to the GP-based identi�
ation algorithm 
on
erns its
onvergen
e abilities. Indeed, it seems very di�
ult to establish the 
onvergen
e
onditions whi
h 
an guarantee the 
onvergen
e of the proposed algorithm. On theother hand, many examples treated in the literature, 
f. (Espar
ia-Al
azar 1998,Gray et al. 1998, Koza 1992) and the referen
es therein, as well as the authors'experien
e with GP (Wit
zak et al. 2002) 
on�rm its parti
ular usefulness, in
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Fig. 6.10 . The average �tness for the 50 runs of the algorithm.spite of the la
k of the 
onvergen
e proof. In the 
ase of the presented example,the average �tness (mean-squared output error for the identi�
ation data set),Fig. 6.10, for the 50 runs of the algorithm 
on�rms the modelling abilities of theapproa
h.Moreover, based on the �tness attained by ea
h of the 50 models (resultingfrom 50 runs) it is possible to obtain the histogram representing the �tness valuesa
hieved (Fig. 6.11) as well as the �tness's 
on�den
e region. Let � = 0:99 denotethe 
on�den
e level then the 
orresponding 
on�den
e region 
an be de�ned as�Jm 2 ��jm � t� sp50 ; �jm + t� sp50� (6.12)where �jm = 1:89 and s = 0:64 denote the mean and standard deviation of the�tness of the 50 models, t� = 2:58 is the normal distribution quantile. A

ordingto (6.12), the �tness's 
on�den
e region is �Jm 2 [1:65; 2:12℄, whi
h means thatthere is 99% of probability that the true mean �tness �Jm belongs to this region.On the other hand, owing to the multimodal properties of the identi�
ation index,it 
an be observed (Fig. 6.11) that there are two optima resulting in models ofdi�erent quality. However, it should be pointed out that, on average (Fig. 6.10),the algorithm 
onverges to the optimum resulting in models of better quality. The
onvergen
e abilities of the algorithm 
an be further in
reased by the appli
ationof various parameter, e.g.: �
, �m, 
ontrol strategies (Eiben et al. 1999).The above results 
on�rm that, even if there is no 
onvergen
e proof, theproposed approa
h 
an be su

essfully used to ta
kle the nonlinear system identi-�
ation problem.
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Fig. 6.11 . The histogram representing the �tness of 50 models.6.5. Choi
e of the gain matrix for the robust non-linear observervia the GP6.5.1. Problem formulationConsider a non-linear dis
rete systemxk+1 = f (xk;uk;wk) ;yk = h (xk;vk) ; (6.13)where uk is the input, yk is the output, xk is the state, wk and vk represents thepro
ess and measurement noise, and h(�), f (�) are non-linear fun
tions.The problem is to estimate the state xk of the system (6.13), where a set ofmeasured inputs and outputs and the model of the system are given. The 
lassi
almethods using di�erent kinds of an approximation are often applied (Andersonand Moore 1979, Korbi
z and Bidyuk 1993) and 
an be given as followsx̂k = x̂�k + K k"�k ;"�k = yk � h (x̂k;0) ; (6.14)where "�k denotes a priori output error, x̂k is the state estimate and K k is thegain matrix.The gain matrix K k of the observer (6.14) 
an be sear
hed by various methods(e.g.: the Kalman �lter (wk and vk are assumed to be independent, white, andwith normal probability distribution), the Luenberger's observer et
.) whi
h, in



156 6.5. Choi
e of the gain matrix for the robust non-linear observer via the GPlarge majority of them, 
onsist of 
onstant elements. In our approa
h the gainmatrix is 
omposed of 
ertain fun
tions, i.e. ea
h entry of the gain matrix isa fun
tion, whi
h depends on the a priori output error and the system input.Therefore, it 
an be written as followsx̂k = x̂�k + K k �"�k ;uk� "�k : (6.15)Thus , the main goal is to obtain an appropriate form of K k �"�k ;uk� based ona set of measured outputs and inputs and the mathemati
al model of the system.Even if the mathemati
al model is un
ertain and/or the initial state is far fromits expe
ted it seems possible to obtain su
h K k �"�k ;uk� to ensure the best �tnessto the real system. For that purpose, the GP te
hnique is exploited, where thegain matrix is obtained o�-line from a randomly 
reated population by means ofevolutionary pro
ess.6.5.2. Proposed algorithmAs it was mentioned in the previous se
tion, ea
h entry of the gain matrix is afun
tion, and it 
an be represented easily as a tree in the sense of the GP formalism.It is important to note that the gain matrix 
onsists of a list of trees. In order toapply the GP algorithm (Se
tion 1.2.2) the sets of terms T and operators F mustbe de�ned: T = f"�k ;ukg F = f+;�; �; =g:Next, a �tness 
riterion must be determined. It is assumed that the �tness of thegain matri
es 
an be represented by a sum of normalized output errors (i.e., thesmaller sum the better �tness), whi
h 
an be obtained by the following algorithm(Wit
zak et al. 1999)A: Set an initial a priori estimate x̂�0 and set k = 0, s = 0.B: Measurement update"�k = yk � h �x̂�k ;0� ;x̂k = x̂�k + K k �"�k ;uk� "�k ;ŷk = h (x̂k;0) ;s = s+ � (yk � ŷk) :C: Time updatex̂�k+1 = f (x̂k;uk;0)If k = nT then STOP else set k = k + 1 and go to STEP 1.Where ŷk denotes the system output estimate, � : D ! IR+ [ f0g, where D is theoutput spa
e (e.g., � (yk � ŷk) = (yk � ŷk)2), nt Ts the number of data points,and s is the sum of normalized output errors.The stru
ture of the algorithm used to obtain the gain matrix 
an be des
ribedas follows (Wit
zak et al. 1999)
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, �m, nmax, x̂�0 , smin, np, and set n = 0.2. Create a random population of the gain matri
es�K 0i = RANDOM(T ;F) j i = 1; 2; : : : ; �	 ;(ea
h entry in the gain matrix has an initial length (a number of nodes)n0d).B: Cal
ulate �tnessUsing �tness 
al
ulation algorithm, for ea
h gain matrix in the population
ompute the sum of normalized output errorsfKni ! sni j i = 1; 2; : : : ; �g ;if min fsni j i = 1; 2; : : : ; �g < smin then STOP.Set nbest : snnbest = min fsni j i = 1; 2; : : : ; npg.C: Sele
tion fKni j i = 1; 2; : : : ; �g ! �Kn+1i j i = 1; 2; : : : ; �	where the probability of being extra
ted is proportional to the �tness.D: CrossoverFor ea
h entry in ea
h gain matrix, repeat:1. sele
t random independent 
ouples of the same entries in the gain matri-
es (Kn+1i;j;k ;Kn+1i;j;l ), where i, j denote the (i; j)-th entry, k; l 2 [1; : : : ; �℄;2. for ea
h 
ouple, sele
t a random 
rossover pointl
ross 2 U(2;minflength(Kn+1i;j;k ); length(Kn+1i;j;l )g);3. ex
hange the sub-trees of the 
ouple with probability �
.E: Mutation1. For ea
h entry in ea
h gain matrix, sele
t a random mutation pointlmut 2 U(1; length(Kn+1i;j ));2. remove a sub-tree at the sele
ted point lmut and repla
e it with a ran-domly generated tree with probability �m;3. If n = nmax � 1 then STOP else set n = n+ 1 and go to step B.where U denotes the uniform distribution, n0d is the initial length of the trees,�
 and �m are the 
rossover and mutation probabilities, respe
tively, nmax is themaximum number of iterations, l
ross and lmut are realization of random indepen-dent variables with the uniform distribution (the 
rossover and mutation points),smin is the desired �tness value, nbest is the index of the most �ttest gain matrixand � is the population size.



158 6.5. Choi
e of the gain matrix for the robust non-linear observer via the GP6.5.3. Illustrative experimentTo illustrate the methodology of non-linear observers designing, 
onsider a se
ondorder dis
rete system des
ribed by equations (Wit
zak et al. 1999)x1;k+1 = � �ax1;kx2;kx2;k + b � x1;k�+ x1;k ;x2;k+1 = � ��dax1;kx2;kx2;k + b + (
� x2;k)uk�+ x2;k;yk = (x1;k + e)x2;k + vk; (6.16)where x1;k,x2;k denote states, yk is the output, vk is a realization of the randomindependent variable representing the measurement noise, uk is the input signal,a, b, 
, d, and e are system's parameters and � is the sampling period.The input signal is given byuk = 0:07 sin(0:31�k) + 0:38:The output measurement is 
orrupted by a noise vk with normal distributionN(0; 0:0002). The nominal values of the model parameters are equal to a = 0:55,b = 0:15, 
 = 0:8, d = 2:0, e = 0:01 and � = 0:5. The initial state is x0 =(0:21; 0:37) for the system to be observed, and x̂�0 = (2:1; 1:6) for the observer.For the sake of 
omparison, a usual Extended Kalman Filter (EKF) with thesame initial 
ondition x̂�0 is employed. Moreover, parameters eploited during anevolution of the gain matri
es are: n0d = 30, � = 40, smin = 0:001, �
 = 0:5,�m = 0:0001. The population was learned over a sample of nT = 200 simulatedmeasurements.As shown in Fig 6.12, the estimated state x2 approa
hes the real state for theproposed observer but not for the EKF. Further simulation results have shown thatthe proposed observer has a larger domain of attra
tion that the EKF, i.e., theinitial estimation error may be larger. As it was mentioned, even if the initial stateestimate is known there is still a problem of a model un
ertainty, e.g. parameterun
ertainty.Re
onsider the non-linear system (6.16) and assume that the values of themodel parameters are slightly modi�ed: a = 0:53, b = 0:17, 
 = 0:78, d = 2:0,e = 0:0099, and other parameters are the same as previously.For the sake of 
omparison, it is assumed that the initial a priori state estimateis 
lose to the real state so as to ensure the stability of the EKF, i.e. x̂�0 = 1. Asshown in Fig. 6.13, that state estimation error ek = xk � x̂k is 
loser zero for theproposed observer that for the EKF. Further simulation results have shown thatthe proposed observer is less sensitive to the model un
ertainty that the EKF.
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Fig. 6.12 . The real state x2 (solid line) and its estimates obtained by the proposedobserver (left) and the EKF (right)
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160 6.6. The GP approa
h to state spa
e representation of the system6.6. The GP approa
h to state spa
e representation of the sys-tem6.6.1. Design of state spa
e modelsLet us 
onsider the following 
lass of nonlinear dis
rete-time systemsxk+1 = g(xk;uk) +wk;yk+1 = Cxk+1 + vk: (6.17)Assume that the fun
tion g(�) has the formg(xk;uk) = A (xk)xk + h(uk): (6.18)Thus, the state-spa
e model of the system (6.17) 
an be expressed asx̂k+1 = A (x̂k)x̂k + h(uk);ŷk+1 = C x̂k+1: (6.19)Without loss of generality, it is possible to assume thatA (x̂k) = diag[ai;i(x̂k) j i = 1; 2; : : : ; n℄: (6.20)The problem redu
es to identifying nonlinear fun
tions ai;i(x̂k); hi(uk) (i =1; : : : ; n), and the matrix C . Assuming maxi=1;:::;n jai;i(x̂k)j < 1 it 
an be shown(Wit
zak et al. 2002) that the model (6.19) is globally asymptoti
ally stable. Thisimplies that ai;i(x̂k) should have the following stru
tureai;i(x̂k) = tanh(si;i(x̂k)); i = 1; : : : ; n; (6.21)where tanh(�) is a hyperboli
 tangent fun
tion, and si;i(x̂k) is a fun
tion to bedetermined.In order to identify si;i(x̂k); hi(uk) (i = 1; : : : ; n), and the matrix C the GPalgorithm des
ribed in se
tion 6.4 is applied. The �tness fun
tion is de�ned by(6.9).6.6.2. The apparatus modelLet us 
onsider the system des
ribed in Se
tion 6.4.3. The obje
tive of this se
tionis to design the state-spa
e apparatus model,uk = (T5106; TC5105; F5101; F5102), yk = (T5108) (Tab. 6.1), a

ording to theapproa
h des
ribed above. The parameters used in the GP algorithm are the sameas in Se
tion 6.4.3.1. The best model stru
ture obtained is given byx̂1;k+1 = tanh(s1;1) + h1(uk);x̂2;k+1 = tanh(s2;2) + h2(uk); (6.22)
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Fig. 6.14 . The system (solid line) and model (dashed line) output for the identi�
ation(left) and validation (right) data sets.where s1;1 = �0:13x̂2;k; s2;2 = x̂2;kx̂1;k(x̂2;kx̂1;k + 2x̂22;kx̂21;k + 1) ;h1(uk) = (u1;k + (u1;k + 2u4;k + u4;ku1;k)(u1;k + u4;k + u3;k++u4;ku1;k))u3;k + u3;k + (u1;k + (u1;k + u4;k + u3;k++u4;ku1;k)(u1;k + u4;ku3;ku1;ku4;k + u2;k + 2u4;k));h2(uk) = u1;k + u2;k;and C = [0:21 � 10�5; 0:51℄:The response of the model obtained for both the identi�
ation and validationdata sets is given in Fig. 6.14. The 
omparative study for the linear model andthe GP model has been performed in (Wit
zak et al. 2002). from this results it
an be seen that the proposed nonlinear state-spa
e model identi�
ation approa
h
an be e�e
tively applied to various system identi�
ation tasks. The average�tness (mean-squared output error for the identi�
ation data set), Fig. 6.15, forthe 50 runs of the algorithm 
on�rms the modelling abilities of the approa
h.As previously, based on the �tness attained by ea
h of the 50 models (resultingfrom 50 runs) it is possible to obtain the histogram representing the �tness valuesa
hieved (Fig. 6.16) as well as the �tness's 
on�den
e region. A

ording to (6.12),the �tness's 
on�den
e region is �Jm 2 [0:06; 0:78℄ (for: s = 0:2, �jm = 0:07), whi
hmeans that there is 99% of probability that the true mean �tness �Jm belongs tothis region. Similarly to the previous se
tion, it 
an be observed (Fig. 6.16) thatthere are two optima in the spa
e of models. However, on average, the algorithmis 
onvergent to the optima resulting in models of better quality.
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h to the EUIO design6.7.1. Problem formulationLet us 
onsider a 
lass of nonlinear system des
ribed by the following equationsxk+1 = g(xk) + h(uk + L1;kfk) + Ekdk;yk+1 = C k+1xk+1 + L2;k+1fk+1; (6.23)where g(xk) is assumed to be 
ontinuously di�erentiable with respe
t to xk, fkstates for the fault signal, dk is the unknown input, and L1;k , L2;k , and Ek aretheir distribution matri
es. Similarly to EKF (Anderson and Moore 1979), theUnknown Input Observer (UIO) (Chen and Patton 1999) 
an be extended to the
lass of nonlinear systems (6.23). This leads to the following stru
ture of theExtended UIO (EUIO) (Wit
zak et al. 2002):x̂k+1=k = g(x̂k) + h(uk);x̂k+1 = x̂k+1=k + H k+1"k+1=k + K 1;k+1"k; (6.24)Wit
zak et al. (2002) performed a 
omprehensive 
onvergen
e analysis with theLyapunov method. As a result they obtained the following 
onditions�� (�k) � 
1 = � (A k )�� (A k ) 0� (1� �)� (Pk)�� �A 1;kP0kA T1;k�1A 12 : (6.25)and �� (�k � I)� 
2 =  � �C Tk �� (C k )�� �C Tk � �� (C k ) � (Rk )�� �C kPkC Tk + Rk�! 12 : (6.26)where Pk is the state estimate 
ovarian
e matrix, andH k+1 = Ek �(C k+1Ek )T C k+1Ek ��1 (C k+1Ek )T : (6.27)A k = �g(xk)�xk ����xk=x̂k : (6.28)Bearing in mind that �k is a diagonal matrix, the above inequalities 
an beexpressed asmaxi=1;:::;n j�i;k j � 
1 and maxi=1;:::;n j�i;k � 1j � 
2: (6.29)Sin
e (Chen and Patton 1999)Pk = A 1;kP0kA T1;k + TkQk�1TTk + H kRkH Tk ; (6.30)



164 6.7. GP approa
h to the EUIO designit is 
lear that an appropriate sele
tion of the instrumental matri
es Qk�1 and Rkmay enlarge the bounds 
1 and 
2, and 
onsequently the domain of attra
tion.Indeed, if the 
onditions (6.29) are satis�ed then x̂k 
onverges to xk.The problem is to obtain an appropriate form of the instrumental matri
esQk�1 and Rk in su
h a way as to ensure the 
onvergen
e of the observer or ade-quately to maximize the bounds of the diagonal elements of the matrix �k.First, let us de�ne the identi�
ation 
riterion 
onsisting a ne
essary ingredientof the Qk�1 and Rk sele
tion pro
ess. Sin
e the instrumental matri
es should be
hosen so as to satisfy (6.25), the sele
tion of Qk�1 and Rk 
an be performeda

ording to(Qk�1 ;Rk ) = arg maxq("k�1);r("k) jobs;1(q("k�1); r("k)); (6.31)where jobs;1(q("k�1); r("k)) = nt�1Xk=0 tra
ePk: (6.32)On the other hand, owing to the FDI requirements, it is 
lear that the output errorshould be near zero in the fault free mode. In this 
ase, one 
an de�ne anotheridenti�
ation 
riterion(Qk�1 ;Rk ) = arg minq("k�1);r("k) jobs;2(q("k�1); r("k)); (6.33)where jobs;2(q("k�1); r("k)) = nt�1Xk=0 "Tk "k: (6.34)Therefore, in order to join (6.31) and (6.33), the following identi�
ation 
riterionis employed(Qk�1 ;Rk ) = arg minq("k�1);r("k) jobs;3(q("k�1); r("k)) (6.35)where jobs;3(q("k�1); r("k)) = jobs;2(q("k�1); r("k))jobs;1(q("k�1); r("k)) (6.36)6.7.2. In
reasing the 
onvergen
e rate via GPUnfortunately, an analyti
al derivation of the Qk�1 and Rk matri
es seems to bean extremely di�
ult problem. However, it is possible to set the above matri
es asfollows Qk�1 = �1I, Rk = �1I, with �1 and �1 large enough. On the other hand,it is well known that the 
onvergen
e rate of su
h an EKF-like approa
h 
an bein
reased by an appropriate sele
tion of the 
ovarian
e matri
es Qk�1 and Rk , i.e.
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urate (near �true� values) 
ovarian
e matri
es the better 
onvergen
erate. This means that, in the deterministi
 
ase (wk = 0 and vk = 0), both thematri
es should be zero ones. Unfortunately, su
h an approa
h usually leads todivergen
e of the observer as well as other 
omputational problems. To ta
klethis problem a 
ompromise between 
onvergen
e and 
onvergen
e rate should byestablished. This 
an be easily done by setting the instrumental matri
es asQk�1 = �1"Tk�1"k�1I+ Æ1I;Rk = �2"Tk "kI+ Æ2I; (6.37)with �1, �2 large enough, and Æ1, Æ2 small enough. Although this approa
h isvery simple, it is possible to in
rease the 
onvergen
e rate further. Indeed, theinstrumental matri
es 
an be set as followsQk�1 = q2("k�1)I;Rk = r2("k)I; (6.38)where q("k�1) and r("k) are nonlinear fun
tions of the output error "k (the squaresare used to ensure the positive de�niteness of Qk�1 and Rk ).Thus, the problem redu
es to identifying the above fun
tions. To ta
klethis problem the geneti
 programming 
an be employed. The unknown fun
-tions q("k�1) and r("k) 
an be expressed as a tree. In the 
ase of q(�) and r(�)the terminal sets are T = f"k�1g and T = f"kg, respe
tively. In both the 
ases,the fun
tion set 
an be de�ned as F = f+; �; =; �1(�); : : : ; �l(�)g, where �k(�) isa nonlinear univariate fun
tion, and 
onsequently the number of populations ism = 2. Sin
e the terminal and fun
tion sets are given, the approa
h des
ribedin Se
tion 6.4 
an be easily adapted for the identi�
ation purpose of q(�) and r(�)using the identi�
ation 
riterion (6.36).6.7.3. State estimation and fault diagnosis of an indu
tion motor using EUIOThe numeri
al example 
onsidered here is the �fth-order two-phase nonlinearmodel of an indu
tion motor whi
h has already been the subje
t of a large num-ber of various 
ontrol design appli
ations (see (Boutayeb and Aubry 1999) and thereferen
es therein). Moreover, the above model, unlike the model of Se
tion 6.6.2,
an be used by other resear
hers and hen
e a straightforward 
omparison to otherapproa
hes 
an be realized.



166 6.7. GP approa
h to the EUIO designThe 
omplete dis
rete time model in stator �xed (a,b) referen
e frame isx1;k+1 = x1;k + h(�
x1k + KTr x3k +Kpx5kx4k + 1�Lsu1k) + 0:01d1;k;x2;k+1 = x1;k + h(�
x2k +Kpx5kx3k + KTr x4k + 1�Lsu2k) + 0:01d1;k;x3;k+1 = x1;k + h(MTr x1k � 1Tr x3k � px5kx4k) + d1;k;x4;k+1 = x1;k + h(MTr x2k � px5kx3k � 1Tr x4k) + d1;k;x5;k+1 = x1;k + h( pMJLr (x3kx2k � x4kx1k)� TLJ );y1;k+1 = x1;k+1; y2;k+1 = x2;k+1: (6.39)where xk = (x1;k; : : : ; xn;k) = (isak; isbk;  rak;  rbk; !k) represents the 
urrents, therotor �uxes, and the angular speed, respe
tively. uk = (usak; usbk) is the statorvoltages 
ontrol ve
tor, p is the number of pair of poles, TL is the load torque.The rotor time 
onstant Tr and the remaining parameters are de�ned asTr = LrRr ; � = 1� M2LsLr ; K = M�LsL2r ; 
 = Rs�Ls + RrM2�LsL2r ; (6.40)where Rs, Rr and Ls, Lr are stator and rotor per-phase resistan
es and indu
-tan
es, respe
tively, and J is the rotor moment inertia.The numeri
al values of the above parameters are as follows: Rs = 0:18 
, Rr =0:15 
, M = 0:068 H, Ls = 0:0699 H, Lr = 0:0699 H, J = 0:0586 kgm2, TL =10 Nm, p = 1, and h = 0:1 ms. The initial 
ondition for the observer andthe system are x̂k = (200; 200; 50; 50; 300) and xk = 0. The unknown inputdistribution matrix isEk = " 0:01 0 1 0 00 0:01 0 1 0 #T ; (6.41)and hen
e, a

ording to (6.27), the matrix H k isH k = " 1 0 100 0 00 1 0 100 0 #T ; (6.42)The input signals areu1;k = 300 
os(0:03k); u2;k = 300 sin(0:03k): (6.43)



6. Geneti
 programming approa
h to the FDI system design 167The unknown input is de�ned asd1;k = 0:002 sin(0:5�k) 
os(0:3�k); 0:005 sin(0:01k); (6.44)and P0 = 103I.Moreover, the following three 
ases 
on
erning the sele
tion of Qk�1 and Rk were
onsideredCase 1: Classi
al approa
h (
onstant values),i.e. Qk�1 = 0:1, Rk = 0:1Case 2: Sele
tion a

ording to (6.37), i.e.Qk�1 = 103"Tk�1"k�1I+ 0:01I; Rk = 10"Tk "kI+ 0:01I; (6.45)Case 3: GP-based approa
hIn order to obtain the matri
es Qk�1 and Rk using the GP-based approa
h (Case3), a set of nt = 300 input-output measurements was generated a

ording to (6.39).As a result, the following form of the instrumental matri
es were obtainedQk�1 = �102"21;k�1"22;k�1 + 1012"1;k�1 + 103:45"1;k�1 + 0:01�2 I;Rk = �112"21;k + 0:1"1;k"2;k + 0:12�2 I: (6.46)The parameters used in the GP algorithm were the same as in Se
tion 6.4.3.1. Itshould be also pointed out that the above matri
es (6.46) are formed by simplepolynomials. This, however, may not be the 
ase for other appli
ations.Simulation results (for all the 
ases) are shown in Fig. 6.17. The numeri
al valuesof the optimization index (6.36) are as follows: Case 1 jobs = 1:49 � 105, Case 2jobs = 1:55, Case 3 jobs = 1:2 � 10�16. Both of the above results as well as theplots shown in Fig. 6.17 
on�rm the relevan
e of the appropriate sele
tion of thegain matri
es. Indeed, as it 
an be seen, the proposed approa
h is superior to the
lassi
al te
hnique of sele
ting the instrumental matri
es Qk�1 and Rk .6.8. SummaryAlthough there are few appli
ations of evolutionary algorithms to fault diagnosissystems, a dis
ussion of existing solutions and their possibilities as well as the pos-sibilities of further development have been presented in this 
hapter. Emphasis hasbeen put on geneti
 programming approa
hes to the residual generation moduledesign. In parti
ular, it has been shown how to represent various model stru
turesas a parameterized trees and how to identify their stru
ture as well as to estimatetheir parameters. Both the input-output NARX and state-spa
e model stru
turesare presented. Moreover, it has been proven that the proposed state-spa
e model
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Fig. 6.17 . The state estimation error norm kekk2 for Case 1 (dash-dotted line), Case 2(dotted line) and Case 3 (solid line).identi�
ation s
heme provides asymptoti
ally stable models. The experimentalresults, 
overing models 
onstru
tion of 
hosen parts of an evaporation station atthe Lublin Sugar Fa
tory S.A., 
on�rm the reliability and e�e
tiveness of the pro-posed framework. The main drawba
k to this approa
h is its 
omputational 
ostresulting in a relatively long identi�
ation time. However, the model 
onstru
tionpro
edure is as usual realized o�-line and hen
e the identi�
ation time is not veryimportant.Another GP approa
h 
on
erns the 
on
ept of the Extended Unknown Input Ob-server. It 
an be shown, with the use of the Lyapunov approa
h, that the 
onsid-ered fault dete
tion observer is 
onvergent under 
ertain 
onditions. Moreover, ithas been shown that an appropriate sele
tion of the instrumental matri
es Qk�1and Rk strongly in�uen
es the 
onvergen
e properties. To ta
kle the instrumen-tal matri
es sele
tion problem a geneti
 programming based approa
h has beenproposed. It has been shown, by an example with an indu
tion motor, that theproposed observer 
an be a useful tool for both state estimation and fault diag-nosis problems of nonlinear deterministi
 systems. This is mainly be
ause of the
onvergen
e properties of the observer whi
h 
on�rm its superiority to the 
lassi
alapproa
hes.



Chapter 7
CONCLUDING REMARKS

Sin
e the beginning of the human 
ivilization the te
hnologi
al development hasbeen strongly inspired by the solutions existing in nature. A man building mod-els of observed phenomena wants to dete
t the prin
iples lying under them, and,simultaneously, sear
hes for methods and algorithms for his problems solving. Es-pe
ially, one work of nature is worth noti
ing: the evolution. The evolution is the
reative strength of the animated nature. Thanks to this pro
ess the most in
red-ible and 
ompli
ated organisms, whi
h are adapted to live in almost all, even themost extreme, 
onditions existing on Earth, have been 
reated. The evolution owesits power to its parallel pro
essing and soft sele
tion rules, whi
h, implementedin the algorithmi
 form, result in one of the most e�e
tive tool of ComputationalIntelligen
e.The appli
ability of EAs in global optimization tasks, both in the 
on-tinuous and dis
rete domain, is not questionable. Many instan
es of su

ess-ful EA implementations are published every year (
f. (Bä
k 1995, Bä
k etal. 1997, Galar 1990, Osy
zka 2002, S
haefer 2002)). The main disadvantage ofEAs is their 
omputational 
omplexity that these algorithms are suggested to beoptimization methods of �the last resort�, when other, 
onventional, te
hniqueshave disappointed.In this book, the emphasis is put on the ESSS algorithm, whi
h, thanks toits simpli
ity, seems to be a very attra
tive subje
t for resear
h analyzing thebasi
 properties of the evolutionary 
on
ept in the global optimization problems.The simply sele
tion�mutation model 
ontains the prin
ipal idea of the phenotypeevolution (Chapter 1). Basing on this model, properties of di�erent te
hniques ofnatural exploration have been tested and analyzed in details.Two 
lasses of exploration te
hniques in EAs 
an be distinguish in the liter-ature: lo
al and global ones. The �rst 
lass is based on the idea that individuals�live� independently and separated and only the natural sele
tion and randommutation 
ontrol the evolutionary exploitation and exploration phenomena, re-spe
tively. This rule is a

epted in almost all known implementations of EAs.Most of the solutions proposed in Chapter 2 possess a di�erent and original 
har-a
ter. Population evolve like a herd. It is subje
t to the sele
tion and mutationme
hanisms as well as to some form of intelligen
e � �herd instin
t� � whi
h 
on-trols some global behaviors. The trap test for the SVA, IP and DOF me
hanisms



170 7. Con
luding remarksas well as the FDM te
hnique 
an be treated as some forms of this idea implemen-tations. However, the ideas of most me
hanisms proposed in this book are known,but two of them: the erosion me
hanism (ESSS-DOF) and the for
ed dire
tionof mutation (ESSS-FDM) are new. In the ESSS-DOF algorithm, the populationerodes a 
urrently o

upied peak. Owing to this fa
t, already exploited areas arejust unattra
tive for the population, whi
h runs away toward new territories. Thismethod allows to sear
h the widest area of the domain in a given number of itera-tions in 
omparison with other 
onsidered te
hniques. The ESSS-FDM algorithmhas been mainly proposed for adaptation tasks in non-stationary environments.Basing on it, the extremely e�e
tive learning method for the DMLP network hasbeen designed.The multi-dimensional Gaussian mutation is the most popular mutation te
h-nique in evolutionary algorithms based on the �oating point representation of in-dividuals. In the 
ase of a one-dimensional mutation, the most probable lo
ationof the o�spring is the nearest neighbourhood of the parent individual. But in the
ase of n-dimensional one, the most probable lo
ation moves from the 
enter ofmutation to the �ring� of the radius proportional to the norm of the standard de-viation ve
tor, whi
h in
reases with lands
ape dimension whenever the standarddeviation of ea
h entry is �tted.In re
ent years, the multi-dimensional Cau
hy mutation has attra
ted a lot of re-sear
h attention. Evolutionary algorithms whi
h use the Cau
hy mutations seemto be more e�e
tive in 
omparison to algorithms with the Gaussian mutation, inthe 
ase of most global optimization problems. But the multi-dimensional Cau
hydensity fun
tion obtained as a produ
t of n independent one-dimensional Cau
hydensity fun
tions is not isotropi
. The 
onvergen
e of the density fun
tion shape tothe zero value is di�erent for di�erent dire
tions in the n-dimensional real spa
e.However, the non-spheri
al symmetry of the Cau
hy mutation is well-known inthe statisti
al literature, the in�uen
e of the symmetry e�e
t on a phenotype evo-lutionary algorithm e�
ien
y needs detailed studies. The author has not foundany mention of the surrounding e�e
t, thus it is supposed that this problem is not
ommonly known. Both phenomenons are investigated in Chapter 3. Simulationexperiments prove that both e�e
ts are pro�table from the exploration propertypoint of view, but their exploitation abilities de
rease with the in
rease of thelands
ape dimension, espe
ially in the 
ase of narrow peaks. Proposed modi�edversions of the Gaussian and Cau
hy mutation are deprived of this disadvantage.Evolutionary algorithms, espe
ially in their phenotype manner, are very inter-esting from e
onomi
 analyzers point of view. There are many suggestions that so
alled �free market� is subje
t of the evolution prin
iple (Galar 1990). Simulationsof the simple phenotype evolution, like the ESSS algorithm, may be the sour
e ofthe information about e
onomi
 trends and behaviors. The main 
hara
teristi
 ofthe �e
onomi
 environment� is its non-stationarity and 
ontinual intera
tion withe
onomi
 entities. Re
ently, the problem of adaptation in the non-stationary en-vironments as well as the models of a population�environment intera
tion seemto be very attra
tive for bigger and bigger number of resear
hes. The numberof publi
ation su

essively in
reases. Unfortunately, the diverse methodology and



7. Con
luding remarks 171terminology 
ause most of results being not 
omparable. An analysis and 
lassi�-
ation of these problems, review of the existing measures and some propositions ofnew ones are presented in Chapter 4. We hope, that they 
an bring better under-standing of the 
onsidered problem and optimization tool behavior, and thereforeprovide more satisfying results.The problem of the neural model designing is mainly 
onne
ted with two opti-mization pro
esses (see Chapter 5): a learning pro
ess and an optimal ar
hite
tureallo
ation. The nature of the both pro
esses is di�erent. The learning pro
ess be-longs to a 
lass of global optimization in a multi-dimensional 
ontinuous domain.The spa
e of neural networks ar
hite
tures is dis
rete and in�nite.In order to model a dynami
 systems, a dynami
 neural networks should be used.One of the most interesting solution is appli
ation a lo
ally re
urrent neural net-work: the DMLP. Su
h a network is organized in the well-known MLP stru
tureand dynami
 is in
luded in the parti
ular DNM units. Similarly to the 
lassi
alMLP, the DMLP allows to 
onstru
t the learning algorithm based on the BP prin-
iple: the Extended Dynami
 Ba
k-Propagation algorithm. This algorithm trainsthe weights of synapti
 
onne
tions as well as feedforward and feedba
k parametersof IIR �lters 
ontained in ea
h DMN unit. The main disadvantage of the EDBPalgorithm is its lo
al manner. As well as all algorithms based on the �gradientdes
ent� method, the EDBP usually gets stu
k in one of lo
al optima of a multi-modal mean square error fun
tion. Thus, the methods of global optimization, likeevolutionary algorithms, 
an improve the e�e
tiveness of learning pro
ess.The dis
rete nature of the ANN ar
hite
tures spa
e suggests that the methodsof dis
rete optimization are a proper tool for allo
ation of the optimal neuralmodel ar
hite
ture. Four of them: Simulating Annealing, Geneti
 Algorithms, A?algorithm and Tabu Sear
h, are intensively studied in this book. Simulation ex-periments suggest that the A? algorithm seems to be the most attra
tive tool foroptimization of the DMLP ar
hite
ture. All experiments prove that the e�
ien
yof the optimal ar
hite
ture sear
hing algorithms is strongly dependent on the ef-�
ien
y of the learning method, the result of whi
h in�uen
es a quality index ofa given ar
hite
ture. If obtained set of trained network parameters is only a lo
aloptimal solution and far of the global one, the information about a quality of a
onsidered network ar
hite
ture 
an be falsi�ed.The last part of this book illustrates the appli
ability of EAs in the one of themost important domains of the modern industrial pro
esses: the fault diagnosis.Presented examples prove that appli
ation of the EA te
hnique, in parti
ular theGP method, to design of FDI systems signi�
antly improve their e�e
tiveness,espe
ially in the 
ase when a non-linear dynami
 system is diagnosed.The following is a 
on
ise summary of the 
ontribution provided by this workto the evolutionary 
omputing theory and appli
ation:� Proposes a new me
hanism, 
alled trap test, whi
h allows to dete
t the endof the a
tive phase of the evolutionary pro
essing and to apply pro
edures,whi
h a

elerate the exploration ability of the ESSS algorithm.� Presents a 
on
ept of a population�environment intera
tion in the form the



172 7. Con
luding remarkserosion te
hnique (ESSS-DOF). This pro
edure prevents a 
y
li
ally visitingof neighbouring peaks by a population.� Introdu
es a new modi�ed version of Gaussian mutation (applied in theESSS-FDM algorithm) with the nonzero expe
tation ve
tor, whi
h is parallelto the latest population drift.� Formulates and experimentally analyzes the geographi
ally lo
al sele
tionoperator.� Investigates the in�uen
e of the surrounding and symmetry e�e
ts of theGaussian and Cau
hy mutations on the e�e
tiveness of phenotype EAs. Pro-poses and analyzes modi�ed version of Gaussian and Cau
hy mutation de-prived above e�e
ts.� Systematizes problems of the adaptation in non-stationary environments tak-ing into a

ount both the problem spe
i�
ation and intensity of an environ-ment 
hanges 
riteria.� De�nes two new measures for algorithms pro
essing in the non-stationaryenvironments: the �a

eptability� and �a

eptability distan
e�, whi
h rewardalgorithms keeping the adaptation pro
ess on an a

eptable level.� Develops, basing on the ESSS-FDM algorithm, the on-line evolutionarylearning method for the DMLP network.� Proposes a 
as
ade-redu
tion s
heme for the geneti
 algorithm and simu-lated annealing approa
h, based on the dire
t representation, to the ANNar
hite
ture optimization.� Extends the digraph representation of the spa
e of MLP stru
tures, proposedby Doering et al. (Doering et al. 1997), to the digraph representing the spa
eof DMLP ar
hite
tures.� Investigates the appli
ability of the SA, A? and Tabu Sear
h algorithmsto the DMLP ar
hite
ture optimization through sear
hing the digraph ofDMLP stru
tures.� Systematizes existing appli
ation of the EAs in the FDI systems, and alsoproposes possible dire
tions of this task development.� Shows how to represent various model stru
tures as a parameterized treesand how to identify their stru
ture using the GP algorithm as well as toestimate their parameters.� Presents the methodology of the input-output MIMO NARX and asymp-toti
ally stable state-spa
e models design using above version of the GPapproa
h.� Basing on the fa
t that instrumental matri
es strongly in�uen
e the 
on-vergen
e properties of the Extended Unknown Input Observer, proposes theGP approa
h to the these matri
es sele
tion problem.



A Saddle 
rossing problem
In this book the saddle 
rossing problem is de�ned as follows. Let us 
onsider thesum of two Gaussian peaks
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174 �s
(x) = exp�� 5 nXi=1 x2i�+ 12 exp�� 5�(1� x1)2 + nXi=2 x2i��; (A1)where n is the lands
ape dimension. The fun
tion �s
(x) is 
omposed of twoGaussian peaks. The lowest one possesses its optimum at the point (1; 0; : : : ; 0).The global optimum is lo
ated at the point (0; 0; : : : ; 0).It was assumed that the saddle is 
rossed by the population if the mean valueof the �rst entry taken over all elementshx1i = 1n nXk=1 �xk�1 < s � 0:42; (A2)it means that most individuals are lo
ated on the higher peak (Fig. A.2).The initial point of sear
hing for the algorithm tested is 
hosen in the lo
aloptimum of the fun
tion �s
(x). If the population did not 
rossed the saddleduring a given pro
essing time tmax, then, in order to 
al
ulate �, the 
rossingtime is �xed to tmax.



B Ben
hmarks for the global optimization problem
Fun
tion f1 � sum of two Gaussian peaks. (Fig. A.1)f1(x1; x2) = exp(�x21 � x22) + 12 exp(�(x1 � 1)2 � x22); (B1)
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