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Notation

t time

k discrete time

E(·) expectation operator

xk, x̂k (ẋ(t), ˙̂x(t)) ∈ R
n state vector and its estimate

yk, ŷk ∈ R
m output vector and its estimate

ek ∈ R
n state estimation error

εk ∈ R
m output error (residual)

uk ∈ R
r input vector

dk ∈ R
q unknown input vector, q ≤ m

wk, vk process and measurement noise

Qk, Rk covariance matrices of wk and vk

p parameter vector

fk ∈ R
s fault vector

g(·), h(·) non-linear functions

Ek ∈ R
n×q unknown input distribution matrix

L1,k, L2,k fault distribution matrices

n1,y, . . . , nm,y, n1,u, . . . , nm,u maximum lags in the outputs and inputs

nt, nv number of input-output measurements

for identification and validation

np number of populations

nm population size

nd initial depth of the trees

ns tournament population size

T, F terminal and function sets
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INTRODUCTION

It is well known that there is an increasing demand for modern systems to become
more effective and reliable. This real world’s development pressure has transformed
automatic control, initially perceived as the art of designing a satisfactory system,
into the modern science that it is today. The observed increasing complexity
of modern systems necessitates the development of new control techniques. To
tackle this problem, it is obviously profitable to have all the knowledge concerning
a system behaviour. Undoubtedly, an adequate model of a system can be a tool
providing such knowledge. Models can be useful for system analysis, e.g. to predict
or to simulate a system behaviour. Indeed, nowadays, advanced techniques for
designing controllers are also based on models of systems. Application of models
leads directly to the problem of system identification.

The main objective of system identification is to obtain a mathematical de-
scription of a real system of interest. In the case of phenomenological models,
whose structures are built based on physical consideration, i.e. on physical laws
governing the system that is being studied, the system identification problem re-
duces to the parameter estimation one. Given a structure of such a model and
knowing that its parameters have a physical meaning, it is possible to predict
their nominal values. This possibility extremely facilities parameter estimation,
especially for model structures which are non-linear in their parameters. On the
other hand, the high complexity of a large majority of real systems makes it im-
possible to perform physical consideration underlying phenomenological models.
In such situations, the behavioural models, which merely approximate the system
input-output behaviour, have to be employed.

Although the majority of industrial systems are non-linear in their nature,
the most common approach to settle the model construction problem is to use the
well-known tools for linear systems (Ljung 1987, Nelles 2001, Walter and Pronzato
1997). In spite of the simplicity of such an approach, the use of linear models will
usually introduce a degree of approximation. While such an approximation may
be fully acceptable in many cases, there are applications for which a detailed
description of a system of interest is of great practical importance. This is the
main reason for further development of non-linear system identification theory.
Indeed, a few decades ago, non-linear system identification was a field of several
ad-hoc approaches, each applicable only to a very restricted class of systems. With
the advent of neural networks, fuzzy models, and modern structure optimisation
techniques, a much wider class of systems can be handled.
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The most popular classical non-linear identification methods usually em-
ploy various kinds of polynomials as a foundation for the model construc-
tion procedure, for example, the orthogonal regression estimator (Billings et
al. 1989), which combines the structure determination with parameter estima-
tion, as well as the Group Method of Data Handling (GMDH), introduced by
Ivakhnenko (Farlow 1984, Ivakhnenko 1968). The main advantage of such ap-
proaches is that polynomial models are linear in their parameters and this ex-
tremely facilities parameter estimation. In spite of the considerable usefulness
of such approaches, there are applications for which polynomial models do not
give satisfactory results. To overcome this problem, the so-called Soft Computing
methods can be employed.

The most popular approach is to use either neural networks (Duch et
al. 2000, Hertz et al. 1991, Nelles 2001) or fuzzy neural networks (Nuck et
al. 1997, Nelles 2001). Many works confirm their effectiveness and recommend
their use. On the other hand, there is no efficient approach to selecting structures
of such networks. Thus, many experiments have to be carried out to obtain an
appropriate configuration. Another problem arises from dynamic systems mod-
elling. In this context, a network of dynamic neurons or a recurrent network can
be used. In both cases the process of training is usually relatively complex. An
alternative approach, which seems to avoid these difficulties, is to employ Genetic
Programming (GP) (Esparcia-Alcazar 1998, Gray et al. 1998, Koza 1992, Witczak
and Korbicz 2000a, Witczak and Korbicz 2000b, Witczak and Korbicz 2002). GP
is an extension of genetic algorithms (Michalewicz 1996), which are a broad class
of stochastic optimisation algorithms inspired by some biological processes, which
allow populations of organisms to adapt to their surrounding environment. The
main difference between these two approaches is that in GP the evolving individu-
als are parse trees rather than fixed-length binary strings. The main advantage of
GP over neural networks is that the models resulting from this approach are less
sophisticated (from the point of view of the number of parameters). This means
that those models, in spite of the fact that they are of the behavioural type, are
more transparent and hence they provide more information about a system be-
haviour. Moreover, model structures resulting from this approach can further be
reduced in a very intuitive way.

Unlike it has been done in the past, modern control techniques should take
into account the system’s safety. This requirement goes beyond the normally
accepted safety-critical systems of nuclear reactors and aircraft, where safety is of
paramount importance, to less advanced industrial systems. Therefore, it is clear
that the problem of fault diagnosis constitutes an important subject in modern
control theory. This is the main reason why the design and application of the
model-based fault diagnosis has received considerable attention during the last
few decades.

In a fault diagnosis task, the model of the real system of interest is utilised
to provide estimates of certain measured and/or unmeasured signals. Then, in
the most usual case, the estimates of the measured signals are compared with
their originals, i.e. a difference between the original signal and its estimate is
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used to form a residual signal. This residual signal can then be employed for
Fault Detection and Isolation (FDI). This means that the problems of system
identification and fault diagnosis are closely related.

Irrespective of the identification method used, there is always the problem of
model uncertainty, i.e. the model-reality mismatch. Thus, the better the model
used to represent a system behaviour, the better the chance of improving the
reliability and performance in diagnosing faults. Unfortunately, disturbances as
well as model uncertainty are inevitable in industrial systems, and hence there
exists a pressure creating the need for robustness in fault diagnosis systems. This
robustness requirement is usually achieved in the fault detection stage.

In the context of robust fault detection, many approaches have been pro-
posed ((Chen and Patton 1999, Patton et al. 2000) and the references therein).
Undoubtedly, the most common one is to use robust observers, such as the Un-
known Input Observer (UIO) (Alcorta et al. 1997, Chen et al. 1996, Chen and
Patton 1999, Patton and Chen 1997, Patton et al. 2000), which can tolerate a de-
gree of model uncertainty and hence increase the reliability of fault diagnosis. In
such an approach, the model-reality mismatch is represented by the so-called un-
known input and hence the state estimate and, consequently, the output estimate
are obtained taking into account model uncertainty. As in system identification,
much of the work in this subject is oriented towards linear systems. This is mainly
because of the fact that the theory of observers (or filters in the stochastic case)
is especially well-developed for linear systems.

Unfortunately, the existing non-linear extensions of the UIO (Alcorta et
al. 1997, Chen et al. 1996, Chen and Patton 1999, Patton and Chen 1997, Seliger
and Frank 2000) require a relatively complex design procedure, even for sim-
ple laboratory systems (Zolghardi et al. 1996). Moreover, they are usually lim-
ited to a very restricted class of systems. One way out of this problem is to
employ linearisation-based approaches, similar to the Extended Kalman Filter
(EKF) (Anderson and Moore 1979). In this case, the design procedure is as sim-
ple as that for linear systems. On the other hand, it is well known that such
a solution works well only when there is no large mismatch between the model
linearised around the current state estimate and the non-linear behaviour of the
system. Thus, the idea is to improve the convergence of linearisation-based ob-
servers.

Another problem is that, even for linear systems, the research concerning
UIOs is strongly oriented towards deterministic systems. Indeed, the question of
detecting and isolating faults for systems with both modelling uncertainty and the
noise has not attracted enough research attention, although most fault diagnosis
systems suffer from both modelling uncertainty and the noise. The existing ap-
proaches (see (Chen and Patton 1999, Chen et al. 1996, Keller and Darouach 1999)
and the references therein), which can be applied to linear stochastic systems,
rely on a similar idea to that of the classical Kalman Filter (KF) (Anderson and
Moore 1979). The main drawback to such techniques lies in their restrictive as-
sumptions concerning the noise distribution, i.e. it is assumed that the process and
measurement noises are zero-mean white noise sequences. However, in many prac-
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tical situations it is more natural to assume that only bounds on the noise signals
are available (Maksarow and Norton 1996a, Maksarow and Norton 1996b, Milanese
et al. 1996, Walter and Pronzato 1997). This bounded-error approach describes
a set of all states that are consistent with the model, the measured data and the
error (or the noise) bounds. All members of this feasible set are then possible
solutions to the state estimation problem. Unfortunately, the set obtained in such
a way may become extremely complex. For the sake of computational complexity,
this feasible set is usually characterised by the smallest (in some sense) ellipsoid
that encloses it. Although, in the case of the observers of this type, the so-called
unknown input can be treated in a similar way as the process noise, i.e. the only
requirements are the bounds of the unknown input, it seems especially attractive to
employ the bounded-error approach to design an UIO for linear stochastic systems.
This is especially true from the point of view of fault isolation. Indeed, in order
to design a fault diagnosis system, which is based on a bank of observers, each of
the observers should be insensitive to one fault while sensitive to others. This can
be achieved by combining the classical UIO with bounded-error techniques, which
results in an observer for a wide class of linear stochastic systems.

Another problem arises from the application of fault diagnosis to non-linear
stochastic systems. Unfortunately, the only existing approaches to this class of
systems consist in the application of the EKF. Indeed, the non-linear extensions
of the UIO (Alcorta et al. 1997, Chen et al. 1996, Chen and Patton 1999, Patton
and Chen 1997, Seliger and Frank 2000) can only be applied to non-linear deter-
ministic systems. Thus, it seems especially attractive to extend the combination
of bounded-error techniques and the UIO so that it can be applied to non-linear
stochastic systems.

It should also be pointed out that the application of robust observer-based
fault diagnosis techniques is usually very limited due to the necessity of having
a non-linear state-space model of a system. This is the main reason why this work
is concerned with both system identification and robust fault detection.

The objective of this work is twofold. The first subject concerns the applica-
tion of genetic programming to the design of models of non-linear discrete-time
systems. In particular, the problem is to develop algorithms for designing both
state-space and input-output models. The second subject focuses on designing ro-
bust state estimators for the purpose of fault detection. In particular , the problem
is to develop algorithms which allow to design unknown input observers for both
deterministic and stochastic non-linear discrete-time systems.

In particular, within the framework of this work, the following problems will
be addressed:

Theoretical aspects:

• development of genetic programming-based non-linear system identifi-
cation algorithms for both input-output and state-space models:

– stability analysis of state-space models,

– selection strategies of control parameters,
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• development of an unknown input observer for a class of deterministic
non-linear discrete-time systems:

– convergence analysis,

• application of bounded-error techniques to the design of unknown input
observers for:

– discrete-time linear stochastic systems,

– discrete-time non-linear stochastic systems.

Application aspects:

• system identification based on simulated as well as real-world data from
the Lublin sugar factory,

• fault detection of simulated and real systems.

The book is divided into 4 chapters. Chapter 1 presents well-known and fre-
quently applied model structures, from classical approaches to neural networks
models. Both static and dynamic models are considered. A detailed analysis of
these structures, as well as their drawbacks and advantages, is presented. Model
selection techniques are discussed as well. Chapter 2 reviews the most popular
model-based residual generation schemes. The main attention of this chapter fo-
cuses on the problem of fault detection, which constitutes the most important
fault diagnosis stage (without fault detection it is impossible to perform fault iso-
lation). In particular, various model-based fault detection schemes are presented,
from simple model-based residual generators to more advanced, robust observer-
based approaches. This review concerns fault detection schemes for both linear
and non-linear systems. The advantages, drawbacks and possible application areas
are discussed as well.

Genetic programming-based system identification techniques are proposed in
Chapter 3. This chapter briefly reviews the well-known and frequently applied evo-
lutionary algorithms, with special emphasis put on genetic algorithms and genetic
programming. The proposed modification of the genetic programming approach is
applied to the dynamic model design. In particular, input-output and state-space
identification schemes for dynamic systems are proposed. The stability of models
resulting from the state-space identification scheme is considered. The final part
of this chapter contains experimental results which confirm the effectiveness of the
proposed approach. Selection strategies of the genetic programming algorithm’s
control parameters are discussed as well.

In Chapter 4, the concept of an extended unknown input observer for non-
linear discrete-time deterministic systems is introduced, and then the design algo-
rithm is described in detail. A comprehensive convergence analysis is performed.
The obtained results are then employed to increase the convergence rate of the
observer. To tackle this problem, a genetic programming-based technique is pro-
posed. The chapter contains numerical simulation results regarding state estima-
tion as well as fault diagnosis of an induction motor.
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The chapter also discusses the application of bounded-error state estimation
techniques to the design of unknown input observers for both linear and non-
linear stochastic systems. The problem of state estimation of linear systems with
bounded system and measurement noises is formulated, and a suitable algorithm
is given. It is shown how to employ the proposed algorithm to design an unknown
input observer for a wide class of linear stochastic systems. Moreover, an extension
of the approach being considered which can be applied to non-linear stochastic
systems is proposed. The final part of this chapter contains experimental results
concerning state estimation as well as fault diagnosis for both linear and non-linear
stochastic systems.

The main original achievements of this work and final remarks are presented
in Conclusions.

The book was developed partially within the grant Identification and Fault
Detection of Non-linear Dynamic Systems (2001-2002) of the State Committee
for Scientific Research in Poland and within the EU FP 5 Research Training Net-
work project DAMADICS: Development and Application of Methods for Actuator
Diagnosis in Industrial Control Systems (2000-2003).



Chapter 1

MODEL STRUCTURES

This chapter reviews the most popular and frequently used model structures. Both
static and dynamic and linear and non-linear models are considered. Although the
work focuses on the identification of dynamic non-linear systems, to make this re-
view self-contained, the well-known static and/or linear models are presented as
well. Because dynamic models inherit various properties of their static counter-
parts, the following structure of the present chapter is justified. Section 1.1 briefly
reviews both linear and non-linear model structures for static systems. In par-
ticular, the classical linear, look-up table and polynomial models are presented.
Finally, as a relatively new identification tool, artificial neural networks are intro-
duced.

Because of the fact that fuzzy logic-based approaches constitute qualitative
modelling tools, they are beyond the scope of this chapter.

Section 1.2 is devoted to dynamic systems. Its structure is similar to that of
Section 1.1. Well-known linear models open the list of tools for the identification
of dynamic systems. In the sequel, various classical (including polynomials) and
neural network models of non-linear dynamic systems are presented.

In all the cases drawbacks and advantages are discussed, with special emphasis
put on the applicability to real-world identification problems. The stability of
dynamic models is examined as well.

1.1. Static models

1.1.1. Linear models

Linear models constitute well-known and frequently used approximation tools.
These model structures can be employed for the identification of non-linear static
systems only when their non-linear characteristic is weak. The main advantage
of linear models is their simplicity. Moreover, they are linear in their parameters.
This facilities parameter estimation, which can be realised by the celebrated least-
square algorithm (Ljung 1987, Nelles 2001, Walter and Pronzato 1997) or by the
bounded-error techniques (Milanese et al. 1996, Walter and Pronzato 1997).

A linear model can be written as

ŷ =

r∑

i

piui = pT u, with u0 = 1. (1.1)
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In spite of the simplicity of linear models, their application is usually very limited.
This is the case, for example, in fault detection, where a model of good quality is
of great importance.

1.1.2. Polynomial models

Polynomials form a natural extension of linear representation. Indeed, a linear
model can be considered as a special case of a polynomial one.

An r-dimensional polynomial of the l-th degree can be written as

ŷ = p0 +

r∑

i

piui

︸ ︷︷ ︸

linear part

+

r∑

i1=1

r∑

i2=i1

pi1i2ui1i2 + · · ·+

+

r∑

i1=1

· · ·
r∑

il=il−1

pi1···lui1uil
. (1.2)

The first two terms in (1.2) describe a linear model while the remaining ones have
non-linear properties, e.g. u2

1, u1u2, ul
1, u

l−1
1 u2, etc. As can be observed, the

r-dimensional polynomial of the l-th degree possesses

1 +

(

r

1

)

+

(

r + 1

2

)

+ · · · +
(

r + l − 1

l

)

=

=

l∑

i=1

(r + i− 1)!

i!(r − 1)!
=

(r + l)!

r!l!
(1.3)

parameters, i.e. dim(p) = (r + l)!/(r!l!). For example, the 2-dimensional polyno-
mial of the 3-rd degree can be written as follows:

ŷ =p0 + p1u1 + p2u2 + p11u
2
1 + p12u1u2 + p22u

2
2

+ p111u
3
1 + p112u

2
1u2 + p122u1u

2
2 + p222u

3
2, (1.4)

or in a more convenient form:

ŷ = pT z, (1.5)

where p = (p0, p1, p2, p11, p12, p22, p111, p112, p122, p222) and z = (1, u1, u2, u
2
1,

u1u2, u
2
2, u

3
1, u

2
1u2, u1u

2
2, u

3
2). Similarly, the polynomial (1.2) can be expressed in

the form (1.5). Like linear models, polynomials are linear in their parameters,
and hence parameter estimation can be realised with the least-squares (Ljung
1987, Nelles 2001, Walter and Pronzato 1997) or bounded-error (Milanese et
al. 1996, Walter and Pronzato 1997) algorithms. On the other hand, the number
of parameters (1.3) grows significantly with an increase in the number of system
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inputs r and/or in the degree of a polynomial. To overcome this problem, effi-
cient algorithms such as the orthogonal least squares (Billings et al. 1989) or the
GMDH (Farlow 1984, Ivakhnenko 1968) can be introduced. The orthogonal least
squares method can automatically select the relevant terms from a full polynomial,
and leads to a reduced polynomial model with significantly fewer parameters. The
GMDH approach decomposes the model construction task into simple sub-tasks.
Each sub-task consists in determining an elementary model, e.g. a 2-dimensional
polynomial of the 2-nd degree. In the case of a polynomial of the 2-nd degree
or other 2-dimensional models, the structure of the GMDH algorithm can be as
follows (cf. Fig. 1.1):

Step 1 : Determine all elementary models whose inputs consist of all the possible
couples of input variables, i.e. (r − 1)r/2 couples (elementary models).

Step 2 : Using a new data set (not employed during the model determination
phase), select several elementary-models which are best-fitted in terms of the
criterion chosen.

Step 3 : If the termination condition is reached (one of the models fits the data
with a desired accuracy, or the introduction of new elementary models did not
cause a significant increase in the approximation abilities of the whole model
in terms of the criterion chosen), then STOP, otherwise use the outputs of
the best-fitted elementary models (selected in Step 2 ) to form the input
vector, and then go to Step 1.
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Fig. 1.1 . The principle of the GMDH algorithm.

Example 2.1. The problem is to model the following relation:

y = − 1

0.1 + u2
, (1.6)

with a polynomial (and a linear function as a special case), given a set of input-
output measurements {ui, yi}nt

i=1, where ui is generated according to the uniform
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distribution, i.e. ui ∈ U(−2, 2), and nt = 100. The next task is to test the
effectiveness of the obtained model with a validation data set {ui, yi}nv

i=1, where
ui ∈ U(−4, 4) and nv = 100.

To tackle the above problem, polynomials of a degree between 1 to 4 were
derived using the least-squares method. Then they were tested with the validation
data set, and the results are shown in Fig. 1.2.
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Fig. 1.2 . y = −1/(0.1 + u2) and the corresponding polynomial models (1st degree (top-
left), 2nd degree (top-right), 3rd degree (bottom-left), and 4th degree (bottom-
right) polynomials).

In spite of the simplicity of linear and polynomial models, this example shows
obviously that the accuracy of linear models is typically low, i.e. the stronger the
non-linear characteristic of the system, the lower the accuracy. As the name “lin-
ear” suggests, their interpolation as well as extrapolation behaviour is linear. The
accuracy of polynomial models is usually limited since high-degree polynomials
are not practicable. As can be observed in Fig. 1.2, the interpolation behaviour is
strongly related to the degree of a polynomial. The extrapolation behaviour de-
pends on the highest-order terms, i.e. polynomials tend to +∞ or −∞ with a rate
determined by them. Those drawbacks of polynomials have led to the development
of splines, which are locally defined low-degree polynomials.

1.1.3. Look-up tables

Look-up tables (Nelles 2001) are the most common static non-linear models used
in practical implementations. Although they are limited to problems with one or
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two-dimensional input spaces, their popularity comes from their simplicity and
the fact that they require low computational burden. Moreover, in most applica-
tions where look-up tables are employed, the identification procedure boils down
to storing the data, i.e. no “real” optimisation methods are required. On the other
hand, the application of look-up tables is limited to low-dimensional problems.
This is mainly because only one- and two-dimensional mappings can be visualised.
Another reason is that, unlike low-dimensional mappings, high-dimensional map-
pings cannot be realised with grid-based look-up tables (curse of dimensionality).
This leads directly to various decomposition techniques.

In this section, the consideration is limited to one-dimensional look-up tables,
since two-dimensional look-up tables are their straightforward extensions.

Let us consider a one-dimensional look-up table shown in Fig. 1.3. It consists
of eight points (ui, yi), i.e. for eight input values ui, i = 1, . . . , 8 the corresponding
output values yi, i = 1, . . . , 8 are stored in this look-up table. The output of
one-dimensional look-up table is given as:

ŷ =
yleft(uright − u) + yright(u− uleft)

uright − uleft
, (1.7)

where (uleft, yleft) and (uright, yright) are the closest points to the left and right of u,
respectively. If u has either no left or no right neighbour, the output ŷ of a look-up
table is not defined. However, any kind of extrapolation behaviour can be realised
by keeping the output of a look-up table constant over the range umin, . . . , umax.
Look-up tables can also be expressed in an equivalent form using triangular basis

y

u

y1
u1

y2

u2

y3

u3

y4

u4

y5

u5

y6

u6

y7

u7

y8

u8

Fig. 1.3 . An exemplary one-dimensional look-up table.
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functions (Fig. 1.4), i.e.

ŷ =

nt∑

i=1

yiφi(u, ū), (1.8)

where ū = (u1, . . . , unt
) is composed of nt look-up table points. The ui,

i = 1, . . . , nt represent centres of the basis functions. The basis functions can
be written as

φi(u, ū) =







(u− ui−1)/(ci − ci−1) for ci−1 ≤ u ≤ ci,

(u− ui+1)/(ci − ci+1) for ci ≤ u ≤ ci+1,

0 otherwise.

(1.9)

It should be pointed out that such a basis function, similarly to (1.7), realises the

φ

1

0
uu1 u2 u3 u4 u5 u6 u7 u8

Fig. 1.4 . Basis functions corresponding to the look-up table.

linear interpolation behaviour of the look-up table. Moreover, the expression (1.8)
is linear with respect to yi and non-linear with respect to ui. This relationship does
not matter as long as both ui and yi represent the input-output measurements.
However, when look-up tables are to be optimised, this issue becomes important.
Finally, it is worth noticing that basis functions may have more sophisticated
shapes than the triangular ones, e.g. higher-order splines or Gaussian functions.

1.1.4. Neural networks

This section reviews the well-known and frequently used Artificial Neural Networks
(ANNs) which can be employed to the identification of static non-linear systems.
In particular, the so-called feed-forward networks such as Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) networks are considered.

1.1.4.1. Multi-layer perceptron

Artificial neural networks consist of a number of sub-units called neurons. The
classical neuron structure (Fig. 1.5) can be described by:

y = f

(
r∑

i=0

piui

)

= f(pT u), with u0 = 1, (1.10)
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where f(·) stands for the so-called activation function, and, as usual, p is the pa-
rameter (or weight) vector to be estimated. It is obvious that the behaviour of
the neuron (1.10) depends on the activation function f(·). There are, of course,
many different functions which can be employed to settle this problem. The sim-
plest choice is to use a linear activation function resulting in the so-called Adaline
neuron (Hertz et al. 1991). Nevertheless, real advantages of neural networks can
be fully exploited when activation functions are non-linear. Typically, the activa-

y

u0

u1

ur

p0

p1

pr

∑
f(·)

Fig. 1.5 . The classical neuron structure.

tion function is chosen to be of the saturation type. The common choice is to use
sigmoidal functions such as the logistic

f(x) = logistic(x) =
1

1 + exp(−x) (1.11)

and the hyperbolic tangent

f(x) = tanh(x) =
1 − exp(−2x)

1 + exp(−2x)
= 2logistic(2x) − 1 (1.12)

functions. As can be seen from (1.12), the functions can be transformed into
each other. Moreover, these two functions share an interesting property, namely,
that their derivatives can be expressed as simple functions of the outputs. As
long as a gradient-based algorithm is used to obtain parameter estimates, this
property leads to a significant decrease in the computational burden, thus making
the network synthesis process more effective.

The multi-layer perceptron is a network consisting of neurons divided into
the so-called layers (Fig. 1.6). Such a network possesses an input layer, one or
more hidden layers, and an output layer. The main tasks of the input layer are
data preprocessing (e.g. scaling, filtering, etc.) and passing the input signals into
the hidden layer. Therefore, only the hidden and output layers constitute a “true”
model. The connections between neurons are designed in such a way that each
neuron of the former layer is connected with each element of the succeeding one.
The non-linear neural network model (cf. Fig. 1.6) can symbolically be expressed
as follows:

y = g3 (g2 (g1 (u))) , (1.13)

where g1(·), g2(·), and g3(·) stand for the operators defining signal transformation
through the 1st, 2nd, and output layers, respectively.
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Fig. 1.6 . An exemplary multi-layer perceptron with 3 layers.

One of the fundamental advantages of neural networks is their learning and
adaptational abilities. An MLP network is a universal approximator (Hornik et
al. 1989). This means that the MLP can approximate any smooth function with
an arbitrary degree of accuracy as the number of hidden layer neurons increases.
From the technical point of view, the training of neural networks is nothing else
but parameter estimation. Indeed, once the structure of a network is known,
the remaining task is to obtain the parameter vector p. To tackle this problem,
the celebrated back-propagation algorithm (Duch et al. 2000, Hertz et al. 1991)
can be employed. Other possibilities involve the application of various stochas-
tic (Walter and Pronzato 1997) or evolutionary algorithms (Duch et al. 2000).
These approaches should be adopted when classical gradient-based algorithms fail
to converge to the satisfactory results. This is, however, a common situation, ow-
ing to the multimodal character of the optimisation index. Another problem may
occur because of a large number of parameters to be estimated. This is especially
true for neural networks with many hidden layers.

The main drawback to neural networks arises from a model structure selection.
There are, of course, many more or less sophisticated approaches to this problem,
and they can be divided into three classes:

1. Bottom-up approaches: starting with a relatively simple structure, the num-
ber of hidden neurons is increased,

2. Top-down approaches: starting from a relatively complex structure, which
seems to be sufficient to solve an identification problem, the “excessive” neu-
rons are removed,

3. Discrete optimisation methods: with each network structure an evaluation
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value is associated, and then the network structure space is explored to find
an appropriate configuration.

Unfortunately, the efficiency of those algorithms is usually very limited. As a re-
sult, neural networks with very poor generalisation abilities are obtained. Another
drawback to neural networks is that models resulting from this approach are not
in “a human readable” form. This means that the structure of such a network is
not able to provide any practical knowledge about that of a real system. Indeed,
according to the literature, neural networks are called “black boxes”.

1.1.4.2. Radial basis function networks

Radial basis function networks as rivals of arduously learning multi-layer per-
ceptrons have received considerable research attention in recent years (Duch et
al. 2000, Nelles 2001). This kind of networks requires many nodes to achieve
satisfactory results. The problem is somewhat similar to that of selecting an ap-
propriate structure of a multi-layer perceptron. The RBF (Radial Basis Function)
network (Fig. 1.7) consists of three layers, namely, the input layer, one hidden
layer, and the output layer. The output φi of the i-th neuron of the hidden layer
is a non-linear function of the Euclidean distance from the input vector u to the
vector of centres ci and can be expressed as follows:

φi = f (‖u − ci‖2) , i = 1, . . . , nh, (1.14)

where ‖ ·‖2 stands for the Euclidean norm, and nh is the number of neurons in the
hidden layer. The j-th network output is a weighted sum of the hidden neurons’
output:

yj =

nh∑

i=1

pjiφi. (1.15)

The activation function f(x) is usually chosen to posses a local character and
a maximum at x = 0. Typical choices for the activation function are the Gaussian
function:

f(x) = exp

(

−x
2

ρ2

)

, (1.16)

and the inverse multi-quadratic function:

f(x) =
1

√

x2 + ρ2
, (1.17)

where ρ signifies an additional free parameter.
The fundamental task in designing RBF networks is the selection of the num-

ber of hidden neurons, and the activation function type. Then, the function centres
and their positions should be chosen. In this context, it should be pointed out that
too small a number of centres may result in poor approximation properties.
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Fig. 1.7 . An exemplary radial basis function networks.

On the other hand, the number of exact centres increases according to the dimen-
sion of the input space. For the sake of this, the application of RBF networks is
rather restricted to low-dimensional problems.

The typical strategy for the RBF network training consists in exploiting the
linearity of the output layer parameters (weights) and the geometric interpretabil-
ity of the hidden layer parameters. The hidden layer parameters are determined
first and, subsequently, the output layer parameters are obtained by means of some
well-known approaches for linear parameter estimation, e.g. by the least-squares
algorithm. There are, of course, many more or less sophisticated approaches to
selecting the centres and the widths of the basis function. The simplest one con-
sists in randomly selecting these parameters; however, this is not a really practical
approach. More efficient and, of course, more sophisticated approaches rely on
the application of clustering, grid-based and subset selection techniques, as well
as non-linear optimisation (see (Nelles 2001) for a survey).

1.2. Dynamic models

Like static models, their dynamic counterparts are commonly employed for fore-
casting the behaviour of a system. Contrary to the case of static models, two
situations have to be distinguished here, i.e. simulation and prediction. If the
response of the model output has to be calculated while the system output is un-
known (or is not considered as an additional source of information), we deal with
simulation. On the other hand, if the system output is known up to some time
instant, i.e. k− 1, and the model output l steps is asked for in the future, we deal
with prediction. The choice of a suitable configuration depends on the application.

The present section is organised in a similar way as Section 1.1. It starts
from relatively simple linear models and goes to polynomials and other classical
approaches to end up with advanced neural network architectures.
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1.2.1. Linear models

In this section, various structures of linear dynamic models are briefly reviewed.
In particular, a general model structure (in an input-output configuration) is pre-
sented. The remaining models are derived from this general framework. The
state-space linear models are presented as well.

The general model describing deterministic (uk) as well as stochastic (vk)
influences can be given as follows (Nelles 2001) (Fig. 1.8a):

yk =
B(q)

F (q)A(q)
uk +

C(q)

D(q)A(q)
vk, (1.18)

where (in this section) q stands for the forward shift operator, i.e. q−1uk = uk−1.
The terms B(q)/(F (q)A(q)) and C(q)/(D(q)A(q)) are called the input and noise
transfer functions, respectively (since they relate the input uk and the noise vk to
the output yk, respectively). The notation of transfer functions and the assump-
tion regarding the polynomial structure of A(q), . . . , F (q) have been accepted as
standard since the publication of Ljung’s book (Ljung 1987). Subsequently, by
making special assumptions concerning A(q), . . . , F (q), the widely-known linear
dynamic models are derived. For the sake of brevity, models without the output
feedback and models discarding the input uk are not considered.

One of the most frequently used system description is the ARX (AutoRe-
gressive with eXogenous input) model (Fig. 1.8b). It can be obtained by setting
C(q) = D(q) = F (q) = 1 in a general model structure (1.18), i.e.

yk =
B(q)

A(q)
uk +

1

A(q)
vk. (1.19)

In this case, deterministic and stochastic parts of the ARX model posses identical
denominator dynamics. This fact can be interpreted in another way by considering
1/A(q) as a noise model. Such a situation may be fully acceptable if the noise enters
the process early.

Another possible system description is the ARMAX (AutoRegressive Moving
Average with eXogenous input) model (Fig. 1.8c):

yk =
B(q)

A(q)
uk +

C(q)

A(q)
vk. (1.20)

As with ARX models, in the case of ARMAX models it is assumed that there is
identical denominator dynamics for the input and noise transfer functions. Unlike
in the ARX model, here the noise transfer function is more flexible owing to the
moving average polynomial C(q).

The ARARX (AutoRegressive AutoRegressive with eXogenous input) model
(Fig. 1.8d) is another simplification of the general structure (1.18), and can be
expressed as:

yk =
B(q)

A(q)
uk +

1

D(q)A(q)
vk. (1.21)
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Unlike in the previous structures, in this case an additional flexibility in the denom-
inator of the noise transfer is introduced. Without this modification the ARARX
model is simply the ARX model.

In order to complete the list of models possessing the same denominator dy-
namics in the input and noise transfer functions, the ARARMAX (AutoRegressive
AutoRegressive Moving Average with eXogenous input) model can be defined as

yk =
B(q)

A(q)
uk +

C(q)

D(q)A(q)
vk. (1.22)

It should be pointed out that, owing to its complexity, this model structure is
rarely used in practice.

Another class of models, which do not share a common denominator in the
input and noise transfer functions, are OE (Output Error) models (Fig. 1.8e):

yk =
B(q)

F (q)
uk + vk. (1.23)

Unlike in the case of linear dynamic models presented above, here the noise disturbs
the system additively at the output, not somewhere inside the system.

A modified version of the OE model possessing an additional degree of freedom
for the noise model is called the BJ (Box-Jenkins) model (Fig. 1.8f):

yk =
B(q)

F (q)
uk +

C(q)

D(q)
vk, (1.24)

Out of all linear models discussed so far the BJ model is the most general and
flexible one. It allows to estimate separate transfer functions with arbitrarily
defined numerators and denominators. On the other hand, such a flexibility leads
to a large number of parameters to be estimated. This is the main reason why
the BJ model is rarely used in practice. Finally, it should be pointed out that the
stability of linear models can easily be attained by setting the coefficients of the
polynomial A(q) (or F (q)) in such a way that its roots lie inside a unit circle.

1.2.1.1. State-space models

Instead of applying the input-output configuration, the so-called state-space model
can be employed. The linear state space model takes the following form:

xk+1 = Axk + Buk + wk, (1.25)

yk+1 = Cxk+1 + vk+1. (1.26)

The most straightforward way to produce a state-space model is to obtain an input-
output model, i.e. an OE model (1.23). Neglecting the influence of the process
noise wk (wk = 0), the OE model can be expressed in a canonical state-space
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Fig. 1.8 . Elementary models for linear dynamic systems: General (a), ARX (b),
ARMAX (c), ARARX (d), OE (e), and BJ (f).

form:

xk+1 =










0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

−fny
−fny−1 · · · −f1










xk +










0
...

0

1










uk, (1.27)

yk+1 = [bnu
, bnu−1, . . . , b1]xk+1 + vk+1, (1.28)

where fi and bi stand for coefficients of the polynomials F (q) and B(q), respec-
tively. In the state-space form, the relationship between the input, noise, and the
output is written as a system of first-order difference equations (or differential
equations in the continuous case) using an auxiliary state vector xk. If all the
states xi, i = 1, . . . , n are measurable, then the parameter matrices A, B, and C

can be easily estimated by well-known linear optimisation techniques. However, in
most cases the state vector xk is either unmeasurable or partially measurable, i.e.
only few state variables can be measured. To obtain the linear state-space model,
the effective sub-space algorithms can be applied, e.g. N4SID, described in (Van
Overschee and De Moor 1994).

The state-space description became a dominating approach after the works of
Kalman (1961) and Luenberger. This is mainly because of the observed increas-
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ing applicability of observers (or filters in the stochastic case) in modern control
systems.

The physical relations underlying the system studied can usually be incorpo-
rated into the state-space models more easily than into the input-output models.
The number of variables is usually smaller in the state-space representation than in
the input-output one. For a system of the n-th order, a state-space model possesses
n+ r (uk ∈ R

r) variables, while an input-output model requires r× nu + ny ×m.
Another advantage of state-space models is that, instead of selecting the lags of
input nu and output ny signals, the problem reduces to obtaining the dimension n
of the state vector xk. This is especially important for non-linear MIMO systems.
Unlike in input-output approaches, the identification of MIMO systems can be
performed relatively easily. Indeed, as it seems quite unproblematic to obtain the
MISO input-output model, the identification of MIMO systems usually requires
a model decomposition, i.e. the MIMO model consists of various compositions of
MISO models. Another difficulty arises from the dynamics order determination.
The common approach is to obtain a set of candidate models of different orders
and to select the best one (in terms of the criterion chosen). This is mainly due to
the relatively small computational cost devoted to a linear dynamic model deter-
mination. There are, of course, many more sophisticated solutions to this problem,
e.g. (Ljung 1987, Chapter 16, p. 413).

Like in the case of linear input-output models, when dealing with linear state-
space models the stability can easily be attained by ensuring that the eigenvalues
of the matrix A lie inside a unit circle.

1.2.2. Polynomial and other classical non-linear models

Non-linear state-space models can be defined analogously to their linear counter-
parts, described in the previous section. All non-linear input-output models can
be written in the form:

ŷk = g(φk), (1.29)

where φk may contain the previous or current system input uk, the previous system
or model output (y or ŷ), and the previous prediction error. The model structure
depends on the choice of φk, e.g. for the NOE (Nonlinear OE) model, the vector
φk takes the form φk = (uk, . . . , uk−nu

, ŷk−1, . . . , ŷk−ny
).

One drawback of non-linear dynamic input-output models arises while select-
ing the dynamics order. Indeed, the dynamics order is crucial for the identification
performance, and no really efficient methods for its determination are available.
Even if it is assumed that n = ny = nu, the user is left with a time-consuming
trial-and-error approach. This becomes particularly bothersome when different
input nu and output ny orders are considered. The situation grows complicated
when MISO systems are considered.

Similarly to linear dynamic input-output models, their non-linear counter-
parts can be applied to the identification of MIMO systems. This usually requires
a model decomposition, i.e. instead of an MIMO model, various compositions of
MISO models are employed.



24 1.2. Dynamic models

Another disadvantage of that kind of models is that, in general, their stability
cannot be proven. The only way to check the stability is to use time-consuming
Monte Carlo methods.

The most straightforward way to realise the non-linear relationship f(·)
in (1.29) is to use polynomials. As has been analyzed in Section 1.1.2, polynomials
suffer from undesirable properties concerning their interpolation and extrapolation
behaviour as well as the curse of dimensionality. Hence, the same consequences
arise for dynamic polynomial models.

Kolmogorov-Gabor models constitute the most general class of polynomial
dynamic models. As an example, let us consider a second-order model (ny = nu =
2) derived from a polynomial of the second degree:

yk =p1 + p2uk−1 + p3uk−2 + p4yk−1 + p5yk−2

+ p6u
2
k−1 + p7u

2
k−2 + p8y

2
k−1 + p9y

2
k−2

+ p10uk−1uk−2 + p11uk−1yk−1 + p12uk−1yk−2

+ p13uk−2yk−1 + p14uk−2yk−2 + p15yk−1yk−2. (1.30)

As can be observed in (1.30), the complexity of the Kolmogorov-Gabor model
increases strongly in accordance with an increase in the the dynamics order and/or
in the degree of the polynomial. This results in a large number of parameters to
be estimated. To overcome such a problem, techniques like orthogonal regression
estimator (Billings et al. 1989) can be employed. They allow one to construct
a reduced polynomial model that contains only the most relevant terms.

The parametric Volterra-series model constitutes a remedy for the complexity
of the Kolmogorov-Gabor polynomial. It realises the following relation:

yk = g(uk−1, . . . , uk−nu
) + p1yk−1 + · · · + pny

yk−ny
. (1.31)

With this simplification, the model becomes linear with respect to yk−i and hence
its stability can be easily proven. A loss of generality is a consequence of such
a reduction. As an example, let us consider a second-order model (ny = nu = 2)
and a polynomial of the second degree:

yk =p1 + p2uk−1 + p3uk−2 + p4yk−1 + p5yk−2

+ p6u
2
k−1 + p7u

2
k−2 + p8uk−1uk−2.

Another important class of non-linear input-output models are Hammerstein
models. They constitute probably the most widely known and applied input-
output description. Such a model is composed of two sub-models connected in
a cascade (Fig. 1.9). The former is static and non-linear and the latter is dynamic
and linear:

yn,k = g(uk), (1.32)

yk = b1yn,k−1 + · · · + bnu
yn,k−nu

− a1yk−1 − · · · − any
yk−ny

. (1.33)
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Such a structure is able to describe all systems for which the actuators nonlinearity
(characteristics of a valve, saturation of an electro-magnetic motor, etc.) is domi-
nant and other non-linear effects can be neglected. The stability of such a model
can easily be proven. Indeed, since the linear sub-model is stable, the entire model
is stable as well. On the other hand, the structural assumptions regarding the
Hammerstein model are very restrictive and hence it can be applied to a very lim-
ited class of systems. The non-linearity g(·) in (1.33) can be realised with, for ex-
ample, polynomials, neural networks, nonparametric approaches (Greblicki 1996),
etc.

ykuk yn,kStatic

non-linear

Dynamic

linear

(a)

ykuk yl,kDynamic

linear

Static

non-linear
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Fig. 1.9 . Hammerstein (a) and Wiener (b) models.

Reversed Hammerstein models, i.e. Wiener models, form another important
class of models:

yl = b1uk−1 + · · · + bnu
uk−nu

− a1yl,k−1 − · · · − any
yl,k−ny

, (1.34)

yk = g(yl,k). (1.35)

As in the case of Hammerstein models, here polynomials can be used for the
approximation of g(·), but any other approximator or even non-parametric ap-
proaches (Greblicki 1994, Greblicki 2001) can be applied.

1.2.3. Neural networks

1.2.3.1. Recurrent networks

This section considers the application of neural networks to the identification of
non-linear dynamic systems. Similarly to polynomials and other classical ap-
proaches, neural networks can be modified in such a way that they can be useful
to identify a dynamic system. It can be achieved by introducing tapped delay lines
into the model (Fig. 1.10). The multi-layer perceptron or the radial basis function
network can be employed as the main part of the overall model.

A recurrent network developed by Williams and Zipser (1989) consists of n
fully connected neurons, r inputs andm outputs (Fig .1.11). As can clearly be seen,
such a network has no feed-forward architecture. The main disadvantages of such
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Fig. 1.10 . A neural network with tapped delay lines.
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Fig. 1.11 . A recurrent neural network developed by Williams and Zipser.

networks are caused by the slow convergence of the existing training algorithms
as well as stability problems.

Contrary to the above-mentioned fully recurrent structures, partially re-
current networks are based on feed-forward multi-layer perceptrons contain-
ing the so-called context layer, as in the case of the Elman neural network
(Fig. 1.12) (Nelles 2001). In such a network, the feedback connections are re-
alised from the hidden or output layers to the context neurons. The recurrency
is more structured, which leads to the faster training. As in the case of recurrent
networks and most of other approaches, the disadvantages of partially recurrent
neural networks arise from the model order selection as well as stability.
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Fig. 1.12 . A partially recurrent Elman neural network.

1.2.3.2. Locally recurrent globally feed-forward networks

In the case of fully or partially recurrent neural networks, all or selected connec-
tions are allowable. All neurons are similar to those of static networks, i.e. they
are static (no feedback within a neuron). Those global connections cause various
disadvantages, e.g. the lack of stability. An alternative solution is to introduce
dynamic neurons into the feed-forward network. There are, of course, many dif-
ferent neuron models which can be employed for that purpose. The best known
architectures are:

• Neurons with local activation feedback (Fasconi et al. 1992)

yk = g (yl,k) , yl,k =
r∑

i=1

piui,k +

ny∑

i=1

pr+iyl,k−i, (1.36)

• Neurons with local synapse feedback (Back and Tsoi 1991)

yk = g

(
r∑

i=1

Gi(q)ui,k

)

, Gi(q) =

∑nu

j=0 bjq
−1

∑ny

j=0 ajq−1
, (1.37)

• Neurons with output feedback (Gori et al. 1989)

yk = g

(
r∑

i=1

piui,k +

ny∑

i=1

pr+iyk−i

)

, (1.38)
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• Neurons with an infinite impulse response (IIR) filter (Ayoubi 1994, Patan
2000, Patton and Korbicz 1999)

yk = f (yl,k) , yl,k =

nu∑

i=0

bizk−1 +

ny∑

i=1

aiyl,k−1,

zk =
r∑

i=1

piui,k. (1.39)

The main advantage of locally recurrent globally feed-forward networks is that
their stability can be proven relatively easily. As a matter of fact, the stability
of the network depends only on the stability of the neurons. In most cases the
stability conditions of a neuron boil down to checking the stability of a linear sub-
model. The feed-forward structure of such networks seems to make the training
process easier. On the other hand, the introduction of dynamic neurons increases
the parameter space significantly. This drawback together with the non-linear and
multi-modal properties of an identification index implies that parameter estima-
tion (or training) becomes relatively complex. To overcome this problem, Mru-
galski and Witczak (2002) developed a new neural network synthesis algorithm.
In particular, they employed the GMDH approach together with neurons with an
infinite impulse response (IIR) filter (1.39). They assumed that the activation
function f(·) is invertible (e.g. tanh(·)), which made it possible to use well-known
parameter estimation tools for models which are linear in their parameters.

1.3. Model selection

1.3.1. Data acquisition and preparation

The problem of data acquisition constitutes an important preliminary part of any
system identification procedure, and is closely related to the experiment design
(see (Rafajłowicz 1996, Ljung 1987, Walter and Pronzato 1997) and the references
therein). In the case of a known model structure, the problem reduces to an appro-
priate selection of the experimental conditions with respect to the parameters to be
estimated (Rafajłowicz 1989, Rafajłowicz 1996, Uciński 1999, Uciński 2000, Wal-
ter and Pronzato 1997). In the present work, the model structure is assumed
to be unknown and hence the experimental conditions should be chosen in such
a way as to provide maximum information about the system’s input-output be-
haviour. This is, of course, a very sophisticated problem and the reader is referred
to (Ljung 1987, Walter and Pronzato 1997) and the references therein for further
explanations. It should be also pointed out that the experiment designing proce-
dure is usually limited owing to “reality” constrains, e.g. in process industry, it
may be not allowed at all to manipulate a system in a production mode.

When the data have been collected in a physical plant, they are usually not
in the form which seems to be appropriate for use in a model construction pro-
cedure. This is mainly because of high- and low-frequency disturbances, offset
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levels, outliers, etc. In order to overcome such problems, the approaches described
in (Ljung 1987) can be employed. In the case of readers familiar with the MAT-
LAB System Identification Toolbox (Ljung 1988), the problem reduces to simply
calling appropriate procedures.

When the data have been collected and appropriately prepared for the model
construction procedure, they are usually divided into two sets, namely, the iden-
tification (nt input-output measurements) data set and the validation (nv input-
output measurements) data set. The former is used to obtain the model structure
and to estimate its parameters, while the latter is employed to evaluate the good-
ness of fit of the identified model by making a comparison between the process
output and the model predicted output either visually or by some formal distance
measure. It should be pointed out that there exist many more or less sophisti-
cated approaches to model validation. However, model testing by experimental
data (cross-validation) seems to be a quite good technique, and so it is often used
in practice.

1.3.2. Model selection criteria

Let M be a set of model structures that compete for the description of the same
data:

M = {Mi, i = 1, . . . , nm} .

It corresponds to structures of different types and complexity. With each of these
structures a parameter vector pi is associated. It is assumed that the most complex
structure is that containing the greatest number of parameters. Once the set of
model structures has been selected, the problem is to choose the best possible
model. The criterion for this task is usually based on some scalar measures (cost
functions). Such cost functions are usually obtained using a difference between the
system output measurement and the model output ŷ. The output measurement
consists of the true system output y and the noise v, i.e. it is assumed that the
output measurement equals y + v.

In a probabilistic framework the expectation of the squared difference between
the system output measurement and the model output can be used as a cost
function, i.e.

E
{
(y + v − ŷ)2

}
= E

{
(y − ŷ)2

}
+ 2E {(y − ŷ)v} + E

{
v2
}
. (1.40)

Assuming that the noise v is uncorrelated with the model and system outputs,
equation (1.40) becomes:

E
{
(y + v − ŷ)2

}
= E

{
(y − ŷ)2

}
+ E

{
v2
}
. (1.41)

It is obvious that the term E
{
v2
}

cannot be minimised as it constitutes the vari-
ance of the measurement noise. Thus the cost function reaches minimum if y = ŷ.
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The model error E
{
(y − ŷ)2

}
can be further decomposed as:

E
{
(y − ŷ)2

}
= E

{
((y − E {ŷ}) − (ŷ − E {ŷ}))2

}

= (y − E {ŷ})2 + E
{
(ŷ − E {ŷ})2

}
. (1.42)

The two terms constituting the model error, i.e. (y − E {ŷ})2 and var(ŷ) =
E
{
(ŷ − E {ŷ})2

}
, are called the bias and variance errors, respectively.

The bias error is caused by the restricted flexibility of the model. In practice
most systems are quite complex, and the class of models typically applied is not
capable of representing the system correctly. The only exception occurs when
the true structure of the system is known, i.e. it is obtained as a result of the
physical consideration underlying the system being studied. Therefore, the bias
error decreases as the model complexity increases. Since the model complexity
is related to the number of parameters, the bias error depends qualitatively on
it. From the above consideration it is clear that the bias error represents the
systematic deviation between the system and the model that exists due to the
model structure.

The variance error is caused by a deviation of the estimated parameters from
their optimal values. Indeed, since the model parameters are estimated based
on finite and noisy data, these parameters usually deviate from their optimal
values. The variance error describes that part of the model error which comes from
parameter uncertainty. Undoubtedly, the fewer parameters the model possesses,
the more accurately they can be estimated using the identification data. Thus, the
variance error increases accordingly to an increase in the number of parameters.

From the above discussion it is clear that a compromise between the bias
and variance errors should be established (bias/variance trade-off). This can be
achieved by an appropriate selection of the model complexity.

It can be observed during model determination that the error on the iden-
tification data (which is approximately equal to the bias error) decreases as the
model complexity increases. On the other hand, the error on the validation data
(which is equal to the bias error plus variance error) starts to rise again beyond
the point of optimal complexity. If this effect is ignored, it may lead to a model
that is either overly complex (overfitting (low bias, high variance)) or too simple
(underfitting (high bias, low variance)). In order to avoid overfitting, a complex-
ity penalty term should be introduced. This results in information criteria that
reflect the value of a cost function and the complexity. There are, of course, many
different information criteria, e.g. Akaike’s, Bayesian, Khinchin’s law of iterated
logarithm criterion, final prediction error criterion, structural risk minimisation.
However, they all in one way or another implement the following structure:

information criteria = IC(cost function,model complexity).

The introduction of such criteria makes it possible to avoid data splitting, i.e.
dividing the data set into the identification and validation data sets. In this
case, the entire data set can be used for parameter estimation. This is especially
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important when only a small data set is disposable. On the other hand, it seems
profitable to use, if possible, such criteria together with the validation data sets.

The Akaike Information Criterion (AIC) (Walter and Pronzato 1997) is one
of the best known criteria which can be employed to select the model structure
and to estimate its parameters:

(

M̂, p̂
)

= arg min
Mi∈M

min
pi∈Pi

JAIC(Mi(p
i)). (1.43)

In order to formulate a detailed description of (1.43), it is convenient to assume
that the data satisfy:

yk = ŷk(M∗(p∗)) + vk, k = 1, . . . , nt,

where M∗ denotes the correct model structure, p∗ is the true value of its parame-
ters, and vk is a sequence of random independent variables assumed to be normally
distributed. Determination of M̂ can thus be realised, similarly to the way it was
done in (Walter and Pronzato 1997), as follows:
Using the validation data set {(yk,uk)}nv

k=0, obtain:

M̂ = arg min
Mi∈M

Jm(Mi), (1.44)

Jm(Mi) =
1

2
j(Mi(p̂

i)) +
1

nt
dimpi, (1.45)

where:

p̂
i = arg min

pi∈Pi
j(Mi(p

i)), i = 1, . . . , nm, (1.46)

are obtained using the identification data set {(yk,uk)}nt

k=0:

j(Mi(p
i)) = ln det

∑nt−1
k=0 εk(Mi(p

i))εT
k (Mi(p

i)),

εk = yk − ŷk(Mi(p
i)),

(1.47)

and, consequently, p̂
i, which corresponds to the best model structure M̂ = Mi, is

chosen as p̂.
The model determination process can then be realised as follows:

Step 0: Select the set of possible model structures M.

Step 1: Estimate parameters of each of the models Mi, i = 1, . . . , nm, according
to (1.47).

Step 2: Select the model which is best suited in terms of the criterion (1.44).

Step 3: If the selected model does not satisfy the prespecified requirements, then
go to Step 0.
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1.4. Conclusions

The characterisation of a suitable model structure is not an exact science, it is
rather an art. This is mainly because it involves arbitrary decisions resulting in
various, more or less important consequences. Indeed, if the class of models is not
appropriately selected, then we cannot expect to do more than to find the best
model in the class thus defined. It is vain to expect that such a model will be
a good description of the system of interest. Thus, the characterisation cannot
be considered as an initial step of an identification procedure. In other words, it
cannot be performed only once but should be carried out alternately with a model
quality determination (parameter estimation and model validation).

Usually, linear model structures are selected first as a potential solution to
the identification problem. In the case of dynamic systems, OE and ARX models
are preferred as they are relatively simple and there are efficient parameter esti-
mation techniques for such structures. More complex structures such as ARARX,
ARMAX, and BJ are rarely used. Another important class are linear state-space
models. They became popular after the works regarding observers and Kalman
filters were published. Nowadays, observers and filters constitute an important
part of modern control systems. State-space models are better suited to MIMO
systems than input-output models. This superiority can also be seen during the
model order selection stage. Unlike input-output models, where lags of input and
output signals should appropriately be chosen, state-state model merely require
the dimension of the state vector.

If the linear model is not suitable for a given identification task, then non-
linear models should be employed. Polynomials constitute a natural extension of
linear models. In both the dynamic and static cases, in spite of the fact that
polynomials are linear in their parameters, which simplifies parameter estimation,
there are many serious drawbacks regarding extrapolation, stability, the curse of
dimensionality, etc. That is why the application of polynomials should be limited
to very specific tasks.

Artificial neural networks as relatively new system identification tools have
received considerable research attention. Many works confirm their effectiveness
and recommend their use. Undoubtedly, the most popular neural architectures for
static systems are MLP and RBF networks. Their applicability can be extended to
dynamic systems by introducing tapped delay lines. This approach is rather lim-
ited to very simple systems as the number of inputs to a neural network increases
significantly with the dynamics order.

Recurrent and partially recurrent neural architectures seem to be a more nat-
ural way of describing dynamic systems. They resemble non-linear state-space
models. On the other hand, the lack of stability (in a general case) as well as
various problems regarding training algorithms make the applicability of such net-
works rather limited.

Locally recurrent and globally feed-forward networks seem to be a very inter-
esting identification tool. Their stability depends completely on the stability of
dynamic neurons (which is relatively easy to be proven) and their structure resem-
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bles that of the MLP. On the other hand, a more sophisticated neuron structure
results in a large number of parameters to be estimated. This problem becomes
especially important owing to the non-linear characteristic of the cost function. To
tackle this difficulty, a GMDH network with dynamic neurons has been proposed.

Unlike in the case of linear systems, there is no general approach which can
be applied to obtain non-linear state-space models. Such a general framework
should ensure stability as well as transparent (to a certain degree) interpretability
of models. In practice, the spectrum of available identification techniques for
non-linear state-space models reduces to the physical consideration underlying the
system being studied from which such models can be obtained. Unfortunately,
industrial systems are usually very complex and hence it is rather impossible to
perform such consideration. Thus, the development of a non-linear state-space
model construction framework seems to be a challenging task.

In the present chapter, the importance of data preparation and selection of
an identification criterion were discussed as well.



Chapter 2

RESIDUAL GENERATION TECHNIQUES

A fault can generally be defined as an unexpected change in a system of interest,
e.g. a sensor malfunction. All the unexpected variations that tend to degrade the
overall performance of a system can also be interpreted as faults. Contrary to the
term failure, which suggests a complete breakdown of the system, the term fault
is used to denote a malfunction rather than a catastrophe.

Since a system can be split into three parts (Fig. 2.1), i.e. actuators, system
dynamics, and sensors, such a decomposition leads directly to three classes of
faults:

• actuators faults, which can be viewed as any malfunction of the equipment
that actuates the system, e.g. a malfunction of an electro-mechanical actu-
ator for a diesel engine (Blanke et al. 1994),

• system dynamics faults (or component faults), which occur when some
changes in the system make the dynamic relation invalid, e.g. a leak in
a tank in a two-tank system,

• sensors faults, which can be viewed as serious measurements variations.

yu yrur

Actuators Sensors
actuation outputoutput

measured

input System
Dynamics

Fig. 2.1 . A control system.

Since faults and their possible forms are defined, it is possible to describe the
methodology of fault diagnosis.

There are two general classes of model-based approaches to FDI. The first
class employs quantitative system descriptions (e.g. difference or differential equa-
tions, state-space models, transfer functions, neural networks, etc.) as a source of
knowledge regarding a system behaviour. These approaches utilise results from
widely-understood control theory, i.e. state observers or filters, parameter estima-
tion, parity relation concepts, etc. In one way or another, they are used to generate
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fault symptoms resulting in, e.g., a deviation of model parameters, a difference be-
tween the model and system responses, etc. By monitoring those quantities, it is
possible to detect and isolate each fault. The essential requirement is to possess a
priori knowledge regarding the relationship between the system and the faults.

The second class is based on the application of qualitative reasoning and qual-
itative modelling (Lunze and Schiller 2000, Zhang and Roberts 2000). Qualitative
models of a system are used to estimate a system behaviour under the normal
and faulty operating conditions. In this work, research attention is focused on the
quantitative model-based fault diagnosis.

In the sequel, quantitative model-based fault diagnosis is simply called model-
based fault diagnosis since no qualitative techniques are considered.

Model-based fault diagnosis can be defined as a three-task process consisting
of the detection, isolation and identification of system faults (Fig. 2.2). These
tasks can be summarised as follows (Chen and Patton 1999):

Fault detection: to make a decision regarding the system stage - either that
something is wrong or that everything works under the normal conditions,

Fault isolation: to determine the location of the fault, e.g. which sensor or
actuator is faulty,

Fault identification: to determine the size and type or nature of the fault.

Detection

Isolation

Identification

Fig. 2.2 . The three-stage process of fault diagnosis.

On the other hand, the fault diagnosis process can be viewed as a two-stage process,
i.e. residual generation and decision making based on this residual (Fig. 2.3).

If the residuals are properly generated, then fault detection becomes a rela-
tively easy task. Since without fault detection it is impossible to perform fault
isolation and, consequently, fault identification, all efforts regarding the improve-
ment of residual generation seem to be justified. This is the main reason why
the research effort of this work is oriented towards fault detection and especially
towards residual generation.
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Fig. 2.3 . The two-stage process of fault diagnosis.

There have been many developments in model-based fault detection since the
beginning of the 1970s, regarding both the theoretical context and the applicability
to real systems (see (Chen and Patton 1999, Patton et al. 2000) for a survey).
Generally, the most popular approaches can be split into four categories, i.e.

• parameter estimation,

• factorisation,

• parity relation,

• observer-based.

All of them, in one way or another, employ a mathematical system description to
generate the residual signal. In almost all cases, the residual signal is obtained as
a difference between system outputs and model outputs, i.e. rk = yk − ŷk.

The simplest model-based residual generation scheme can be realised in a way
similar to that shown in Fig. 2.4. In this case, the design procedure reduces
to system identification, and fault detection boils down to checking the norm of
the residual signal ‖rk‖. This means that it is sufficient to apply one of the
approaches presented in Chapter 2. In such a simple residual generation scheme,
neural networks seem to be especially popular (Patton and Korbicz 1999).

Irrespective of the identification metod used, there is always the problem of
model uncertainty, i.e. the model-reality mismatch. Thus, the better the model
used to represent a system behaviour, the better the chance of improving the
reliability and performance in diagnosing faults. This is the main reason why
the fault detection scheme shown in Fig. 2.4 is rarely used for maintaining fault
diagnosis of high-safety systems. Indeed, disturbances as well as model uncertainty
are inevitable in industrial systems, and hence there exists a pressure creating the
need for robustness in fault diagnosis systems. This robustness requirement is
usually achieved in the fault detection stage, i.e. the problem is to develop residual
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Fig. 2.4 . A simple residual generation scheme.

generators which should be insensitive (as far as possible) to model uncertainty
and real disturbances acting on a system while remaining sensitive to faults. In one
way or another, all of the most popular approaches mentioned above can realise
this requirement for linear systems.

Other problems arise from fault detection of non-linear systems. Indeed, the
available non-linear system identification techniques limit the application of fault
detection. For example, in the case of observer-based FDI, state-space models
cannot be usually obtained using physical consideration (physical laws governing
the system being studied). This means that a model which merely approximates
the system-input behaviour (no physical interpretation of the state vector or pa-
rameters) should be employed. On the other hand, there is no disposable approach
which can be applied to obtain such a model automatically. Thus, the FDI system
designer is left with time consuming trial-and-error procedure.

One objective of this work is to provide such an efficient system identification
technique. This, however, will be the subject of the subsequent chapter.

In the present chapter, the most popular residual generation approaches are
briefly reviewed. In particular, their applicability to both linear and non-linear
systems together with robustness issues is discussed. The main attention is fo-
cused on designing robust observers. This is mainly because many of them can
be extended in such a way that they can be useful for the residual generation of
non-linear systems.

Although it is discrete-time systems that are considered in this work, some
of the techniques are described in a continuous-time form. This is due to the fact
that they were originally presented in such a form. However, most of them can
relatively easily be applied to discrete-time systems.

The chapter is organised as follows. First, the most popular residual genera-
tion techniques are briefly reviewed, and then the attention is focused on observer-
based approaches.
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2.1. A review of the most popular approaches

2.1.1. Parameter estimation

The task consists in detecting faults in a system by measuring the input uk and the
output yk, and then estimating parameters of the model of the system (Fig. 2.5).
The model can be generally described by:

yk = g(φk,pk), (2.1)

where φk may contain the previous or current system input uk, the previous system
or model output (y or ŷ), and the previous prediction error. The model (2.1) can
also be expressed in the state-space form; however, this does not change the general
framework. If a fault now occurs in the system, this causes a change (residual)

ESTIMATION

ykuk

SYSTEM

Model

∆p = p − p̂

Fig. 2.5 . The principle of parameter estimation-based fault detection.

∆pk in the parameter vector pk. Such a residual can then be used to detect the
faults.

The main drawback to this approach is that the model parameters should
have a physical meaning, i.e. they should correspond to the parameters of the
system. In such situations, the detection and isolation of faults is very straight-
forward. If this is not the case, it is usually difficult to distinguish a fault from
a change in the parameter vector pk resulting from time-varying properties of the
system. Moreover, the process of fault isolation may become extremely difficult
because model parameters do not uniquely correspond to those of the system.
Another problem arises when the model structure g(·) is non-linear in its param-
eters. In this case, non-linear parameter estimation techniques should be applied.
For complex models, this may cause serious difficulties with a fast reaction on
the faults; consequently, fault detection cannot be performed effectively nor re-
liably. It should also be pointed out that the detection of faults in sensors and
actuators is possible but rather complicated (Patton et al. 2000). The robustness
with respect to model uncertainty can be tackled relatively easily (especially for
linear systems) by employing robust parameter estimation techniques, e.g. the
bounded-error approach (Milanese et al. 1996).
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2.1.2. Parity relation

The basic idea underlying the parity relation approach (Chen and Patton 1999,
Gertler 2000) is to check the consistency of the system measurements. In order
to illustrate this technique, let us consider a general problem of measuring an n-
dimensional vector with m sensors. The measurement equation can be described
as:

yk = Cxk + fk + vk, (2.2)

where fk stands for the sensor faults. The application of hardware redundancy
means that n signals are measured with m sensors, i.e. m > n. Moreover, it is
assumed that rank(C) = n. For the purpose of FDI, yk can be combined into a set
of linearly independent parity equations, i.e. rk = V yk. In order to ensure zero-
valued residual, i.e. rk = 0, under the normal operating conditions, the matrix
V should fulfill the condition V C = 0. This implies that rk = V [fk + vk]. The
derivation of the matrix V can be realised by assuming that:

V T V = Im − C
(

CT C
)−1

CT , (2.3)

and then applying the Gram-Schmidt orthogonalisation scheme (Golub and Van
Loan 1989).

The main drawback to such an approach is that it requires additional hard-
ware, i.e. sensors, which may lead to a significant increase in the cost.

In the case when rank(C) = m < n it is, of course, impossible to apply
the approach under consideration. However, an analytical redundancy can be
performed by collecting sensor outputs in a data window, i.e. {yk−i}s

i=0. Since
the redundancy is related to time, such an approach requires the knowledge of
a dynamic model. This concept was introduced by (Chow and Willsky 1984).

In the case of linear systems the following state-space model (it is possible to
use different models) can be employed (in a deterministic configuration):

xk+1 = Axk + Buk + L1fk, (2.4)

yk = Cxk + Duk + L2fk. (2.5)

The redundancy relation can now analytically be specified as follows. Combining
together (2.4)-(2.5) from time instant k − s up to k yields:
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

︸ ︷︷ ︸

F k

, (2.6)
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where:

H =










D 0 · · · 0

CB D · · · 0

...
...

. . .
...

CAs−1B CAs−1B · · · D










, W =










C

CA

...

CAs










,

(2.7)

and:

M =










L2 0 · · · 0

CL1 L2 · · · 0

...
...

. . .
...

CAs−1L1 CAs−1L1 · · · L2










. (2.8)

The residual signal can now be defined as (Chow and Willsky 1984):

rk = V [Y k − HUk] = V Wxk−s + V MF k. (2.9)

In order to make (2.9) useful for fault detection, the matrix V should make the
residual signal insensitive to system inputs and states, i.e. V W = 0. On the
other hand, to make fault detection possible, the matrix V should also satisfy the
condition V M 6= 0. It can be shown that for an appropriately large s (see (Chen
and Patton 1999) for how to obtain the minimum order s) it follows from the
Cayley-Hamilton theorem that the solution to V W = 0 always exists. Finally,
fault detection boils down to checking the norm of the residual, i.e. ‖rk‖.

The presented approach can further be extended to linear time-varying sys-
tems (Chen and Patton 1999), i.e. systems which can be modelled by:

xk+1 = Akxk + Bkuk + L1,kfk, (2.10)

yk = Ckxk + Dkuk + L2,kfk. (2.11)

Its robustness to model uncertainty can be attained by introducing the concept of
an unknown input dk (Chen and Patton 1999, Seliger and Frank 2000), which may
represent modelling uncertainty as well as real disturbances acting on the system.
In this case, the model can be represented as:

xk+1 = Akxk + Bkuk + E1
kdk + L1,kfk, (2.12)

yk = Ckxk + Dkuk + E2
kdk + L2,kfk. (2.13)

The terms E1
kdk and E2

kdk represent the uncertainty in the state and measurement
equations, respectively. One condition for the decoupling of the unknown input dk

from the residual signal rk is to know the unknown input distribution matrices E1
k
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and E2
k, while it is not necessary to have any knowledge concerning dk. There are,

of course, many approaches which can be applied to obtain the unknown input
distribution matrices (for a comprehensive survey, the reader is referred to (Chen
and Patton 1999, Seliger and Frank 2000)).

An extension of parity relation to non-linear polynomial dynamic systems was
proposed by (Guernez et al. 1997).

In order to describe this approach, let us considered a system modelled by
the state-space equations:

xk+1 = g(xk,uk,fk), (2.14)

yk = h(xk,uk,fk), (2.15)

where g(·) and h(·) are assumed to be polynomials. The equations (2.14)-(2.15)
can always be expressed on a time window [k − s, k]. As a result, the following
structure can be obtained:

yk−s,k = H
(
xk−s,uk−s,k,fk−s,k

)
, (2.16)

where uk−s,k = uk−s, . . . ,uk and fk−s,k = fk−s, . . . ,fk. In order to check the
consistency of the model equations, the state variables have to be eliminated. This
results in the following equation:

Φ(yk−s,k,uk−s,k,fk−s,k) = 0. (2.17)

Since g(·) and h(·) are assumed to be polynomials, elimination theory can be
applied to transform (2.16) into (2.17). Knowing that the Φi(·)’s are polynomials
and therefore they are expressed as sums of monomials, it seems natural to split
the expression (2.17) into two parts, i.e.

rk = Φ1(yk−s,k,uk−s,k), (2.18)

rk = Φ2(yk−s,k,uk−s,k,fk−s,k). (2.19)

The right-hand side of (2.18) contains all the monomials in yk−s,k and uk−s,k only
while (2.19) contains all the monomials involving at least one of the components
of fk−s,s. The above condition ensures that rk = 0 in the fault-free case. Since
the fault signal fk−s,k is not measurable, only equation (2.18) can be applied to
generate the residual signal rk and, consequently, to detect faults.

One drawback to this approach is that it is limited to polynomial models or,
more precisely, to models for which the state vector xk can be eliminated. Another
drawback is that it is assumed that a perfect model is available, i.e. there is no
model uncertainty. This may cause serious problems while applying the approach
to real systems.

Parity relation for a more general class of non-linear systems was proposed
by Krishnaswami and Rizzoni (1994). The FDI scheme considered is shown in
Fig. 2.6. There are two residual vectors, namely, the forward rf,k residual vec-
tor and the backward rb,k residual vector. These residuals are generated using
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the forward and inverse (backward) models, respectively. Based on these residual
vectors, fault detection can (theoretically) easily be performed while fault isola-
tion should be realised according to Tab. 2.1. The authors suggest an extension
of the proposed approach to the cases where model uncertainty is considered.

Tab.2.1. The principle of fault isolation with non-linear parity relation.

Fault location Non-zero element of rf,k Non-zero element of rb,k

i-th sensor ri
f all elements dependent on yi

i-th actuator all elements dependent on ui ri
b

+

+

-

-

uk yk

ŷf,k

ŷb,k

rf,k

rb,k

SYSTEM

Forward model

Inverse model

Fig. 2.6 . Non-linear parity relation-based FDI.

Undoubtedly, strict existence conditions for an inverted model as well as possible
difficulties with the application of the known identification techniques make the
usefulness of this approach for a wide class of non-linear systems questionable.

Another parity relation approach for non-linear systems was proposed by
Shumsky (1997). The concepts of parity relation and parameter estimation fault
detection techniques are combined. In particular, parity relation is used to de-
tect offsets in the model parameters. The necessary condition is that there exists
a transformation xk = ξ(uk, . . . ,uk+s,yk, . . . ,yk+s), which may cause serious
problems in many practical applications. Another inconvenience is that the ap-
proach inherits most drawbacks concerning parameter estimation-based fault de-
tection techniques.

2.1.3. Factorisation techniques

The basic idea underlying the factorisation approach is that the residual generator
can be synthesised in the frequency domain (Viswanadham et al. 1987). In this
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case, the linear dynamic system can be described by

y(s) = Gu(s)u(s) + Gf (s)f(s), (2.20)

where Gu(s) is assumed to be a proper rational transfer function matrix, which
can be factorised as

Gu(s) = M̄
−1

(s)N̄(s), (2.21)

where M̄(s) and N̄(s) are stable, rational and realizable transfer function ma-
trices. Based on such a factorisation, residual generator can be designed as (cf.
Fig. 2.7)

r(s) = Q(s)[M̄(s)y(s) − N̄(s)u(s)], (2.22)

where Q(s) denotes dynamic residual weighting, which provides an additional level
of freedom. Substituting (2.20) into (2.22), the residual generator becomes

r(s) = Q(s)M̄(s)Gf (s)f(s). (2.23)

Assuming that there is no model uncertainty and no real disturbances acting on
the system, it is clear from the above equation that the residual is only affected
by faults. Since, in practice no nominal models can perfectly describe a physical

f(s)

u(s) y(s)

r̄(s)

r(s)

+

+

+

−

Gf (s)

Gu(s)

N̄(s) M̄(s)

Q(s)

fault
System

input output

residual

Residual generator

Fig. 2.7 . The principle of factorisation-based residual generation.

system, model uncertainty should be taken into account. This can be realised as
follows (Ding and Frank 1991):

y(s) = Gu(s)u(s) + Gd(s)d(s) + Gf (s)f(s). (2.24)

A comprehensive study regarding applications of the factorisation techniques to
systems modelled by (2.24) can be found in (Chen and Patton 1999).
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2.1.4. Observers

The basic idea underlying the observer-based (or filter-based, in the stochastic
case) approaches to fault detection is to obtain estimates of certain measured
and/or unmeasured signals. Then, in the most usual case, the estimates of the
measured signals are compared with their originals, i.e. a difference between the
original signal and its estimate is used to form a residual signal rk = yk − ŷk

(Fig. 2.8). To tackle this problem, many different observers (or filters) can be em-
ployed, e.g. Luenberger observers, Kalman filters, etc. From the above discussion,
it is clear that the main objective is the estimation of the system outputs while
the estimation of the entire state vector is unnecessary. Since low-order observers
can be employed, state estimation is significantly facilitated. On the other hand,
to provide additional freedom to achieve a required diagnostic performance, the
observer order is usually larger than the possible minimum one.

Admiration for the observer-based fault detection schemes is caused by the
still increasing popularity of state-space models as well as wide applicability of
observers in modern control theory and applications. Due to such conditions,
the theory of observers (or filters) seems to be well developed (especially for linear
systems). This has made a good background for the development of observer-based
FDI schemes.

In most robust observer-based fault detection schemes, the problem of ro-
bustness to both model uncertainty and real disturbances acting on a system has
been tackled by the introduction of the concept of an unknown input (Alcorta
et al. 1997, Chen et al. 1996, Chen and Patton 1999, Kurek 1982, Patton and
Chen 1997, Seliger and Frank 2000). In spite of this, there is a large spectrum
of candidate solutions. This is the main reason why observer-based approaches
deserve special attention.

ykuk

ŷk = h(x̂k)

ŷk

Model

Observer

rk

SYSTEM

x̂k

+

−

Fig. 2.8 . The principle of observer-based residual generation.
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2.2. Observers for linear systems

2.2.1. Luenberger observers and Kalman filters

Let us consider a linear system described by the following state-space equations:

xk+1 = Akxk + Bkuk + L1,kfk, (2.25)

yk+1 = Ck+1xk+1 + L2,k+1fk+1. (2.26)

According to the observer-based residual generation scheme (Fig. 2.8), the residual
signal can be given as:

rk+1 =yk+1 − ŷk+1 = Ck+1[xk+1 − x̂k+1] + L2,k+1fk+1

=Ck+1[Ak − Kk+1Ck+1][xk − x̂k] + Ck+1L1,kfk

− Ck+Kk+1L2,kfk + L2,k+1fk+1. (2.27)

To tackle the state estimation problem, the Luenberger observer can be used, i.e.

x̂k+1 = Akx̂k + Bkuk + Kk+1(yk − ŷk), (2.28)

where Kk stands for the so-called gain matrix and should be obtained in such a way
as to ensure an asymptotic convergence of the observer, i.e. limk→∞(xk − x̂k) =
0 (Paraskevopoulos 1996). If this is the case, i.e. x̂k → xk, the state estimation
error xk − x̂k approaches zero and hence the residual signal (2.27) is only affected
by the fault vector fk.

A similar approach can be realised in a stochastic setting, i.e. for systems
which can be modelled by:

xk+1 = Akxk + Bkuk + L1,kfk + wk, (2.29)

yk+1 = Ck+1xk+1 + L2,k+1fk + vk, (2.30)

where wk and vk are zero-mean white noise sequences with covariance matrices
Qk and Rk, respectively. In this case, the observer structure can be similar to
that of the Luenberger observer (2.28). To tackle the state estimation problem,
the celebrated Kalman filter can be employed (Anderson and Moore 1979). The
algorithm of the Kalman filter can be described as follows:

1. Time update:

x̂k+1/k = Akx̂k + Bkuk, (2.31)

P k+1/k = AkP kAT
k + Qk. (2.32)
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2. Measurement update:

x̂k+1 = x̂k+1/k + Kk+1[yk+1 − Ck+1x̂k+1/k], (2.33)

Kk+1 = P k+1/kCT
k+1

[

Ck+1P k+1/kCT
k+1 + Rk+1

]−1

, (2.34)

P k+1 = [I − KkCk+1]P k+1/k. (2.35)

Finally, the residual signal can be given as:

rk+1 =Ck+1Zk+1Ak[xk − x̂k] + Ck+1Zk+1L1,kfk (2.36)

+ Mk+1L2,kfk+1 + Ck+1Zk+1wk + Mk+1vk+1,

where Zk+1 = [I − Kk+1Ck+1] and Mk+1 = [I − Ck+1Kk+1]. Since the state
estimate x̂k approaches the real state xk (in the mean sense) asymptotically, i.e.
E(x̂k) → xk, the residual signal is only affected by the faults and the noise.

In both the deterministic (the Luenberger observer) and stochastic (the
Kalman filter) cases fault detection can be performed by checking that the residual
norm ‖rk‖ exceeds a prespecified threshold, i.e. ‖rk‖ > εH . In the stochastic case,
it is also possible to use more sophisticated, hypothesis-testing approaches such
as Generalised Likelihood Ration Testing (GLRT) or Sequential Probability Ratio
Testing (SPRT) (Willsky and Jones 1976, Basseville and Nikiforov 1993, Kowal-
czuk and Suchomski 2001a).

The presented approaches, in spite of their considerable usefulness, suffer from
the lack of robustness to model uncertainty. Indeed, in both cases a perfect model
of the system is assumed. This problem will be considered in the subsequent
sections, where model uncertainty and real disturbances acting on a system are
represented by the so-called unknown input.

2.2.2. Unknown input observers

Let us consider a linear system described by the following state-space equations:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk, (2.37)

yk+1 = Ckxk+1 + L2,k+1fk+1, (2.38)

where the term Ekdk stands for model uncertainty as well as real disturbances
acting on the system. The general structure of an Unknown Input Observer (UIO)
can be given as:

zk+1 = F k+1zk + T k+1Bkuk + Kk+1yk, (2.39)

x̂k+1 = zk+1 + Hk+1. (2.40)
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If the following relations hold true:

Kk+1 = K1,k+1 + K2,k+2, (2.41)

T k+1 = I − Hk+1Ck+1 (2.42)

F k+1 = Ak − Hk+1Ck+1Ak − K1,k+1Ck, (2.43)

K2,k+1 = F k+1Hk, (2.44)

then (assuming the fault-free mode, i.e. fk = 0 ) the state estimation error is:

ek+1 = F k+1ek + [I − Hk+1Ck+1]Ekdk. (2.45)

From the above equation, it is clear that to decouple the effect of an unknown
input from the state estimation error (and consequently from the residual), the
following relation should be satisfied:

[I − Hk+1Ck+1]Ek = 0. (2.46)

The necessary condition for the existence of a solution to (2.46) is rank(Ek) =
rank(Ck+1Ek) (Chen and Patton 1999, p. 72, Lemma 3.1), and a special solution
is:

H∗
k+1 = Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T . (2.47)

The remaining task is to design the matrix K1,k+1 so as to ensure the convergence
of the observer. This can be realised in a similar way as it is done in the case of
the Luenberger observer. Finally, the state estimation error and the residual are
given by:

ek+1 = F k+1ek + T k+1L1,kfk

− Hk+1L2,k+1fk+1 − K1,k+1L2,kfk, (2.48)

rk+1 = Ck+1ek+1 + L2,k+1fk+1. (2.49)

Since the Kalman filter constitutes a stochastic counterpart of the Luenberger
observer, there can also be developed a stochastic counterpart of the UIO, i.e. an
observer which can be applied to the following class of systems:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk + wk, (2.50)

yk+1 = Ckxk+1 + L2,k+1fk+1 + vk+1. (2.51)

Such observers will be discussed in detail in Chapter 4.

2.2.3. An eigenstructure assignment approach

This section focuses on the problem of designing robust observers using the
eigenstructure (eigenvectors and eigenvalues) assignment (Chen and Patton 1999,
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Chapter 4). The description of the system being considered has the following
(continuous-time) state-space form:

ẋ(t) = Ax(t) + Bu(t) + L1f(t) + Ed(t), (2.52)

y(t) = Cx(t) + Du(t) + L2f(t). (2.53)

The observer-based residual generator can be given as:

˙̂x(t) = (A − KC)x̂(t) + (B − KD)u(t) + Ky(t), (2.54)

ŷ(t) = Cx̂(t) + Du(t), (2.55)

r(t) = Q(y(t) − ŷ(t)), (2.56)

where Q ∈ R
p×m (p ≤ m) stands for the residual weighting matrix, which con-

stitutes additional design freedom. When the above residual generator (2.54)–
(2.56) is applied to the system (2.52)–(2.53), the state estimation error (e(t) =
x(t) − x̂(t)) and the residual become:

ė(t) = (A − KC)e(t) + Ed(t) + L1f(t) − KL2f(t), (2.57)

r(t) = QCe(t) + QL2f(t). (2.58)

Unlike in the UIO-based approaches in which the state estimation error (and con-
sequently the residual) is decoupled from the unknown input, here the residual
can be decoupled from the unknown input directly. Indeed, using the Laplace
transformation, the residual is given by:

r(s) =QL2f(s) + QC(sI − AKC)−1(L1 − KL2)f(s)

+ QC(sI − AKC)−1Ed(t). (2.59)

As can be seen from (2.59), in order to decouple the unknown input from the
residual, the following relation should be satisfied:

QC(sI − AKC)−1Ed(t) = 0. (2.60)

There are, of course, several different approaches which can be applied to
solve (2.60). One of them can be realised as follows (Chen and Patton 1999,
Theorem 4.4, p. 127).

The sufficient conditions for satisfying the disturbance decoupling requirement
are

1. QCE = 0,

2. All columns of the matrix E are the right eigenvectors of (A − KC) corre-
sponding to any eigenvalues.

The remaining design freedom should be used to ensure the convergence of the
observer.
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2.3. Observers for non-linear systems

Model linearisation is a straightforward way of extending the applicability of linear
techniques to non-linear systems. On the other hand, it is well known that such
approaches work well when there is no large mismatch between the linearised model
and the non-linear system. Two types of linearisation can be distinguished, i.e.
linearisation around the constant state and linearisation around the current state
estimate. It is obvious that the second type of linearisation usually yields better
results. Unfortunately, during such linearisation the influence of terms higher than
linear is usually neglected (as in the case of the extended Luenberger observer and
the extended Kalman filter). This disqualifies such approaches for most practical
applications. Such conditions have led to the development of linearisation-free
observers for non-linear systems.

This section briefly reviews the most popular observer-based residual gener-
ation techniques for non-linear systems. Their advantages, drawbacks as well as
robustness to model uncertainty are discussed.

2.3.1. Extended Luenberger observers and Kalman filters

Let us consider a non-linear discrete-time system modelled by the following state-
space equations:

xk+1 = g(xk,uk) + L1,kfk, (2.61)

yk+1 = h(xk+1) + L2,k+1fk+1. (2.62)

In order to apply the Luenberger observer presented in Section 2.2.1, it is necessary
to linearise equations (2.61) and (2.62) around either a constant value (e.g. x = 0)
or the current state estimate x̂k. The latter approach seems to be more appropriate
as it improves its approximation accuracy as x̂k tends to xk. In this case the
approximation can be realised as follows:

Ak =
∂g(xk,uk)

∂xk

∣
∣
∣
∣
xk=x̂k

, Ck =
∂h(xk)

∂xk

∣
∣
∣
∣
xk=x̂k

. (2.63)

As a result of using the Luneberger observer (2.28), the state estimation error
takes the form:

ek+1 = [Ak+1 − Kk+1Ck]ek + L1,kfk − Kk+1L2,kfk+

+ o(xk, x̂k), (2.64)

where o(xk, x̂k) stands for the linearisation error caused by the approxima-
tion (2.63).

Because of a highly time-varying nature of Ak+1 and Ck as well as the lin-
earisation error o(xk, x̂k), it is usually very difficult to obtain an appropriate form
of the gain matrix Kk+1. This is the main reason why this approach is rarely used
in practice.
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As the Kalman filter constitutes a stochastic counterpart of the Luenberger
observer, the extended Kalman filter can also be designed for the following class
of non-linear systems:

xk+1 = g(xk,uk) + L1,kfk + wk, (2.65)

yk+1 = h(xk+1) + L2,k+1fk+1 + vk+1, (2.66)

where, similarly to the linear case, wk and vk are zero-mean white noise sequences.
Using the linearisation (2.63) and neglecting the influence of the linearisation error,
it is straightforward to use the Kalman filter algorithm described in Section 2.2.1.
The main drawback to such an approach is that it works well only when there is
no large mismatch between the model linearised around the current state estimate
and the non-linear behaviour of the system.

The EKF can also be used for deterministic systems, i.e. as an observer for the
system (2.61)–(2.62) (see (Boutayeb and Aubry 1999) and the references therein).
In this case, the noise covariance matrices can be set almost arbitrarily. As was
proposed in (Boutayeb and Aubry 1999), this possibility can be used to increase
the convergence of an observer.

Apart from difficulties regarding linearisation errors, similarly to the case of
linear systems, the presented approaches do not take model uncertainty into ac-
count. This drawback disqualifies those techniques for most practical applications.
Although there are applications for which such techniques work with acceptable
efficiency, e.g. (Kowalczuk and Gunawickrama 2000).

2.3.2. The Tau observer

The observer proposed by Tau (1973) can be applied to a special class of non-linear
systems which can be modelled by the following state-space equations:

ẋ(t) = Ax(t) + Bu(t) + L1f(t) + g(x(t),u(t)), (2.67)

y(t) = Cx(t) + L2f(t). (2.68)

This special model class can represent systems with both linear and non-linear
parts. The non-linear part is continuously differentiable and locally Lipschitz, i.e.

‖g(x(t),u(t)) − g(x̂(t),u(t))‖ ≤ γ‖x(t) − x̂(t)‖. (2.69)

The structure of the Tau observer can be given as:

ẋ(t) = Ax(t) + Bu(t) + g(x̂(t),u(t)) + K(y(t) − ŷ(t)), (2.70)

ŷ(t) = Cx̂(t), (2.71)

where K = P−1
θ CT , and P θ is the solution to the Lyapunov equation:

AT P θ + P θA − CT C + θP θ = 0, (2.72)
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where θ is a positive parameter, chosen in such a way as to ensure a positive
definite solution of (2.72). In order to satisfy the above condition, the Lipschitz
constant γ should satisfy the following condition (Schreier et al. 1997):

γ <
1

2

σ
(

CT C + θP θ

)

σ̄ (P θ)
, (2.73)

where σ̄ (·) and σ (·) stand for the maximum and minimum singular values, respec-
tively.

In spite of the fact that the design procedure does not require any linearisation,
the conditions regarding the Lipschitz constant γ are rather restrictive. This may
limit any practical application of such an approach. Another difficulty arises from
the lack of robustness to model uncertainty.

2.3.3. Observers for bilinear and low-order polynomial systems

A polynomial (and, as a special case, bilinear) system description is a natural ex-
tension of linear models. Designs of observers for bilinear and low-order polynomial
(up to degree three) systems (Hac 1992, Hou and Pugh 1997, Kinneart 1999, Yu
and Shileds 1996, Ashton et al. 1999, Shields and Ashton 2000) involve only so-
lutions of non-linear algebraic or Ricatti equations. This allows on-line residual
generation.

Let us consider a bilinear continuous-time system modelled by the following
state space equations:

ẋ(t) = Ax(t) +
r∑

i=1

Biui(t)xt+ E1d(t), (2.74)

y(t) = Cx(t) + E1d(t). (2.75)

With a slight abuse of notation, the influence of faults is neglected. However,
faults can very easily be introduced without changing the design procedure.

An observer for the system (2.74)–(2.75) can be given as (Hou and Pugh 1997):

ζ̇(t) =Fζ(t) + Gy(t) +
r∑

i=1

Liui(t)y(t), (2.76)

x̂(t) =Hζ(t) + Ny(t). (2.77)

Hou and Pugh (1997) established the necessary conditions for the existence of
the observer (2.76)–(2.77). Moreover, they proposed a design procedure involving
a transformation of the original system (2.74)–(2.75) into an equivalent, quasi-
linear one.

An observer for systems which can be described by state-space equations
consisting of both linear and polynomial terms was proposed in (Ashton et al.
1999, Shields and Ashton 2000). Similarly to the case of the observer (2.74)–
(2.75), here robustness to model uncertainty is tackled by means of an unknown
input.
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2.3.4. Non-linear unknown input observers

This section presents an extension of the unknown input observer for linear systems
described in Section 2.2.2. Such an extension can be applied to systems which can
be modelled by the following state-space equations:

ẋ(t) =a(x(t)) + B(x(t))u(t) + E1(x(t),u(t))d(t)

+ K1(x(t),u(t))f(t), (2.78)

y(t) =c(x(t)) + E2(u(t))d(t) + K2(x(t))f(t). (2.79)

For notational convenience, the dependence of time t is neglected (e.g. u = u(t)).
The underlying idea is to design an unknown input observer for the system

(2.78)-(2.79) without model linearisation. For that purpose the following observer
structure is proposed (Alcorta et al. 1997, Seliger and Frank 2000):

˙̂z = l(ẑ,y,u, u̇), (2.80)

r = m(ẑ,y,u), (2.81)

where:

z = T (x,u). (2.82)

From (2.78)-(2.79) and (2.80)-(2.81), it can be seen that the estimation error e =
z − ẑ and the residual r are governed by:

ė =l(T (x,u) + e, c(x) + E2(u)d + K2(x)f ,u, u̇)

− ∂T (x,u)

∂x
(c(x) + E2(u)d + K2(x)f). (2.83)

r =m(T (x,u), c(x) + E2(u)d + K2(x)f ,u). (2.84)

Taking the time derivative of (2.82) yields:

ż =
∂T (x,u)

∂x
ẋ +

∂T (x,u)

∂x
u̇. (2.85)

Substituting (2.78) into (2.85) leads to:

ż =
∂T (x,u)

∂x
(a(x) + B(x)u + E1(x,u)d + K1(x,u)f)

+
∂T (x,u)

∂x
u̇. (2.86)

From the above equation, it is clear that the unknown input decoupling condition
can be stated as:

∀x,u
∂T (x,u)

∂x
E1(x,u) = 0. (2.87)
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The unknown input decoupling problem can now be realised by analytically solving
a set of linear first-order partial differential equations (2.87).

Moreover, if any fault f is to be reflected by the transformed model, it must
be required that:

∀x,u rank

(
∂T (x,u)

∂x
K1(x,u)

)

= rank (K1(x,u)) . (2.88)

The effect of an unknown input can be decoupled from the output signal (2.79) in
a similar way (Seliger and Frank 2000).

The main drawback to the proposed approach is that it requires a relatively
complex design procedure, even for simple laboratory systems (Zolghardi et al.
1996). This may limit most practical applications of non-linear input observers.
Other problems may arise from the application of the presented observer to non-
linear discrete-time systems.

2.4. Conclusions

In this chapter, the most popular approaches to residual generation for both lin-
ear and non-linear systems were presented. However, perfect coverage and com-
pleteness was not the primary concern. The approaches presented here included
parameter estimation, parity relation, factorisation, and observers. Their advan-
tages, drawbacks, and robustness to model uncertainty and other factors which
may lead to an unreliable fault diagnosis were discussed.

Parameter estimation-based residual techniques are usually used for model
structures whose parameters have a physical meaning. Another factor limiting
the applicability of this approach is that it can efficiently be applied to model
structures which are linear in their parameters. It is so because there are no
sufficiently effective methods for on-line parameter estimation for system models
which are non-linear in their parameters. The robustness to model uncertainty
can be introduced by employing robust parameter estimation techniques.

Parity relation approaches can relatively easily be applied to linear systems.
The robustness to model uncertainty can be realised by introducing the concept
of the so-called unknown input. Such an unknown input may represent model
uncertainty as well as real disturbances acting on a system. The only requirement
is the knowledge of the unknown input distribution matrix. It can be attained by
one of the efficient methods described in (Chen and Patton 1999, Chapter 5).

As was shown, the concept of parity relation can also be extended to non-linear
systems. This, however, involves some requirements regarding model structures
(i.e. polynomial model) and the existence of inverse models. This limits the
practical application of the approach. Similarly to the case of linear systems, the
robustness to model uncertainty can be tackled by the unknown input.

The idea behind factorisation techniques is that the residual signal can be
designed in the frequency domain. The approach is limited to linear systems as no
really efficient factorisation technique for non-linear systems has been developed.
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Observer-based techniques are the most popular way of generating residuals.
As in almost all techniques, the robustness to model uncertainty and other factors
which may lead to an unreliable fault detection is tackled by means of an unknown
input. The popularity of observers also comes from the fact that they are widely
used in modern control systems. This means that an observer can be employed
for both fault diagnosis and control purposes. Such consideration leads directly to
fault-tolerant control.

There are efficient approaches to robust observer-based residual generation
for linear systems (e.g. unknown input observers); unfortunately, the existing so-
lutions for non-linear systems are not mature yet. There are, of course, many
approaches which can be applied to certain classes of non-linear systems, e.g. bi-
linear or polynomial systems. However, this requirement limits the applicability
of such approaches. On the other hand, the existing non-linear extensions of
the UIO (Seliger and Frank 2000) which can be applied to a wider class of sys-
tems require a relatively complex design procedure, even for simple laboratory
systems (Zolghardi et al. 1996).

One way out of this problem is to employ linearisation-based approaches,
similar to the extended Kalman filter. In this case, the design procedure is as
simple as that for linear systems. On the other hand, it is well known that such
a solution works well only when there is no large mismatch between the model
linearised around the current state estimate and the non-linear behaviour of the
system. Thus, the objective is to improve the convergence of linearisation-based
observers. This is to be one of the subjects of Chapter 4.

Another problem arises from the fact that, even for linear systems, research
concerning observer-based techniques is strongly oriented towards deterministic
systems. Indeed, FDI for systems with both modelling uncertainty and the noise
has not attracted enough research attention, although most real systems suf-
fer from both modelling uncertainty and the noise. The existing approaches
(see (Chen and Patton 1999, Chen et al. 1996, Keller and Darouach 1999) and
the references therein), which can be applied to linear stochastic systems, rely on
a similar idea to that of the classical Kalman filter. Unfortunately, the only exist-
ing approaches to non-linear stochastic systems consist in applying the extended
Kalman filter, which, as has already been mention, is usually not a perfect choice.
These problems together with the relaxation of the restrictive conditions concern-
ing the process and measurement noises (wk and vk are assumed to be zero-mean
white noise sequences) form another research direction, which is to be the subject
of Chapter 4.



Chapter 3

SYSTEM IDENTIFICATION VIA

GENETIC PROGRAMMING

The main objective of this chapter is to show how to use the genetic programming
approach for system identification purposes. In particular, it is shown how to use
trees to represent various model structures. Suitable algorithms which aim at find-
ing a model structure best suited to the real system in terms of the criterion used
are presented as well. Both state-space and input-output identification schemes
are proposed. Moreover, the importance of GP algorithm control parameters is
discussed, and suitable adaptation rules are given.

The chapter is organised as follows. Section 3.1 introduces the idea of evo-
lutionary computation and briefly reviews the most popular algorithms. In Sec-
tion 3.2, a system identification framework for input-output models is proposed,
and the GP algorithm is described in detail. Section 3.3 proposes a system identi-
fication framework for state-space models. In Section 3.4, experimental results
which confirm the effectiveness and reliability of the proposed approaches are
presented. Section 3.5 discusses the importance of an appropriate selection of
mutation and crossover probabilities, and proposes their adaptation rules.

3.1. Introduction to evolutionary algorithms

Evolutionary Algorithms (EAs) are a broad class of stochastic optimisation algo-
rithms inspired by some biological processes, which allow populations of organisms
to adapt to their surrounding environment. Such algorithms have been influenced
by Darwin’s theory of natural selection, or the survival of the fittest (published
in 1859). The idea behind it is that only certain organisms can survive, i.e. only
those which can adapt to the environment and win the competition for food and
shelter. Almost at the same time that Darwin’s theory was presented (1865),
Mendel published a short monograph about experiments with plant hybridisation.
He observed how traits of different parents are combined into offspring by sex-
ual reproduction. Darwinian evolutionary theory and Mendel’s investigations of
heredity in plants became the foundations of evolutionary search methods and led
to the creation of the neo-Darwinian paradigm (Fogel 1995).

In order to give a general outline of an evolutionary algorithm, let us introduce
a few different concepts and notations (Michalewicz 1996).
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An evolutionary algorithm is based on a collective learning process within a
population of np individuals, each of which represents a genotype (an underlying
genetic code), a search point in the so-called genotype space. The environment
delivers quantitative information (fitness value) regarding an individual based on
its phenotype (the manner of response contained in the behaviour, physiology and
morphology of an organism). Thus, each individual has its own phenotype and
genotype.

The general principle of an evolutionary algorithm can be described as follows.
At the beginning, a population is randomly initialised and evaluated, i.e. based
on a phenotype, fitness of each individual is calculated. Next, the randomised
processes of reproduction, recombination, mutation and succession are iteratively
repeated until a given termination condition is reached. Reproduction, called also
preselection, is a randomised process (deterministic in some algorithms) of parent
selection from the entire population, i.e. a temporary population of parent indi-
viduals is formed. Recombination mechanism (omitted in some algorithms) allows
the mixing of parental information while passing it to the descendants. Mutation
introduces an innovation into current descendants. Finally, succession, called also
post selection, is applied to choose a new generation of individuals from parents
and descendants. All the above operations are repeated until the termination
condition is reached.

This is, of course, a general principle, and it can be more or less modified for
various types of evolutionary algorithms.

The duality of genotype and phenotype suggests two main approaches to
simulated evolution (Michalewicz 1996). In genotypic simulations, the attention
focuses on genetic structures. This means that the entire searching process is
provided in the genotype space. However, in order to calculate the individual’s
fitness, its chromosome must be decoded to its phenotype. Nowadays, two kinds
of such algorithms can be distinguished, i.e.

• Genetic Algorithms (GAs) (Holland 1975),

• Genetic Programming (GP) (Koza 1992).

In the phenotypic simulations, the attention focuses on the behaviours of the
candidate solutions in a population. All operations, i.e. selection, reproduction,
and mutation, are performed in the phenotype space. Nowadays, three main kinds
of such algorithms can be distinguished, i.e.:

• Evolutionary programming (Fogel et al. 1999),

• Evolutionary strategies (Michalewicz 1996),

• Evolutionary search with soft selection (Galar 1989).

In this work, the attention is focused on genotypic algorithms. In particular,
Section 3.1.1 outlines genetic algorithms and genetic programming. The possibil-
ity of applying genetic programming to system identification is discussed as well.
In Section 3.2, the tree-based input-output representation of a model is proposed.
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Section 3.2.1 describes the algorithm of genetic programming and some of its
modifications. In Section 3.3, an alternative state-space description of a model is
proposed. Section 3.4 shows experimental results concerning system identification
with genetic programming. A technique of a further improvement of the perfor-
mance of the GP algorithm is proposed in Section 3.5. Finally, the last section is
devoted to conclusions.

3.1.1. Genetic algorithms and genetic programming

Genetic algorithms are computation models that approach the natural evolution
perhaps most closely. Many works confirm their effectiveness and recommend their
application to various optimisation problems.

A genetic algorithm contains a population of individuals whose DNA is repre-
sented by fixed-length binary strings. Inside a computer programme, an individ-
ual’s fitness is calculated directly from the DNA, and so only the DNA has to be
represented. The population of such individuals is evolved through successive gen-
erations; individuals in each new generation are bred from the fittest individuals
from the previous generation.

The breeding of a new parent is inspired by natural processes, i.e. either
asexual or sexual reproduction can be employed. In asexual reproduction, the
parent individual is simply copied (possibly with some random changes within
a genotype). This process is called mutation (Fig. 3.1). In sexual reproduction,
couples of parents are randomly chosen and new individuals are created by alter-
nately copying sequences from each parent. This process is known as crossover
(Fig. 3.2).
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Fig. 3.1 . An exemplary mutation operation.
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Fig. 3.2 . An exemplary crossover operation.

The main difference between GAs and genetic programming is that in GP
the evolving individuals are parse trees rather than fixed-length binary strings
(cf. Fig. 3.3). Genetic programming applies the approach of GAs to a pop-
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Fig. 3.3 . An exemplary GP tree.

ulation of programs which can be described by such trees. Such an approach
has demonstrated its potential by evolving simple programs for medical signal
filters, or by performing optical character recognition, a target identification, sys-
tem identification, fault diagnosis, etc. (Esparcia-Alcazar 1998, Koza 1992, Gray
et al. 1998, Witczak and Korbicz 2000a, Witczak and Korbicz 2000b, Witczak and
Korbicz 2001c, Witczak and Korbicz 2002).

In the sequel, it is shown how to employ the genetic programming technique
to obtain a mathematical description of a dynamic non-linear system.

3.2. Input-output representation of the system

The characterisation of a set of possible candidate models M (cf. Section 1.3.2)
from which the system model will be obtained constitutes an important prelimi-
nary task in any system identification procedure. Knowing that the system exhibits
a non-linear characteristic, a choice of a non-linear model set must be made. Let
a non-linear input-output MIMO model have the following form:

ŷi,k =gi(ŷ1,k−1, . . . , ŷ1,k−n1,y
, . . . , ŷm,k−1, . . . , ŷm,k−nm,y

,

u1,k−1, . . . , u1,k−n1,u
, . . . , ur,k−1, . . . , ur,k−nr,u

,pi),

i = 1, . . . ,m. (3.1)

Thus the system output is given by:

yk = ŷk + εk, (3.2)

where εk consists of a structural deterministic error caused by the model-reality
mismatch, and the stochastic error caused by the measurement noise vk. The
problem is to determine the unknown function g(·) = (g1(·), . . . gm(·)) and to
estimate the corresponding parameters vector p = (p1, . . . ,pm).

One possible solution to this problem is the GP approach. As has already been
mentioned, the main ingredient underlying the GP algorithm is a tree. In order
to adapt GP to system identification, it is necessary to represent the model (3.1)
either as a tree or as a set of trees. Indeed, as is shown in Fig. 3.2, the MISO
model can easily be put in the form of a tree, and hence to build the MIMO



3. System identification via genetic programming 59

ŷk−1 uk−1 ŷk−2 uk−2
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∗

Fig. 3.4 . An exemplary GP tree representing the model ŷk = ŷk−1uk−1 + ŷk−2/uk−2.

model (3.1), it is necessary to use m trees. In such a tree (see Fig. 3.2), two
sets can be distinguished, namely, the terminal set T and the function set F (e.g.
T = {uk−1, uk−2, ŷk−1, ŷk−2}, F = {+, ∗, /}). The language of the trees in GP is
formed by a user-defined function F set and terminal T set, which form the nodes
of the trees. The functions should be chosen so as to be a priori useful in solving
the problem, i.e. any knowledge concerning the system under consideration should
be included in the function set. This function set is very important and should be
universal enough to be capable of representing a wide range of non-linear systems.
The terminals are usually variables or constants. Thus, the searching space consists
of all the possible compositions that can recursively be formed from the elements
of F and T. The selection of variables does not cause any problems, but the
handling of numerical parameters (constants) seems very difficult. Even though
there are no constant numerical values in the terminal set T, they can be implicitly
generated, e.g. the number 0.5 can be expressed as x/(x + x). Unfortunately,
such an approach leads to an increase in both the computational burden and
evolution time. Another way is to introduce a number of random constants into
the terminal set, but this is also an inefficient approach. An alternative way of
handling numerical parameters which seems to be more suitable is called node
gains (Esparcia-Alcazar 1998). A node gain is a numerical parameter associated
with the node whose output it multiplies (see Fig. 3.5). Although this technique

ŷk−1ŷk−1ŷk−1ŷk−1 uk−1uk−1uk−1uk−1

++

+

+

∗∗

/

p11
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p2 p3
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p8 p9 p10 p12 p13 p14 p15

Fig. 3.5 . An exemplary parameterised tree.

is straightforward, it leads to an excessive number of parameters, i.e. there are
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parameters which are not identifiable. Thus, it is necessary to develop a mechanism
which prevents such situations from happening. First, let us define the function
set F = {+, ∗, /, ξ1(·), . . . , ξl(·)}, where ξk(·) is a non-linear univariate function. To
tackle the parameters reduction problem, several simple rules can be established:

∗, /: A node of type either ∗ or / always has parameters set to unity on the side
of its successors. If a node of the above type is a root node of a tree, then
the parameter associated with it should be estimated.

+: A parameter associated with a node of type + is always equal to unity. If
its successor is not of type +, then the parameter of the successor should be
estimated.

ξ: If a successor of a node of type ξ is a leaf of a tree or is of type ∗ or /, then
the parameter of the successor should be estimated. If a node of type ξ is a
root of a tree, then the associated parameter should be estimated.

As an example, consider the tree shown in Fig. 3.5. Following the above rules, the
resulting parameter vector has only five elements p = (p3, p8, p9, p10, p11), and the
resulting model is ŷk = (p11+p8)ŷk−1+(p10+p9)uk−1+p3ŷ

2
k−1/u

2
k−1. It is obvious

that although these rules are not optimal in the sense of parameter identifiability,
their application significantly reduces the dimension of the parameter vector, thus
making the parameter estimation process much easier. Moreover, the introduction
of parameterised trees reduces the terminal set to variables only, i.e. constants are
no longer necessary, and hence the terminal set is given by

T = {ŷ1,k−1, . . . , ŷ1,k−n1,y
, . . . , ŷm,k−1, . . . , ŷm,k−nm,y

,

u1,k−1, . . . , u1,k−n1,u
, . . . , ur,k−1, . . . , ur,k−nr,u

}. (3.3)

The remaining problem is to select appropriate lags in the input and output signals
of the model. Assuming that nmax

y i nmax
u are the maximum lags in the output

and input signals, the problem boils down to checking nmax
y × nmax

u possible con-
figurations, which is an extremely time-consuming process. With a slight loss of
generality, it is possible to assume that each ny = nu = n. Thus the problem
reduces to finding, throughout experiments, such n for which the model is the
best replica of the system.

3.2.1. Model structure determination using GP

If the terminal and function sets are given, populations of GP individuals (trees)
can be generated, i.e. the set M of possible model structures is created. An out-
line of the GP algorithm implemented in this work is shown in Tab. 3.1. The
algorithm works on a set of populations P =

{
Pi | i = 1, . . . , np

}
, and the number

of populations np depends on the application, e.g. in the case of the model (3.1),
the number of populations is equal to the dimension m of the output vector yk,
i.e. np = m. Each of the above populations Pi =

{
bij | j = 1, . . . , nm

}
is com-

posed of a set of nm trees bij . Since the number of populations is given, the GP
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Tab.3.1. An outline of the GP algorithm

I. Initiation

A. Random generation P(0) =
{
Pi(0) | i = 1, . . . , np

}
.

B. Fitness calculation Φ
(
P(0)

)
=
{
Φ
(
Pi(0)

)
| i = 1, . . . , np

}
.

C. t = 1.

II. While
(
ι
(
P(t)

)
= true

)
do

A. Selection P
′(t) =

{
P ′

i (t) = sns

(
Pi(t)

)
| i = 1, . . . , np

}
.

B. Crossover P
′′(t) =

{
P ′′

i (t) = rPcross

(
P ′

i (t)
)
| i = 1, . . . , np

}
.

C. Mutation P
′′′(t) =

{
P ′′′

i (t) = mPmut

(
P ′′

i (t)
)
| i = 1, . . . , np

}
.

D. Fitness calculation Φ
(
P
′′′(t)

)
=
{
Φ
(
P ′′′

i (t)
)
| i = 1, . . . , np

}
.

E. New generation P(t+ 1) =
{
Pi(t+ 1) = P ′′′

i (t) | i = 1, . . . , np

}
.

F. t = t+ 1.
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algorithm can be started (initiation) by randomly generating individuals, i.e. nm

individuals are created in each population whose trees are of a desired depth nd.
The tree generating process can be performed in several different ways, resulting
in trees of different shapes. The basic approaches are the “full” and “grow” meth-
ods (Koza 1992). The “full” method generates trees for which the length of every
nonbacktracking path from the root to an endpoint is equal to the prespecified
depth nd. The “grow” method generates trees of various shapes. The length of
a path between the root and an endpoint is not greater than the prespecified depth
nd. Because of the fact that, in general, the shape of the true solution is unknown,
it seems desirable to combine both of the above methods. Such a combination
is called “ramped half-and-half”. Moreover, it is assumed that the parameters
p = (p1, . . . ,pm) of each tree are initially set to unity (although it is possible to
set the parameters randomly). In the first step (fitness calculation), estimation of
the parameter vector p of each individual is performed, according to (1.47). In
the case of parameter estimation, many algorithms can be employed; more pre-
cisely, as GP models are usually non-linear in their parameters, the choice reduces
to one of non-linear optimisation techniques. Unfortunately, because the models
are randomly generated, they can contain linearly dependent parameters (even
after the application of parameter reduction rules) and parameters which have
very little influence on the model output. In many cases, this may lead to a very
pure performance of gradient-based algorithms. Owing to the above-mentioned
problems, the spectrum of possible non-linear optimisation techniques reduces to
gradient-free techniques, which usually require a large number of cost evaluations.
On the other hand, the application of stochastic gradient-free algorithms, apart
from the simplicity of the approach, decreases the chance to get stuck in a lo-
cal optimum, and hence it may give more suitable parameter estimates. Based
on numerous computer experiments, it has been found that the extremely simple
Adaptive Random Search (ARS) algorithm (Walter and Pronzato 1997) is espe-
cially well suited for that purpose. The routine chooses the initial parameter vector
p0, e.g. p0 = 1. After q iterations, given the current best estimate pq, a random
displacement vector ∆p is generated and the trial point:

p∗ = pq + ∆p, (3.4)

is checked, with ∆p following normal distribution with zero-mean and covariance:

Σ = diag[σ1, . . . , σdim p]. (3.5)

If j(M(p∗)) > j(M(pq)), then p∗ is rejected and, consequently, pq+1 = pq is set;
otherwise, pq+1 = p∗ The adaptive strategy consists in repeatedly alternating two
phases. During the first one (variance selection), Σ is selected from the sequence
1σ, . . . ,5σ, where 1σ is set by the user in such a way as to allow an easy exploration
of the parameter space, and:

iσ =i−1σ/10, i = 2, . . . , 5. (3.6)

In order to allow a comparison to be drawn, all the possible iσ’s are used 100/i
times, starting from the same initial value of p. The largest iσ’s, designed to
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escape the local minimum, are therefore used more often than the smaller ones.
During the second (exploration) phase, the most successful iσ is used to perform
100 random trials starting from the best p obtained so far.

In the next step, using (1.45), fitness of each model is obtained and the best-
suited model is selected by the use of (1.44). If the selected model satisfies the
prespecified requirements, then the algorithm is stopped. In the second step, the
selection process is applied to create a new intermediate population of parent indi-
viduals. For that purpose, various approaches can be employed, e.g. proportional
selection, rank selection, tournament selection (Koza 1992, Michalewicz 1996).
The selection method used in the present work is the tournament selection, and it
works as follows: select randomly ns models, i.e. trees which represent the mod-
els, and copy the best of them into the intermediate set of models (intermediate
populations). The above procedure is repeated nm times.
The individuals for the new population (the next generation) are produced through
the application of crossover and mutation. To apply crossover rPcross

, random cou-
ples of individuals which have the same position in each population are formed.
Then, with a probability Pcross, each couple undergoes crossover, i.e. a random
crossover point (node) is selected and then the corresponding sub-trees are ex-
changed (Fig. 3.6). Mutation mPmut

(Fig. 3.7) is implemented such that for each
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Fig. 3.6 . An exemplary crossover operation.

entry of each individual a sub-tree at a selected point is removed with probability
Pmut and replaced with a randomly generated tree. The parameter vectors of in-
dividuals which have been modified by means of either crossover or mutation are
set to unity (although other choice is possible), and the other node parameters
vectors remain unchanged. The GP algorithm is repeated until the best-suited
model satisfies the prespecified requirements ι

(
P(t)

)
, or until the number of max-

imum admissible iterations has been exceeded. It should also be pointed out that
the simulation programme must ensure robustness to unstable models. This can
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Fig. 3.7 . An exemplary mutation operation.

easily be attained when (1.47) is bounded by a certain maximum admissible value.
This means that each individual which exceeds the above bound is penalised by
stopping the calculation of its fitness, and then Jm(Mi) is set to a sufficiently
large positive number. This problem is especially important in the case of the
input-output representation of the system. Unfortunately, the stability of models
resulting from this approach is very difficult to prove. However, this is a com-
mon problem with non-linear input-output dynamic models. To overcome it, an
alternative model structure is presented in the subsequent section.

3.3. State-space representation of the system

Let us consider the following class of non-linear discrete-time systems:

xk+1 = g(xk,uk) + wk, (3.7)

yk+1 = Cxk+1 + vk. (3.8)

Assume that the function g(·) has the form:

g(xk,uk) = A(xk)xk + h(uk). (3.9)

The choice of the structure (3.9) is caused by the fact that the resulting model is
to be used in FDI systems. The algorithm presented below though can also, with
minor modifications, be applied to the following structures of g(·):

g(xk,uk) = A(xk,uk)xk, (3.10)

g(xk,uk) = A(xk,uk)xk + h(uk), (3.11)

g(xk,uk) = A(xk,uk)xk + B(xk)uk, (3.12)

g(xk,uk) = A(xk)xk + B(xk)uk. (3.13)
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The state-space model of the system (3.7)-(3.8) can be expressed as:

x̂k+1 = A(x̂k)x̂k + h(uk), (3.14)

ŷk+1 = Cx̂k+1. (3.15)

The problem is to determine the matrices A(·), C and the vector h(·), given the
sets of input-output measurements {(uk,yk)}nt−1

k=0 and {(uk,yk)}nv−1
k=0 . Moreover,

it is assumed that the true state vector xk is, in particular, unknown. Without
loss of generality, it is possible to assume that:

A(x̂k) = diag[a1,1(x̂k), a2,2(x̂k), . . . , an,n(x̂k)]. (3.16)

Thus, the problem reduces to identifying the non-linear functions
ai,i(x̂k), hi(uk) i = 1, . . . , n, and the matrix C. Now it is possible to establish the
conditions under which the model (3.14)-(3.15) is globally asymptotically stable.
The following theorem is based on the theorems presented in (Bubnicki 2000).

Theorem 3.3.1. If, for h(uk) = 0,

∀k ≥ 0, ∀x̂k ∈ R
n, max

i=1,...,n
|ai,i(x̂k)| < 1, (3.17)

then the model (3.14)-(3.15) is globally asymptotically stable, i.e. x̂k converges to
the equilibrium point x̂

∗ for any x̂0.

Proof. Since the matrix A(x̂k) is a diagonal one,

‖A(x̂k)‖ = max
i=1,...,n

|λi(A(x̂k))| = max
i=1,...,n

|ai,i(x̂k)|, (3.18)

where the norm ‖A(·)‖ may have one of the following forms:

‖A(·)‖2 =
√

λmax(A(·)T A(·)), (3.19)

‖A(·)‖1 = max
1≤i≤n

n∑

j=1

|ai,j(·)|, (3.20)

‖A(·)‖∞ = max
1≤j≤n

n∑

i=1

|ai,j(·)|. (3.21)

Finally, using (Bubnicki 2000, Proof of Theorem 1) yields the condition (3.17).

Since the stability conditions are established, it is possible to give a gen-
eral framework for the identification of (3.14)-(3.15). Since ai,i(x̂k), hi(uk), i =
1, . . . , n are assumed to be non-linear (in general) functions, it is necessary to use
n populations to represent ai,i(x̂k), i = 1, . . . , n, and another n populations to
represent hi(uk), i = 1, . . . , n. Thus the number of populations is np = 2n. The
terminal sets for these two kinds of populations are different, i.e. the first terminal
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set is defined as TA = {x̂k}, and the second one as Th = {uk}. The parameter
vector p consists of the parameters of both ai,i(x̂k) and hi(uk). Unfortunately,
estimation of p is not as simple as in the input-output representation case. This
means that checking the trial point in the ARS algorithm (see Section 3.2.1) in-
volves computation of C, which is necessary to obtain the output error εk and,
consequently, the value of the fitness function (1.44). To tackle this problem, for
each trial point p it is necessary to first set an initial state estimate x̂0, and then
to obtain the state estimate x̂k, k = 1, . . . , nt−1. Knowing the state estimate and
using the least-square method, it is possible to obtain C by solving the following
equation:

C

nt−1∑

k=0

x̂kx̂
T
k =

nt−1∑

k=0

ykx̂
T
k , (3.22)

or, equivalently, by using:

C =

nt−1∑

k=0

ykx̂
T
k

[
nt−1∑

k=0

x̂kx̂
T
k

]−1

. (3.23)

Since the identification procedure of (3.14)-(3.15) is given, it is possible to establish
the structure of A(·), which guarantees that the condition of Theorem 1 is always
satisfied, i.e. maxi=1,...,n |ai,i(x̂k)| < 1. This can easily be achieved with the
following structure of ai,i(x̂k):

ai,i(x̂k) = tanh(si,i(x̂k)), i = 1, . . . , n, (3.24)

where tanh(·) is a hyperbolic tangent function, and si,i(x̂k) is a function repre-
sented by the GP-tree. It should be also pointed out that the order n of the model
is in general unknown and hence should be determined throughout experiments.

3.4. Experimental results

The main objective of further investigations is to show the reliability and effective-
ness of the system identification technique proposed in the present chapter. In par-
ticular, real data from an industrial plant were employed to identify both the input-
output and state-space models of chosen parts of the plant. The plant to be con-
sidered is an evaporation station at the Lublin Sugar Factory (Poland) (Kościelny
et al. 1999, Edelmayer 2000). Fig. 3.8 shows a scheme of the plant with all the
available process variables. These process variables are described in Tab. 3.2. The
models to be obtained are as follows (cf. Fig. 3.8):

• The vapour model
The input and output vectors: uk = (T51_07), yk = (P51_03),

• The apparatus model
The input and output vectors:
uk = (T51_06, TC51_05, F51_01, F51_02), yk = (T51_08).
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Fig. 3.8 . A scheme of the evaporation station.

The data used for the identification and validation data sets were collected from
two different shifts in November 1998. The data from the first shift were used for
identification, and the data from the second one formed the validation data set.
Unfortunately, the data turned out to be sampled too fast (the sampling rate was
10s). Thus, every 10-th value was picked, after proper prefiltering, resulting in the
nv = nt = 700-th element identification and validation data sets. After this, the
offset levels were removed with the use of MATLAB System Identification Toolbox.

3.4.1. The vapour model

The objective of this section is to design an input-output vapour model according
to the approach described in Section 3.2. The parameters used during the iden-
tification process were Pcross = 0.8, Pmut = 0.01, nm = 200, nd = 10, ns = 10,
F = {+, ∗, /}. Moreover, for the sake of comparison, the ARX model was obtained.
In both the ARX and non-linear cases the order of the model was tested between
ny = nu = 1, . . . , 4.

Experimental results have shown that the best-suited ARX model is of order
ny = nu = 4. On the contrary, after the 50 runs of the GP algorithm performed
for each model order, it was found that the order of the model which provides the
best approximation quality is ny = nu = 2. The best obtained model structure is
given by:

ŷk =((p̂2uk−2 + p̂1ŷk−2)u
2
k−1 + (p̂5uk−2ŷk−1

+ p̂6u
2
k−2 + p̂3ŷ

2
k−1 + p̂4ŷk−1uk−2 + p̂9)uk−1

+ p̂7uk−2ŷ
2
k−1 + p̂8ŷk−1u

2
k−2)/(p̂10ŷk−1 + p̂11ŷ

2
k−1

+ p̂12ŷk−1uk−2 + p̂13), (3.25)
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Tab.3.2. A specification of the process variables

F51_01 Thin juice flow at the inlet of the evaporation station

F51_02 Steam flow at the inlet of the evaporation station

LC51_03 Juice level in the first section of the evaporation station

P51_03 Vapour pressure in the first section of the evaporation station

P51_04 Juice pressure at the inlet of the evaporation station

T51_06 Input steam temperature

T51_07 Vapour temperature in the first section of the evaporation station

T51_08 Juice temperature at the outlet of the first section of

the evaporation station

TC51_05 Thin juice temperature at the outlet of the heater

where:

p̂ = ( − 0.021, 0.495, 1.682,−0.832, 0.601,

0.877,−1.396, 1.206, 1.931,−0.091, 0.067,−0.038, 0.495). (3.26)

A comparative study performed for the ARX and GP-based models shows that
the GP model is superior to the ARX model. Indeed, the mean-squared output
error was 1.5 and 3.77 for the GP and ARX models, respectively. However, this
superiority can be seen especially clearly in the case of the validation data set,
for which the mean-squared error was 6.7 and 21.5 for the GP and ARX models,
respectively. From these results it can be seen that the introduction of the non-
linear model has significantly improved modelling performance. While a linear
model may be acceptable in the case of the identification data set, it is clear that its
generalisation abilities are rather unsatisfactory, which has been shown throughout
the test on the validation data set. The response of the model obtained for both
the identification and validation data sets is given in Fig. 3.9.

The main drawback to the GP-based identification algorithm concerns its
convergence abilities. Indeed, it seems very difficult to establish the convergence
conditions which can guarantee the convergence of the proposed algorithm. On the
other hand, many examples treated in the literature, cf. (Esparcia-Alcazar 1998,
Gray et al. 1998, Koza 1992) and the references therein, as well as the author’s
experience with GP (Witczak and Korbicz 2000a, Witczak and Korbicz 2000b,
Witczak and Korbicz 2001c, Witczak and Korbicz 2002) confirm its particular
usefulness, in spite of the lack of the convergence proof. In the case of the presented
example, the average fitness (mean-squared output error for the identification data
set), Fig. 3.10, for the 50 runs of the algorithm confirms the modelling abilities of
the approach. Moreover, based on the fitness attained by each of the 50 models
(resulting from the 50 runs), it is possible to obtain a histogram representing the
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Fig. 3.10 . The average fitness for the 50 runs of the algorithm.

achieved fitness values (Fig. 3.11) as well as the fitness confidence region. Let
α = 0.99 denote the confidence level. Then the corresponding confidence region
can be defined as:

J̄m ∈ [j̄m − tα
s√
50
, j̄m + tα

s√
50

], (3.27)

where j̄m = 1.89 and s = 0.64 denote the arithmetic mean and standard deviation
of the fitness of the 50 models, while tα = 2.58 is the normal distribution quantile.
According to (3.27), the fitness confidence region is J̄m ∈ [1.65, 2.12], which means
that the probability that the true mean fitness J̄m belongs to this region is 99%.
On the other hand, owing to the multimodal properties of the identification index,
it can be observed (Fig. 3.11) that there are two optima resulting in models of
different quality. However, it should be pointed out that, on average (Fig. 3.10),
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Fig. 3.11 . A histogram representing the fitness of the 50 models.

the algorithm converges to the optimum resulting in models of better quality. The
convergence abilities of the algorithm can be further increased by the application
of various parameters, e.g. Pcross, Pmut, control strategies (see, e.g., (Eiben et
al. 1999)), but this is beyond the scope of the present section.

The above results confirm that, even if there is no convergence proof, the
proposed approach can be successfully used to tackle the non-linear system iden-
tification problem.

3.4.2. The apparatus model

The objective of this section is to design the state-space apparatus model (cf.
Fig. 3.8) according to the approach described in Section 3.3. The parameters used
in the GP algorithm are the same as in Section 3.4.1. Similarly, for the sake of
comparison, the linear state-space model was obtained. In both the linear and
non-linear cases the order of the model was tested between n = 2, . . . , 4.

Experimental results showed that the best-suited linear model is of order
n = 4. After the 50 runs of the GP algorithm performed for each model order,
it was found that the order of the model which provides the best approximation
quality is n = 2. The best obtained model structure is given by:

x̂1,k+1 = tgh(s1,1)x̂1,k + h1(uk), (3.28)

x̂2,k+1 = tgh(s2,2)x̂2,k + h2(uk), (3.29)
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where:

s1,1 = −0.13x̂2,k, s2,2 =
x̂2,k

x̂1,k(x̂2,kx̂1,k+2x̂2
2,k

x̂2
1,k

+1)
, (3.30)

h1(uk) =(u1,k + (u1,k + 2u4,k + u4,ku1,k)(u1,k

+ u4,k + u3,k + u4,ku1,k))u3,k+

+ u3,k(u1,k + (u1,k + u4,k + u3,k + u4,ku1,k)

(u1,k +
u4,ku3,ku1,k

u4,k + u2,k
+ 2u4,k)), (3.31)

h2(uk) =u1,k + u2,k, (3.32)

and:

C = [0.21 ∗ 10−5, 0.51]. (3.33)

A comparative study performed for the linear model and the GP model shows
that the GP model is superior to the linear state-space model. Indeed, the mean-
squared output error was 0.05 and 0.2 for the GP and linear state-space models,
respectively. This superiority was also confirmed in the case of the validation data
set, for which the mean-squared error was 0.5 and 2.1 for the GP and linear state-
space models, respectively. From these results it can be seen that the proposed
non-linear state-space model identification approach can effectively be applied to
various system identification tasks. The response of the model obtained for both
the identification and validation data sets is given in Fig. 3.12. The average fitness
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Fig. 3.12 . The system (solid line) and model (dashed line) output for the identification
(left) and validation (right) data sets.

(mean-squared output error for the identification data set), Fig. 3.13, for the 50
runs of the algorithm confirms the modelling abilities of the approach. As previ-
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Fig. 3.13 . The average fitness for the 50 runs of the algorithm.
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Fig. 3.14 . A histogram representing the fitness of the 50 models.

ously, based on the fitness attained by each of the 50 models (resulting from the 50
runs), it is possible to obtain a histogram representing the achieved fitness values
(Fig. 3.14) as well as the fitness confidence region. According to (3.27), the fitness
confidence region is J̄m ∈ [0.06, 0.078] (for s = 0.02, j̄m = 0.07), which means that
the probability that the true mean fitness J̄m belongs to this region is 99%. As in
the previous section, it can be observed (Fig. 3.14) that there are two optima in
the space of the models. However, on average, the algorithm is convergent to the
optima resulting in models of better quality.
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3.5. Further improvements: Selection strategies
of control parameters

The preliminary operation while applying genetic programming algorithm is the
specification of its components such as the mutation and crossover probabilities
Pmut and Pcross, population size np, fitness function, etc. These parameters greatly
determine whether or not the algorithm will find a near optimum solution and
whether it will find such a solution efficiently. The rules of setting most of them
have already been described.

Undoubtedly, it seems profitable to have as large a population as possible.
The size is limited by the abilities of computers and the maximum admissible
evolution time. Thus, a population usually consists of 100 − 1000 individuals.

On the other hand, the mutation and crossover probabilities Pmut and Pcross

can be set arbitrarily within the range [0, 1]. The most common approach to em-
ployed set these parameters consists in setting them before the run of the algorithm
and then running the algorithm using these values, which remain fixed during the
run. In such cases, typically exploited values, e.g. Pmut = 0.01, Pcross = 0.8, are
used without much justification of the choice made. A general drawback to such
techniques can be deduced from the observation of a run of the genetic program-
ming algorithm, which is an intrinsically dynamic, adaptive process. Moreover, it
seems intuitively obvious that different values of parameters may be advantageous
in different stages of an evolution process.

Such parameter adaptation rules can be described as:

Pcross,k+1 = f1(Pcross,k), Pmut,k+1 = f2(Pmut,k), (3.34)

where k stands for the generation number. It seems, of course, impossible to
analytically derive the rules of controlling the parameter values f1(·), f2(·).

One way out of this problem is to incorporate the parameters Pmut,k and
Pcross,k into the chromosomes (see (Eiben et al. 1999) for a survey). But in the
case of GP this seems inconvenient because the chromosome is represented by
a tree, which is rather inappropriate for representing simple numbers. Another
possibility is to use some heuristic rule which employs the feedback from the cur-
rent search state to modify the parameters. There are, of course, many more or
less sophisticated approaches which can be applied to settle this problem (Eiben et
al. 1999). For example, the celebrated Rechenberg “1/5 success rule”, which states
that the ratio ξ of successful mutations to all mutations should be 1/5. If this is
not the case, the probability of mutation should be modified as follows:

if (k mod n = 0) then

Pmut,k =







Pmut,k−n/c, ξ > 1/5,

Pmut,k−n · c, ξ < 1/5,

Pmut,k, ξ = 1/5,

else Pmut,k = Pmut,k−1,
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where 0.817 ≤ c ≤ 1. Using this mechanism means that changes in the probability
of mutation happen every n-th generation.

Unfortunately, the known approaches (Eiben et al. 1999) neglect the statistical
properties of a population. The purpose of further consideration is to establish
a connection between such properties and probabilities of crossover and mutation
resulting in adaptation rules f1(·) and f2(·).

It is clear that the arithmetic mean of the individuals’ fitness should decrease
from generation to generation in order to locate a sub-optimal solution to the
problem under consideration. This means that the probability of crossover should
be appropriately high while the probability of mutation should be low. On the
other hand, the variance of the individuals’ fitness should be as large as possible in
order to guarantee a large spectrum of possible structures (genotypes) from which
a sub-optimal solution is to be obtained. Moreover, it is clear that the probability
of crossover should be decreased when the algorithms get stuck in unsatisfactory
local minima, i.e. when the arithmetic mean remains constant from generation
to generation, while the probability of mutation should be increased. Such an
increase is performed in order to generate new individuals which help to escape
local optima. Finally, Pmut,k and Pcross,k should belong to prespecified ranges.

All these requirements can be fulfilled by the following adaptation rules:

Pcross,k+2 =







for mk+1 < mk

Pmin
cross + (Pcross,k+1 − Pmin

cross)

(

1 − e
−p1mk
mk+1

)

,

otherwise

Pcross,k+1 + (1 − Pcross,k+1)e
−p1mk
mk+1 ,

(3.35)

and:

Pmut,k+2 =







for vk+1 > vk

Pmin
mut + (Pmut,k+1 − Pmin

mut )

(

1 − e
−p2vk+1

vk

)

otherwise

Pmut,k+1 + (Pmax
mut − Pmut,k+1)e

−p2vk+1

vk ,

(3.36)

where mk and vk are respectively the arithmetic mean and the coefficient of vari-
ation of the individuals’ fitness, p1 and p2 stands for additional design parameters
which can be applied to modify the probabilities’ changes, Pmin

mut and Pmin
cross are

the minimum allowable probabilities of mutation and crossover, respectively, and
Pmax

mut is the maximum probability of mutation. It should also be mentioned that
Pmut,0 = Pmut,1 = P init

mut and Pcross,0 = Pcross,1 = P init
cross, where P init

mut and P init
cross

stand for initial values of the probabilities of mutation and crossover, respectively.
Although the rules (3.35) and (3.36) are not optimal, it is expected that their

application will improve the process of model building. In order to verify this
practically, let us consider the following example, for which genetic programming
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with constant values of Pmut and Pcross almost always finds the optimal solution.
This means that any further improvements are really difficult to attain.
Example 3.1. The problem is to model the relation:

y = − 1

0.1 + u2
, (3.37)

with genetic programming, given a set of input-output measurements {ui, yi}nt

i=1,
where ui is generated according to the uniform distribution, i.e. ui ∈ U(−2, 2),
and nt = 10. In particular, two cases were considered:

Case 1: Constant values: Pcross = 0.8, Pcross = 0.01,

Case 2: Selection according to (3.35) and (3.36).

The average fitness (mean-squared output error for data set), Fig. 3.15, for the
50 runs of the algorithm confirms the modelling abilities of the approach. Indeed,
the results of the proposed approach provide faster convergence rate. Moreover,
as can be seen from Fig. 3.16, for the proposed approach there are no local optima
representing models of unacceptable quality, which is the case in the traditional
approach.
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Fig. 3.15 . The average fitness for the 50 runs of the algorithm. Case 1 (dashed),
Case 2 (solid).

3.6. Conclusions

The purpose of this chapter was to propose a unified framework for the identi-
fication of non-linear dynamic systems. To tackle this problem, a relatively new
genetic programming technique was employed. In particular, it was shown how
to represent various model structures as parameterised trees, and how to identify
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their structure as well as estimate their parameters. Both the input-output and
state-space model structures were presented. Moreover, it was proven that the
proposed state-space model identification scheme provides asymptotically stable
models.

The experimental results, covering model construction of chosen parts of an
evaporation station at the Lublin Sugar Factory, confirm the reliability and effec-
tiveness of the proposed identification framework.

The main drawback to this approach is its computational cost resulting in
a relatively long identification time. However, as usual, the model construction
procedure is realised off-line, and hence the identification time is not very im-
portant. Another drawback is that the model order has to be determined by a
time-consuming trial-and-error process. This is, however, a problem with all non-
linear schemes. There are, of course, some approaches (Nelles 2001) which can be
applied to estimate such a model order implicitly.

Moreover, an adaptation technique of the probabilities of crossover and mu-
tation was proposed as well. The experimental results suggest that its application
may result in models of better quality and that it reduces the required computation
time.



Chapter 4

A ROBUST OBSERVER-BASED RESIDUAL

GENERATION

Irrespective of the identification method used, there always exists the problem
of model uncertainty, i.e. the model-reality mismatch. To overcome it, many
approaches have been proposed (Chen and Patton 1999, Patton et al. 2000). Un-
doubtedly, the most common one is to use robust observers, such as the Un-
known Input Observer (UIO) (Alcorta et al. 1997, Chen and Patton 1999, Chen
et al. 1996, Patton and Chen 1997, Patton et al. 2000), which can tolerate a de-
gree of model uncertainty and hence increase the reliability of fault diagnosis.
Unfortunately, the design procedure for Non-linear Unknown Input Observers
(NUIOs) (Alcorta et al. 1997, Seliger and Frank 2000) is usually very complex, even
for simple laboratory systems (Zolghardi et al. 1996). One way out of this prob-
lem is to employ linearisation-based approaches, similar to the extended Kalman
filter (Anderson and Moore 1979). In this case, the design procedure is almost as
simple as that for linear systems. On the other hand, it is well known that such
a solution works well only when there is no large mismatch between the model
linearised around the current state estimate and the non-linear behaviour of the
system. Thus, the problem is to improve the convergence of linearisation-based
observers.

The application of the EKF to the state estimation of non-linear deter-
ministic systems has received considerable attention during the last two decades
(see (Boutayeb and Aubry 1999) and the references therein). This is mainly be-
cause the EKF can directly be applied to a large class of non-linear systems. More-
over, it is possible to show that the convergence of such a deterministic observer
is ensured under certain conditions.

The main objective of further investigations is to show how to employ a mod-
ified version of the well-known UIO, which can be applied to linear stochas-
tic systems, to form a non-linear deterministic observer. Moreover, it is shown
that the convergence of the proposed observer is ensured under certain condi-
tions (Witczak 2001a, Witczak and Korbicz 2001c, Witczak and Korbicz 2002),
and that the convergence rate can dramatically be increased, compared to the clas-
sical approach, by the application of the genetic programming technique(Witczak
and Korbicz 2001b, Witczak and Korbicz 2002). Moreover, it is shown how to
use the proposed observer to tackle the problem of both sensor and actuator fault



78 4.1. An unknown input observer for non-linear deterministic systems

diagnosis.
Another problem arises for systems with both modelling uncertainty and the

noise. Indeed, this problem has not attracted enough research attention, although
real systems suffer from both modelling uncertainty and the noise. The existing ap-
proaches (see (Chen and Patton 1999, Chen et al. 1996, Keller and Darouach 1999)
and the references therein) which can be applied to linear stochastic systems rely
on a similar idea to that of the classical Kalman filter (Anderson and Moore 1979).
The main drawback to such techniques lies in their restrictive assumptions con-
cerning the noise distribution, i.e. it is assumed that the process and measurement
noises are zero-mean white noise sequences. However, in many practical situations
it is more natural to assume that only the bounds on the noise signals are available
(for a detailed description of such approaches, we refer the reader to (Maksarow
and Norton 1996a, Maksarow and Norton 1996b, Milanese et al. 1996, Walter
and Pronzato 1997) and the references therein). This bounded-error approach de-
scribes the set of all the states that are consistent with the model, the measured
data and the error (or the noise) bounds. All members of this feasible set are
then possible solutions to the state estimation problem. Unfortunately, the set
obtained in thsi way may become extremely complex. For the sake of computa-
tional complexity, this feasible set is usually characterised by the smallest (in some
sense) ellipsoid that encloses it. Although, in the case of the observers of this type,
the so-called unknown input can be treated in a similar way as the process noise,
i.e. the only requirements are the bounds of the unknown input, it seems espe-
cially attractive to employ the bounded-error approach to design an UIO for linear
stochastic systems (Witczak and Korbicz 2002a). This is especially true from the
point of view of fault isolation. Indeed, in order to design a fault diagnosis system
which is based on a bank of observers, each of the observers should be insensitive
to one fault while sensitive to the others. This can be achieved by combining the
classical UIO with bounded-error techniques, resulting in an observer for a wide
class of linear stochastic systems.

Another problem arises from the application of fault diagnosis to non-linear
stochastic systems. Unfortunately, the only existing approaches to this class of
systems consist in the application of the Extended Kalman Filter (EKF) (Anderson
and Moore 1979). Thus, it seems especially attractive to extend the proposed
bounded-error UIO in such a way that it can be applied to non-linear stochastic
systems (Witczak and Korbicz 2002a).

The chapter is organised as follows: Sections 5.1 and 5.2 propose unknown
input observers for non-linear deterministic and stochastic systems, respectively.

4.1. An unknown input observer for non-linear
deterministic systems

4.1.1. Preliminaries

This section presents a special version of the UIO which can be employed to tackle
the fault detection problem of linear stochastic systems. The information presented
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below is necessary to explain further results of this work, and the reader is referred
to (Chen and Patton 1999) and the references therein for further explanations.
Following a common nomenclature, such an UIO will be called an Unknown Input
Filter (UIF).

Let us consider the following linear discrete-time system:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk + wk, (4.1)

yk = Ckxk + L2,k+1fk+1 + vk. (4.2)

In this case, vk and wk are independent zero-mean white noise sequences. The
matrices Ak, Bk, Ck, Ek are assumed to be known and have appropriate dimen-
sions. As has already been mentioned, the robustness to model uncertainty and
to other factors which may lead to an unreliable fault detection is of great impor-
tance. In the case of the UIF, the robustness problem is tackled by introducing
the concept of the unknown input dk; hence the term Ekdk may represent vari-
ous kinds of modelling uncertainty, as well as real disturbances affecting the real
system. To overcome the state estimation problem of (4.1)-(4.2), an UIF with the
following structure can be employed:

zk+1 = F k+1zk + T k+1Bkuk + Kk+1yk, (4.3)

x̂k+1 = zk+1 + Hk+1yk+1, (4.4)

where:

Kk+1 = K1,k+1 + K2,k+1, (4.5)

Ek = Hk+1Ck+1Ek, (4.6)

T k+1 = I − Hk+1Ck+1, (4.7)

F k+1 = T k+1Ak − K1,k+1Ck. (4.8)

The above matrices are designed in such a way as to ensure the unknown input
decoupling as well as the minimisation of the state estimation error:

ek+1 = xk+1 − x̂k+1. (4.9)

It should also be pointed out that the necessary condition for the existence of
a solution to (4.6) is rank(Ck+1Ek) = rank(Ek) (Chen and Patton 1999, p. 72,
Lemma 3.1), and a special solution is:

H∗
k+1 = Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T . (4.10)

If the conditions (4.5)-(4.8) are fulfilled, then the fault-free, i.e. fk = 0, state
estimation error is given by:

ek+1 = F k+1ek − K1,k+1vk − Hk+1vk+1 + T k+1wk. (4.11)
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In order to obtain the gain matrix K1,k+1, let us first define the state estimation
covariance matrix:

P k = E
{
[xk − x̂k][xk − x̂k]T

}
. (4.12)

Using (4.11), the update of (4.12) can be defined as:

P k+1 =A1,k+1P kAT
1,k+1 + T k+1QkT T

k+1 + Hk+1Rk+1H
T
k+1

− K1,k+1CkP kAT
1,k+1 − A1,k+1P kCT

k KT
1,k+1

+ K1,k+1

[

CkP kCT
k + Rk

]

KT
1,k+1, (4.13)

where:

A1,k+1 = T k+1Ak. (4.14)

To give the state estimation error ek+1 the minimum variance, it can be shown
that the gain matrix K1,k+1 should be determined by:

K1,k+1 = A1,k+1P kCT
k

[

CkP kCT
k + Rk

]−1

. (4.15)

In this case, the corresponding covariance matrix is given by:

P k+1 =A1,k+1P
′
k+1A

T
1,k+1 + T k+1QkT T

k+1

+ Hk+1Rk+1H
T
k+1, (4.16)

P ′
k+1 =P k − K1,k+1CkP kAT

1,k+1. (4.17)

The above derivation is very similar to that which has to be performed for the
classical Kalman filter (Anderson and Moore 1979). Indeed, the UIF can be trans-
formed to the KF-like form as follows:

x̂k+1 = Akx̂k + Bkuk − Hk+1Ck+1[Akx̂k + Bkuk]

− K1,k+1Ckx̂k − F k+1Hkyk

+ [K1,k+1 + F k+1Hk]yk + Hk+1yk+1, (4.18)

or, equivalently:

x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk, (4.19)

where:

x̂k+1/k = Akx̂k + Bkuk, (4.20)

εk+1/k = yk+1 − ŷk+1/k = yk+1 − Ck+1x̂k+1/k, (4.21)

εk = yk − ŷk. (4.22)
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The above transformation can be performed by substituting (4.4) into (4.3) and
then using (4.7) and (4.8). As can be seen, the structure of the observer (4.19)
is very similar to that of the Kalman filter. The only difference is the term
Hk+1εk+1/k, which vanishes when no unknown input is considered.

4.1.2. An extended unknown input observer

As has already been mentioned, the application of the EKF to the state estimation
of non-linear deterministic systems has received considerable attention during the
last two decades (see (Boutayeb and Aubry 1999) and the references therein). This
is mainly because the EKF can directly be applied to a large class of non-linear
systems, and its implementation procedure is almost as simple as that for linear
systems. Moreover, in the case of deterministic systems, the instrumental matrices
Rk and Qk can be set almost arbitrarily. This opportunity makes it possible to
use them to improve the convergence of the observer, which is the main drawback
to linearisation-based approaches. This section presents an Extended Unknown
Input Observer (EUIO) for a class of non-linear systems which can be modelled
by the following equations (Witczak 2001a, Witczak and Korbicz 2001b, Witczak
and Korbicz 2001c, Witczak and Korbicz 2002):

xk+1 = g(xk) + h(uk + L1,kfk) + Ekdk, (4.23)

yk+1 = Ck+1xk+1 + L2,k+1fk+1, (4.24)

where g(xk) is assumed to be continuously differentiable with respect to xk. Sim-
ilarly to the EKF, the observer (4.19) can be extended to the class of non-linear
systems (4.23)-(4.24). (The algorithm presented below though can also, with mi-
nor modifications, be applied to a more general structure. Such a restriction is
caused by the need to employ it for FDI purposes.) This leads to the following
structure of the EUIO:

x̂k+1/k = g(x̂k) + h(uk), (4.25)

x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk, (4.26)

It should also be pointed out that the matrix Ak used in (4.14) is now defined by:

Ak =
∂g(xk)

∂xk

∣
∣
∣
∣
xk=x̂k

. (4.27)

4.1.3. Convergence of the EUIO

In this section the Lyapunov approach is employed for the convergence analysis of
the EUIO. The approach presented here is similar to that described in (Boutayeb
and Aubry 1999), which was used in the case of the EKF-based deterministic
observer. The main objective of this section is to show that the convergence of the
EUIO strongly depends on the appropriate choice of the instrumental matrices Rk

and Qk. Subsequently, the fault-free mode is assumed, i.e. fk = 0.
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For notational convenience, let us define the a priori state estimation error:

ek+1/k = xk+1 − x̂k+1/k. (4.28)

Substituting (4.23)-(4.24) and (4.25)-(4.26) into (4.9), one can obtain the following
form of the state estimation error:

ek+1 = ek+1/k − Hk+1εk+1/k − K1,k+1εk. (4.29)

As usual, to perform further derivation, it is necessary to linearize the model
around the current state estimate x̂k. This leads to the classical approximation:

ek+1/k ≈ Akek + Ekdk. (4.30)

In order to avoid the above approximation, the diagonal matrix αk =
diag(α1,k, . . . , αn,k) is introduced, which makes it possible to establish the fol-
lowing exact equality:

ek+1/k = αkAkek + Ekdk, (4.31)

and hence (4.29) can be expressed as:

ek+1 = ek+1/k − Hk+1Ck+1ek+1/k − K1,k+1Ckek

= [I − Hk+1Ck+1][αkAkek + Ekdk] − K1,k+1Ckek

= [T k+1αkAk − K1,k+1Ck]ek. (4.32)

The main objective of further consideration is to determine conditions under which
the sequence {Vk}∞k=1, defined by the Lyapunov candidate function:

Vk+1 = eT
k+1A

−T
1,k+1[P

′
k+1]

−1A−1
1,k+1ek+1, (4.33)

is a decreasing one. It should be pointed out that the Lyapunov function (4.33)
involves a very restrictive assumption regarding an inverse of the matrix A−1

1,k+1.
Indeed, from (4.14) and (4.7), (4.6) it is clear that the matrix A1,k+1 is singular
when Ek 6= 0. Thus, the convergence conditions can formally be obtained only
when Ek = 0. This means that the practical solution regarding the choice of the
instrumental matrices Qk and Rk is to be obtained for the case when Ek = 0 and
generalized to other cases, i.e. Ek 6= 0.

First, let us define an alternative form of K1,k, and the inverse of P ′
k+1.

Substituting (4.17) into (4.16) and then comparing it with (4.13), one can obtain
that:

A1,k+1K1,k+1CkP kAT
1,k+1 = K1,k+1CkP k. (4.34)

Next, from (4.34), (4.17) and (4.15), we have that the gain matrix is:

K1,k+1 = A1,k+1P
′
k+1C

T
k R−1

k . (4.35)
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Similarly, from (4.34) and (4.17), we have that the inverse of P ′
k+1 is:

[P ′
k+1]

−1 = P−1
k + CT

k R−1
k Ck. (4.36)

Substituting (4.32), and then (4.35) and (4.36) into (4.33), the Lyapunov candidate
function is:

Vk+1 =eT
k [AT

k αkA−T
k P−1

k A−1
k αkAk

+ AT
k αkA−T

k CT
k R−1

k CkA−1
k αkAk

− AT
k αkA−T

k CT
k R−1

k Ck − CT
k R−1

k CkA−1
k αkAk

+ CT
k R−1

k CkP ′
k+1C

T
k R−1

k Ck]ek. (4.37)

Let:

G = A−1
k αkAk, L = CT

k R−1
k Ck, (4.38)

then:

GT LG − GT L − LG =
[

GT − I
]

L [G − I] − L. (4.39)

Using (4.39) and (4.15), the expression (4.37) becomes:

Vk+1 =eT
k

[

AT
k αkA−T

k P−1
k A−1

k αkAk

+
[

AT
k αkA−T

k − I
]

CT
k R−1

k Ck

[
A−1

k αkAk − I
]

−CT
k R−1

k

[

I − CkP kCT
k

[

CkP kCT
k + Rk

]−1
]]

ek. (4.40)

Using the identity in (4.40):

I =
[

CkP kCT
k + Rk

] [

CkP kCT
k + Rk

]−1

, (4.41)

the Lyapunov candidate function can be written as:

Vk+1 =eT
k

[

AT
k αkA−T

k P−1
k A−1

k αkAk

+
[

AT
k αkA−T

k − I
]

CT
k R−1

k Ck

[
A−1

k αkAk − I
]

−CT
k

[

CkP kCT
k + Rk

]−1

Ck

]

ek. (4.42)

The sequence {Vk}∞k=1 is a decreasing one when there exists a scalar ζ, 0 < ζ < 1,
such that:

Vk+1 − (1 − ζ)Vk ≤ 0. (4.43)
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Using (4.42), the inequality (4.43) becomes:

Vk+1 − (1 − ζ)Vk = eT
k Xkek + eT

k Y kek ≤ 0, (4.44)

where:

Xk =AT
k αkA−T

k P−1
k A−1

k αkAk − (1 − ζ)A−T
1,k [P ′

k]−1A−1
1,k, (4.45)

Y k =
[

AT
k αkA−T

k − I
]

CT
k R−1

k Ck

[
A−1

k αkAk − I
]

− CT
k

[

CkP kCT
k + Rk

]−1

Ck. (4.46)

In order to satisfy (4.44), the matrices Xk and Y k should be semi-negative defined.
This is equivalent to:

σ̄
(

AT
k αkA−T

k P−1
k A−1

k αkAk

)

≤ σ
(

(1 − ζ)A−T
1,k [P ′

k]−1A−1
1,k

)

,

(4.47)

and:

σ̄
([

AT
k αkA−T

k − I
]

CT
k R−1

k Ck

[
A−1

k αkAk − I
])

≤ σ

(

CT
k

[

CkP kCT
k + Rk

]−1

Ck

)

, (4.48)

where σ̄ (·) and σ (·) denote the maximum and minimum singular values, respec-
tively. The inequalities (4.47) and (4.48) determine the bounds of the diagonal
matrix αk, for which the condition (4.44) is satisfied. The objective of further
consideration is to obtain a more convenient form of the above bounds.

Using the fact that:

σ̄
(

AT
k αkA−T

k P−1
k A−1

k αkAk

)

≤ σ̄2 (Ak) σ̄2
(
A−1

k

)
σ̄2 (αk) σ̄

(
P−1

k

)

=
σ̄2 (Ak)

σ2 (Ak)

σ̄2 (αk)

σ (P k)
, (4.49)

expression (4.47) becomes:

σ̄ (αk) ≤ γ1 =
σ (Ak)

σ̄ (Ak)




(1 − ζ)σ (P k)

σ̄
(

A1,kP ′
kAT

1,k

)





1
2

. (4.50)

Similarly, using:

σ̄
([

AT
k αkA−T

k − I
])

= σ̄
(

AT
k [αk − I]A−T

k

)

≤ σ̄ (Ak)

σ (Ak)
σ̄ (αk − I) , (4.51)
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and then:

σ̄
([

AT
k αkA−T

k − I
]

CT
k R−1

k Ck

[
A−1

k αkAk − I
])

≤ σ̄2 (Ak)

σ2 (Ak)

σ̄
(

CT
k

)

σ̄ (Ck)

σ (Rk)
σ̄2 (αk − I) (4.52)

and:

σ

(

CT
k

[

CkP kCT
k + Rk

]−1

Ck

)

≥
σ
(

CT
k

)

σ (Ck)

σ̄
(

CkP kCT
k + Rk

) , (4.53)

the expression (4.48) becomes:

σ̄ (αk − I) ≤ γ2

=
σ (Ak)

σ̄ (Ak)




σ
(

CT
k

)

σ (Ck)

σ̄
(

CT
k

)

σ̄ (Ck)

σ (Rk)

σ̄
(

CkP kCT
k + Rk

)





1
2

. (4.54)

Bearing in mind that αk is a diagonal matrix, the above inequalities can be
expressed as:

max
i=1,...,n

|αi,k| ≤ γ1 and max
i=1,...,n

|αi,k − 1| ≤ γ2. (4.55)

Since:

P k = A1,kP ′
kAT

1,k + T kQk−1T
T
k + HkRkHT

k , (4.56)

it is clear that an appropriate selection of the instrumental matrices Qk−1 and Rk

may enlarge the bounds γ1 and γ2 and, consequently, the domain of attraction.
Indeed, if the conditions (4.55) are satisfied, then x̂k converges to xk.

4.1.4. Increasing the convergence rate via genetic programming

Unfortunately, an analytical derivation of the matrices Qk−1 and Rk seems to be
an extremely difficult problem. However, it is possible to set the above matrices
as follows: Qk−1 = β1I, Rk = β1I, with β1 and β1 large enough. On the other
hand, it is well known that the convergence rate of such an EKF-like approach can
be increased by an appropriate selection of the covariance matrices Qk−1 and Rk,
i.e. the more accurate (near “true” values) the covariance matrices, the better the
convergence rate. This means that in the deterministic case (wk = 0 and vk = 0),
both matrices should be zero ones. Unfortunately, such an approach usually leads
to the divergence of the observer as well as other computational problems. To
tackle this, a compromise between the convergence and the convergence rate should
be established. This can easily be done by setting the instrumental matrices as:

Qk−1 = β1ε
T
k−1εk−1I + δ1I, Rk = β2ε

T
k εkI + δ2I, (4.57)
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with β1, β2 large enough, and δ1, δ2 small enough. Although this approach is
very simple, it is possible to increase the convergence rate further. Indeed, the
instrumental matrices can be set as follows:

Qk−1 = q2(εk−1)I + δ1I, Rk = r2(εk)I + δ2I, (4.58)

where q(εk−1) and r(εk) are non-linear functions of the output error εk (the

ε1,kε1,kε1,kε1,k ε2,kε2,kε2,kε2,k

++

+

+

∗∗

/

p11

p1

p2 p3

p4 p5 p6 p7

p8 p9 p10 p12 p13 p14 p15

Fig. 4.1 . An exemplary tree representing r(εk).

squares are used to ensure the positive definiteness of Qk−1 and Rk). Thus, the
problem reduces to identifying the above functions. To tackle it, genetic pro-
gramming can be employed. The unknown functions q(εk−1) and r(εk) can be
expressed as trees, as shown in Fig. 4.1. Thus, in the case of q(·) and r(·), the
terminal sets are T = {εk−1} and T = {εk}, respectively. In both cases, the func-
tion set can be defined as F = {+, ∗, /, ξ1(·), . . . , ξl(·)}, where ξk(·) is a non-linear
univariate function and, consequently, the number of populations is np = 2. Since
the terminal and function sets are given, the approach described in Chapter 3 can
easily be adopted for the identification purpose of q(·) and r(·). First, let us define
the identification criterion constituting a necessary ingredient of the Qk−1 and Rk

selection process.
Since the instrumental matrices should be chosen so as to satisfy (??), the

selection of Qk−1 and Rk can be performed according to:
(
Qk−1,Rk

)
= arg max

q(εk−1),r(εk)
jobs,1(q(εk−1), r(εk)), (4.59)

where:

jobs,1(q(εk−1), r(εk)) =

nt−1∑

k=0

traceP k. (4.60)

On the other hand, owing to the FDI requirements, it is clear that the output error
should be near zero in the fault-free mode. In this case, one can define another
identification criterion:

(
Qk−1,Rk

)
= arg min

q(εk−1),r(εk)
jobs,2(q(εk−1), r(εk)), (4.61)
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where:

jobs,2(q(εk−1), r(εk)) =

nt−1∑

k=0

εT
k εk. (4.62)

Therefore, in order to join (4.59) and (4.61), the following identification criterion
is employed:

(
Qk−1,Rk

)
= arg min

q(εk−1),r(εk)
jobs,3(q(εk−1), r(εk)), (4.63)

where:

jobs,3(q(εk−1), r(εk)) =
jobs,2(q(εk−1), r(εk))

jobs,1(q(εk−1), r(εk))
. (4.64)

Since the identification criterion is established, it is straightforward to use the GP
algorithm detailed in Chapter 3.

4.1.5. EUIO-based sensor FDI

In order to design a fault detection and isolation scheme for a real industrial
system, it is insufficient to only design an observer and check that the norm of the
residual (or the output error) has exceeded a prespecified maximum admissible
value T (threshold). Indeed, this condition is necessary only for fault detection.
For the purpose of fault isolation, it will be desirable to design a bank of observers
where each of the observers is sensitive to one fault while insensitive to others.
Unfortunately, such a requirement is rather difficult to attain. A more realistic
approach is to design a bank of observers where each of the observers is sensitive
to all faults but one. In this section, the faults are divided into two categories,
i.e. the sensor and actuator faults. First, the sensor fault detection scheme is
described. In this case, the actuators are assumed to be fault-free, and hence, for
each of the observers, the system can be characterized as follows:

xk+1 = g(xk) + h(uk) + Ekdk, (4.65)

y
j
k+1 = C

j
kxk+1 + f

j
k+1, j = 1, . . . ,m, (4.66)

yj,k+1 = cj,kxk+1 + fj,k+1, (4.67)

where, similarly to the way it was done in (Chen and Patton 1999), cj,k ∈ R
n is

the j-th row of the matrix Ck, C
j
k ∈ R

m−1×n is obtained from the matrix Ck by
deleting the j-th row, cj,k, yj,k+1 is the j-th element of yk+1, and y

j
k+1 ∈ R

m−1 is
obtained from the vector yk+1 by deleting the j-th component yj,k+1. Thus, the
problem reduces to designing m EUIOs (Fig. 4.2), where each of the observers is
constructed using all input data sets and all output data sets but one {yk,uk}nt−1

k=0 .
Similarly, after the design procedure, when the observers are employed on-line,
each residual generator (observer) is driven by all inputs and all outputs but one.
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Fig. 4.2 . Sensor fault detection and isolation scheme.

When all sensors but the j-th one are fault-free, and all actuators are fault-free,
then the residual rk = yk − ŷk will satisfy the following isolation logic:

{

‖rj,k‖ < εH
j

‖rl,k‖ ≥ εH
l , l = 1, . . . , j − 1, j + 1, . . . ,m.

(4.68)

where εH
i denotes a prespecified threshold.

4.1.6. EUIO-based actuator FDI

Similarly to the case of the sensor fault isolation scheme, in order to design the
actuator fault isolation scheme, it is necessary to assume that all sensors are fault-
free. Moreover, the term h(uk) in (4.23)-(4.24) should have the following structure:

h(uk) = Bkuk. (4.69)

In this case, for each of the observers, the system can be characterized as follows:

xk+1 = g(xk) + hi(ui
k + f i

k) + hi(ui,k + fi,k) + Ekdk,

= g(xk) + hi(uk + f i
k) + Ei

kdi
k, (4.70)

yk+1 = Ckxk+1, i = 1, . . . , r, (4.71)

(4.72)

where:

hi(ui
k + f i

k) = [b1
k, . . . b

i−1
k , bi+1

k , . . . , br
k](ui

k + f i
k) (4.73)

hi(ui,k + fi,k) = bi
k(ui,k + fi,k) (4.74)

Ei
k = [Ek bi

k], di
k =

[

dk

ui,k + fi,k

]

. (4.75)
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Thus, the problem reduces to designing r EUIOs (Fig. 4.3). When all actuators
but the i-th one are fault-free, and all sensors are fault-free, then the residual
r = yk − ŷk will satisfy the following isolation logic:

{

‖ri,k‖ < εH
i

‖rl,k‖ ≥ εH
l , l = 1, . . . , i− 1, i+ 1, . . . , r.

(4.76)

4.1.7. Experimental results

The purpose of this section is to show the reliability and effectiveness of the
observer-based fault diagnosis scheme described in the present chapter. The nu-
merical example considered here is a fifth-order two-phase non-linear model of an
induction motor, which has already been the subject of a large number of various
control design applications (see (Boutayeb and Aubry 1999) and the references
therein).

The complete discrete time model in a stator-fixed (a,b) reference frame is:

x1,k+1 =x1,k + h(−γx1k +
K

Tr
x3k +Kpx5kx4k +

1

σLs
u1k), (4.77)

x2,k+1 =x2,k + h(−γx2k −Kpx5kx3k +
K

Tr
x4k +

1

σLs
u2k), (4.78)

x3,k+1 =x3,k + h(
M

Tr
x1k − 1

Tr
x3k − px5kx4k), (4.79)

x4,k+1 =x4,k + h(
M

Tr
x2k + px5kx3k − 1

Tr
x4k), (4.80)

x5,k+1 =x5,k + h(
pM

JLr
(x3kx2k − x4kx1k) − TL

J
), (4.81)

y1,k+1 =x1,k+1, y2,k+1 = x2,k+1. (4.82)
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where xk = (x1,k, . . . , xn,k) = (isak, isbk, ψrak, ψrbk, ωk) represents the currents,
the rotor fluxes, and the angular speed, respectively, while uk = (usak, usbk) is the
stator voltage control vector, p is the number of the pairs of poles, and TL is the
load torque. The rotor time constant Tr and the remaining parameters are defined
as:

Tr =
Lr

Rr
, σ = 1 − M2

LsLr
, K =

M

σLsL2
r

, γ =
Rs

σLs
+
RrM

2

σLsL2
r

, (4.83)

where Rs, Rr and Ls, Lr are stator and rotor per-phase resistances and induc-
tances, respectively, and J is the rotor moment inertia.
The numerical values of the above parameters are as follows: Rs = 0.18 Ω, Rr =
0.15 Ω, M = 0.068 H, Ls = 0.0699 H, Lr = 0.0699 H, J = 0.0586 kgm2, TL =
10 Nm, p = 1, and h = 0.1 ms. The initial conditions for the observer and
the system are x̂k = (200, 200, 50, 50, 300) and xk = 0. The unknown input
distribution matrix is:

Ek =

[

0.1 0 1 0 0

0 0.1 0 1 0

]T

, (4.84)

and hence, according to (2.47), the matrix Hk is:

Hk =

[

1 0 10 0 0

0 1 0 10 0

]T

. (4.85)

The input signals are:

u1,k = 300 cos(0.03k), u2,k = 300 sin(0.03k). (4.86)

The unknown input is defined as:

d1,k = 0.09 sin(0.5πk) cos(0.3πk), d2,k = 0.09 sin(0.01k), (4.87)

and P 0 = 103I.
The following three cases concerning Qk−1 and Rk were considered:

Case 1: Classical approach (constant values), i.e. Qk−1 = 0.1, Rk = 0.1,

Case 2: Selection according to (4.57), i.e.

Qk−1 = 103εT
k−1εk−1I + 0.01I, Rk = 10εT

k εkI + 0.01I, (4.88)

Case 3: GP-based approach presented in Section 4.1.4.

It should be pointed out that in all the cases the unknown input-free mode (i.e.,
dk = 0) is considered. This is because the main purpose of this example is to show
the importance of an appropriate selection of the instrumental matrices but not
the abilities of disturbance de-coupling.
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In order to obtain the matrices Qk−1 and Rk using the GP-based approach
(Case 3), a set of nt = 300 input-output measurements was generated according to
(4.77)-(4.82), and then the approach from Section 4.1.4 was applied. As a result,
the following form of the instrumental matrices was obtained:

Qk =
(
102ε21,kε

2
2,k + 1012ε1,k + 103.45ε1,k + 0.01

)2
I, (4.89)

Rk =
(
112ε21,k + 0.1ε1,kε2,k + 0.12

)2
I. (4.90)

The parameters used in the GP algorithm presented in Section 4.1.4 were nm =
200, nd = 10, ns = 10, F = {+, ∗, /}. It should also be pointed out that the above
matrices (4.89)-(4.90) are formed by simple polynomials. This, however, may not
be the case for other applications.

Simulation results (for all the cases) are shown in Fig. 4.4. The numerical

Fig. 4.4 . The state estimation error norm ‖ek‖2 for Case 1 (dash-doted line), Case 2
(dotted line) and Case 3 (solid line).

values of the optimisation index (4.64) are as follows: Case 1 jobs,3 = 1.49 ∗ 105,
Case 2 jobs,3 = 1.55, Case 3 jobs,3 = 1.2 ∗ 10−16. Both the above results and the
plots shown in Fig. 4.4 confirm the relevance of the appropriate selection of the
instrumental matrices. Indeed, as can be seen, the proposed approach is superior
to the classical technique of selecting the instrumental matrices Qk−1 and Rk.

The objective of presenting the next example is to show the abilities of distur-
bance decoupling. In this case, the unknown input dk acts on the system according
to (4.87). All the simulations were performed with the instrumental matrices set
according to (4.89)-(4.90). Figure 4.5 shows the residual signal for an observer
without unknown input decoupling, i.e. Hk = 0. From this figure, it is clear that
the unknown input influences the residual signal and hence it may cause an unre-
liable fault detection (and consequently fault isolation). On the contrary, Fig. 4.6
shows the residual signal for an observer with unknown input decoupling, i.e. Hk
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Fig. 4.5 . Residuals for an observer without unknown input decoupling.

was set according to (4.85). In this case, the residual is almost zero. This confirms
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Fig. 4.6 . Residuals for an observer with unknown input decoupling.

the importance of disturbance decoupling.
The objective of presenting the next example is to show the effectiveness of

the proposed observer as a residual generator in the presence of an unknown input.
For that purpose, the following fault scenarios were considered:

Case 1: An abrupt fault of y1,k sensor:

fs,k =

{

0, k < 140,

−0.1y1,k, otherwise,
(4.91)

Case 2: An abrupt fault of u1,k actuator:

fa,k =

{

0, k < 140,

−0.2u1,k, otherwise.
(4.92)
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Fig. 4.7 . Residuals for a sensor fault.
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Fig. 4.8 . Residuals for an actuator fault.

From Figs. 4.7 and 4.8 it can be observed that the residual signal is sensitive to
the faults under consideration. This, together with unknown input decoupling,
implies that the process of fault detection becomes a relatively easy task.

4.1.7.1. Sensor FDI with EUIO

In this section the sensor fault diagnosis scheme proposed in Section 4.1.5 is im-
plemented and tested against simulated faults. Based on the above approach, the
matrices C1

k and C2
k for m = 2 observers were defined as:

C1
k = [ 1 0 0 0 0 ], C2

k = [ 0 1 0 0 0 ], (4.93)

and this time the initial condition for both observers was selected as x̂0 = 1. The
matrices Qk−1 and Rk for the observers were obtained by simply modifying the
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equations (4.89)-(4.90), i.e.

Qk−1 =
(
102ε2k−1 + 1112εk−1 + 0.01

)2
I, (4.94)

Rk =
(
112ε2k + 0.1ε1,k + 0.12

)2
I. (4.95)

However, it should be pointed out that, although such a simple reduction works
quite well in the proposed example, there may be cases for which it is necessary
to design the instrumental matrices for each of the observers separately. The fault
signals were simulated according to the formulaes

f1,k =

{

−100, k = 100, . . . , 150,

0, otherwise,
(4.96)

f2,k =

{

10, k = 200, . . . , 250,

0, otherwise.
(4.97)

Since dk ∈ R
q, q ≤ m = 1, the unknown input distribution matrix takes

the following form: Ek = [e1,k, e2,k]T ; then the matrix Hk obtained with (4.10)
contributes to the fact that [I −CkHk] = 0 and [I −Ck+1Hk+1] = 0. This leads
to the following form of the state estimation error:

ek+1 = −Kk+1Ckek − Kk+1L2,kfk − Hk+1L2,k+1fk+1, (4.98)

and, consequently, the residual is:

rk+1 = −Ck+1Kk+1rk. (4.99)

This is the reason why UIOs cannot be applied to MISO and other systems for
which [I−CkHk] = 0 and [I−Ck+1Hk+1] = 0. If the effect of an unknown input
is not considered though, i.e. dk = 0, then UIOs can successfully be employed.
This is the case for the present example.

The simulation results are shown in Fig. 4.9, from which it can be seen that
the residual signal is almost zero in the fault-free case and increases significantly
when a fault occurs, thus making the process of fault detection a relatively easy
task. Moreover, it should be pointed out that each of the observers is sensitive
to the faults of one sensor only, while remaining insensitive to the other sensors’
faults. This possibility facilities the process of fault isolation. Indeed, as can be
seen in Fig. 4.9, the sensor fault isolation problem is relatively easy to solve.
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Fig. 4.9 . The residual signals for the Observer 1 (left) and 2 (right).

4.2. An unknown input observer for non-linear
stochastic systems

4.2.1. Problem statement

Let us consider the following discrete-time linear system:

xk+1 = Akxk + Bkuk + Ekdk + wk + L1,kfk, (4.100)

yk = Ckxk + vk + L2,kfk. (4.101)

As has already been mentioned, the robustness to model uncertainty and other
factors which may lead to an unreliable fault detection is of paramount importance.
In the case of the UIO, the robustness problem is tackled by introducing the
concept of an unknown input dk, and hence the term Ekdk may represent various
kinds of modelling uncertainty. The remaining factors can be modelled by wk and
vk. Indeed, it is only necessary to know the bounds of wk and vk, which can be
defined by the following sets:

Wk =
⋂

i

{
wk : −bi ≤ wi

k ≤ bi
}

(4.102)

and:

Vk =
⋂

i

{
vk : −ri ≤ vi

k ≤ ri
}
. (4.103)

In order to use the bounded-error algorithm described in (Maksarow and
Norton 1996a) for the state estimation problem of the system (4.100)-(4.101), it
is necessary to introduce some modifications concerning the unknown input. In
the existing approaches the unknown input is treated in two different ways. The
first one (Chen and Patton 1999) consists in introducing an additional matrix
into the state estimation equation, which is then used for decoupling the effect of
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the unknown input on the state estimation error (and consequently the residual
signal). In the second one (Keller and Darouach 1999), the system (4.100)-(4.101)
is suitably transformed into a system without an unknown input. In the case of
the algorithm (Maksarow and Norton 1996a) both the approaches can be applied.

Owing to the fact that the approach of (Chen and Patton 1999) was presented
in the previous section, by simply mimicking this technique the unknown input
effect can be decoupled by changing the state estimation equation as:

x̂k+1 = x̂k+1/k + Hk+1(yk+1 − Ck+1x̂k+1/k), (4.104)

where Hk+1 is set according to (4.10).
The second approach can be realised as follows (the fault-free mode is as-

sumed, i.e. fk = 0). Let us assume that rank(CkEk) = q and:

T k = βk(I − H+
k Hk), (4.105)

where Hk = (CkEk)+ denotes the generalised inverse or pseudo-inverse of CkEk,
and βk ∈ R

m−q×m is a chosen arbitrary matrix such that T k is a full-row rank ma-
trix. Since rank

(
[Hk T k]T

)
= m, the system (4.100)-(4.101) can be transformed

into an equivalent form:

xk+1 = Akxk + Bkuk + Ekdk + wk, (4.106)

Hkyk+1 = HkCkxk+1 + Hkvk+1, (4.107)

T kyk+1 = T kCkxk+1 + T kvk+1. (4.108)

Substituting the relation (4.106) into (4.107) leads to:

Hkyk+1 = HkCk [Akxk + Bkuk + wk] + dk + Hkvk+1, (4.109)

or, equivalently:

dk = Hk

[
yk+1 − Ck [Akxk + Bkuk + wk] − vk+1

]
. (4.110)

Inserting (4.110) into (4.106) leads to an alternative form of the system
(4.100)-(4.101):

xk+1 = Ākxk + B̄kuk + Ēkyk+1 + w̄k, (4.111)

ȳk+1 = C̄kxk+1 + v̄k+1, (4.112)

where:

Āk = [I − EkHkCk]Ak, (4.113)

B̄k = [I − EkHkCk]Bk, Ēk = EkHk, (4.114)

w̄k = [I − EkHkCk]wk − Ēkvk+1, (4.115)

ȳk+1 = T kyk+1, C̄k = T kCk, (4.116)

v̄k+1 = T kvk+1. (4.117)
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The bounds of w̄k and v̄k+1, i.e.

W̄k =
⋂

i

{
w̄k : −b̄i ≤ w̄i

k ≤ b̄i
}
, (4.118)

and

V̄k =
⋂

i

{
v̄k : −r̄i ≤ v̄i

k ≤ r̄i
}
, (4.119)

can easily be obtained using the equations (4.102) and (4.103).
Since the system (4.100)-(4.101) was transformed into the equivalent

form (4.111)-(4.112), it is straightforward to use the state estimation algorithm
described in (Maksarow and Norton 1996a) and, as a result, to design a Bounded-
error Unknown Input Observer (BUIO). The purpose of the subsequent section is
to give a detailed description of the above algorithm.

4.2.2. A bounded-error approach to state estimation

In a manner similar to the classical Kalman filtering procedure, the bounded-
error approach consists in alternating two phases, i.e. the time and measurement
updates. Unlike in the classical approach, where the initial state estimate x̂0

is assumed to be a random variable, here it is assumed that x̂0 belongs to an
ellipsoidal set defined as:

E0 =
{

x0 : (x0 − x̂0)
T

P−1
0 (x0 − x̂0) ≤ 1

}

, (4.120)

where x̂k denotes the centre of the ellipsoid (the state estimate), and P 0 is a
positive definite matrix describing its size and orientation. Thus, the ellipsoid
containing all the admissible states at time (k − 1) is:

Ek−1 =
{

xk−1 : (xk−1 − x̂k−1)
T

P−1
k−1 (xk−1 − x̂k−1) ≤ 1

}

. (4.121)

As a result of the time update, which is a consequence of transforming the ellipsoid
Ek−1 according to the state transition equation (Fig. 4.10a), the ellipsoid Ek/k−1

is obtained. The centre of the new ellipsoid is:

x̂k/k−1 = Āk−1x̂k−1 + B̄k−1uk−1 + Ēkyk. (4.122)

The matrix defining its size and orientation is successively computed by:

P 0
k/k−1 = Āk−1P k−1Ā

T
k−1, (4.123)

P i+1
k/k−1 = (1 + pi)P

i
k/k−1 + (1 + p−1

i )b̄2i lil
T
i , (4.124)

i = 1, . . . , n− 1,
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Ākx̂k + B̄kuk + Ēkyk
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Fig. 4.10 . The principle of bounded-error state estimation. Time (a) and measurement
(b) updates.

where li = [0, . . . ,

i
︷︸︸︷

1 , . . . , 0]T . The value of the parameter pi > 0 in (4.124) is
the positive root of:

np2
i + (n− 1)trace(Qi)pi − trace(Qi) = 0, (4.125)

where:

Qi = b̄i

(

P i
k/k−1

)−1

lil
T
i . (4.126)

Finally, P k/k−1 = P n
k/k−1.

The measurement update intersects the predicted ellipsoid Ek/k−1 with the
pairs of parallel hyperplanes defined using (4.119), i.e.

Ok =
⋂

i

{
xk : ȳi

k − r̄i ≤ (c̄i)T xk ≤ ȳi
k + r̄i

}
, (4.127)

where C̄
T
k = [c̄1, . . . , c̄m]. As a result, the ellipsoid Ek ⊂ Ek/k−1 ∩ Ok is ob-

tained (Fig.4.10b). The centre, size and orientation defining matrix is successively
computed as:

x̂
0
k = x̂k/k−1, P 0

k = P k/k−1, (4.128)

x̂
i+1
k = x̂

i
k + qi

Si
kc̄iei

d2
i

, (4.129)

P i+1
k =

(

1 + qi −
qie

2
i

d2
i + qigi

)

Si
k, (4.130)
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where:

ei =
√
gi
α+

i + α−
i

2
, di =

√
gi
α+

i − α−
i

2
, (4.131)

gi = c̄T
i P i

kc̄i, i = 0, . . . ,m− 1. (4.132)

In the standard procedure any hyperplane bound which does not intersect E
i
k is

replaced by the closest parallel hyperplane touching E
i
k. The parameters α+

i and
α−

i denote the normalised distances from the centre of the ellipsoid E
i
k to each

of the i-th hyperplane after such a replacement. The above parameters can be
obtained in the following way.

Let the i-th hyperplane bound be:

V
i
k =

{
v̄k : β+

i ≤ c̄T
i xk ≤ β−

i

}
. (4.133)

For each ellipsoid E
j
k, j = 0, . . . , i, the normalised distances are:

α+
j =

ȳi
k − c̄T

i x̂
j
k + r̄i

k
√

c̄T
i P i

kc̄i

, (4.134)

α−
j =

ȳi
k − c̄T

i x̂
j
k − r̄i

k
√

c̄T
i P i

kc̄i

. (4.135)

In the next step

If α+
j > 1 then β+

j = c̄T
i x̂

j
k +

√

c̄T
i P i

kc̄i, (4.136)

If α−
j < −1 then β−

j = c̄T
i x̂

j
k −

√

c̄T
i P i

kc̄i, (4.137)

If − 1 ≤ α+
j ≤ 1 then β+

j = ȳi
k + r̄i

k, (4.138)

If − 1 ≤ α+
j ≤ 1 then β+

j = ȳi
k − r̄i

k. (4.139)

If α+
j < −1 or α−

j > 1, then V
i
k does not intersect the j-th intermediate ellipsoid at

time k. This may correspond to an inaccurate selection of the noise bounds. Such
a property makes it possible to check the consistency of the whole model with the
measured data (Fig.4.11). Faults can be detected in a similar way. Indeed, a fault
occurrence may (in some sense) be equivalent to the inconsistency of the model
with the measured data. The parameters β+

i and β+
i in (4.133) are defined as:

β+
i = min

j
β+

j , β
−
i = max

j
β−

j , j = 0, . . . , i, (4.140)

and, finally, the parameters α+
i and α−

i in (4.131) are defined as:

α+
i =

β+
i − c̄T

i x̂
i
k

√

c̄T
i P i

kc̄i

, α−
i =

β−
i − c̄T

i x̂
i
k

√

c̄T
i P i

kc̄i

. (4.141)
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If α+
i α

−
i ≤ −1/n, then E

i+1
k = E

i
k; otherwise, the parameter qi minimizing the

volume of E
i+1
k should be obtained as positive root of:

a1q
2
i + a2qi + a3 = 0, (4.142)

where:

a1 = (n− 1)g2
i , (4.143)

a2 =
(
(2n− 1)d2

i − gi + e2i
)
gi, (4.144)

a3 =
(
n(d2

i − e2i ) − gi

)
d2

i . (4.145)

Finally, x̂k = x̂
m
k , and P k = P m

k .

x2

x1

Ek+1,k
Ok+1

Fig. 4.11 . Fault detection with the bounded-error approach.

4.2.3. An extended BUIO

As has already been mentioned, the application of the EKF to the state estima-
tion of non-linear systems has received considerable attention during the last two
decades. This is mainly because the EKF can directly be applied to a large class of
non-linear systems, and its implementation procedure is almost as simple as that
for linear systems. The main drawback to such an approach is that its performance
strongly depends on the difference between the non-linear system and the model
linearised around the current state estimate. This is mainly because in the EKF
case the linearisation errors are neglected. In the proposed approach, as in the
EKF, the state equation is linearised around the current state estimate. The main
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difference between these two approaches is that in the proposed technique the lin-
earisation errors are taken into account as additional disturbances and, as a result,
the Bounded-error Extended Unknown Input Observer (BEUIO) is obtained.

Let us consider a class of non-linear systems which can be modeled by the
following equations:

xk+1 = g(xk) + h(uk + L1,kfk) + Ekdk + wk, (4.146)

yk+1 = Cxk+1 + vk+1 + L2,k+1fk+1, (4.147)

where g(xk) is assumed to be continuously differentiable with respect to xk. For
the sake of notational simplicity, the fault-free mode is assumed, i.e. fk = 0. In
order to linearise the system (4.146)-(4.147) around the current state estimate, let
us define the following matrix:

Ak =
∂g(xk)

∂xk

∣
∣
∣
∣
xk=x̂k

; (4.148)

then the state equation of the system (4.146)-(4.147) can be transformed into an
equivalent form:

xk+1 =g(x̂k) + Ak(xk − x̂k) + h(uk) + Ekdk + wk

+ o(xk, x̂k), (4.149)

with the linearisation error o(xk, x̂k) satisfying:

‖o(xk, x̂k)‖∞ ≤ γ‖xk − x̂k‖∞, xk, x̂k ∈ Ek, (4.150)

where ‖x‖∞ = maxi=1,...,n |xi|. The equation (4.149) can be expressed in a more
convenient form:

xk+1 = Akxk + uk,f + Edk + wk + o(xk, x̂k), (4.151)

where:

uk,f = g(x̂k) − Akx̂k + h(uk). (4.152)

For the purpose of further consideration, it will be more convenient to express the
ellipsoid Ek as a deviation from its centre:

Ēk = {z : x̂k + z ∈ Ek} . (4.153)

Let:

φk = sup
z∈Ēk

‖z‖∞, (4.154)

φk = ‖
√

P k(1, 1), . . . ,
√

P k(n, n)‖∞, (4.155)



102 4.2. An unknown input observer for non-linear stochastic systems

then, using (4.150), the following relation is satisfied:

‖o(xk, x̂k)‖∞ ≤ γφk, (4.156)

which implies that:

−γφk ≤ o(xk, x̂k)i ≤ γφk, i = 1, . . . , n. (4.157)

This means that the linearisation error o(xk, x̂k) can be treated as an additional
disturbance vector with known bounds (4.157). Finally, the system (4.146)-(4.147)
can be put in the following form:

xk+1 = Akxk + uk,f + Edk + w̆k, (4.158)

yk+1 = Cxk+1 + vk+1, (4.159)

where:

w̆k = wk + o(xk, x̂k). (4.160)

The bounds of w̆, i.e.

W̆k =
⋂

i

{

w̆k : −b̆i ≤ w̆i
k ≤ b̆i

}

, (4.161)

can easily be computed using (4.102) and (4.157). Since the system (4.146)-(4.147)
is expressed in the form (4.158)-(4.159), it is straightforward to perform the sys-
tem transformation detailed in Section 4.2.1 and then use the state estimation
algorithm described in Section 4.2.2. Without this transformation, though, the
proposed observer can be used for the state estimation of non-linear unknown
input-free systems.

4.2.4. Experimental results

4.2.4.1. State estimation and fault detection of linear systems

The purpose of this section is to show the reliability and effectiveness of the pro-
posed approach. The numerical example considered here is a discrete-time model
of a simplified longitudinal flight control (for a detailed description of the above
model, we refer the reader to (Chen and Patton 1999, pp. 105-107)), which can
be expressed in the following form:

xk+1 = Akxk + Bkuk + Ekdk + wk, (4.162)

yk = Ckxk + vk, (4.163)
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where:

Ak =







0.9944 −0.1203 −0.4302

0.0017 0.9902 −0.0747

0 0.8187 0






, (4.164)

Bk =







0.4252

−0.0082

0.1813






,Ek =







1 0

0 1

0 0






, (4.165)

Ck = I3×3, uk = 10, (4.166)

(4.167)

and wk − U(−0.1, 0.1), vk − U(−0.1, 0.1), where U(·) denotes the uniform distri-
bution. The initial conditions for the observer and the system to be observed were
x0 = 0 and x̂0 = 1. The bounds in (4.102) and (4.103) were selected according
to

b = [0.3, 0.05, 0.05], (4.168)

ri = 0.5, i = 1, . . . ,m. (4.169)

The simulation results are shown in Figs. 4.12 and 4.13. It can be observed that

Discrete time

x
1

Discrete time

x
2

Fig. 4.12 . The states (dashed) x1 (left) and x2 (right), their estimates and the corre-
sponding sets of admissible states (solid).

the state estimation method proposed in this paper can give satisfactory results.
Indeed, unlike in the case of the classical Kalman filter (cf. Fig. 4.13), the effect
of the unknown input was decoupled.

In order to illustrate the principle of fault detection with the bounded-error
unknown input observer, the following fault scenarios were considered:
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‖e
k
‖ 2

Discrete time

‖e
k
‖ 2

Discrete time

Fig. 4.13 . The state (dashed) x3 (left), its estimate and the corresponding set of admis-
sible states (solid). The state estimation error norm (right) for the proposed
observer (dotted) and the Kalman filter (solid).

Case 1: An abrupt fault of the actuator:

fa,k =

{

0, k < 100,

3, otherwise,
(4.170)

Case 2: An incipient fault of the actuator:

fa,k =

{

0, k < 100,

0.02e0.03k, otherwise,
(4.171)

Case 3: An abrupt fault of the y2,k sensor:

fs,k =

{

0, k < 100,

1, otherwise,
(4.172)

Case 4: An incipient fault of the y2,k sensor:

fs,k =

{

0, k < 100,

−0.005e0.03k, otherwise.
(4.173)

All the above faults were simulated using the model:

xk+1 = Akxk + Bk(uk + fa,k) + Edk + wk, (4.174)

yk = Cxk + vk + [0 1 0]T fs,k. (4.175)

First of all, as can be seen from Figs. 4.14-4.17, all the residuals are sensitive
to all the faults. This is a condition necessary for fault detection, but to design
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Fig. 4.14 . Residuals and their bounds for an abrupt fault of an actuator (Case 1).
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Fig. 4.15 . Residuals and their bounds for an incipient fault of an actuator (Case 2).
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Fig. 4.16 . Residuals and their bounds for an abrupt fault of a sensor (Case 3).

a reliable fault isolation scheme (for sensors or actuators) it is necessary to employ
the approaches proposed in Secs. 4.1.5 and 4.1.6.

Moreover, as can be seen from Figs. 4.14-4.17, the detection of the faults under
consideration was performed relatively fast, especially for abrupt faults. In order
to increase the sensitivity to incipient faults, it is necessary to use tighter noise
bounds. On the other hand, such a modification may cause various false alarms.

4.2.4.2. State estimation of non-linear systems

In this section, in order to allow a comparison with the extended Kalman filter
to be drawn, an unknown input-free system is considered, i.e. Ekdk = 0 (a
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Fig. 4.17 . Residuals and their bounds for an incipient fault of a sensor (Case 4).

perfect model is assumed). The non-linear system was modelled by the following
equations:

x1,k+1 = x1,k + 0.02x2,k + uk + w1,k, (4.176)

x2,k+1 = x2,k + 0.02(−9x1,k + 2(1 − x2
1,k)x2,k) + w2,k, (4.177)

yk+1 = x1,k+1 + vk, (4.178)

where wi,k − U(−0.1, 0.1), vk = 3, the input signal was uk = 0.04 ∗ sin(0.02k),
and the initial condition for the system and the observers was x0 = (5, 0) and
x̂0 = (0, 0), respectively. The parameters of the proposed observer were γ = 0.2,
b = (0.1, 0.1), r = 0.3, while the parameters of the extended Kalman filter were
Rk = 0.3, Qk = 0.1.

The simulation results performed for both the proposed observer and the
extended Kalman filter are shown in Figs. 4.18-4.20. From Figs. 4.19-4.20, it can be
seen that the proposed observer is superior to the EKF. Indeed, the mean-squared
state estimation error was 0.64 and 0.81 for the BEUIO and the EKF, respectively.
As was expected, it turned out to be profitable to take the linearisation error into
account.

The main drawback to the proposed approach is that there is no really prac-
tical method of selecting an appropriate value for the parameter γ. Thus, many
experiments have to be carried out to obtain the appropriate value.

4.2.4.3. Fault detection of a chosen part of an evaporation station

The purpose of this section is to design a fault detection system for an apparatus
that is a part of the evaporation station described in Section 3.4. To design an
observer-based residual generator, the model (3.28)-(3.33), obtained via genetic
programing, was utilised. Unfortunately, for such an MISO model it is impossible
to design any UIO. Indeed, if dk ∈ R

q, q ≤ m = 1, then the matrix (4.105) equals
zero, i.e. T k = 0, which makes it impossible to perform the system transformation
described in Section 4.2.1. The same problem occurs with the decoupling approach
realised according to (4.104). Since the unknown input distribution matrix has the
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Fig. 4.18 . States estimates and the corresponding sets of admissible states obtained with
the BEUIO.
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Fig. 4.19 . The true states (dash-dotted) and their estimates obtained by the proposed
observer (dotted) and the extended Kalman filter (solid).

form Ek = [e1,k, e2,k]T , then using (4.10), the matrix Hk in (4.104) becomes:

Hk =

[
e1,k

c1,ke1,k + c2,ke2,k
,

e2,k

c1,ke1,k + c2,ke2,k

]T

. (4.179)

In such a case the matrix (I − CkHk) equals zero, and hence the state esti-
mate (4.104) is:

x̂k+1 = Hk+1Ck+1xk+1 + Hk+1vk+1 + Hk+1L2,k+1fk+1, (4.180)

for which the residual signal becomes:

rk+1 =yk+1 − ŷk+1 = Ck+1[I − Hk+1Ck+1]xk+1 (4.181)

+ [I − Ck+1Hk+1][vk+1 + L1,k+1fk+1]. (4.182)
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Fig. 4.20 . The state estimation error norm ‖xk−x̂k‖2 for the proposed observer (dotted)
and the extended Kalman filter (solid).

Unfortunately, [I − Ck+1Hk+1] = 0, and hence everything is perfectly decoupled
from the residual, including the faults. Indeed, irrespective of what happens with
the system, the residual (4.182) is always zero, i.e. rk+1 = 0. Nevertheless, this
drawback pertains to all unknown input observers, not only those presented in this
chapter. In other words, to use unknown input observers as residual generators it
is necessary to ensure that:

[I − Ck+1Hk+1] 6= 0 and [I − Hk+1Ck+1] 6= 0. (4.183)

Irrespective of the above consideration, it is possible to use the model (3.28)-(3.33).
Indeed, assuming that the matrix C in (3.33) has the form:

C =

[

0.21 ∗ 10−5 0.51

0 1

]

, (4.184)

the second output of the system y2,k can be simulated by the model (3.28)-(3.33)
while the first output y2,k remains original.

The unknown input distribution matrix was obtained using the approach de-
scribed in (Chen and Patton 1999) (assuming that q = 1) and, as a result, the
matrix Ek was Ek = [11, 95.8]T . The constant γ was assumed to be γ = 0.2. The
unknown input decoupling was realised according to (4.104).

To demonstrate the effectiveness of the obtained fault detection scheme, the
following fault scenarios were considered:

Case 1: An abrupt fault of an actuator:

fa,k =

{

0, k < 250,

−0.25u1,k, otherwise,
L1 = [1, 0, 0, 0]T , (4.185)
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Case 2: An abrupt fault of an actuator:

fa,k =

{

0, k < 100,

0.3u2,k, otherwise,
L1 = [0, 1, 0, 0]T , (4.186)

Case 3: An abrupt fault of a sensor:

fs,k =

{

0, k < 100,

−0.1y1,k, otherwise.
(4.187)

All the above faults were simulated using the model:

xk+1 = h(uk + L1fa,k) + Edk + wk, (4.188)

yk = Cxk + vk + [1 0]T fs,k. (4.189)

As can be seen from Figs. 4.21-4.22, the residual is sensitive to all the faults. As
previously, this is a condition necessary for fault detection, but to design a reliable
fault isolation scheme (for sensors or actuators) it is necessary to employ the
approaches proposed in Setions 4.1.5 and 4.1.6.

Moreover, as can be seen from Figs. 4.21-4.22, the detection of the faults
under consideration was performed relatively fast.

Discrete time
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,k

Discrete time

y 1
,k
−
ŷ 1

,k

Fig. 4.21 . A residual and its bounds for actuator faults: Case 1 (left), Case 2 (right).

4.3. Conclusions

The objective of this chapter was to propose robust observers for both deterministic
and stochastic non-linear systems which can be applied as residual generators for
FDI purposes.

To tackle the observer designing problem for deterministic systems, the con-
cept of the extended unknown input observer was introduced. It was shown, with
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Fig. 4.22 . A residual and its bounds for a sensor fault (Case 3).

the use of the Lyapunov approach, that the proposed fault detection observer is
convergent under certain conditions. Moreover, it was shown that an appropriate
selection of the instrumental matrices Qk−1 and Rk strongly influences the conver-
gence properties. To tackle the instrumental matrix selection problem, a genetic
programming-based approach was proposed. It was shown by means of an example
with an induction motor that the proposed observer can be a useful tool for both
state estimation and fault diagnosis of non-linear deterministic systems. This is
mainly because of the convergence properties of the observer, which confirm its
superiority over classical approaches. Moreover, experimental results confirm that
the proposed fault diagnosis scheme provides fast and reliable fault detection and
isolation.

To tackle the observer design problem for stochastic systems, the bounded-
error state estimation technique and a suitable transformation of the system equa-
tions were applied, resulting in the bounded-error unknown input observer. An
extension of the proposed observer which can be applied to the state estimation
of non-linear stochastic systems was proposed as well. This was performed by
applying a linearisation technique similar to that of the classical EKF. Unlike the
EKF, the proposed approach does not neglect the linearisation errors. Indeed,
these errors were taken into account as additional disturbances. The drawbacks
and advantages of the proposed residual generation technique were discussed in
Section 4.2.4 during its application to state estimation and fault diagnosis of sim-
ulated and real industrial systems.
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From the point of view of engineering, it is clear that providing fast and reliable
fault detection and isolation is an integral part of control design, particularly as
far as the control of complex industrial systems is considered.

Unfortunately, most of such systems exhibit a non-linear behaviour, which
makes it impossible to use the well-developed techniques for linear systems. If
it is assumed that the system is linear, which is not true in general, and even if
the robust techniques for linear systems are used (e.g. unknown input observers),
it is clear that such an approximation may lead to an unreliable fault detection
and, because of this, an early indication of which faults are developing is rather
impossible. Such a situation increases the probability of the occurence of faults,
which can be extremely serious in terms of economic loss, environmental impact,
or even human mortality. Indeed, robust techniques are able to tolerate a certain
degree of model uncertainty. In other words, they are not robust to everything, i.e.
robust to an arbitrary degree of model uncertainty. This real world development
pressure creates the need for new techniques which are able to tackle fault diagnosis
of non-linear systems. In spite of the fact that the problem has been attacked from
various angles by many authors and a number of relevant results have already been
reported in the literature, there is no general framework which can be simply and
conveniently applied to maintain fault diagnosis for non-linear systems.

As was indicated in Chapter 2, observers are immensely popular as residual
generators for fault detection (and consequently for fault isolation) of both linear
and non-linear dynamic systems. Their popularity lies in the fact that they can
also be employed for control purposes. There are, of course, many different ob-
servers which can be applied to non-linear, and especially non-linear deterministic
systems, and the best-known of them were briefly reviewed in Section 2.3. Logi-
cally, the number of “real world” applications (not only simulated examples) should
proliferate, yet this is not the case. It seems that there are two main reasons why
strong formal methods are not accepted in engineering practice. First, the design
complexity of most observers for non-linear systems does not encourage engineers
to apply them in practice. Second, the application of observers is limited by the
need for non-linear state-space models of the system being considered, which is
usually a serious problem in complex industrial systems. This explains why most
of the examples considered in the literature are devoted to simulated or laboratory
systems, e.g. the celebrated three- (two- or even four-) tank system, an inverted
pendulum, a traveling crane, etc.

As was indicated in Chapter 1, there is no practical approach which can be
applied to obtain a state-space model of a system. In fact, the designer is left with
a time-consuming trial-and-error approach.

Therefore, one original objective of this work was simply to develop effective
and reliable methods to solve the practical problem of non-linear system iden-
tification. Another original objective was to develop robust observers for both
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deterministic and stochastic non-linear systems. In the process of executing these
tasks, two new system identification algorithms for input-output and state-space
models as well as the extended unknown input observer and the bounded-error ex-
tended unknown input observer for deterministic and stochastic non-linear systems
were proposed. The following is a concise summary of the contributions provided
by this book to the state-of-the-art in both non-linear system identification and
fault detection (and especially to residual generation):
• Adaptation of the genetic programming technique to a discrete-time model con-
struction and, especially, introduction of parameterised trees together with the
rules reducing an excessive number of parameters. In particular, effective and
genetic programming-based algorithms for designing both input-output and state-
space models were developed. It was proven that the state-space models resulting
from the above algorithms are asymptotically stable. In order to increase the con-
vergence rate of the proposed techniques, the problem of adapting the probabilities
of crossover and mutation was formulated and solved.
• Application of the unknown input observer to linear stochastic systems to form
an Extended Unknown Input Observer (EUIO) for non-linear deterministic sys-
tems. A comprehensive convergence analysis with the Lyapunov approach was
performed, resulting in the convergence conditions for the EUIO. Based on these
conditions, a GP-based technique for increasing the convergence rate of the EUIO
was proposed.
• Extension of the bounded-error state estimation approach to linear stochastic
systems with unknown inputs, resulting in the Bounded-error Unknown Input Ob-
server (BUIO). Development of an extension of the BUIO which can be applied to
non-linear stochastic systems, resulting in the Bounded-error Extended Unknown
Input Observer BEUIO.

The main advantage of the proposed system identification framework is that in
spite of the fact that the models resulting from this approach are of a behavioural
type, they are more transparent than the most popular rival structures, which is
what neural networks undoubtedly are. This makes it possible, after a suitable
analysis, to employ the models to FDI of system faults. This means that their
transparency may allow to find some internal connections between the system and
the model. Another advantage is that the state-space models resulting from this
approach are asymptotically stable, which is a priori guaranteed by a suitable
model structure.

The main drawback to the proposed system identification technique is that
it is relatively time consuming. This is caused mainly by the fact that for each
of the models, in each generation it is necessary to perform parameter estimation,
which is relatively time consuming for models non-linear in their parameters. In
addition to that, the computational requirements grow together with the model
order n (for state-space models) or the dimension of the output vectorm (for input-
output). To tackle this problem, the adaptation rules of crossover and mutation
probabilities were proposed, which made the identification process faster and more
efficient. However, as usual, the model construction procedure is realised off-line,
and hence the identification time is not extremely important.
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The main advantage of the proposed extended unknown input observer for
non-linear deterministic systems is that its design procedure is as simple as that
for the extended Kalman filter. Unlike in the case of the extended Kalman fil-
ter, during the convergence analysis of the EUIO the linearisation errors were
taken into account, which made it possible to establish the convergence conditions
and, consequently, the GP-based approach to increasing the convergence rate of
the EUIO. The practical advantages of the proposed approach were confirmed by
examples regarding state estimation and fault diagnosis of an induction motor.

It is, of course, with some minor modifications, possible to apply the EUIO
to non-linear stochastic systems. However, such an observer will inherit all the
drawbacks of the Kalman filter regarding the restrictive assumptions of the noise
distribution. To tackle this problem, an extension of the bounded-error state es-
timation technique to systems with unknown inputs was proposed. In this case,
the only assumption is that the noise (or error) lies between given prior bounds.
This is, undoubtedly, a less restrictive condition than the assumption that the pro-
cess and measurement noises are zero-mean white noise sequences. The proposed
observer was extended to non-linear deterministic systems. In the proposed ap-
proach, the linearisation errors were taken into account as additional disturbances
with known bounds. The practical usefulness of the proposed techniques (for both
linear and non-linear systems) was confirmed by experimental results concerning
state estimation as well as fault detection for both simulated and real industrial
systems.

The main drawback to the proposed observers is that they inherit the draw-
back of linear UIOs, which pertains the system dimensionality. Indeed, it is im-
possible to apply the proposed observers as residual generators for MISO systems
and all systems for which the conditions (4.183) are not satisfied. From these con-
ditions it is clear that it is possible to apply the proposed observers as residuals
generators without, however, considering unknown inputs (no robustness to model
uncertainty). This means that in such cases the robustness should be realised in
the fault isolation stage, which for simple MISO systems seems to be a relatively
easy task.
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STRESZCZENIE

W pracy rozpatruje się zagadnienia związane z detekcją uszkodzeń i identyfikacją
nieliniowych systemów dynamicznych.
Cel pracy można podzielić na dwie części. Pierwsza z nich dotyczy opracow-
ania metodologii konstruowania modeli nieliniowych systemów dynamicznych z
zastosowaniem programowania genetycznego. Natomiast druga projektowania
odpornych obserwatorów stanu do zadań detekcji uszkodzeń.
W szczególności zostały przeanalizowane i zbadane następujące problemy:
1. Badania teoretyczne
W ramach badań teoretycznych zrealizowano:
• Zaadaptowano technikę programowania genetycznego do konstruowa-
nia modeli nieliniowych systemów dynamicznych. W szczególności,
pokazano jak różne struktury modeli można przedstawić w postaci drzew oraz jak
wykorzystać programowanie genetyczne do wyznaczania ich odpowiedniej postaci.
Przeprowadzone badania wykazały, że programowanie genetyczne w „klasycznej”
postaci powoduje trudności z wyznaczaniem parametrów modeli. Do rozwiązania
tego zadania zastosowano sparametryzowane drzewa oraz zaproponowano reguły
umożliwiające redukcję nadmiernej liczby parametrów. Opracowano efektywne al-
gorytmy służące wyznaczaniu modeli zarówno w konfiguracji wejściowo-wyjściowej
jak i w przestrzeni stanów. Wykazano również, że otrzymane modele opisane w
przestrzeni stanów są asymptotycznie stabilne. Podstawową wadą proponowanych
algorytmów jest ich duża złożoność obliczeniowa, odzwierciedlająca się w relaty-
wnie długim czasie procesu identyfikacji. W celu poprawienia szybkości zbieżności
proponowanych algorytmów sformułowano i rozwiązano problem doboru praw-
dopodobieństw krzyżowania i mutacji.
• Z wykorzystaniem obserwatora o nieznanym wejściu dla liniowych
systemów stochastycznych opracowano rozszerzony obserwator o niez-
nanym wejściu dla deterministycznych systemów nieliniowych. Podob-
nie jak w przypadku klasycznego rozszerzonego filtru Kalmana, w celu zaadap-
towania liniowego obserwatora do estymacji stanu, a w konsekwencji do generacji
sygnałów residuum dla potrzeb detekcji uszkodzeń systemów nieliniowych, za-
proponowano linearyzację modelu wokół aktualnej estymaty stanu. W odróżnie-
niu od klasycznego rozszerzonego filtru Kalmana, w proponowanym rozwiązaniu
uwzględnia się błędy linearyzacji. Ponieważ rozważany obserwator dla systemów
stochastycznych został zaadaptowany dla systemów deterministycznych, pozostaw-
iło to pewien stopień swobody, który został wykorzystany do wykazania zbieżności
proponowanego obserwatora. W szczególności, przeprowadzono szczegółową anal-
izę zbieżności obserwatora z zastosowaniem metody Lapunowa, w rezultacie której
otrzymano odpowiednie warunki zbieżności. Opierając się na powyższych warunk-
ach zaproponowano technikę zwiększania szybkości zbieżności obserwatora z zas-
tosowaniem programowania genetycznego.
• Z wykorzystaniem techniki estymacji stanu przy ograniczonych
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wartościach błędów opracowano obserwatory o nieznanym wejściu
zarówno dla liniowych jak i nieliniowych systemów stochastycznych. W
odróżnieniu od klasycznego filtru Kalmana (w przypadku którego zakłada się, że
szumy procesu i pomiarów posiadają rozkład gaussowski) zastosowanie techniki
estymacji stanu przy ograniczonych wartościach błędów umożliwia wprowadzenie
mniej restrykcyjnych warunków (tzn. zakłada się, że szumy procesu i pomiarów
ograniczone są przez pewne znane z góry wartości).

W pracy pokazano jak poprzez odpowiednią transformację modelu można
zastosować powyższą technikę do estymacji stanu, a w konsekwencji do generowa-
nia sygnałów residuum dla potrzeb detekcji uszkodzeń przy założeniu wpływu
niepewności modelu i innych czynników (wpływu nieznanego wejścia) mogących
prowadzić do błędnej diagnozy. Opracowany obserwator o nieznanym wejściu
dla stochastycznych systemów nieliniowych stanowi rozszerzenie wcześniej zapro-
ponowanego obserwatora liniowego. Podobnie jak w przypadku klasycznego roz-
szerzonego filtru Kalmana, przeprowadzono linearyzację modelu wokół aktualnej
estymaty stanu. W odróżnieniu od rozszerzonego filtru Kalmana w procedurze
projektowania obserwatora uwzględnia się błędy linearyzacji. W szczególności,
pokazuje się jak uwzględnić błędy linearyzacji jako zakłócenia o znanych wartoś-
ciach granicznych.
2. Badanie aplikacyjne
W ramach badań aplikacyjnych zrealizowano:
• Zastosowanie algorytmów opierających się na programowaniu genety-
cznym do identyfikacji nieliniowych systemów dynamicznych. W szczegól-
ności, wyznaczono modele wybranych urządzeń stacji wyparnej cukrowni Lublin
S.A., zarówno w konfiguracji wejściowo-wyjściowej jak i w przestrzeni stanów.
Przeprowadzono porównania z klasycznymi modelami liniowymi, które wyka-
zały zasadność stosowania proponowanej techniki identyfikacji. Na podstawie
przeprowadzonych badań statystycznych pokazano, że pomimo braku dowodu
zbieżności proponowane algorytmy można z powodzeniem wykorzystywać do
różnych zadań identyfikacji. Również na podstawie przykładu wykazano zasad-
ność stosowania reguł adaptacji prawdopodobieństw krzyżowania i mutacji.
• Zastosowanie rozszerzonego obserwatora o nieznanym wejściu do es-
tymacji stanu i detekcji uszkodzeń silnika elektrycznego. Na przykładzie
z modelem silnika elektrycznego pokazano wyższość proponowanego obserwatora
nad klasycznymi rozwiązaniami. W szczególności pokazano, iż proponowane
rozwiązanie umożliwia uzyskanie znaczącego zwiększenia szybkości zbieżności, za-
pewniając jednocześnie samą zbieżność. Na tym samym przykładzie wykazano
zasadność stosowania odpornych obserwatorów w diagnostyce uszkodzeń.
• Zastosowanie obserwatorów o nieznanym wejściu wykorzystujących
technikę estymacji stanu przy ograniczonych wartościach błędów do
estymacji stanu i detekcji uszkodzeń systemów stochastycznych. W
szczególności, pokazano zastosowanie proponowanego obserwatora do detekcji
uszkodzeń urządzeń wykonawczych, jak i czujników pomiarowych liniowego sys-
temu stochastycznego. Na przykładzie z nieliniowym modelem systemu wy-
kazano zasadność uwzględniania błędów linaryzacji jako dodatkowych zakłóceń
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o znanych wartościach granicznych. Pokazano również przykład zastosowania
proponowanego obserwatora w detekcji uszkodzeń wybranego elementu stacji
wyparnej cukrowni Lublin S.A. W rozważanym przykładzie, wykorzystano model
opisany w przestrzeni stanów, do którego wyznaczenia posłużono się proponowaną
techniką identyfikacji systemów opierającą się na programowaniu genetycznym.
Książka została podzielona na 4 rozdziły. W rozdziale 1 przedstawiono do-
brze znane i często wykorzystywane struktury modeli, począwszy od klasycznych
rozwiązań, a skończywszy na modelach opierających się na sieciach neuronowych.
Rozważano zarówno statyczne jak i dynamiczne modele. Omówiono również za-
lety i wady każdej ze struktur. W końcowej części rozdziału omówiono problemy
przygotowywania danych pomiarowych i doboru kryterium identyfikacji. Rozdział
2 zawiera przegląd najbardziej popularnych metod generacji sygnału residuum dla
potrzeb diagnostyki uszkodzeń. W rozdziale skupiono się na detekcji uszkodzeń,
która stanowi najważniejszą część procesu diagnostyki uszkodzeń (bez detekcji
uszkodzeń nie jest możliwe przeprowadzenie lokalizacji uszkodzeń). W szczegól-
ności, przedstawiono różne techniki generacji sygnału residuum bazujące na mo-
delu matematycznym systemu, począwszy od bezpośredniego zastosowania mo-
delu, a skończywszy na rozwiązaniach bazujących na odpornych obserwatorach
stanu. W rozdziale opisano rozwiązania zarówno dla systemów liniowych jak i
nieliniowych. Rozważano również wady, zalety jak i możliwe dziedziny zastosowań
każdego z rozwiązań.

W rozdziale 3 zaproponowano techniki identyfikacji systemów bazujące na
programowaniu genetycznym. Przedstawiono krótki przegląd dobrze znanych i
często stosowanych algorytmów ewolucyjnych. Szczególną uwagę skupiono na al-
gorytmach genetycznych i programowaniu genetycznym. Zaproponowano i za-
stosowano zmodyfikowaną wersję programowania genetycznego do rozwiązania
problemu wyznaczania modeli nieliniowych systemów dynamicznych. W szczegól-
ności, opracowano algorytmy służące wyznaczaniu modeli zarówno w konfiguracji
wejściowo-wyjściowej jak i w przestrzeni stanów. W rozdziale rozważa się również
stabilność modeli opisanych w przestrzeni stanów otrzymywanych za pomocą pro-
ponowanego algorytmu. Końcowa część rozdziału zawiera rezultaty eksperymen-
tów potwierdzające efektywność proponowanego podejścia.

W rozdziale 4 zaproponowano koncepcję rozszerzonego obserwatora o niez-
nanym wejściu dla nieliniowych systemów deterministycznych oraz szczegółowo
opisano procedurę jego projektowania. Z wykorzystaniem metody Lapunowa,
przeprowadzono szczegółową analizę zbieżności obserwatora. Otrzymane rezul-
taty posłużyły zwiększeniu szybkości zbieżności obserwatora. W tym celu za-
proponowano podejście bazujące na programowaniu genetycznym. Rozdział zaw-
iera wyniki numerycznych symulacji dotyczących estymacji stanu i diagnostyki
uszkodzeń silnika elektrycznego. W rozdziale rozważano również zastosowanie
techniki estymacji stanu przy ograniczonych wartościach błędów do projektowa-
nia obserwatorów o nieznanym wejściu zarówno dla liniowych jak i nieliniowych
systemów stochastycznych. Przedstawiono problem estymacji stanu systemów lin-
iowych w przypadku znanych wartości granicznych szumów procesu i pomiarów
oraz zamieszczono odpowiedni algorytm. Pokazano jak zastosować powyższy al-
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gorytm przy projektowaniu obserwatora o nieznanym wejściu dla szerokiej klasy
liniowych systemów stochastycznych. Zaproponowano również rozszerzoną wersję
rozważanego obserwatora dla nieliniowych systemów stochastycznych. Końcowa
część rozdziału zawiera rezultaty eksperymentów dotyczące estymacji stanu i di-
agnostyki uszkodzeń liniowych i nieliniowych systemów stochastycznych.

Książka została częściowo opracowana w ramach realizacji projektu bada-
wczego KBN pt. Detekcja uszkodzeń i identyfikacja nieliniowych systemów dy-
namicznych (2001-2002) oraz międzynarodowego projektu pt. EU FP 5 Research
Training Network project DAMADICS: Development and Application of Methods
for Actuator Diagnosis in Industrial Control Systems (2000-2003).
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