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Chapter 1

Introduction

For many years, there have been found many problems, which however solvable in theory, due
to its complexity, have been unsolvable in practice. Nowadays, some of these problems can be
solved due to the possibilities, which are provided by developing the modern algorithms and ex-
ploiting the huge computational power provided by the modern computers. The tasks of analysis
and/or synthesis of the complex multidimensional dynamical systems have been included into
that list of the practically unsolvable problems. Although there existed the strong theoretical
results, there was not the appropriate methodology to solve those problems. The problems
considered in this dissertation refer to the computer-aided analysis and synthesis of a special
class of multidimensional systems — the so-called repetitive processes. In the dissertation, the
methodology based on the results, which originally come from the area of the computer sci-
ence, is developed and successfully applied to solve the considered problems. That include the
appropriate application of the efficient numerical methods and developing algorithms to solve
the stated tasks of analysis/synthesis. On the other hand, it is to note that schemes devel-
oped here for analysis/synthesis of the complex dynamical multidimensional systems, after the
straightforward reformulation, can be used to provide the requested features of the algorithmic
applications (e.g. the convergence of the iterative process).
Multidimensional (nD) systems are characterized by many (n) independent variables, on the

contrary to classical systems, called here 1D, where there exists only one indeterminate (denoting
most frequently time). Systems considered in this dissertation characterize of 2 independent
variables. In the classical theory of 1D systems the independent variable used in the state–
space description in most cases denotes the time (discrete or continuous), in 2D systems the
independent variables can be treated as a vector time. In practice, for nD systems one of
variables denotes the time and the rest of variables have the space meaning. They can be the
space coordinates or the number of the current process phase, iteration or the trail. In general,
in nD (2D) systems there exist the n (2) directions in which information propagate.
During last years nD systems have been found interesting from both theoretical and practical

application standpoints. There can be found a number of books and papers regarding the
considered class of systems (see e.g. [1, 2, 3, 4, 5, 6, 7] and references therein). Whenever
the considered system is not suitable to be modeled using well known 1D models, 2D (nD)
models are very strong alternative. nD (2D) systems have been found useful in modeling the
physical processes in the areas of Control, Computer Science, Telecommunications, Acoustics,
Electrical Engineering etc. The particular applications include nD filtering [8, 9], nD coding and
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Introduction

decoding [10], image processing [11, 12] and multidimensional signal processing [13, 14, 15, 16].
Theory of nD systems is not a simple extension of the well known theory of 1D systems.

There arise several obstacles and limitations related to the lack of the mathematical tools, or
in the best situation, its very complicated forms. The reward for these obstacles is that the
application of nD models in the description of the considered phenomena provides some new
possibilities that were unavailable, when considering 1D models.
The special case of 2D systems are Linear Repetitive Processes (LRPs) [17, 18, 19, 20]. LRP

is defined by a repetitive execution of an action, which lasts for a fixed finite duration. During
each iteration (or, as it is called in context of that class of systems, a pass), an output, called the
pass profile, is produced and it acts as a forcing function on the next pass profile. Hence there
are two dynamics in the model of LRP, i.e. the first, which denotes the current pass number
and the second, which denotes the position (time) during the pass.
The differences between LRPs and known 2D models are straightforward to see, since it is

assumed that one of the independent variables used in the state-space model of LRPs is finite
and the mixed discrete-continuous dynamics can be found (i.e. the variable denoting the number
of pass is always discrete and the second regarding the position on the pass can be either discrete
or continuous). In well known and widely used 2D state-space models (Roesser [21] or Fornasini
Marchesini [22]) both variables are discrete and unbounded.
The applications of LRPs include long-wall coal cutting [17, 20], metal rolling [23, 17, 24, 25],

Iterative Learning Control (ILC) schemes [26, 27, 28, 29] and iterative algorithms for solving
nonlinear dynamic optimal control problems based on the maximum principle [30, 31]. Recently,
the link between the spatially interconnected systems [32] and LRPs has been recognized and it
seems that many of results obtained for LRPs can be adopted for that class of 2D (nD) systems.
Note here that ILC, as aforementioned, are one of the application area for LRP and can

be treated as the tool for modeling the complex iterative numerical procedures [33, 34, 35].
In that sense Linear Repetitive Processes can be alone considered as strongly referring to the
algorithmic theory. In essence, ILC can be treated as the schemes, where the control or, generally,
the computation tasks are achieved iteratively [36, 28]. What is crucial here, the convergence
of the iterative procedure is strongly related to the stability of the underlying LRP. Hence the
synthesis of LRP can be considered as a tool to design the convergent iterative procedures and
hence strongly links LRPs and algorithms area.
In general, one of the very crucial properties of the dynamic system is stability. For the

considered class of dynamical systems, this dissertation deals with two basic types of stability,
i.e. asymptotic stability and stability along the pass [17, 18]. Hence the emphasis here is put
on the stability investigation (analysis) and the stabilization (synthesis) of LRPs. Due to the
fact that LRPs are the distinct class of 2D systems, the analysis and synthesis tasks require to
apply the appropriate methods, which, in general differ either from the methodology provided
for the 1D classical systems ([37, 38] and references therein) and/or the results obtained for 2D
systems [3, 7].
Another set of problems, which appear also in the classical 1D systems theory is the integra-

tion of the basic analysis/synthesis tasks with the stronger requirements. Those introduce the
additional restrictions to the considered problem and hence can cause the additional problems
from both, theoretical (formulating the appropriate conditions) and practical (numerical prob-
lems), standpoints. The mentioned aspects considered in this dissertation include topics related
to stability margins and developing the approach for the so-called model matching. The special
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subclass of the synthesis tasks is addressed to the output based stabilization schemes. Note that
those supplementary topics are always considered as ones introducing the additional constraints
to the basic problems. Frequently, it is necessary ”to pay” for solving such extended problems
with decreasing the area of possible solutions and, in many cases, increasing the numerical ef-
fort to obtain the solution. What is more, the additional aspects, which are considered beyond
the basic stability of LRP (e.g. the stability margins or governing the requested form of the
closed loop system), re-mapped to the ILC ensure, beyond the convergence, faster obtaining the
requested result, e.g. the faster minimizing the tracking error. Hence the methods developed
originally to check/ensure the stability of the dynamical system can be applied for improving
the behavior of the iterative process.
As aforementioned, it is necessary to realize that considered problems of analysis/synthesis

of LRPs can cause serious problems from the theoretical and numerical standpoints. Despite
the fact that several conditions regarding the stability of LRPs have been presented e.g. in
[17, 39, 40, 18], there exist the serious limitations in application of those conditions, since they
deal mainly with the 2D transfer function. Since for 2D system the poles of a transfer function
are the curves on the complex plain (not isolated points as for the 1D case), there arise serious
difficulties with the stability analysis and stabilization for this class of systems. Due to this,
the new, efficient methodology for analysis and synthesis of LRPs is required. Hence it is the
natural question to consider, if the problems of analysis and/or synthesis, which appear in the
area of LRPs (and in general 2D systems), can be formulated in the way to assure the final
effective solution. Unfortunately, the majority of those problems, considered in a classic way,
are considered as being NP-hard [41]. It is due to the fact that original sufficient and necessary
conditions for analysis require in fact performing the infinite number of of classic (1D) stability
tests, which appears to be impossible. The situation is even worse in the synthesis task for
multivariable (MIMO) LRPs. One of the possible solutions for this crucial problem comes
from the Lyapunov theory, strengthened by the fact that there appeared recently the efficient
numerically methods of the Linear Matrix Inequalities (LMIs) [42, 43, 44, 45], which are based
on the Interior Point Methods convex optimization algorithms.
For 2D (nD in general) systems, LMIs turn out to provide in fact almost only efficient

numerically method (solution provided in the polynomial time) and also an easy and natural
extension to stabilization has appeared (see e.g. [46, 47, 48, 49, 50]). What is important
to underline that for many cases, when the analysis/synthesis of LRPs (and nD systems in
general) is considered, the application of LMIs is one of the very limited number of choices to
handle efficiently those problems. Another reported in the literature possibility is the so-called
µ-analysis approach ([51]), which however is more complicated, but still effective for solving
these complex problems. Here, the attention is limited on using the LMI methods.
Thanks to the application of the LMI methods and, what follows, exploiting its numerical

efficiency, the subclass of NP-hard problems is possible to be approximated with the applica-
tion of the Lyapunov based methodology and then solved by the polynomial time algorithms.
The relevance of such a reformulation cannot be underestimated. It is to note that due to its
numerical efficiency, LMIs assure that the original NP-hard problem, reformulated into the ap-
proximated valid P-class problem, can be solved using very efficient algorithms. The drawback
of the application the LMIs in the analysis and synthesis of LRPs is recognized as that the
conditions defined in terms of LMIs for 2D systems (LRPs) are only sufficient. Nevertheless,
the method how to lower the conservativeness of those conditions and finally get closer to the
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necessary and sufficient LMI conditions for stability of 2D systems has been presented recently
in [52]. The application of these conditions involve the rapid increase of the size and the com-
plexity of the problem. The similar approach after the appropriate modifications can be applied
for the analysis of LRPs.
Note that even if the analysis and/or the synthesis of LRPs can be shown to be polynomial

time solvable, those tasks can cause serious problems regarding the numerics. It is especially
apparent, when the considered systems are highly dimensioned. Then even the application
of the polynomial time method can be insufficient to provide the solution accurately. This
aspect becomes visible when taking into account the fact that those problems are solved using
computers. In view of computer-aided analysis/synthesis the following topics appear: storing the
data describing the considered problem in the memory, performing the computations according
to considered analysis/synthesis tasks and finally simulating the system. The second point is
the most demanding one. Hence to provide the adequate computational power for the efficient
solving the analysis/synthesis problems the computer clusters have been used. It is to note
that due to the fact that the considered topics are highly specialist, there are not available the
appropriate software packages allowing to solve those kinds of problems directly. Hence the
method of how to reformulate the analysis/synthesis problems into the form solvable by existing
cluster software can be treated as the original and practical result of this dissertation.
In the dissertation various subclasses of LRPs are considered. Except of the basic LRPs

(discrete and differential), first defined in [17], the generalized model of LRP is considered
([53, 54]). As a special subclass of LRPs the extended model has been considered in [55] and the
wave LRP – defined in [56]. There also have been defined the singular LRPs ([57, 58]). In general,
for that whole set of models, it is hard to define the applicable conditions towards stability along
the pass. Hence in many cases, it is possible to settle only for asymptotic stability. Dealing
with this property is based on the investigation of the so-called 1D equivalent model of LRP
([59, 60, 61, 40, 25]). The application of the analysis/synthesis methods for the 1D equivalent
model can cause serious difficulties, since it is based on the possibly highly dimensioned model.
In the sequel, some remedies for these problems have been presented. One possible solution here
is the simplification of the structure of the considered model. Another one is using the computer
clusters of large computational power to solve the stated problems.
An important question arises, when considering the application of the clusters in service to

solve problems of analysis/synthesis of LRPs. Since the problems considered in this dissertation
are high dimensioned and finally are presented as the convex optimization problems over huge
numbers of variables, two aspects appear. These are: a memory complexity and a computational
complexity. The first one can be easily determined basing on the size of the problem (size of
the LMI) and the number of variables. It is natural that the memory complexity increases
significantly when the size of the problem increases, however here the obstacles connected with
this fact have been overcome by simply adding the RAM memory or increasing the size swap disk
on the computer/cluster on which the simulations are made. Hence in the sequel, the memory
complexity aspects are not considered.
The special emphasis is put on the computational complexity aspects. Since the problems

of analysis/synthesis are presented as LMIs, it is known that they can be solved using the
polynomial time algorithms. Those results regard both: asymptotic stability and stability along
the pass. In the case of asymptotic stability, the cluster provides the computational power
necessary to solve the huge problems, unsolvable on the single PC. However, those problems
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still have to be considered as the polynomial time problems. For stability along the pass, the
comparison between two existing LMI conditions is provided regarding the applicability of those
conditions, the growth of time required to solve the problem in function of its size and the study
regarding the level of conservativeness of both conditions.
In the practical applications, the question about controlling the LRPs with the appropriate

(required) performance appears. There have been published some preliminary results regarding
the stability aspects, but here the synthesis problem governing the additional properties (”be-
yond” the stability) of the system in the closed loop configuration, e.g. ensuring the prescribed
stability margins or the assurance of the prescribed form of the closed loop system, are consid-
ered. The further extensions include the application of the developed schemes in the practical
applications, where the natural goals to be achieved can be defined as driving the considered
system to the required output (called the reference signal) and the disturbance rejection.
Concluding, two-fold relationships of the reported results to the computer science area can

be pointed out, i.e. 1st – LRPs alone have links to the algorithms area as described above; and
2nd – effective use of this approach involves strong numerical problems, solving of which is the
subject of this work.
Thesis
Due to the aforementioned facts, the following leading thesis of this dissertation is proposed:

It is possible to develop numerically effective analysis and synthesis
methods for complex high dimensional repetitive processes, based on
the use of LMI schemes, strengthened by the modern numerical tools
involving parallel computing.

and in the sequel the results proving that thesis are presented.
Regarding the contribution of the results presented in this dissertation to the ”state of art”,

it should be underlined that it can be seen from both, theoretical and practical, points of view.
The theoretical aspects covered in this dissertation include:

• definitions and descriptions of the considered systems,

• the review of existing conditions analysis and synthesis,

• determining the LMI conditions towards stability and controller design, additionally re-
garding the requested dynamical properties of the system,

• developing the control schemes towards the required performance.

The practical aspects include:

• implementations of the functions enabling to check the considered conditions,

• developing the methodology allowing to apply the parallel computers (clusters) to solve
the analysis/synthesis problems,

• tests and simulations of the considered control schemes.

The framework of this dissertation can be presented as follows:

12
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Chapter 2 contains the background information on 2D systems and LRPs. The basic
models of considered LRPs, the boundary condition types and the relations between them
and classical 2D systems are provided here. Also the existing analysis/synthesis conditions
for LRPs are presented. This chapter finishes with the list of selected real-live systems
which can be (are) modeled with LRP models.

Chapter 3 contains the basic information regarding the LMIs and SDPs and their applica-
tions in the control theory. Also the Interior Point Method convex optimization algorithms,
which are used to solve problems (including the parallelized version) are described. Chap-
ter 3 provides the list of available LMI/SDP software packages and the description of the
selected packages (those, which are used in the computational examples). At the end of
this chapter, very short note on the clusters (parallel computing) and the chosen SDP
solver is included.

In Chapter 4 the LMI approach for analysis and synthesis of the considered classes of LRPs
is provided. Some simulation results (those regarding solving huge numerical problems)
presented in Chapter 4 have been obtained with application of the parallel computing. In
this chapter two types of stability, i.e. asymptotic and along the pass are considered. The
integration of the stability/stabilization conditions with the additional requirements re-
garding the dynamical properties of the closed loop system are also presented here. Those
requirements include: computing the stability margins and application of the model match-
ing. In this chapter the output-based control schemes are introduced as well. Chapter 4
presents also the methods how to deal with large (huge) dimensioned problems which ap-
pear in the analysis/synthesis tasks. The list of those approaches include: the application
of the parallel computing, simplification of the stated problem by decoupling of the dynam-
ics and finally, exploiting the features of the iterative approach – successive stabilization
algorithm.

Chapter 5 addresses the task of the control for performance of LRPs. Here, the main
goal is to provide the method, which allows to achieve the required reference signal after
the sufficient (small) number of passes and the disturbance rejection, with the particular
attention paid to the application of the developed control schemes.

The dissertation finishes with Appendices, presenting the description how to use the se-
lected LMI/SDP solvers (Appendix A) and containing selected functions used in simulation
examples presented in the dissertation (Appendix B).

To highlight the computational aspects of presented in the dissertation topics, examples are
provided. They are assumed to present all necessary data, which appear during the computations
to explain how the presented conditions are performed.
Topics which are not covered in this dissertation, but are planed as the further problems to

be solved, include the models with uncertainties and related to this the so-called robust control.
It is to note that these problems are the subject of the on-going work in which author of this
dissertation is also involved (see e.g. [7, 46, 48, 50, 20]).
In the remainder of this introduction, it to be written that most of the results presented

in this dissertation have been achieved, when working in the large international research group
consisting Zielona Góra (prof. Gałkowski), Southampton - UK (prof. Rogers) and Sheffield -
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UK (Prof. Owens) – see the references. Hence the most of the Author results is published in
the papers with four coauthors, but in the best journals and in the most known international
conference proceedings. Finally, it is to note that these results are mostly achieved by the author
of this thesis and hence can be included here.
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Chapter 2

Two-dimensional (2D) state-space
models and repetitive processes

Last three decades provide very rapid development of 2D systems theory and applications based
upon them. In the area of the automatic control the most common used state-space models are
the 2D Roesser (RM) model (see [21]) and the 2D Fornasini-Marchesini (FM) model (see [22]).
Note that similarly to the classical 1D state-space models, there can be distinguished between
the state and the output equations as well. An another, distinct sub-class of two-dimensional
systems are Linear Repetitive Processes (LRP) (for references see e.g. [17, 62, 40, 50]). The
research results presented in this dissertation are maintained just for LRPs. However, to put
things in order, first there are presented the 2D Roesser model and the Fornasini-Marchesini
model.

2.1 2D state-space models

2.1.1 Roesser model (RM)

The 2D Roesser model [21] is defined as follows[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
B1

B2

]
u(i, j),

y(i, j) =
[

C1 C2

] [ xh(i, j)
xv(i, j)

]
+ Du(i, j),

(2.1)

where

i, j ∈ Z+ - vertical and horizontal indeterminates, represent direction, respectively,

xh(i, j) ∈ Rn1 - the local horizontal state subvector,

xv(i, j) ∈ Rn2 - the local vertical state subvector,

x(i, j) =

[
xh(i, j)
xv(i, j)

]
∈ Rn1+n2 - the local state vector,

u(i, j) ∈ Rr - the input vector,
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y(i, j) ∈ Rm - the output vector,

A11, A12, A21, A22, B1, B2, C1, C2, D - matrices of appropriate dimensions.

The boundary conditions for (2.1) in their simplest (static) form are defined as:{
xh(0, j) = xh

0j ∈ Rn1 , j ∈ Z+,

xv(i, 0) = xv
i0 ∈ Rn2 , i ∈ Z+.

(2.2)

In the above model the explicit distinction between the vertical and horizontal parts of the state
vectors are given. Note that using the above state-space description there arise very strong
connections with the polynomial matrix theory. Hence with the application of the appropriate
delay operators, defined as follows

x(i, j) := z1x(i, j + 1), x(i, j) := z2x(i + 1, j),

it is possible to obtain the following transfer function for the considered RM of (2.1)

GRM(z1, z2) =
[

C1 C2

]([ I − z1A11 −z1A12

−z2A21 I − z2A22

])−1 [
B1

B2

]
+ D. (2.3)

Hence the characteristic polynomial of RM is given by

CRM = det

([
I − z1A11 −z1A12

−z2A21 I − z2A22

])
. (2.4)

2.1.2 Fornasini-Marchesini model (FM)

The 2D Fornasini-Marchesini model [22] is defined as follows

x(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1) + B1u(i + 1, j) + B2u(i, j + 1),

y(i, j) = Cx(i, j) + Du(i, j),
(2.5)

where

i, j ∈ Z+ - vertical and horizontal indeterminates, represent direction, respectively,

x(i, j) ∈ Rn - the local state vector,

u(i, j) ∈ Rr - the input vector,

y(i, j) ∈ Rm - the output vector,

A1, A2, B, C, D - matrices of appropriate dimensions.

The boundary conditions for (2.5) in their simplest (static) form are defined as:{
x(0, j) = x0j ∈ Rn, j ∈ Z+,

x(i, 0) = xi0 ∈ Rn, i ∈ Z+.
(2.6)

Note that here the vertical and horizontal components are not given explicitly as it had a place
in the RM case.
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For FM defined by (2.5), the transfer function is defined as

GFM(z1, z2) = C (I − z1A2 − z2A1)
−1 (z1B2 + z2B1) + D (2.7)

and the characteristic polynomial is defined as

CFM = det (I − z1A2 − z2A1) . (2.8)

Remark 2.1 In general, due to the particular requirements many extensions of the above models
was defined. The number of them can be found in e.g. [3, 63, 64] or [65].

Remark 2.2 Note that RM and FM provide the natural and easy way to extend the model from
2D to nD in general.

2.2 Linear Repetitive Processes

Linear Repetitive Processes (LRPs) are a very important class of 2D systems, especially from
the practical point of view. The models of LRPs describe the repetitive execution of some action
which lasts for the fixed finite duration. Such a single execution can be treated as an iteration
of some complex process, but in the context of LRP, it is called the pass. Hence there are two
distinct dynamics in the model of LRP, i.e. along the pass and from pass to pass. The features
that differ LRPs from the usual 2D systems (in RM or FM form) are that the indeterminate
regarding the dynamics in the along the pass direction is limited and that the position on the
chosen pass can be either discrete and then denoted by p ∈ Z+, or continuous, denoted by
t ∈ R+ ∪ {0}. In those cases the discrete, or respectively, differential LRPs are considered. The
pass length is denoted by α and the current pass number by k. Note that in both cases, the
pass number k is always a discrete number. This classification has been changed lately slightly
when so-called multidimensional hybrid systems (see e.g. [66]) have been introduced.
Due to the fact that LRPs indeed are the 2D systems, the control schemes known for the

classical 1D systems, when applied here, can fail. It is because, those schemes do not regard
the implicit 2D structure of the considered system. Even, if it is possible to employ the 1D
control approach for the every single pass (treated as separate 1D systems), it does not concern
the influence that comes form the previous pass. Hence the output vector of LRP (called the
pass profile vector) values can increase to the enormous values of the amplitude and/or contain
the oscillations. Due to that, it is necessary to develop the dedicated approach to control the
considered class of systems.
To define formally a LRP, for the assumed constant pass length denoted by α < +∞, the pass

profile yk(p), 0 ≤ p ≤ α− 1, for the discrete case (yk(t), 0 ≤ p ≤ α− 1, for the differential case),
generated on pass k acts as a forcing function the next pass profile yk+1(p), 0 ≤ p < α−1, k ≥ 0
(yk+1(t), 0 ≤ p < α− 1, k ≥ 0).
The models of LRPs are closest in their form to 2D Roesser models. The first equation in the

LRP models is called the state equation and the second - the pass profile (an output) equation.
The principal difference between 2D RM and LRP is that in the LRP model the state vector
xk(p) can be treated as an equivalence of the horizontal subvector xh(i, j) of the RM and of the
pass profile vector yk(p) represents the output of the model and the vertical subvector xv(i, j)
of the RM simultaneously.
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2.2.1 Discrete LRPs

Following [17, 18], the state-space model of a discrete linear repetitive process has the following
form over 0 ≤ p ≤ α− 1, k ≥ 0

xk+1(p + 1) = Axk+1(p) + B0yk(p) + Buk+1(p), (2.9)

yk+1(p) = Cxk+1(p) + D0yk(p) + Duk+1(p), (2.10)

where

0 ≤ p ≤ α− 1 ∈ Z+ - the discrete position on the current pass,

k ∈ Z+ – the current pass number,

xk(p) ∈ Rn – the state vector,

yk(p) ∈ Rm – the pass profile (output) vector,

uk(p) ∈ Rr – the input vector,

A, B0, C, D0, B, D – matrices of appropriate dimensions.

To complete the process description, it is necessary to specify the ‘initial conditions’ - termed
the boundary conditions here, i.e. the state initial vector on each pass and the initial pass profile.
The simplest possible form for these is

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), (2.11)

where dk+1 ∈ Rn - vector and the entries in the vector f(p) ∈ Rm are known functions of p.
Figure 2.1 illustrates the updating structure of the state and pass profile vectors in (2.9)-

(2.10).
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Figure 2.1. Illustrating the state (a) and pass (b) profile vector updating structure in (2.9)-
(2.10)

The characteristic polynomial for (2.9)-(2.10) is defined as follows

CdiscreteLRP = det

([
I − z1A −z1B0

−z2C I − z2D0

])
, (2.12)
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where z1, z2 ∈ C are the inverses of the z -transform variables in the horizontal and vertical direc-
tions respectively. They can be also considered as the unit delay operators in those directions.
They are defined as follows

xk(p) := z1xk(p + 1), xk(p) := z2xk+1(p). (2.13)

The 2D nature of LRPs allows considering the hybrid processes, i.e. discrete-continuous,
which is presented in the next section.

2.2.2 Differential LRPs

The differential LRP has the following form over 0 ≤ t < α, k ≥ 0

ẋk+1(t) = Axk+1(t) + B0yk(t) + Buk+1(t), (2.14)

yk+1(t) = Cxk+1(t) + D0yk(t) + Duk+1(t), (2.15)

where

0 ≤ t < α ∈ R+ ∪ {0} – the continuous position on the current pass,

k ∈ Z+ – the current pass number,

xk(t) ∈ Rn – the state vector,

yk(t) ∈ Rm – the pass profile (output) vector,

uk(t) ∈ Rr – the input vector,

A, B0, C, D0, B, D – matrices of appropriate dimensions.

It is clear that the process is continuous along the pass and discrete from pass to pass.
Again, to complete the process description, it is necessary to specify the ‘initial conditions’

- termed the boundary conditions here, i.e. the state initial vector on each pass and the initial
pass profile. The simplest possible form for these is

xk+1(0) = dk+1, k ≥ 0,

y0(t) = f(t), (2.16)

where dk+1 ∈ Rn are known vectors and the f(t) ∈ Rm is the vector valued function, which
generates an appropriate f(t) ∈ Rm for given t .
The characteristic polynomial for (2.14)-(2.15) is defined as follows

CdiffLRP = det

([
sI −A −B0

−zC I − zD0

])
, (2.17)

where s ∈ C is the Laplace transform indeterminate and z ∈ C comes as before form the use of
the z -transform in the direction form pass to pass.
There was some research work (see e.g. [67, 68]), where the definition and the influence of

the dynamical boundary conditions for LRPs (discrete and differential) have been considered
in details, however these results are not given here, due to the fact that the sequel of this
dissertation does not regard those topics.
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Remark 2.3 The same notation for those two types of processes, i.e. discrete and differential
is used but in every place, when the confusion may occur, additional statement is provided.

For the purpose of the sequel requirements, define so-called: 2D system plant and 2D ex-
tended input matrix of considered models of LRPs as follows

Υ =

[
A B0

C D0

]
, Ω =

[
B

D

]
. (2.18)

2.2.3 Generalized discrete LRPs

Note that the basic models of the discrete LRP presented in the subsection 2.2 assume that the
state and the pass profile at the given position depend only on the state ”delayed” along the pass
and the previous pass profile. However, this single step influence can be extended by the quite
natural completion a set of past profile vectors. Such a extension of the model can be motivated
by the practical applications e.g. the robotic systems ([69]) or in the Iterative Learning Control
([28, 29]), where in some particular cases more information from the past influence the dynamics
in the system. The model of the discrete LRP with one additional factor has been considered in
[55]. The full set of previous pass profile vector influence has been considered in [54, 70]. The
state-space model of a so-called generalized discrete LRP is defined by the following equations
over 0 ≤ p ≤ α−1, k ≥ 0,

xk+1(p + 1) = Axk+1(p) + Buk+1(p) +
α−1∑
j=0

Bjyk(j), (2.19)

yk+1(p) = Cxk+1(p) + Duk+1(p) +
α−1∑
j=0

Djyk(j), (2.20)

where all vectors and matrices have the same meaning as for (2.9)-(2.10). The boundary condi-
tions for this model are of the form (2.11).
Motivation for considering processes of the form (2.19)-(2.20) arises from applications, where

the current pass profile at any point along the pass is a function of more than one point on
the previous pass. Clearly, the process of (2.19)-(2.20) is not upper right quadrant casual (in
the 2D systems sense) since the point (k+1, p) is influenced also by the collection of points
(k, p+1), (k, p+2), . . . , (k, α − 1). For the causality requirement, it would be required that
Bj = 0, Dj = 0, ∀j > p.
Suppose now that ∀p = 0, 1, . . . , α− 1

Bj =

{
B0, j = p

0, j 6= 0
and also Dj =

{
D0, j = p

0, j 6= 0
.

Then the model of (2.19)-(2.20) reduces to (2.9)-(2.10), where it is assumed that the current
state and pass profile vectors are only directly influenced by the pass profile vector at the same
point on the previous pass.
Figure 2.2 illustrates the updating structure of the state and pass profile vectors in (2.19)-

(2.20) (which clearly includes that of (2.9)-(2.10) as a special case).
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Figure 2.2. Illustrating the state (a) and pass profile (b) vector updating structure in (2.19)-
(2.20)

2.3 Equivalent 1D model for discrete LRP

For the discrete LRPs described by the state-space models (2.9)-(2.10) or (2.19)-(2.20), it has
turned out that a powerful approach to some control related problems is to exploit their inherent
2D linear systems structure and, in effect, adapt tools/results first developed for 2D linear sys-
tems described by the extensively studied Roesser and Fornasini Marchesini state-space models.
In cases, where this approach is not applicable, e.g. pass controllability [71] or the presence of
so-called dynamic boundary conditions [67, 68] which have no Roesser or Fornasini Marchesini
model equivalents, 1D equivalent model has provided the analysis basis on which to solve the
problems being considered.
Here, it is clear that the 2D systems approach does also not prove to be a suitable setting for

analysis of key systems theoretic properties. The construction of the 1D equivalent model for
discrete LRPs consists of the following steps (they are here presented for the basic model (2.9)-
(2.10) — [72, 62], since the construction for the generalized LRP is done actually in the same
manner — [25]).
The first step is introducing the following substitutions into (2.9)-(2.10)

l = k + 1, vl = yl−1. (2.21)

Then the considered model of discrete LRP becomes

xl(p + 1) = Axl(p) + B0vl(p) + Bul(p), (2.22)

vl+1(p) = Cxl(p) + D0vl(p) + Dul(p). (2.23)

Next, introduce the so-called global state, input and pass profile vectors (termed supervectors)
as

X(l) =


xl(1)
xl(2)
xl(3)
...

xl(α)

 , U(l) =


ul(0)
ul(1)
ul(2)
...

ul(α− 1)

 , V (l) =


vl(0)
vl(1)
vl(2)
...

vl(α− 1)

 ,
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where X(l) ∈ Rnα, Y (l) ∈ Rmα, U(l) ∈ Rrα. Then the 1D equivalent model for the dynamics of
discrete LRPs described by (2.9)-(2.10) is

X(l) = ΓV (l) + ΣU(l) + Ψ0dl, (2.24)

V (l + 1) = ΦV (l) + ΞU(l) + Θ0dl, (2.25)

where

Γ =


B0 0 0 . . . 0

AB0 B0 0 . . . 0
A2B0 AB0 B0 . . . 0
...

...
...

. . .
...

Aα−1B0 Aα−2B0 Aα−3B0 . . . B0

 , (2.26)

Σ =


B 0 0 . . . 0

AB B 0 . . . 0
A2B AB B . . . 0
...

...
...

. . .
...

Aα−1B Aα−2B Aα−3B . . . B

 , Ψ0 =


A

A2

A3

...
Aα

 ,

Ξ =


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0
...

...
...

. . .
...

CAα−2B CAα−3B CAα−4B . . . D

 , Θ0 =


C

CA
...

CAα−1

 ,

Φ =



D0 0 0 . . . 0
CB0 D0 0 . . . 0

CAB0 CB0 D0 . . .
...

...
...

...
. . . 0

CAα−2B0 CAα−3B0 CAα−4B0 . . . D0


.

Applying the above procedure, it is straightforward to see that the 1D equivalent model for the
generalized LRP of (2.19)-(2.20) becomes also in the form of (2.24)-(2.25), where all equivalent
1D model matrices are of the structure (2.26) except Φ and Γ, which take the separate forms of
(for the detailed description see [54, 70])

Φ=



D0 D1 D2 . . . Dα−1

CB0+D0 CB1+D1 CB2+D2 . . . CBα−1+Dα−1∑1
i=0 CAiB0+D0

∑1
i=0 CAiB1+D1

∑1
i=0 CAiB2+D2 . . .

∑1
i=0 CAiBα−1+Dα−1∑2

i=0 CAiB0+D0
∑2

i=0 CAiB1+D1
∑2

i=0 CAiB2+D2 . . .
∑2

i=0 CAiBα−1+Dα−1

...
...

...
. . .

...∑α−2
i=0 CAiB0+D0

∑α−2
i=0 CAiB1+D1

∑α−2
i=0 CAiB2+D2 . . .

∑α−2
i=0 CAiBα−1+Dα−1


,
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Γ =



B0 B1 B2 . . . Bα−1

B0 + AB0 B1 + AB1 B2 + AB2 . . . Bα−1 + ABα−1∑2
i=0 AiB0

∑2
i=0 AiB1

∑2
i=0 AiB2 . . .

∑2
i=0 AiBα−1∑3

i=0 AiB0
∑3

i=0 AiB1
∑3

i=0 AiB2 . . .
∑3

i=0 AiBα−1

...
...

...
. . .

...∑α−1
i=0 AiB0

∑α−1
i=0 AiB1

∑α−1
i=0 AiB2 . . .

∑α−1
i=0 AiBα−1


. (2.27)

In the 1D equivalent model, only equation (2.25) is dynamical along the pass number l. It is
easy to see that (2.25) plays the role of the state equation in this model and only this equation
imposes the stability of the considered system. The equation (2.24) is now static, and indeed it
can be treated as a state observer equation. Nevertheless, there still exists dynamics along the
pass (along p), however it is hidden in the structure of the 1D equivalent model matrices and
definitions of new vector variables X(l), V (l) and U(l).

Remark 2.4 It is straightforward to see that the pass length in the discrete LRP depends on
the discretization period of the differential LRP. In what follows, the better precision required,
the larger pass length α obtained. The detailed description of those topics can be found e.g. in
[62, 73, 74, 75]. Due to that fact of the possible large α, the obtained 1D equivalent model of
LRP can be of the huge dimensions. This comes from the fact that in 1D equivalent model, each
vector or matrix is of the dimensions of the pass length multiplied by the appropriate size.

Example 2.1 To highlight the possible huge dimensionality and problems that appears, when
the 1D equivalent model of LRP is used, consider for instance, the 2D LRP where:

the pass length, α = 200,

the number of the states, n = 12,

the number of the outputs, m = 5,

the number of inputs, r = 7.

Then the 1D model vectors and matrices are of the following dimensions

X(l) ∈ R2400, V (l) ∈ R1000, V (l + 1) ∈ R1000 and U(l) ∈ R1400,

Φ ∈ R1000×1000, ∆ ∈ R1000×1400, Θ0 ∈ R1000×10, Γ ∈ R2400×2400, Σ ∈ R2400×1400

and finally Ψ0 ∈ R2400×10.

These data stored in the RAM memory of the personal computer (assuming that the every single
entry has to be allocated on eight bytes since it is treated as a double real number in the way
that e.g. Matlab does it) take in total 65652800 bytes (taking 1 kB as 1024 bytes and 1 MB
as 1024 kB, it gives ≈ 64114 kB or ≈ 62.5 MB) of the ”spare” memory required for storing the
above variables only. There are additional requirements, when taking into account the fact that
those matrices are to be processed. Note that at the moment personal computers are equipped
with 256 MB of RAM (or less) on usual.

It is important to mention here that the construction of the 1D equivalent model is possible
only for discrete LRPs. For differential LRPs of (2.14)-(2.15) it is impossible to perform due to
the fact that there are no discrete steps in the along the pass direction. Hence the construction
of supervectors and 1D equivalent model matrices is impossible.
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2.4 Analysis and synthesis of LRPs

When considering the dynamical system, the very first thing taken into account is the stability
of that system. The same notion appears, when investigating the properties of LRPs. Then
the basic problems are: how to define the stability, how to test it (analysis), and finally, what
to do, when the system has been affirmed to be unstable (synthesis). On the contrary to 1D
classical systems (either discrete of continuous time), for 2D (nD) systems the analysis/synthesis
problems are sophisticated and to solve require application of efficient methods. The analysis
itself is required to determine, if the tested 2D system (LRP) can be left without any external
input (so-called free evolution of the system) and the synthesis task has two main goals, i.e. to
drive the unstable system to stability and/or to ensure the required performance of the controlled
system.
A stability theory [17] for LRPs is based on an abstract model of the process dynamics in

a Banach space (here denoted by Eα) of the form

yk+1 = Lαyk + bk+1, k ≥ 0. (2.28)

In this model yk ∈ Eα denotes the pass profile on pass k, Lα is a bounded linear operator, which
maps Eα into itself and bk+1 ∈ Wα, where Wα is a linear subspace of Eα. Also, the term Lαyk

describes the contribution of pass k to pass k + 1 and bk+1 represents inputs and other effects,
which enter on the current pass.

2.4.1 Asymptotic stability

As aforementioned, the unique control problem for LRPs is that the output sequence of pass
profiles {yk}k≥1 can contain oscillations, which can increase in amplitude in the form pass to pass
direction (k). Hence a natural definition of stability is to request that bounded input sequences
would produce the bounded output (pass profiles) sequences.

Definition 2.1 [17, 18] Suppose that || · || denotes the norm on Eα. Then so-called asymptotic
stability holds provided there exist real numbers Mα > 0 and λα ∈ (0, 1) such that ||Lk

α|| ≤
Mαλk

α, k ≥ 0 (where || · || is also used to denote the induced operator norm).

Remark 2.5 It is to note here that above definition concerns either discrete LRP of (2.9)-(2.10)
or (2.19)-(2.20) and differential LRP of (2.14)-(2.15). It is due to the fact that asymptotic
stability involves only pass-to-pass direction and in considered cases of LRPs this variable (k) is
always discrete.

If asymptotic stability holds, then the sequence of pass profiles converge in the pass-to-
pass direction to a so-called limit profile, which in the case of the processes defined by (2.9)-
(2.10) or (2.19)-(2.20) or the differential defined by (2.14)-(2.15) is defined by a 1D discrete or
differential, respectively, linear system state-space model.
To establish conditions for asymptotic stability of the considered example therefore requires

the computation of the spectral radius of the corresponding Lα. Also if asymptotic stability
holds, then {yk}k≥1 converges strongly (in the from pass to pass direction) to the so-called
steady, or limit, profile y∞, which is the solution of the following equation

y∞ = Lαy∞ + b∞.
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The following theorem regards the asymptotic stability for processes described by (2.9)-(2.10)
or (2.14)-(2.15) with the simplest boundary conditions.

Theorem 2.1 The considered LRP is asymptotically stable if and only if

r
(
D0

)
< 1. (2.29)

Then the resulting limit profile for the discrete LRP of (2.9)-(2.10) is described by the 1D linear
system (with D = 0 for ease of presentation)

x∞(p + 1) = (A + B0(I −D0)−1C)x∞(p) + Bu∞(p),

y∞(p) = (I −D0)−1Cx∞(p),

x∞(0) = d∞,

where d∞ denotes the strong limit of the pass state initial vector sequence {dk+1}k≥0.
For the differential LRP of (2.14)-(2.15), the resulting limit profile becomes (with D = 0 for

ease of presentation)

ẋ∞(t) = (A + B0(Im −D0)−1C)x∞(t) + Bu∞(t),

y∞(t) = (Im −D0)−1Cx∞(t),

x∞(0) = d∞.

Example 2.2 To explain how the property of asymptotic stability does not guarantee that the
limit profile has ‘acceptable’ along the pass dynamics neither for discrete nor differential LRPs,
where the most basic requirement is stability in the 1D sense, i.e. r(A + B0(I − D0)−1C) < 1
(discrete) and Re

(
λ1(A+B0(I−D0)−1C)

)
< 0 (differential) — a point which is easily illustrated

by, for example, the following cases when

• discrete LRP - A = −0.5, B = 0, B0 = 0.5 + b0, C = 1, D = D0 = 0 and the real scalar b0

is chosen such that |b0| ≥ 1.

• differential LRP - A = −1, B = 0, B0 = 1 + b0, C = 1, D = D0 = 0 and the real scalar b0

is chosen such that b0 > 0.

Theorem 2.1 regards only LRPs of (2.9)-(2.10) and (2.14)-(2.15) with boundary conditions
defined in its simplest form (2.11) – discrete case and (2.16) – differential case. It does not
concern the case, when the dynamical boundary conditions [17, 59] are present. This condition
cannot be applied as well to check the asymptotic stability of generalized LRP of (2.19)-(2.20).
Nevertheless, the idea and the definition of asymptotic stability for those special cases hold.
Hence for those cases it is very convenient to use the 1D equivalent model of LRP, defined
by (2.24)-(2.25) with the appropriate entries of model matrices.

Theorem 2.2 [17, 40, 18] Any discrete LRP given as the 1D equivalent model (2.24)-(2.25) is
asymptotically stable if and only if the following holds

r(Φ) < 1. (2.30)

For the basic LRPs of (2.9)-(2.10) the condition (2.30) is reduced to (2.29) since the system
matrix Φ is lower-triangular and has repeatingD0 along its main diagonal. Hence the eigenvalues
of Φ are the same as D0 and what follows the spectral radius is the same. For the generalized
discrete LRPs, Φ in general is a full matrix hence such a reduction does not hold.
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2.4.2 Stability along the pass

Note that asymptotic stability guarantees the existence of a limit profile but it does not guarantee
that this limit profile treated as a 1D system is stable. The reason, why it works like that is due
to the fact that asymptotic stability does not concern the dynamics along the pass (along p or
t). To see that this property does not guarantee that the limit profile has ‘acceptable’ along the
pass dynamics refer to Example 2.2.
These cases, where the limit profile is unstable as a 1D linear system, are not acceptable.

Hence the stronger concept of stability – stability along the pass, must be used. This stronger
stability demands the BIBO property to hold independently of the dynamics, i.e. in the along
the pass direction p and from pass to pass k. Introduce the formal definition of stability along
the pass as follows.

Definition 2.2 [17, 18] In terms of the abstract model of (2.28), stability along the pass holds
provided there exist the real numbers M∞ > 0 and λ∞ ∈ (0, 1), which are independent of α such
that ||Lk

α|| ≤ M∞λk
∞, k ≥ 0.

In terms of characteristic polynomials, stability along the pass can be characterized as follows
[17, 18, 20]

Theorem 2.3

• Discrete LRP with the characteristic polynomial defined as (2.12) is stable along the pass
if and only if

CdiscreteLRP 6= 0 ∀(z1, z2) : |z1| ≤ 1, |z2| ≤ 1. (2.31)

• Differential LRP with the characteristic polynomial defined as (2.17) is stable along the
pass if and only if

CdiffLRP 6= 0 ∀(s, z) : Re(s) ≥ 0, |z| ≤ 1. (2.32)

The equivalent condition for Theorem 2.3 for the stability along the pass of the discrete LRP
of (2.9)-(2.10) takes the following form

Theorem 2.4 [17, 18, 20] Discrete LRP of (2.9)-(2.10) is stable along the pass, if the following
hold

• r(D0) < 1,

• r(A) < 1,

• all eigenvalues of the transfer function

G(z) = C(zIn −A)−1B0 + D0,

∀ |z| = 1 have modulus strictly less than unity.

Note here that for this result z := z−1
1 (see (2.12)).

For the differential case of (2.14)-(2.15) the following counterpart of Theorem 2.4 is presented.
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Theorem 2.5 [17, 18, 76] Differential LRP of (2.14)-(2.15) is stable along the pass, if the
following hold

• r(D0) < 1,

• Re(λi(A)) < 0 i = 1, . . . , n, where λi(·) denotes the ith eigenvalue of (·),

• all eigenvalues of the transfer function

G(s) = C(sIn −A)−1B0 + D0,

∀ s = ıω, ω ≥ 0 have modulus strictly less than unity.

Note that these conditions are valid also 2D discrete linear systems described by a Roesser
model of (2.1) (RM) whose stability is governed (after the appropriate modifications). This is a
known fact [17] and immediately provides the interchange of stability conditions for these two
classes of linear systems. Unfortunately, none of these tests provide an effective basis on which
to design control laws for LRPs. In the case of LRPs (and, in particular, applications areas such
as ILC) it is also essential to include performance demands into the design specification. Also,
it has been found that only a limited number of key systems theoretic features (e.g. one form of
controllability) for these processes can be characterized by the direct application of the theory
developed already for RM (or alternatives).

Remark 2.6 As aforementioned, there arises the question of applicability of the stability con-
ditions presented in this section. In [41] it was presented that the conditions of Theorems 2.3,
2.4 or 2.5 belong to the class of NP-hard problems. Hence they are hard to apply in practice or
even, in some cases can be impossible to be applied. It is due to the fact that those conditions
require dealing with polynomials in two variables (Theorem 2.3) and since there are no sufficient
methods for dividing such polynomials, those results remain rather theoretical. On the other
hand, conditions given in Theorems 2.4 and 2.5 require to check all possible complex numbers
satisfying some constraints. Since there is an infinite amount of such complex numbers, it is
straightforward to conclude that those conditions remain to be of the theoretical significance only,
as well.
The other significant difficulty arises in defining the synthesis (controller design towards

stability along the pass) using the above conditions and this fact also limits the applicability of
them.
The efficient numerically methods for analysis (testing stability along the pass) and synthesis

(the controller design) of LRPs are presented in Chapter 4 of this dissertation.

2.5 Practical applications of LRPs

As aforementioned, 1D models in many cases do not match good enough the modeled physical
process, hence it is purposeful to use 2D (nD) theory to the physical process modeling. Thanks
to application of 2D (nD) techniques, it is possible to solve the problems of the analysis and
synthesis more accurately. It is to note now that using the 1D classical theory for those cases did
not work at all or did not give the required (good enough) results. Below some practical appli-
cations of physical processes, which have been found as necessary to be modeled and considered
using 2D approach are presented.
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2.5.1 Metal rolling

Metal rolling is a very common industrial process, where the deformation of the piece of the
material takes a place. It is done with two rolls with parallel axes revolving in the opposite
directions. Figure 2.3 presents a schematic diagram of the process, where the goal is to pass the
material to be rolled to a pre-specified thickness through a series of rolls for successive reductions
of the width. It is to note that it can be ‘costly’ in terms of the equipment required. A more
reasonable route, from the economic point of view, is to use a single two high stand, where this
process is often termed ‘clogging’.

k+1k

Figure 2.3. Schematic diagram of metal rolling operation

Figure 2.4. Metal rolling process

In the practical applications, many models of this process can be developed based on as-
sumptions of the dynamics describing the various modes of operation under the consideration.
Here, however, it will suffice to develop a linearized model of the dynamics of the (simplified
but feasible) case shown in Figure 2.4.
The particular task, considered here, is described as the development of a simplified model

relating the gauge on the current and previous passes through the rolls. These are denoted by
yk+1(t) and yk(t) respectively and the other process variables and physical constants can be
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defined as follows:

FM is the force developed by the motor,

Fs is the force developed by the spring,

M is the lumped mass of the roll-gap adjusting mechanism,

λ1 is the stiffness of the adjustment mechanism spring,

λ2 is the hardness of the metal strip,

λ = λ1λ2
λ1+λ2

is the composite stiffness of the metal strip and the roll mechanism.

To model the basic process dynamics, refer again to Figure 2.4 and following [23] or [24] first
note that the force developed by the motor is

FM = Fs + Mÿ(t)

and the force developed by the spring is given by

Fs = λ1[y(t) + yk+1(t)].

This last force is also applied to the metal strip by the rolls and hence

Fs = λ2[yk(t)− yk+1(t)].

Hence the following linear differential equation presents the relationship between yk+1(t) and
yk(t) under the above assumptions

ÿk+1(t) +
λ

M
yk+1(t) =

λ

λ1
ÿk(t) +

λ

M
yk(t)−

λ

Mλ2
FM . (2.33)

Suppose now that the differentiation in (2.33) is approximated by the backward difference
with sampling period T . Then the resulting difference-domain approximation is

yk+1(t) =a1yk+1(t− T ) + a2yk+1(t− 2T ) + a3yk(t)

+ a4yk(t− T ) + a5yk(t− 2T ) + bFM ,
(2.34)

where

a1 =
2M

λT 2 + M
, a2 =

−M

λ2T + M
, a3 =

λ

λT 2+M

(
T 2+

M

λ1

)
,

a4 =
−2λM

λ1(λT 2+M)
, a5 =

λM

λ1(λT 2+M)
, b=

−λT 2

λ2(λT 2+M)
.

Now set t = pT and yk+1(p) = yk+1(pT ). Then (2.34) can be written as

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p),

where

xk+1(p) =
[

yk+1(p−1) yk+1(p−2) yk(p−1) yk(p−2)
]T

, uk+1(p) = FM ,
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and

A =


a1 a2 a4 a5

1 0 0 0
0 0 0 0
0 0 1 0

 , B =


b

0
0
0

 , B0 =


a3

0
1
0

 ,

C =
[

a1 a2 a4 a5

]
, D = b, D0 = a3.

This last state-space model becomes a special case discrete LRP of (2.9)-(2.10) and in the
sequel of the dissertation the following numerical data is used λ1 = 0.6, λ2 = 2, M = 0.1 and
T = 0.1. This set of numerical data yields λ = 0.4615 and

A =


1.9118 −0.0047 −1.4706 0.7353

1 0 0 0
0 0 0 0
0 0 1 0

, B =


−0.0221

0
0
0

, B0 =


0.7794

0
1
0

 ,

C =
[

1.9118 −0.0047 −1.4706 0.7353
]
, D =

[
−0.0221

]
, D0 =

[
0.7794

]
.

(2.35)

2.5.2 Long-wall coal cutting

The coal mining processes are the first of the historical significance industrial processes, which
have been modeled by the LRPs. It has been turned out that the control schemes based upon
LRPs provide satisfactory results over other applied alternatives.

Figure 2.5. Long-wall coal cutting process

Figures 2.5 and 2.6 illustrate the operation of the long-wall coal cutting process, in which
the coal cutting machine is moved along the entire length of the coal face. The coal is cut with
the rotating cutting drum. After reaching the end of the coal face, the machine is moved back
at the high speed to the beginning of the face and then shifted to the face by the width of
the already cut coal. Then the whole process is started again. The gained coal is transported
away by the Armoured Face Conveyor (denoted A.F.C.). The described simplest mode of that
operation expects the cutting of the coal in only one direction, however it is also possible to
provide the schedule to cut the coal in both directions, i.e. after reaching the end of the coal face
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Figure 2.6. Long-wall coal cutting process

the machine is not moved back but the drum is shifted to the face of the coal and the process
of cutting is started again in the backward direction.
It is to note that due to the current requirements, the cutting drum can be moved in the

vertical direction (raised or lowered) with respect to the A.F.C. To provide the basic measures
a nucleonic coal sensor has been mounted at the beginning of the machine.
The mathematical modeling, which allows obtaining the appropriate model of the structure

of LRPs for this physical example has been presented in details in [17, 20].

2.5.3 Iterative Learning Control

Application of Iterative Learning Control (ILC) has been motivated by the necessity of improving
the track (decreasing the tracking error) that considered system tried to follow repeatedly.
During recent years the applications, concepts and problems arising in the area of ILC have
been widely investigated [26, 34, 36, 77, 29, 78, 79]. ILC concept relies on repeatedly decreasing
the tracking error during the sequence of iterations (trials, sweeps, repetitions or, in terms of
LRPs, passes). The original idea of ILC arises from observations made to the human ways of
learning by repetitions. It is used mainly in learning of artificial intelligence systems (e.g. neural
networks or robots).
Due to the inherent 2D structure of ILC (information propagate in two independent direc-

tions, i.e. dynamics of the system itself during the single iteration - time; and the iteration
count), it is natural to apply the 2D techniques for the control purposes. Those include the sta-
bility investigation (analysis problem) and/or controller design towards stability in the closed
loop configuration (synthesis problem). There also arises the problem of ensuring the required
performance (e.g. quick convergence) during the learning procedure.
It is to underline that the concept of ILC relies on using the information come from the

former (or formers) trial to tune (control) the behaviour of the current one to attain the required
performance (i.e. to minimize the tracking error).
To describe the process of ILC in 2D terms, let a single learning iteration (trial) numbered

by k be denoted by the execution of the discrete system defined as

xk(p + 1) = Axk(p) + Buk(p),

yk(p) = Cxk(p),
(2.36)

where uk(p) ∈ Rr - the input vector, yk(p) ∈ Rm - the output vector (the current trajectory),
xk(p) ∈ Rn - the state vector and the desired output trajectory (denoting the required to attain

31



Two-dimensional (2D) state-space models and repetitive processes

track) yref (p) and where 0 ≤ p ≤ α−1. The boundary conditions become

xk(0) = x0, k = 0, 1, . . . ,

u0(p) = 0, p = 0, 1, . . . , α.
(2.37)

Using the above notation the problem formulated as ILC becomes: through several iteration find
(learn) the appropriate control sequence uk(p), 0 ≤ p ≤ α−1 such that the tracking error, i.e.
the difference between the current trajectory at iteration k and the desired output trajectory
converges to 0 along the full execution (i.e. 0 ≤ p ≤ α−1). To formalize this, the tracking error
is defined by

ek(p) = yref (p)− yk(p). (2.38)

The minimization of ek(p) 0 ≤ p ≤ α−1 is done by adjusting the input from the current iteration
i.e. uk(p) to a new input uk+1(p) for the next iteration with some correction factor. Therefore,
a general iterative control sequence is defined as

uk+1(p) = uk(p) + ∆uk+1(p), (2.39)

where ∆uk(p) denotes the correction of the control input required to improve the control (to
minimize the tracking error). The ILC scheme is called to be convergent if ek(p) → 0, k →∞,
0 ≤ p ≤ α−1. In that case the pass profile yk(p) tends to the reference signal yref (p) for each
0 ≤ p ≤ α−1. In what follows, combining (2.36), (2.38) and (2.39) provides the following
dependence

ek+1(p)− ek(p) = −CAηk+1(p)− CB∆uk(p− 1),

where
ηk+1(p) , xk+1(p− 1)− xk(p− 1).

What is more, from (2.39) and (2.36)

ηk(p + 1) = Aηk(p) + B∆uk(p− 1).

Hence the correction of the control law is given as

∆uk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1)

and the LRP, which models the ILC scheme is obtained[
ηk+1(p + 1)

ek+1(p)

]
=

[
A−BK1 −BK2

−CA + CBK1 I − CBK2

][
ηk+1(p)
ek(p)

]
(2.40)

It is clear [36, 33] that asymptotic stability of the LRP given in the form of (2.40) guarantees
that the underlying ILC law (2.39) is convergent and hence the explicit link between the efficient
numerical computation task and the system theoretic approach exists. Along the same lines,
the stability along the pass requirement prevents the presence of the undesirable dynamics in
the along the pass direction (p) and is crucial especially, when passes are long.
To complete the description, it is necessary to provide the boundary conditions as

ηk(0) =xk+1(0)− xk(0) = x0 − x0 = 0, k = 0, 1, . . . ,

e0(p) =yref (p)− y0(p) = yref (p)− CAT x0, p = 0, 1, . . . , α−1.
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Note that here only the discrete case of the basic one-iteration system has been considered. It is
natural that the analogous continuous dynamical system describing the single execution of the
ILC process can be assumed. In such a case the resulting 2D model has a discrete-continuous
structure. Such a continuous case of ILC can be found e.g. in [50].

Remark 2.7 Note that, when considering ILC due to the fact that the variable p associated with
the time during the iteration (the time duration) is finite by the definition, it is quite natural to
apply the LRP model and to employ all control techniques known for LRPs. The other important
point is to underline the purposefulness of application of LRPs over the alternative 2D models
arises, when the continuous case of ILC (i.e. the basic system (2.36) is continuous instead of
discrete) is considered. There is no basic 2D models involving the discrete-differential couple of
variables. Nevertheless, LRPs are considered to occur as double discrete variables model (see
(2.9)-(2.10)) or as discrete-differential variables model (see (2.14)-(2.15)).

It is quite natural, to note that representation of the ILC in the valid LRP form, provides
some possibilities. Namely, note that the stability of the LRP in this case is indeed related
with the convergence of the ILC process which is considered. Analogously, the controller design
problem of LRP in terms of ILC can be treated as a problem of ensuring the convergence of the
iterative procedure. Hence the links between the systems theory and the features of the data
processing (which clearly includes the ILC schemes) are stated.
It is clear that the ILC scheme can be efficiently extended to modeling and next, improving,

other iterative computational tasks.

2.5.4 Spatially interconnected systems

Recently, there appeared the interest in so-called spatially interconnected systems (see e.g. [32]
and references therein), which clearly have strong links to LRPs. Such models can successfully
model the spatially complex systems composed of the basic subsystems shown in Figure 2.7).

Figure 2.7. The basic idea of the subsystem

The reported in the literature applications include: automated highway systems, air–forma
tion flight, satellite constellations, cross directional control in paper processing applications and
micro-cantilever array control for massively parallel data storage. Note that depending on the
way in which the subsystems are connected, it is possible to obtain several different structures
of the spatially interconnected systems. The simplest structures are presented in Figures 2.8
and 2.9 (for the others refer to [32]). It is to note that those structures are strongly depended
on the nature of the considered system.
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Two-dimensional (2D) state-space models and repetitive processes

Figure 2.8. The possible interconnection of the subsystems - the infinite line

Figure 2.9. The possible interconnection of the subsystems - the circle

It is to underline that the state-space models presented in [32] for the spatially interconnected
systems are (after the appropriate reformulations) similar to the models of LRPs. Hence the
application of the analysis/synthesis methods developed originally for LRPs is supposed to be
fruitful for the both areas.
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Chapter 3

Linear Matrix Inequalities in control

Most of the control problems considered in this dissertation can be presented in the forms of
a few convex optimization problems involving Linear Matrix Inequalities (LMIs) (see [42, 43,
44, 45, 80, 81]). Since the numerically powerful interior-point methods algorithms have been
implemented recently, the main task at the moment is to present the considered problem in the
framework of known, solvable by those algorithms, scheme. Nevertheless, it is worth of noting
that such a transformation into the LMI in many cases (e.g. the robust stability condition)
is not a straightforward trivial operation and requires involving the sophisticated methods of
mathematical proving.
The wide list of the control problems, which can be presented and finally solved with LMI,

can be found in the [42], however this dissertation’s topics are due to the Lyapunov theory
for the linear 2D systems. For the classical 1D systems, the application of LMI provides the
natural reformulation of the stability/controller design conditions and the results still remains
the necessary and sufficient conditions. For 2D systems and LRPs there has been proved that
some of analysis/synthesis conditions, however necessary and sufficient, are NP-hard. Hence
those conditions are considered to be not applicable in practice. On the other hand, it has
been presented that the application of LMIs to analysis and synthesis of 2D systems and LRPs
provides the P-class conditions. Note however that those conditions are only sufficient now.
Therefore, from the point of view of numerical effectiveness, LMI methods alone can be treated as
very efficient algorithmic tools for solving complicated control related computational problems.

3.1 Basics of LMIs

Linear Matrix Inequality is defined as any constraint of the following form:

F (x) := F0 + x1F1 + x2F2 + . . . + xMFM < 0, (3.1)

where

x = (x1, x2, . . . , xM ) - a vector of unknown scalars (the decision or optimization variables),

F0, F1, . . . , FM - given symmetric matrices,

< 0 stands for ”negative definite”, i.e. for any nonzero vector u ∈ RM , uF (x)uT < 0 (the
largest eigenvalue of F (x) is negative).
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The constrains F (x) > 0, F (x) < G(x) and G(x) > 0, F (x) > 0 are the special cases of (3.1),
since they can be rewritten as –F (x) < 0, F (x) – G(x) < 0 and diag(G(x), F (x)) > 0, respec-
tively.
The LMI (3.1) is a convex constraint on x, since for any y, z satisfying F (y) < 0 and

F (z) < 0, imply that F ( z+y
2 ) < 0.

If the solution set of (3.1), called the feasible set, exists, then it is a convex subset of RM .
Note that finding a solution x satisfying (3.1), can be presented as the convex optimization
problem.
In some cases, the strict inequality in (3.1) is replaced by the non-strict one. In such a case

(3.1) becomes
F (x) := F0 + x1F1 + x2F2 + . . . + xMFM ≤ 0 (3.2)

and all of the above features are satisfied as well.
The inequality of (3.1) is called the canonical form of LMI since the sought solution for given

LMI is a vector of decision variables xi, i = 1, 2, . . . ,M . In the sequel, LMIs in the canonical
form are seldom used, since the considered problems are due to finding a variable matrix (say X

or P ) such that the appropriate inequality holds. It is easy to show that any ”standard” LMI,
involving finding the matrix variable can be presented in the canonical form.

Example 3.1 Consider the Lyapunov stability condition of differential 1D system described by

ẋ(t) = Ax(t), (3.3)

which states that the system is stable if and only if there exists a positive definite matrix P > 0
such that the following LMI is satisfied

AT P + PA < 0, P = P T > 0 (3.4)

or [
AT P + PA 0

0 −P

]
< 0.

To present this condition in the canonical form of LMI note that

A =

 a11 . . . a1n

...
. . .

...
an1 . . . ann

 , P = P T =

 p11 . . . p1n

...
. . .

...
p1n . . . pnn


For the ease of the presentation and without the loss of the generalization assume that n = 2.
Next, the multiplication of (3.4), due to the structures of matrices A and P , provides the following
inequality (note that since aij and pkl are scalars then aijpkl = pklaij)

2p11a11 + 2p12a21 p12(a11 + a22) + p22a21 + p11a12 0 0
p12(a11 + a22) + p22a21 + p11a12 2p12a12 + 2p22a22 0 0

0 0 −p11 −p12

0 0 −p12 −p22

 < 0

or write it in the canonical form of LMI as

p11


2a11 a12 0 0
a12 0 0 0
0 0 −1 0
0 0 0 0

+ p12


2a21 a22 + a11 0 0

a22 + a11 2a12 0 0
0 0 0 −1
0 0 −1 0

+ p22


0 a21 0 0

a21 2a22 0 0
0 0 0 0
0 0 0 −1

<0.
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To conclude the above example, it has been presented that the LMI with the matrix variable P

has been transformed into its canonical form. Note that since LMIs are symmetric, it is possible
to transform any other LMI using the same manner. Hence it is straightforward to see that any
LMI with the matrix variables can be presented in the appropriate canonical form.

3.2 Bilinear Matrix Inequalities

However, the problems considered in this dissertation are treated finally to become LMIs, most
of those problems are not given in the LMI form directly. One way to deal with such a problems
is to try to linearize them to obtain LMI. For instance, consider the 1D differential system
synthesis problem presented in [81], where the task is to design the controller K ensuring that
the closed loop system is stable. The inequality corresponding to that problem can be written
as

(A + BK)T P + P (A + BK) < 0, P > 0 (3.5)

or, after multiplication

XAT + AX + KT BT P + PBK < 0, P > 0.

This is not an LMI since there is a multiplication between the variable matrices K and P . To
convert this problem into the LMI form, left- and right- multiply it by X = P−1 and introduce
the following substitution K = NX−1. Hence the inequality (3.5) becomes the following LMI

XAT + AX + NT BT + BN < 0, X > 0.

It is to note that such a conversion to LMI, in general is not possible to be performed for all
problems. Hence recently, there has arisen another opportunity to deal with problems in form
similar to (3.5) (e.g. involving two decision variables multiplication). Thus, Bilinear Matrix
Inequalities (BMIs) have been defined as a general way to handle such a problems [82]

F (x, y) = F0 +
M1∑
i=1

xiFi +
M2∑
j=1

yjGj +
M1∑
i=1

M2∑
j=1

xiyjHij ≥ 0, (3.6)

where x ∈ RM1 , y ∈ RM2 are the decision variables vectors, F0, Fi, 1 ≤ i ≤ M1, Gj , 1 ≤ j ≤ M2

and Hij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2 are given symmetric matrices.
As it was mentioned, in general, BMIs are non-convex optimization problems, which can

have multiple local solutions, hence solving a general BMI was shown to be NP-hard [83]. On
the other hand, in many cases, no such a simple recasting method to the LMI as for (3.5) can
be presented.
Today, problems given in the form of BMIs can be solved with algorithms based on a spatial

branch and bound strategy but unfortunately they are suitable only for small-size problems.
Due to the fact that there remain some open problems regarding the performance and the
implementation of BMIs solvers, these methods are still being developed [84, 85, 86].
The principal method for reformulating problems given as BMIs into the terms of LMIs is

the so-called Schur complement accompanied by the suitable transformations (see, e.g. [50]).
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3.3 Schur complement

As aforementioned, for the problems, which are not originally LMIs, it is necessary to try to
convert those into LMIs. Very useful in this field appears to be so-called Schur complement
[42, 87, 88], which allows to disconnect the multiplied variables.

Lemma 3.1 (Schur Complement [42, 87, 88]) Let Σ1, Σ2, Σ3 and Σ4 be real matrices of ap-
propriate dimensions. Then for Σ1 > 0 and Σ3 = ΣT

3

Σ3 + ΣT
2 Σ1Σ2 < 0

if and only if [
Σ3 ΣT

2

Σ2 −Σ−1
1

]
< 0 or

[
−Σ−1

1 Σ2

ΣT
2 Σ3

]
< 0.

3.4 Geometry of LMIs

The set of feasible solutions of the considered LMI (3.1) (the feasibility set) is denoted as follows

F(x) =
{
x ∈ RM : F (x) = F0 +

M∑
i=1

xiFi < 0
}
. (3.7)

Due to the fact that LMI is defined in the space of its decision variables (x ∈ RM ), it is possible
to present the feasibility set as a geometrical shape in this space. Note that (3.1) or (3.2), due to
matrices Fi denotes the convex subspace of RM . The feasibility region of the considered strict
LMI is the interior without boundaries of that subspace (for the non-strict LMI the feasibility
region is the same interior but with boundaries included). For the positive (non-negative)
definiteness of F (x), it is required that all of its diagonal minors to be positive (non-negative).
For the negative (non-positive) definiteness of F (x), it is required that its diagonal minors of odd
degree to be negative (non-positive) and the minors of even degree to be positive (non-negative),
respectively.
It is straightforward to see that the diagonal minors are multi-variate polynomials of variables

xi. Hence the LMI set can be described as (ϕ denotes the size of the considered LMI)

F(x) =
{
x ∈ RM : fi(x) > 0, i = 1, . . . , ϕ

}
(3.8)

for the positive definite LMI and the following for the negative one

F(x) = x ∈ RM :

{
fi(x) < 0, ∀ odd i : 1 ≤ i ≤ ϕ,

fi(x) > 0, ∀ even i : 2 ≤ i ≤ ϕ,
(3.9)

which are the semi-algebraic sets. Moreover, they are the convex sets.

Example 3.2 To see the result of the previous paragraph, consider the following LMI

F (x1, x2) =

 x1 − 4 −x2 + 2 0
−x2 + 2 −1 x1 − x2

0 x1 − x2 −x1 − 1

 < 0.
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To find a feasibility region of this LMI, write the conditions for the diagonal minors of degree:
first, second and third in variables x1, x2. Hence the minors become

x1 − 4 < 0,

−1 < 0, (first degree minors - must be negative)

−x1 − 1 < 0,

−(x1 − 4)− (−x2 + 2)2 > 0,

−(−x1 − 1)− (x1 − x2)2 > 0, (second degree minors - must be positive)

(x1 − 4)(−x1 − 1) > 0,

−(x1 − 4)(−x1 − 1)− (−x2 + 2)2(−x1 − 1) (third degree minor (the determinant of F (x)) -

−(x1 − 4)(x1 − x2)2 < 0. - must be negative)

a) b)

Figure 3.1. The solutions for the first (a) and second (b) degree minors

Given figures illustrate the solutions for the minors of first (Figure 3.1 a)), second (Figure 3.1
b)) and third degree (Figure 3.2 a)), respectively. Figure 3.2 b) shows the feasibility region for
the considered LMI.
It is straightforward to see that the feasibility region is the intersection of the regions, which

satisfy the constrains due to the corresponding minors.
The solution of the above problem given by the Matlab LMI Control Toolbox is x1 =

1.667 and x2 = 1.833. Note that the point of those coordinates lays inside the feasibility region
shown in Figure 3.2 b).

From this example, it is straightforward to see that any set of LMIs F1(x) < 0, F2(x) < 0
can be treated and solved as F (x) = diag

(
F1(x), F2(x)

)
< 0. The same fact holds for the set

of LMIs dependent on distinct variables i.e. F1(x) < 0, F2(y) < 0, which can be presented as
F (x, y) = diag

(
F1(x), F2(y)

)
< 0.
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a) b)

Figure 3.2. The solutions for the third (a) degree minors and the feasibility region for the
considered LMI (b)

3.5 Reformulation of the LMI problems into SDPs

Since the term ’LMI’ is narrowly used mainly in the control applications, for the others engi-
neering science areas the Semidefinite Programming (SDP) is used as one, which has the similar
meaning. There have been developed several of algorithms and implemented some software
packages that allow to solve problems given as SDP. SDP problem is defined as follows (see [89])

SDP



P : minimize
∑M̂

i=1 cixi,

subject to X =
∑M̂

i=1 Gixi −G0,

X ≥ 0,

D : maximize G0 •Y,

subject to Gi •Y = ci (1 ≤ i ≤ M),

Y ≥ 0,

(3.10)

where X = XT , Y = YT ∈ Rn×n- the variable matrices, Gi ∈ Rn×n i = 0, 1, . . . , M̂ -
constraints matrices, c ∈ RM̂ - the cost vector, x ∈ RM̂ - the optimization variables vector, • -
the inner product of two matrices, ≥ 0 - semipositive definiteness. By P the primal form of the
optimization problem is denoted and by D the dual form, respectively.
The standard problems which are formulated as SDP includes:

• Max-Cut Problem [90, 91],

• Graph Bisection [92],

• Maximum cliques in graphs [93],

• Min-Max Eigenvalue Problem [94, 95].

• and others.
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In some cases, the following, equivalent to (3.10), definition of SDP is used

SDP’



P : minimize Ĝ0 • Ŷ,

subject to Ĝi • Ŷ = ĉi (1 ≤ i ≤ M̂),

Ŷ ≥ 0,

D : maximize
∑M̂

i=1 ĉix̂i,

subject to
∑M̂

i=1 Ĝix̂i + X̂ = Ĝ0,

X̂ ≥ 0.

(3.11)

To convert SDP’ of (3.11) into the original SDP of (3.10) follow the following substitutions

Ĝi � −Gi, (0 ≤ i ≤ M̂),

ĉi � −ci, (1 ≤ i ≤ M̂),

Ŷ � Y,

x̂i � xi, (1 ≤ i ≤ M̂),

X̂ � X.

There is also the possibility for redefining the problem originally given as LMI into the form
of SDP and this fact is of the crucial importance, when considering the application of the SDP
software in duty of solving the control problems given as LMIs. Hence to redefine LMI into the
valid form of SDP recall a nonnegative case of LMI defined in (3.1), given here as

F (x) := F0 + x1F1 + x2F2 + . . . + xMFM ≥ 0

and remember that in this case the task was to find any decision variables vector x satisfying
the LMI or to prove that such a vector does not exist (feasibility problem). Hence introduce the
additional variable xM+1 to LMI and write it as a primal form of SDP

minimize xM+1,

subject to X = F0 +
M∑
i=1

Fixi + xM+1I,

X ≥ 0.

Hence it is possible to treat LMI as a special case of SDP given in the primal form, when

M̂ = M + 1, G0 = −F0, Gi = Fi, ci = 0, (1 ≤ i ≤ M), cM̂ = 1, GM+1 = I.

The LMI formulated in the form of SDP is feasible, when there exists xM+1 < 0. Note that since
in the control problems, it is required that the inequality sign is negative (not non-positive), it
is to see that this LMI becomes the strict one, since xM+1 is to be strictly negative.
Concluding, it is straightforward to notice that any LMI problem can be tried to be solved

using not only LMI software but as well the SDP software. This extends the whole area of
possible to apply software packages, including the parallel SDP software packages e.g. Dsdp
([96]) or Sdpara ([97, 98]).
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Example 3.3 To provide the view on the procedure described previously, consider again Exam-
ple 3.1. The resulting LMI has the following canonical form

F (P ) = p11

[
2a11 a12

a12 0

]
+ p12

[
2a21 a22 + a11

a22 + a11 2a12

]
+ p22

[
0 a21

a21 2a22

]
< 0

and it is to remember that

P =

[
p11 p12

p12 p22

]
= p11

[
1 0
0 0

]
+ p12

[
0 1
1 0

]
+ p22

[
0 0
0 1

]
> 0.

Now, it is necessary to combine F (P ) < 0 and P > 0 as[
−F (P ) 0

0 P

]
> 0.

Introduce the additional decision variable p∗ (x4) and formulate this problem as primal form of
SDP

minimize p∗︸︷︷︸
x4

,

subject to
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

G0

+ p11︸︷︷︸
x1


−2a11 −a12 0 0
−a12 0 0 0

0 0 1 0
0 0 0 0


︸ ︷︷ ︸

G1

+ p12︸︷︷︸
x2


−2a21 −a22 − a11 0 0

−a22 − a11 −2a12 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

G2

+ p22︸︷︷︸
x3


0 −a21 0 0

−a21 −2a22 0 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

G3

+ p∗︸︷︷︸
x4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

G4

≥ 0.

Note that since there are no constraints on p∗ (x4), the positive inequality sign can be changed
into the nonnegative one, to fulfill the requirements of SDP definition. Now, if the optimization
process stops at p∗ < 0 (x4 < 0), the certificate of feasibility is given.

Example 3.4 To highlight the above procedure the solution of the feasibility problem presented
in Example 3.2 has been considered again. Now, the assumed task is to present it in the form of
the SDP problem and solve it using the SDP solver. The resulting SDP problem can be presented
as follows

min 0 x1 + 0 x2 + 1 x3,

subject to

 −4 2 0
2 −1 0
0 0 −1

+ x1

 −1 0 0
0 0 −1
0 −1 1

+ x2

 0 1 0
1 0 1
0 1 0

+ x3

 1 0 0
0 1 0
0 0 1

 ≥ 0.

The application of Sdpara solver provides the following solutions x1 = 2.0, x2 = 2.0 and
x3 = −1.0. It is easy to note that the point (x1, x2) lays inside the feasibility region shown in
Figure 3.2 b).
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3.6 Elimination of the equality constraints

In some applications the linear equality constraints together with inequalities appear. Hence it
is necessary to eliminate those constraints, since the definition of LMI or SDP does not allow
such case.
As presented, the LMI condition can be presented in the canonical form of (3.1). In this

case, LMI with the additional factors (the linear equality constraints) can be presented as

F (x) < 0, x ∈ RM ,

Hx = b.

Due to the fact that the equality constraints do not involve (on average) all entries of x, matrix
H is not the square, full rank matrix. Hence it is possible to introduce the new vector of decision
variables y ∈ RfM , which indeed is the mapped x such that as

y = H]x + y0,

where H] denotes the nullspace of H and y0 is any particular solution of Hx = b. In this case
the reformulated LMI becomes

F (y) = F (H]x + b) < 0

and the equality constraints have been eliminated.
Hence the LMI or SDP solver now can be used to solve F (y) < 0. However, it is to note that

after obtaining the feasible solution vector y, it is necessary to re-map it back to the original
variables vector x.

Example 3.5 To present the idea of the elimination of the equality constraints consider again
the analysis problem given in Example 3.1. However here, the additional constraints on P are
assumed

AT P + PA < 0, P = P T > 0,

trace(P ) = 1,

where A = diag(−1,−1). Hence P =

[
p1 p2

p2 p3

]
and p1 + p3 = 1. Then the equality constraint

is given as

p1 + p3 = 1 ↔ Hp̃ = b,

where H = [ 1 1 0 ] , p̃ = [ p1 p3 p2 ]T and b = 1.

Introduce new vector of variables q̃ and note that

q̃ = H]p̃ + p̃0,

where p̃0 – any particular solution to Hp̃ = 1 e.g. p̃0 = HT (HHT )−1b and H] – nullspace of H
(in Matlab can be computed by null(H,’r’)). In this particular case, the following mapping is
obtained  p1

p3

p2


︸ ︷︷ ︸

ep

=

 0.5
0.5
0


︸ ︷︷ ︸

ep0

+

 −1 0
1 0
0 1


︸ ︷︷ ︸

H]

[
q1

q2

]
︸ ︷︷ ︸

eq

.
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Hence under the constraint, the following change of variables is performed

P > 0 ↔

[
0.5 0
0 0.5

]
+ q1

[
−1 0
0 1

]
+ q2

[
0 1
1 0

]
> 0.

Now, this mapping has to be substituted into the original LMI, which becomes

AT
([ 0.5 0

0 0.5

]
+q1

[
−1 0
0 1

]
+q2

[
0 1
1 0

])
+
([ 0.5 0

0 0.5

]
+q1

[
−1 0
0 1

]
+q2

[
0 1
1 0

])
A < 0,

what, after multiplication, can be rewritten as[
−1 0
0 −1

]
+ q1

[
2 0
0 −2

]
+ q2

[
0 −2
−2 0

]
< 0,[

0.5 0
0 0.5

]
+ q1

[
−1 0
0 1

]
+ q2

[
0 1
1 0

]
> 0.

It is straightforward to see that there are many feasible pairs q1 and q2 satisfying the above
inequalities. Take q1 = 0.3 and q2 = 0.1. To obtain the final solution take p1 = 0.2, p2 = 0.1
and p3 = 0.8.

3.7 Efficient algorithms for solving LMIs/SDPs

The first step towards the effective algorithms to solve LMIs was the developing the simplex
algorithm. However, it was recognized as a badly-behavioral - in the worst case, the time (total
number of iterations) required to finish the optimization process, might increase exponentially
in the number of the optimization variables. Hence due to that drawback, the polynomial-time
algorithms were sought.
The first one, called the ellipsoid algorithm, was developed by Khachiyan ([99]). It is the

simplest polynomial-time algorithm that can be applied to solve the convex optimization problem
(and hence LMI). The idea of the ellipsoid algorithm is as follows: start with the ellipsoid (defined
in the variables space), which contains the optimal solution. Then the procedure relying on the
repetition the following sequence until the required accuracy is not reached: divide the current
ellipsoid in half, choose the half in which the optimum lays, compute the minimum volume
ellipsoid that contains the chosen half and finally check the stop condition (e.g. the accuracy or
the iteration number). The above procedure guarantees that the optimum lays still in the inside
of each ellipsoid and since the volume of each successive ellipsoid is decreased geometrically, the
solution should be found quickly. Nevertheless, tests proved that in practice the optimal solution
is found relatively slowly. Hence those kind of algorithms are not widely used. The details of
the ellipsoid algorithm can be found in [42].
Despite the slow convergence in practical applications, when the advantages of the ellipsoid

algorithm have been realized, more effort on development the convex optimization methods has
been put. Hence Nesterov and Nemirovskii proposed the Interior Point Method (IPM) algorithm
(see e.g. [100]).
The main advantage of IPM algorithms is that they are the polynomial-time in the number

of optimization variables - that fact comes from its construction. Also, the practical efficiency
has been proved - the maximum number of iterations on usual does not exceed 50 and acts like
it is not dependent of the input data.
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Interior-point algorithm

Due to their mentioned advantages (the theoretical and computational efficiency - [100, 101]),
IPM algorithms has been found very attractive for solving LMIs/SDPs. Below, the general
sketch of IPM algorithm is presented ([102]).

Step 1 Construct a barrier function φ(x) that is well defined for strict feasible
x and becomes −ε (where −∞ < −ε � 0) only at the optimal value
x = x∗.

Step 2 Generate a sequence {x(k)} so that

lim
k→∞

φ(x(k)) = −ε.

Step 3 Stop if φ(x(k)) is negative enough.

There arises the question of choosing the appropriate barrier function. It has to be convex
inside the feasibility region of the considered problem and infinite outside it. The simplest choice
is the following [102]

φ(x) = − log det
(
F (x)

)
= log det

(
F−1(x)

)
.

The chosen barrier function is incorporated into the original objective function f(x) = cT x

(c ∈ RM is a given cost vector). However such a substitution produces the nonlinear objective
function, but on the other hand the optimization problem becomes the unconstrained now and
the problem appears to be easier to handle and finally to solve. The new objective function,
which is to be minimized becomes then

f̂(x) = f(x) + uφ(x) = cT x− u log det
(
F (x)

)
, (3.12)

where the parameter u > 0 is to be selected. Now, any method for the nonlinear optimiza-
tion can be applied. It relies on iterative producing the sequence of the solution still-better
approximations ([85]) in the following manner

x(k+1) = x(k) + t(k)∆x(k), (3.13)

where ∆x(k) defines the search direction and t(k) ≥ 0 is the size (length) of that step. The most
common approach to solve such a problem is the Newton-based approach and in such a case t(k)

denotes the gradient of f̂(x), and ∆x(k) denotes the inverse of the Hessian of f̂(x).
There are many different implementations of the above algorithm. They differ in the ways

how the gradient and Hessian are computed, the stop conditions and so on. As an example of
the IPM algorithm the projective method [103, 104] can be considered. It has been implemented
in Matlab LMI Control Toolbox and its brief description can be found in Section 3.9.1.
This method uses the primal representation of the considered problem. However, there can be
found a number of IPM algorithms employing primal-dual approach, see e.g. [102, 105, 89, 106].

Primal-dual IPM algorithm

Below the IPM algorithm, which uses the primal-dual approach to solve the SDP’ given as (3.11),
is presented (see [98, 97] and references therein).
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Step 0 Set up the parameters γ1, γ2 ∈ (0, 1), choose a starting point (Ŷ, X̂, x̂),
where Ŷ, X̂, x̂ are defined as in (3.11) and set compute µ using the following
equation

µ =
Ŷ • X̂

n
. (3.14)

Step 1 Compute the search direction (dŶ, dX̂, dx̂).

Step 1a Set µ := γ1µ and compute the residuals r ∈ RM̂ , R ∈ RM̂×M̂

ri = ĉi − Ĝi • Ŷ, (1 ≤ i ≤ M̂),

R = Ĝ0 −
M̂∑
i=1

Ĝix̂i − X̂,

C = µI − ŶX̂.

Step 1b Compute matrix B ∈ RM̂×M̂ and the vector s ∈ RM̂

Bij = Ĝi • ŶĜjX̂−1, (1 ≤ i ≤ M̂), (1 ≤ j ≤ M̂), (3.15)

si = ri − Ĝi • (ŶC −R)X̂−1, (1 ≤ i ≤ M̂). (3.16)

In general, B is fully dense positive definite symmetric matrix [107].

Step 1c Solve the Schur complement equation system Bdx̂ = s to find dx̂.

Step 1d Compute dX̂ and dŶ from dx̂

dX̂ = R−
M̂∑
i=1

Ĝidx̂i,

d
˜̂Y = (C − ŶdŶ)X̂−1,

dŶ = (d ˜̂Y + d
˜̂YT

)/2.

Step 2 Determine the largest step size αP , αD in the search direction (dŶ, dX̂, dx̂)

αP = −λ−1
min(

√
Ŷ
−1

dŶ
√

Ŷ
−T

),

αD = −λ−1
min(

√
X̂
−1

dX̂
√

X̂
−T

),

where
√

H denotes the matrix which satisfies
√

H
√

H
T

= H, H > 0 and
λmin(H) is the minimum eigenvalue of matrix H > 0 ∈ RM̂×M̂ .

Step 3 Update the iteration point (Ŷ, X̂, x̂) using the search direction and the
step size, and return to Step 1

Ŷ = Ŷ + γ2αP dŶ,

X̂ = X̂ + γ2αDdX̂,

x̂ = x̂ + γ2αDdx̂.
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The proper stop condition for the primal-dual algorithm presented above is to drive µ and
the feasibility errors (primal, dual), approach close enough to 0 [97].
It is to note here that presented algorithm does not require the initial point (Ŷ0, X̂0, x̂0) to

be feasible (lay inside the feasibility region). This property appears to be extremely important
when solving LMI where the main goal is to find the feasible solution starting from the unfeasible
one.

3.8 Parallelization of the SDP algorithm

Note that in the presented algorithm some steps are especially time consuming, i.e.

• computing matrix B (Step 1b),

• performing the Cholesky factorization of B when solving the Schur complement equation
system B = dx̂ (Step 1c),

• computing matrices dŶ, dX̂ (Step 1d),

• other computations involving dense matrices Ŷ, X̂ (multiplication, addition).

Those matrix operations can be performed more efficiently when applying the parallel compu-
tations. Particularly, computations performed on B are paralleled. Since each entry of B is
computed using (3.15), to compute the elements of i-th row of B the same matrix ŶĜjX̂−1

is used. Hence it is straightforward to see that every single row of B can be computed on a
different CPU. After computing B, it is necessary to run the Cholesky factorization. This part
is also performed using several CPUs. The parallel Cholesky factorization of B can be governed
by ScaLapack.
There also arises the possibility to employ the parallel computing techniques in the compu-

tation of the search direction. In [98, 108], the proposition how to compute columns of dŶ using
the separate CPUs can be found.

3.9 LMI/SDP solvers

For last years many software packages enabling to solve LMI problems have been published.
The increasing number of them is due to the rapid development of the theory (the further mu-
tations of the basic IPM algorithm) on one hand and on the other the rapidly increasing the
computational power of the current computers. The software packages, called the LMI/SDP
solvers, available to solve those problems were implemented either as toolboxes and are included
into the computation environments such as Matlab ([109]), Maple or Scilab ([110]) or as
a independent libraries/binaries. The most popular package (solver) for the control problems
is the Matlab LMI Control Toolbox ([44]), however there are plenty of others, which
are also in use. Those include: Sdpa [89], Sdpt3 [111], Pennon [112], Maxdet [113], Sdp-
sol [114], Dspd [115], Moses [116], Maple package for Semidefinite Programming [117] and
SeDuMi [118].
Some packages from the above list are available in versions, which can be used under several

platforms. The best example here can be Sdpa, which is a independently installed application
to work under Linux or MS Windows. Nevertheless, there is published the Matlab version
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of Sdpa - Sdpa-M [119]. The library for C/C++ programmers - Sdpa-C [120] is available as
well. There is also available the parallel computation implementation of Sdpa - again in two
versions as a independent Linux binary - Sdpara [97, 98] or as a C library Sdpara-C [98].
The other example can be Scilab LMI optimization package [121], which is also available
as a Matlab toolbox.
The listed above software packages have been implemented to solve the specified problems

(defined in the proper SDP form), which can differ e.g. Maxdet - determinant maximization
problems, Dsdp - combinatorics and Pennon - problems of convex and nonconvex nonlinear
programming (aimed at large-scale problems with sparse data structure). Moreover, due to
fact that they use different implementations of IPM algorithms, its efficiency can differ when
particular problems are to be solved. Then the set of benchmarks has been published [122, 123]
to provide the possibility to compare the effectiveness of selected packages for the particular
kinds of problems.
Each of the described above packages requires the input data given in a specific form. Hence

to make it easier to define the problems and to unify the way of doing it, Yalmip [124] has been
released to act like a parser for the above packages. It supports most of the existing LMI solvers
callable in Matlab. Yalmip is a Matlab application and its function is to allow to formulate
the problem in the user-friendly way; next, to present it in the chosen SDP/LMI solver structure
and finally, to call that solver. Thanks to its features, Yalmip is popular with the users, who
can now easily choose the required solver and easily formulate the problem to be solved.
However there are plenty of software packages available, the following three are chosen to

deal with the LMI problems in this dissertation:

• Matlab Lmi Control Toolbox,

• Scilab LMI Optimization Package,

• Sdpara (a parallel computing version of Sdpa).

3.9.1 Matlab LMI Control Toolbox

The Matlab LMI Control Toolbox was released in 1994. It implements the very efficient
numerically Projective Algorithm of Nesterov and Nemirovski [100, 103, 104] which has the
polynomial-time complexity. In this particular case, it means that the number of flops Fl(ε)
required to compute an ε-accurate solution is upper bounded by

Fl(ε) = τM3 log(ζ/ε),

where τ denotes the total row size of the LMI system (every LMI constraints defined),M denotes
the total number of scalar decision variables, and ζ is a scaling factor. It is also important here
that this implementation does not require an initial feasible point. This feature has to be treated
as extremely valuable, when considering the kind of the problems investigated in the sequel of
this dissertation.
There are defined three main kinds of problems that can be solved with Matlab LMI

Control Toolbox (see [44]):

• feasibility problem (feasp),
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• minimization of the linear function subject to LMI constraints (mincx ),

• generalized eigenvalue minimization (gevp).

To solve each, the separate function has to be called.
The detailed description of the manner how to use the LMI Control Toolbox and pro-

gramme the problems listed above can be found in Appendix A.1.

3.9.2 Scilab LMI Optimization Package

Scilab LMI Optimization Package ([121]) can be treated as a serious alternative toMatlab
LMI Control Toolbox. Scilab is a computational environment, which uses similar to
Matlab programming language and in some cases m-scripts and m-functions can be applied
directly in Scilab. In comparison to Matlab, Scilab is competitive due to the following
reasons:

• free of charge,

• provides the wide area of toolboxes (including the LMI solver),

• is still under development,

• is available for the whole set of Operational Systems (MS Windows, Linux, Unix) and
hardware platforms (PC, Sun).

On the contrary toMatlab LMI Control Toolbox, Scilab LMI Optimization Pack-
age uses the primal-dual version of the IPM algorithm, which was originally presented in [125].
Its advantage, over Matlab LMI Control Toolbox, is that it allows explicitly to define the
equality constraints (elimination of those is performed as the preprocessing step before the start
pf the optimization procedure).
For the description how to use the Scilab LMI Optimization Package refer to Appen-

dix A.2.

3.9.3 Parallel computing for the analysis and the synthesis of LRPs

Last years provided the increased computational needs. Hence the application of computers
empowered to solve the large problems appeared to be quite natural. Such machines, able to
solve large computational tasks (that the ”average” PCs were not able to) at the time, were
called supercomputers. Today the term ”supercomputer” treats more the ability to compute
than the construction of the machine. The first supercomputer of historical significance was
Cray-1. Then it followed that it was reasonable to increase the number of CPUs, its speed,
increase the size of operating memory and so on. Hence the parallel machines appeared on the
market and today’s supercomputers are parallel.
On the other hand, the rapid development of electronic technology makes the yesterday’s

supercomputer equal in abilities to today’s desktop or even laptop computers. It is the straight-
forward conclusion of the Moore’s law (see e.g. [126]) and puts into the question the reason-
ableness of spending the huge money for the single supercomputer, which will be obsolete in
short period of time. Hence the idea of using supercomputers in form of one compact machine
appeared to be too stiff. The Beowulf project (see [127]) proved that instead the buying the
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high-expensive compact super machines, it is more efficient to built a PC cluster, running the
appropriate operating system and procedures involving the communication between the node
PCs.
The natural choice of the operating system for PC clusters has been Linux, which had

several advantages over other available operating systems. Linux has been being developed,
hence it had been found very flexible and could be adopted easily to the required configuration.
The other fact is that it has been free of charge and open source, hence everyone could trim it
to the personal requirements. That includes also the PC cluster administrators.
To summarize, the PC clusters have the following advantages over alternatives:

• cost effective, thanks to using the market available components (PCs and network com-
munication devices and free operating systems),

• robust to failures - every single hardware component can be replaced with the cheap
replacement,

• easy to upgrade (by simply adding next computational nodes),

• high computational power.

Due to the above advantages the PC clusters become the popular powerful supercomputers.
As an interesting fact, it can be noted that the special set of benchmarks for testing the

clusters was developed [128]. There is also a ranking of the most powerful at the time clusters
(supercomputers) available (Top500 list at http://www.top500.org).
Generally, due to the components of cluster, there are two types defined, i.e. the homogenous,

in which all PC nodes are the same; and heterogenous, where all or some, nodes can be different
one from each other. The fact that in general clusters can be heterogenous can imply the
situation when the clusters can be builded of plenty out of date and unused at the moment PCs.

SDPA (SDPARA)

The whole family of Sdpa packages has been found to be an efficient software based on primal-
dual IPM algorithm to solve SDPs. In general, Sdpa (and what follows Sdpara) has been
designed to solve large scale SDP, which can be sparse. Thanks to the parallel computing in
Sdpara, relatively large SDPs/LMIs can be solved.
Sdpa uses the IPM algorithm described in Section 3.7 and the parallel version of that algo-

rithm with changes described in Section 3.8 has been used in Sdpara. It can be found (e.g. in
[98, 97]) that parallelization of the computations concerns and finally deals with the bottleneck
in the algorithm, i.e. computation of the search direction during the single iteration of the
algorithm.
However, it does not suit exactly the terms of LMI control problems considered in this

dissertation, but the possible income due to the application of the parallel computation methods
is a important reason for trying to involve Sdpara to solve LMIs. Hence even if originally
Sdpara has not been intended to solve LMIs, in Section 3.5 the method how to reformulate
LMIs into the valid form of SDP has been presented. In the literature (see [97]), a survey of
selected control problems and its solutions given in terms of Sdpara can be found.
On the contrary to two previously described software packages, Sdpa (Sdpara) requires

the input data given in the canonical form, instead of the matrix variables form. Another
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words, when for instance considering the 1D system stability investigation, instead of defining
the matrix P > 0 and providing the system matrix A, here it is necessary to define a set of
optimization variables x̂i, vertex matrices Ĝi (for notation refer to Section 3.5). The way of
reformulating the original problem from LMI into SDP has been described in Example 3.3.
Hence it is a straightforward conclusion that the size of the file containing the problem increases
significantly because now instead of storing the dense matrices only (matrix A in Example 3.3)
it has to contain all vertex matrices (Gi in Example 3.3). This can be treated as a serious
limitation in application of the SDP solvers to solve the high dimensioned LMIs.
The other thing is a try to exploit the sparsity properties of LMIs. It is not so significant

since considered LMIs on average appear to be dense but there arises one fact which can be
used. Namely, when solving LMI control problems, there is always an assumption on positive
definiteness of the matrix variable, i.e. F (P ) < 0, P > 0, which is indeed treated as the following
LMI [

−F (P ) 0
0 P

]
> 0.

Hence the above LMI can be treated as dense - 1st case or sparse - 2nd case, with two blocks
(F (P ) and P ). It is not huge improvement, but when considering the LMI problems of thousands
decision variables, it is significant.
For the description how to use the Sdpara refer to Appendix B.3, where the 2D controller

design problem Matlab function to parse the LMI into the form of SDP problem suitable to
solve by Sdpara has been attached.
The examples presented in this dissertation computed using Sdpara have been performed

using the following nonhomogeneous cluster of 16 PCs, containing

• 8 PCs with CPU Intel Pentium IV HT, 3.00 GHz, 2 GB RAM (6001 bogomips),

• 8 PCs with CPU Intel Pentium IV 3.06 GHz, 1GB RAM (6006 bogomips).

The member PCs are the student laboratory computers available in laboratory rooms 405 and
406 at Institute of Control and Computation Engineering, University of Zielona Góra. The
communication between the cluster nodes is governed by TCP/IP networking protocol. The
member PCs of the cluster run Linux Slackware operating systems. The parallel computation
environment is MPI (among plenty see e.g. [129, 130, 126]) with numerical libraries: Atlas,
Clapack, ScaLapack, Blacs, Sdpa and the SDP solver involving the parallel computing –
Sdpara (see [97]). It will be abbreviated as CLUSTER in the sequel.
If it is not mentioned explicitly in the sequel, all computations run on CLUSTER have been

performed using 16 member PCs.
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Chapter 4

Analysis and synthesis of Linear
Repetitive Processes

During last years properties of LRPs have been studied extensively. The most basic properties
studied are stability concepts of this class of dynamical systems. Due to the special construction
of LRP, two types of stability have been defined: asymptotic stability and stability along the
pass.
This chapter refers the stability topics from [17, 18] but there is a serious extension of

those due to applications of LMI in solving problems of analysis and synthesis of LRPs. In
the sequel several LMI conditions for checking the asymptotic stability and stability along the
pass of considered LRPs are presented and, what is more important, the list of stabilization
conditions is given. These include: the ”basic” controller design conditions for 1D equivalent
model of LRP, the 1D model matching, decoupling of the dynamics and successive stabilization
- for asymptotic stability. Respectively, for stability along the pass, the list of results presented
here includes: ”basic” controller design conditions, stabilization to prescribed stability margins,
2D model matching, output controller design. As aforementioned, those problems can be large
dimensioned and require significant computational power to solve them. Hence some of them
have been solved with methods involving the paralleling computing and the results are presented
here as well.
It is to note that the results regarding the basics of the application of the LMI methods

to analysis and synthesis of LRPs presented at the beginning of this chapter are provided [47,
46, 131, 49, 20]. The rest of results presented regard the extensions of those basic approaches,
where the selected goals beyond the stability are requested to be addressed. Those are the
original author’s results and they have been published (or will be soon - see the references)
in [25, 48, 60, 132] – Sections 4.1 – 4.4; [25, 133] – Section 4.10; [54, 70, 134] – Sections 4.7
and 4.8 and [135, 136, 137, 138] – Section 4.9.

4.1 Asymptotic stability – 1D system point of view

The concept, definition and conditions for asymptotic stability have been presented in Sec-
tion 2.4.1. The asymptotic stability condition for (2.9)-(2.10) or (2.14)-(2.15) in terms of LMI
is provided by the following theorem

Theorem 4.1 [25] The LRP is asymptotically stable if and only if there exists P > 0 of the
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appropriate dimensions such that the following LMI holds

DT
0 PD0 − P < 0. (4.1)

It is straightforward to see that (4.1) is equivalent to (2.29).
The above condition is applicable only for LRPs of (2.9)-(2.10) and (2.14)-(2.15) with bound-

ary conditions defined in its simplest form (2.11) – discrete case and (2.16) – differential case.
It is not applicable for the processes with more sophisticated boundary conditions and, what
is more important here, it cannot be applied for generalized LRPs of (2.19)-(2.20). As it was
mentioned in Section 2.4, for that class of LRPs the more accurate is the application of the
1D equivalent model of (2.24)-(2.25) and the conditions given for it. Hence the following LMI
condition addresses this topic.

Theorem 4.2 [25] The discrete LRP given in the 1D equivalent model of (2.24)-(2.25) asymp-
totically stable if and only if there exists P > 0 of the appropriate dimensions such that the
following LMI holds

ΦT PΦ− P < 0. (4.2)

Note that the proof for the above theorem and hence the equivalence between Theorems 2.2
and 4.2 can be presented exactly in the manner as for the Theorems 2.1 and 4.1.
Comparing the results of Theorems 4.1 and 4.2 to previously presented Theorems 2.1 and 2.2,

it is straightforward to notice that they concern the same property. However, conditions given
above (LMI conditions) posses the natural and easy ability to extend them for the synthesis
problem (controller design). Nevertheless, regarding Theorem 4.2, there still continues one
serious limitation. Remain Example 2.1. Due to the fact that 1D equivalent model, in the most
considered cases, can be of the huge dimensions (high order model), the application of LMI
would require involving the huge number of decision variables. For instance, for the condition of
Theorem 4.2 it would beM = (mα)(mα+1)/2 and for data given in Example 2.1 the number of
decision variables equals 500500 which is huge and in practice out of range for today’s computers
(even when considering the PC clusters). Nevertheless, there exist sufficient numerically software
packages (LMI/SDP solvers) which can be used to solve relatively large problems formulated
in the form of LMI of (4.2) (refer to Section 3.5 from the previous chapter). They can be used
in the cases, when single computers are too slow or have too less operational memory to solve
the problem. Hence when the problem appears to be too large to be solved it using the single
computer, it is possible to try to solve it using the PC cluster with parallel computing techniques,
which computational abilities can be increased by simply connecting more nodes to the cluster.

4.2 The controller design towards asymptotic stability

In terms of the controller design, a key task is to ensure asymptotic stability under the control
action. It is worth to mention now that in the discrete case of (2.9)-(2.10) with the boundary
conditions of (2.11), the asymptotic stability alone is rarely required. It is due to the fact that
for this model, it is relatively easy to define and implement the ”stronger” demand, i.e. the
stability along the pass (this concept will be considered in the sequel of this chapter). On the
other hand, in general, for any other member of the class of LRPs considered in this dissertation,
for which it is very hard to define the conditions for stability along the pass to hold, it is natural
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to settle for asymptotic stability only. What is more, according to the fact that the structures
of those models are not so clear as for (2.9)-(2.10) (e.g. there is no equivalent condition to
(2.29) for LRP of (2.19)-(2.20)), it is straightforward to apply 1D equivalent model of LRP and
stability theory regarding this model. In the context of controller design towards asymptotic
stability, Theorem 4.2 is accurate to provide the required solutions.
Hence for any discrete LRP, where the 1D equivalent model is used, the task is now defined

as constructing the controller to apply in the control law of the form

U(l) = KV (l), (4.3)

such that r(Φ+∆K) < 1. Note again that in implementation terms the design exercise requires
computations with potentially very large dimensioned matrices.
The direct application of the synthesis method presented in [81] for the classical discrete 1D

systems, let us to present the result of Theorem 4.2 in its closed loop version as follows

Theorem 4.3 [25] Suppose that the discrete LRP is considered in terms of its 1D equivalent
model of (2.24)-(2.25) with the appropriate matrices and the control law of the form (4.3) is
used. Then the closed loop asymptotic stability holds if and only if there exist matrices P > 0
and N of the appropriate dimensions such that the following LMI holds[

−P PΦT + NT ∆T

ΦP + ∆N −P

]
< 0. (4.4)

Also if this condition holds then K in (4.3) can be computed as

K = NP−1. (4.5)

The above result is adopted from the ”classical” 1D systems theory and its detailed descrip-
tion can be found in [81].
A potential difficulty in applying Theorem 4.3 may arise since P is a LMI decision matrix

and simultaneously is used to compute K. The next result seems to be better in this respect
and is based on the 1D case as in [80], but on the other hand, it increases the total number of
decision variables to be found.

Theorem 4.4 [25] Suppose that the discrete LRP is considered in terms of its 1D equivalent
model of (2.24)-(2.25) with the appropriate matrices and the control law of the form (4.3) is
used. Then the closed loop asymptotic stability holds if and only if there exist matrices P > 0,
G and N of the appropriate dimensions such that the following LMI holds[

−P ΦG + ∆N

GT ΦT + NT ∆T P −G−GT

]
< 0. (4.6)

Also if this condition holds, a stabilizing K is given by

K = NG−1. (4.7)

According to the possible large dimensions of considered problems there arise two main
problems in solving the controller design problem, i.e.
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• handling with the matrices of large dimensions (see Example 2.1) and

• rapid increasing with the number of the decision variables (and hence the time) necessary
for the optimization procedure to converge to the solution.

One possible remedy for those obstacles is to apply the ”strong enough” computational machines
with the appropriate software installed. However, it should be pointed out that for the problems
considered here single computers seem to be too weak to deal with. That’s why, it is suggested
to use the PC clusters and take the advantage of the parallel computing.
The other way to handle with those problems is to try to formulate the task in the form

which can simplify it (e.g. introduce the additional constraints on the decision matrices, which
would decrease the total number of the decision variables or/and to apply a specially developed
algorithms dealing with the concrete situation). However such a simplification of the problem
causes that the originally necessary and sufficient condition becomes only the sufficient one.
To highlight the problems presented above consider the following example. Here, it is as-

sumed that the structure of the controller is restricted to become the block diagonal.

Example 4.1 Consider the model of the generalized LRP of (2.19)-(2.20) with α = 5

A=


−0.63 0 0 −0.18
−0.1 −0.28 0 0.7
0.87 0.11 −0.05 −0.02
0.08 0 0 −0.17

, B=


0.29 0
0 0.74
0 −0.74
0 −0.27

, C =

 0 0.42 0 0
0.9 −0.1 −0.21 0.15
−0.22 0.04 0 0

,

D =

 0.34 0.19
−0.4 0.02
−0.42 0.25

, B=
[

B0 B1 . . . B4

]
=


0.95 0.69 0.54
−0.33 0.36 0
−0.06 −0.95 0
0.67 0.34 0

0.21 −0.11 0 −0.62 0.62 0.3 −0.82 0.76 0.71 0.75 −0.95 0
0.91 0.67 0 0 0.86 0.21 0 0 0 0.86 0.95 −0.08
−0.82 −0.47 0 −0.88 0.4 −0.55 0.55 0 −0.53 0.2 0.13 0.41
0.79 0.07 −0.76 0 0 0.61 −0.51 0.56 0 0.61 0.06 0

,

D=
[

D0 D1 . . . D4

]
=

 0 0 0
−0.14 0.9 1.15

0 −1.46 −1.71

0 0 1.49 0 0 0 0 0 0 0 1.9 0.67
1.26 0 1.69 0.35 0.17 −0.35 −0.03 0 0 0 0 0
0.12 −0.47 0 −1.04 0 −0.64 0 0 0 0 0 0

 .

It is assumed that controller takes the following structure

K =


K11 K12 0 0 0
K21 K22 K23 0 0
0 K32 K33 K34 0
0 0 K43 K44 K45

0 0 0 K54 K55

 .
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Such a choice is dedicated by the necessity to restrict the number of the pass profile vectors which
are used to stabilization. In this case, at every point on the pass, three pass profile vectors from
the previous pass are used (with the exception of the first and the last point on the pass). Such a
controller can be obtained via choosing the matrices G and N (P is assumed to be full symmetric
matrix) in the LMI of (4.6) as follows

N =


N11 N12 0 0 0
N21 N22 N23 0 0
0 N32 N33 N34 0
0 0 N43 N44 N45

0 0 0 N54 N55

, G =


G1 0 0 0 0
0 G2 0 0 0
0 0 G3 0 0
0 0 0 G4 0
0 0 0 0 G5

 .

The application of Theorem 4.4 provides the following controller matrix

K =



0.2630 −1.1896 −1.5577 3.3029 −0.8337 3.2820 0
0.9336 −1.8058 −2.7157 3.1879 −0.5154 0.9308 0
−1.1407 −5.6974 −5.1293 −0.7307 −0.7983 −2.3297 −0.0222
0.0117 2.7425 4.2268 −3.2095 0.4962 −4.3639 2.8251

0 0 0 7.3285 −0.8166 7.9974 −0.9771
0 0 0 3.9953 −0.2126 2.8505 0.9518
0 0 0 0 0 0 −0.9468
0 0 0 0 0 0 0.2601
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.3095 0.7040 0 0 0 0 0 0
−0.7240 2.8575 0 0 0 0 0 0
0.2603 −1.9817 0.1295 0.0857 0.4195 0 0 0
0.0675 −0.76 0.0689 −0.1241 0.4053 0 0 0
−0.1427 −0.6172 −0.3033 0.0863 0.2983 −0.5609 −4.6653 −1.1218
−1.7105 0.9546 1.2597 −0.9765 −0.7081 −5.3617 −32.0398 −8.9437

0 0 −1.0893 0.6052 0.8259 −0.2293 −5.2978 −1.2641
0 0 −1.1578 1.1583 1.0251 3.0619 13.5926 3.8862



.

Remark 4.1 Considering the result of this example, the following property should be pointed
out. Namely, it is to note that the application of the LMI condition of Theorem 4.4 provides
the feasible solution, when the application of the condition given in Theorem 4.3 appears to be
unsolvable (without deciding about the feasibility or infeasibility of the problem). This phenomena
can be explained by noting the structure of the considered LMIs. As it was mentioned, in (4.6)
the Lyapunov matrix and the matrix which is used to compute the controller are different. Hence
the conservativeness of this condition should be smaller (the problem should be solvable easier)
than the other. The above example proves this presumption.
Concluding, in problems stated as above when e.g. the controller has the structure set a’priori

Theorem 4.4 proves its better applicability over Theorem 4.3. Nevertheless, from the theoretical
point of view, both those conditions are equivalent (see the proof of Theorem 4.4 in [25]).
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Remark 4.2 Note that Example 4.1 can be treated as academic since the assumed pass length
is small. Nevertheless, it is ideal example to show how many decision variables are required. In
this particular case Φ ∈ R15×15, ∆ ∈ R15×10 and the total number of variables which are involved
in the LMI equals 243. Remain that here it is assumed that the controller is of the constrained
structure (for the full structure controller the total number of decision variables equals 495).
What is more, if the pass length would be assumed to be equal 6 (increased by 1) the total
number of the decision variables would equal 286 for the constrained controller and 584 for the
full controller. This illustrates that increasing one parameter by 1, causes increasing the total
number of the variables more than 10% (and hence the size to be solved). It is straightforward
to see that when considering the real lengths of passes (say 50 or more), the total number of
variables to handle is huge, even when considered condition limits that number by putting the
constraints on the controller structure. Hence to handle such huge problems, it is necessary to
employ either the simplifications of the considered problem (e.g. as presented) or to apply the
parallel computing.

Example 4.2 To check the effectiveness of the PC clusters used to solve the controller design
problems, some tests have been done. Here, the generalized LRPs of (2.19)-(2.20) are considered.
The 1D equivalent model is used. Hence in this case the system matrix Φ is of the size mα×mα

and the input matrix ∆ - of mα × rα, respectively. Hence it is abbreviated that the size of the
problem is mα×rα. The LMI condition of Theorem 4.3 is considered, however it is also possible
to perform such tests for LMI of Theorem 4.4.
To perform the tests, a set of models of (2.19)-(2.20) has been chosen in such a manner

that A ∈ R5×5, B ∈ R5×1, C ∈ R5×3, D ∈ R3×1 are the same in all cases and the pass length
(and hence sizes of Bj and Dj) is increased by 2 starting from α = 4. Hence the resulting 1D
equivalent models are of the sizes 12× 4, 18× 6, 24× 8,. . . , 120× 40 (using the aforementioned
abbreviated notation). The synthesis tasks for those models have been solved to estimate the
computational complexity of that task.
Table 4.1 presents the sizes of problems and times required to solve those on CLUSTER.
Figure 4.1 shows the computational complexity of the considered synthesis problem.
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Figure 4.1. The computational complexity of the considered synthesis problems (approximated
with the 2nd degree polynomial)
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mα× rα No. of decision 1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes
variables Time [s] Time [s] Time [s] Time [s] Time [s] Time [s]

12× 4 126 0.1 0.3 0.4 1.2 1.6 2
18× 6 279 0.4 1 1 1 2 2
24× 8 492 2 3 4 3 4 4
30× 10 765 4 8 7 6 6 6
36× 12 1098 10 17 12 9 11 8
42× 14 1491 21 23 23 17 16 14
48× 16 1944 49 41 39 27 23 21
54× 18 2457 96 107 99 50 40 32
60× 20 3030 171 172 117 90 71 54
66× 22 3663 289 268 234 182 144 107
72× 24 4356 420 379 331 259 202 153
78× 26 5109 663 555 472 364 284 215
84× 28 5922 1008 793 658 503 395 285
90× 30 6795 1649 1222 990 746 580 419
96× 32 7728 2393 1686 1331 988 768 555
102× 34 8721 2790 2472 1918 1404 1094 822
108× 36 9774 3212 2618 2024 1478 1160 857
114× 38 10887 4270 3788 2878 2078 1617 1203
120× 40 12060 5350 4656 3636 2592 2025 1514

Table 4.1. The sizes of the considered problems and times required to solve those on cluster
using different number of nodes in the cluster

The considered problems have been solved on cluster with 1, 2, 4, 6, 8, 10, 12, 14 and finally
16 nodes. Points shown in Figure 4.1 shows the time versus number of variables dependence.
Points denoted as ◦ present results obtained with only 1 node in the cluster, � - 2 nodes, + -
8 nodes and ∗ - 16 nodes, respectively. The solid lines present the approximated polynomials of
the 2nd degree. Figure 4.2 shows the approximated polynomial of the 1st degree. It is to see that
the linear function does not suit sufficiently well the data, which is to be approximated but 2nd
order polynomial is sufficiently good and hence the computational complexity can be presented
as the 2nd degree polynomial of the size (number of decision variables).
It is to note that the increase of the number of nodes to the maximal number of 16 in the

cluster does not change (decrease) the degree of the polynomial approximating the complexity.
However, it decreases significantly (almost 4 times) the leading coefficient in the polynomial,
which influences the speed of the computations. The other aspect of using the clusters is the
dependence which arises between the number of the nodes in the cluster and speed-up of the
computations. Hence the following figures show the speed-up of the computations related to the
number of the nodes in the cluster.
It is to note that the increase of the nodes in the cluster provides the sufficient results (the

acceleration of the computations) only for the large size problems. Figure 4.3 shows the ac-
celeration for the synthesis problem of 12060 decision variables (large size problem) and it is
straightforward to see that using 16 nodes in the cluster provides 4 times faster computations.
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Figure 4.2. The computational complexity of the considered synthesis problems (approximated
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Figure 4.3. Speed-up for the large size problem (12060 variables)
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On the other hand, it can be concluded that for the small size problems it is not recommended to
use a cluster. For the small problems, the cost of the synchronization between nodes gets away
all the income from the parallel computing - see Figure 4.4 a). For the cluster tested in this
particular case, the size of the problem, from which the application of the clusters appeared to be
profitable equals (approximately) 1000. It can be concluded that for the problems of the smaller
sizes it is not justified to use clusters of 16 nodes and for the larger problems, it is justified (refer
to Figure 4.4 b)).

4.3 Stability along the pass – 2D systems point of view

As it has been described in Chapter 2, the significant difference between asymptotic stability and
stability along the pass is that, when the first is one of the necessary conditions for the second
one. There can be the LRP, in which asymptotic stability holds and simultaneously stability
along the pass does not hold. In such a case, the limit profile, however exists, is unstable. The
reason why asymptotic stability does not guarantee a limit profile, which is ”stable along the
pass” is due to the fact that it does not concern the dynamics along the pass (along p). To
see that this property does not guarantee that the limit profile has ”acceptable” along the pass
dynamics refer to Example 2.2.

4.3.1 Discrete LRPs

Theorem 2.3 defines the necessary and sufficient conditions for stability along the pass, however
it has to be outlined that the practical applicability of those conditions is really small. To
provide the condition, which could be used in practice (and in the sequel synthesis), define the
following matrices from the state-space model (2.9)-(2.10)

Â1 =

[
A B0

0 0

]
, Â2 =

[
0 0
C D0

]
. (4.8)

Then it is possible to present the following result.

Theorem 4.5 [47] The discrete LRP described by (2.9)-(2.10) is stable along the pass if there
exist matrices P > 0 and Q > 0 satisfying the following LMI[

ÂT
1 PÂ1 + Q− P ÂT

1 PÂ2

ÂT
2 PÂ1 ÂT

2 PÂ2 −Q

]
< 0 (4.9)

Remark 4.3 Note that result of Theorem 4.5 provides only the sufficient condition for the stabil-
ity along the pass. Recently, there was published a paper by Bliman [52] regarding the decreasing
of the conservativeness of the given LMI condition and getting ”closer” to the sufficient and
necessary condition for stability of 2D systems in RM form. Due to the similarities of the RM
and discrete LRP, mentioned formerly, it can be applied as well for LRPs. This new approach
relies on sequentially increasing the state vector by the next delayed state vectors till the feasible
solution of the appropriate LMI condition is found or the certificate of infeasibility is given. This
approach is not considered here due to the fact, it has the limited applicability in terms of the
controller design.
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The LMI condition for stability along the pass of discrete LRPs equivalent to (4.9) can be
stated as follows

Theorem 4.6 [20] The discrete LRP described by (2.9)-(2.10) is stable along the pass if there
exist matrices Y > 0 and Z > 0 satisfying the following LMI Z − Y 0 Y ÂT

1

0 −Z Y ÂT
2

Â1Y Â2Y −Y

 < 0.

Another, known approach to stability along the pass investigation is based on using the block
diagonal decision matrices of appropriate dimensions and the following theorem can be stated.

Theorem 4.7 [20] The discrete LRP described by (2.9)-(2.10) is stable along the pass if there
exists matrix W = diag(W1,W2) > 0 satisfying the following LMI

ΥT WΥ−W < 0,

where Υ is so-called plant matrix and has been defined in (2.18).

4.3.2 Differential LRPs

The similar analysis can be done for the case of differential LRP of (2.14)-(2.15). Here, only the
most often applicable condition for the stability along the pass in term of LMI is given.

Theorem 4.8 [49] The differential LRP is stable along the pass if there exist matrices Y > 0
and Z > 0 satisfying the following LMI Y AT + AY B0Z Y CT

ZBT
0 −Z ZDT

0

CY D0Z −Z

 < 0. (4.10)

4.4 2D controller design towards stability along the pass

In the case, when considered LRP appears to be unstable along the pass, it is possible to try to
stabilize it via the current state/output based feedback control loop. The goal now is to provide
such a control sequence that ensures the closed loop system is stable along the pass.

4.4.1 Discrete LRPs

The synthesis is done similarly as it had a place for the asymptotic stability. Define a control
law of the following form over 0 ≤ p ≤ α− 1, k ≥ 0 ([47])

uk+1(p) = K1xk+1(p) + K2yk(p) := K

[
xk+1(p)
yk(p)

]
, (4.11)

whereK1 andK2 are appropriately dimensioned controller matrices to be designed. In effect, this
control law uses feedback of the current trial state vector (which is assumed to be available for
use) and ‘feedforward’ of the previous trial pass profile vector. Note that in repetitive processes
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Figure 4.5. State/output control scheme

the term feedforward is used to describe the case where (state or pass profile) information from
the previous pass (or passes) is used as (part of) the input to a control law applied on the current
pass, i.e. to information which is propagated in the pass to pass (k) direction. The block scheme
for the closed loop process under the control law of (4.11) is shown in Figure 4.5.
This control law has a physical meaning for practical applications of discrete LRPs and the

following result uses the LMI setting to give a controller design algorithm, which can be easily
implemented.

Theorem 4.9 [47] Suppose that a discrete LRP of (2.9)-(2.10) is subject to a control law of
the form (4.11). Then the closed loop system is stable along the pass if there exist matrices
Y > 0, Z > 0, and N such that the following LMI holds. Z − Y 0 Y ÂT

1 + NT B̂T
1

0 −Z Y ÂT
2 + NT B̂T

2

Â1Y + B̂1N Â2Y + B̂2N −Y

 < 0, (4.12)

where Â1, Â2 are defined as in (4.8) and

B̂1 =

[
B

0

]
, B̂2 =

[
0
D

]
. (4.13)

If (4.12) holds, then a stabilizing K in the control law (4.11) is given by

K = NY −1. (4.14)

It is also possible to define the LMI controller design condition for the result of Theorem 4.7.
Hence the closed loop version of Theorem 4.7 becomes the following one.

Theorem 4.10 [47] The discrete LRP described by (2.9)-(2.10) is stable along the pass under
the control law defined as (4.11) if there exist matrices W = diag(W1,W2) > 0 and N of
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appropriate dimensions satisfying the following LMI[
−P WΥT + NT Ω̂T

WΥ + Ω̂N −W

]
< 0, (4.15)

where Υ is so-called plant matrix and has been defined in (2.18) and

Ω̂ =

[
B 0
0 D

]
, N =

[
N1 N2

N1 N2

]
.

When the above LMI holds, then the 2D controller matrix can be computed as

K̂ =

[
K1 K2

K1 K2

]
= NW−1.

Naturally, there arises the question about the differences between conditions given in The-
orem 4.9 and Theorem 4.10 (or 4.6 and 4.7). Note that those conditions are the natural con-
sequence of the ability to present LRP in the form of FM or RM, i.e. those LMIs are the
appropriately adopted stability conditions for RM or FM. From the theoretical point of view,
there is no difference (see [47]) but when considering the synthesis problems of large dimensioned
LRPs, it becomes clear that condition given in Theorem 4.10 (Theorem 4.7) can be solved faster
than others. It comes from the fact that the time required to solve the LMI is polynomial func-
tion of the number of decision variables involved in computations. Hence the following relation
is supposed straightforward to hold: the smaller number of decision variables, the less time re-
quired for obtaining the solution. Numbers of the decision variables required for the considered
approaches are listed in Table 4.2.

Theorem 4.9 Theorem 4.10
M = (m + n)(m + n + 1) + r(m + n) M = m(m + 1)/2 + n(n + 1)/2 + r(m + n)

Theorem 4.6 Theorem 4.7
M = (m + n)(m + n + 1) M = m(m + 1)/2 + n(n + 1)/2

Table 4.2. Total numbers of decision variables used in considered Theorems

However, for the small size problems that difference is not significant, for the large size
problems (say M > 1000) it becomes significant.
Concluding, it is easy to note that the same problem of analysis (synthesis) can be treated

and solved differently. Hence the solution for that problem can be obtained sooner or later.
On the other hand, the condition given in Theorem 4.9 is searching the solution over the

larger possible area (more decision variables) than Theorem 4.10 and hence that fact can cause
that the solution of the problem is found, when the competing condition fails.
The following examples regard the difference between those conditions.

Example 4.3 The aim here is to highlight how for conditions of Theorems 4.9 and 4.10 the
total number of variables increases when the size of considered LRP is increased. There is also
presented the total time required to finish the computations run using CLUSTER.
It is to be seen that the application of the LMI condition given in Theorem 4.9 involves

almost twice more decision variables than the LMI condition given in Theorem 4.10. It is
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Theorem 4.9 Theorem 4.10

Total no. of Total time Total no. of Total time
n × m × r decision vars [s] decision vars [s]

10× 6× 8 400 8.5 204 3.5
(8 - 8 PCs) (1.5 - 8 PCs)

12× 6× 9 504 11 261 4
(11 - 8 PCs) (2.5 - 8 PCs)

15× 8× 10 782 22 386 5
(4.99 - 8 PCs)

20× 10× 15 1380 52 715 12
30× 10× 20 2440 141 1320 38
40× 15× 30 4730 503 2590 116
50× 20× 40 7770 1363 4285 365

Table 4.3. Comparison of the results of Theorems 4.9 and 4.10

straightforward to see that the second condition is less memory demanding. Hence the same
problem can be solved faster by simply applying the appropriate condition.
Note that for the small size problems, the total times required to finish the computations using

both conditions are similar. With the growth of the size of problem, the total time values start
to differ for the considered conditions.
Figure 4.6 shows the dependance how the total number of decision variables increases, when

the size of problem grows for both considered conditions.
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Figure 4.6. The growth of the total number of variables in Theorems 4.9 and 4.10

The above example suggests that the application of Theorem 4.10 provides better results than
Theorem 4.9. However, it is to be noted that condition of Theorem 4.10 can cause the numerical
problems and hence can fail. To see that, refer to Example 4.4. It can be explained by the fact
that Theorem 4.9 searches the feasible solution over the larger space of possible solutions than
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Theorem 4.10, hence when that second LMI fails, the first is still able to find the suitable solution.
Nevertheless, the ”price” which is to be paid for that has been presented in Example 4.3.

Example 4.4 Consider the following model of the discrete LRP of (2.9)-(2.10)

A =

2
6666666666666664

−1.2 0.7 −1.1 1.3 1.7 −0.4 0.6 −1.4 1.9 0.9

1.7 1.8 −0.1 1.8 0.8 −0.7 −1 −1.2 −1.5 0.2

−2.1 −0.7 0.1 −1.3 −0.3 1.9 −1.5 −1.2 −1.8 1.9

0.4 0.3 1.2 0.7 0.8 1.4 0.6 0.6 −1.6 −0.7

0.2 −1.6 −1.3 1.8 0.5 −1 1.9 −1.9 −1.4 0.9

0.6 −1.4 1.7 −0.7 −0.8 −1.9 1.3 −1.1 1.7 1.9

−0.8 −0.9 1.8 0.4 1.5 −2.1 1.8 0.7 −1.5 0.3

−1.1 0.2 −2 0.5 −1.6 0.3 −0.8 −0.8 0.5 1.6

−0.4 −0.1 1.1 −2.1 −0.9 1 −1 −0.8 −1 1

−0.8 1.9 1.9 2 −1.7 1.3 0.2 0.9 −1.2 −0.5

3
7777777777777775

,

B =

2
6666666666666664

−0.6 0.7 −0.3 −0.5 −0.1 −0.5 −0.3 −0.3

−0.7 −1 −0.9 −0.3 0.7 −0.3 −0.2 0

0.3 0.5 0.4 0.5 0.7 0.8 0.8 0.9

−1 0.7 0.9 0.3 −0.1 −0.4 0.5 −0.3

−0.3 0.5 −0.7 0.9 0.6 −0.5 0.8 −0.5

−0.4 0.9 −0.2 0.7 0.3 −0.1 −0.1 0.2

−0.9 0.3 −0.8 −0.1 −1 0.7 0.6 0

−0.8 0.5 −0.1 0.3 −0.7 −0.6 −0.7 −0.7

−0.2 −0.3 0.7 −0.9 0 0 −0.9 0

0.6 0.8 −0.2 0.1 −0.9 −0.1 −0.2 0

3
7777777777777775

, B0 =

2
6666666666666664

0.8 −0.5 −0.7 0.9 −0.5 0.8

0.7 0.6 −1 0.3 −0.3 0

0.8 −0.2 0.2 0.8 −1 1

0.2 −1 0.1 0.3 0.1 −0.8

0.1 0.2 −0.9 0.7 0.7 −1

0.2 0.1 0.3 −0.1 −0.8 −0.3

−0.9 −0.7 −0.1 1.1 −0.7 −0.2

−0.8 −0.9 −1 −0.9 −1 −0.2

−0.2 1 −0.3 0.1 0.7 −0.2

0.1 −0.5 −0.6 0.1 −0.8 −0.3

3
7777777777777775

,

C =

2
66666664

0.5 −0.7 0.9 −0.6 −0.3 −0.9 0.2 −0.7 −1 0.4

−0.7 −0.9 0.4 −0.8 0.4 −0.3 −0.7 −0.5 −0.7 0.7

0.9 −0.4 −0.9 −1 0.9 −0.9 −0.4 0.9 0.7 0

−0.6 0.9 0.2 0.6 −0.7 0.6 −0.7 −0.2 0.8 0

0.6 0.9 −0.2 −1 −0.7 1 −0.6 0 −0.6 −0.4

0.2 −0.5 −0.6 0.8 −0.4 −0.8 −0.2 −0.8 1 −0.9

3
77777775

,

D =

2
66666664

−0.5 0.4 −1 0.4 1 0.3 −0.4 0.3

−0.6 0.8 −0.2 0.6 0.3 0.6 0.3 0

0.8 0.2 0.3 −0.5 0.1 0.9 −0.3 −0.6

−0.8 −0.7 −0.8 −0.6 0.7 0 0.9 0.5

−1 −0.4 0.5 −0.5 0.6 0.6 0 −0.9

−0.3 −0.5 0.9 0.4 0.3 0.3 −0.8 0.9

3
77777775

, D0 =

2
66666664

1.1 −0.1 −0.3 0.7 0 −0.3

0.5 −1.3 −0.7 −0.3 −1.1 0.6

1.3 0.2 −0.4 1.1 0.7 0.5

−0.9 −0.4 1.3 −0.9 −1.4 1.3

0.7 0.8 −0.1 −0.4 0.3 −0.8

−0.4 0.8 −0.4 1.2 1.3 0.3

3
77777775

.

It is straightforward to see that the considered model is unstable along pass as r(A) = 3.471
and r(D0) = 1.6. To compute the controllers using CLUSTER, conditions of Theorems 4.9
and 4.10 have been applied. The condition of Theorems 4.9 finished successfully and provided
the feasible solution however the application of Theorem 4.10 failed. Below the limited (skipped
Z), due to the lack of space, output of the Sdpara solver (after the required reformulation) is
given

Y =

2
6666666666666666666666666664

66.65 −10.01 −25.55 −11.06 −7.089 41.31 5.411 −41.61

−10.01 45.91 −16.63 −26.78 −12.45 −45.74 3.741 −3.317

−25.55 −16.63 30.79 17.12 16.25 15.5 −4.812 14.48

−11.06 −26.78 17.12 28.64 15.38 20.68 −2.95 16.2

−7.089 −12.45 16.25 15.38 22.92 24.52 0.5783 5.134

41.31 −45.74 15.5 20.68 24.52 89.38 7.206 −17.37

5.411 3.741 −4.812 −2.95 0.5783 7.206 24.5 −2.704

−41.61 −3.317 14.48 16.2 5.134 −17.37 −2.704 51.89

4.024 −16.73 15.33 7.818 11.46 29.54 −4.55 −1.918

−14.07 −11.52 14.99 19.91 11.04 13.38 2.826 24.6!

−2.784 −9.725 0.5378 0.6203 −8.857 −2.837 −0.0178 −1.813

2.748 −2.173 −3.443 −0.6931 3.934 0.3176 −8.189 6.585

−3.055 −0.2784 2.822 7.731 4.613 −2.564 −4.0 −10.07

−3.207 −0.3592 7.695 −7.336 −4.374 2.133 −5.937 −0.8617

2.06 8.592 2.949 −2.153 −0.4764 1.313 −8.197 −1.845

−1.498 2.029 5.428 −4.299 −1.211 3.672 8.47 0.7577
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4.024 −14.07 −2.784 2.748 −3.055 −3.207 2.06 −1.498

−16.73 −11.52 −9.725 −2.173 −0.2784 −0.3592 8.592 2.029

15.33 14.99 0.5378 −3.443 2.822 7.695 2.949 5.428

7.818 19.91 0.6203 −0.6931 7.731 −7.336 −2.153 −4.299

11.46 11.04 −8.857 3.934 4.613 −4.374 −0.4764 −1.211

29.54 13.38 −2.837 0.3176 −2.564 2.133 1.313 3.672

−4.55 2.826 −0.0178 −8.189 −4.0 −5.937 −8.197 8.47

−1.918 24.6 −1.813 6.585 −10.07 −0.8617 −1.845 0.7577

18.78 6.499 0.8356 −1.098 −6.499 5.101 5.696 −3.362

6.499 27.27 −3.903 −5.707 −1.375 −4.909 7.24 −0.1524

0.8356 −3.903 44.88 8.118 −1.175 −17.72 20.88 17.36

−1.098 −5.707 8.118 48.76 4.138 −12.7 9.748 17.51

−6.499 −1.375 −1.175 4.138 31.24 −1.084 0.2798 7.444

5.101 −4.909 −17.72 −12.7 −1.084 34.8 −19.06 −6.368

5.696 7.24 20.88 9.748 0.2798 −19.06 46.01 16.57

−3.362 −0.1524 17.36 17.51 7.444 −6.368 16.57 42.52

3
7777777777777777777777777775

,

N =

2
66666666664

−19.38 4.428 8.516 5.313 5.395 −13.24 3.854 5.563

59.01 46.61 −66.71 −38.96 −31.93 −48.63 −13.58 −39.19

−44.82 27.07 −6.688 −3.486 −17.03 −71.37 7.698 27.6

−42.3 −12.48 49.88 16.39 32.01 36.69 0.6506 24.43

−96.29 19.78 30.63 23.13 16.38 −61.69 6.082 74.81

51.39 −30.19 0.7538 21.0 28.07 81.04 14.02 −35.31

27.53 31.84 −34.15 −41.59 −40.85 −45.62 −18.65 −21.06

75.28 23.86 −69.83 −34.04 −34.86 −15.71 5.457 −37.45

−3.48 5.101 −26.73 −28.81 4.269 17.32 −27.84 −19.05

−30.76 −40.56 −11.92 53.83 4.547 −28.91 15.94 −9.38

−27.54 1.115 −10.4 −15.66 1.338 2.841 −25.96 −11.72

21.66 21.98 −2.163 1.695 11.66 18.66 13.41 33.82

−13.76 32.87 −49.47 −25.03 −3.532 18.53 −43.06 −26.89

19.88 10.13 −10.66 −10.36 5.782 −21.14 8.747 −10.81

−9.441 −28.72 20.64 12.02 −22.32 0.8115 25.37 −2.809

−18.48 −28.05 19.74 17.82 −26.09 −39.1 19.35 −20.65

3
77777777775

.

The stabilizing controllers computed due to (4.14) are given as follows

K1 =

2
666666666664

−2.5184 −1.6172 −3.1514 −0.8179 0.2733 −0.3663 −0.5098 −2.0633 1.4279 2.0789

1.8146 −1.2805 1.2826 −1.6708 −2.1084 −1.2355 1.1579 1.963 1.8766 −2.1932

−0.7958 −1.3533 −0.1305 −1.2165 −1.2292 −0.825 0.6033 0.0379 0.7917 0.3569

2.0925 4.3329 5.3707 1.941 0.5369 2.3909 −0.5837 1.8155 −4.5129 −2.0248

−2.274 −1.7576 −1.6418 0.1625 −0.1461 −0.7455 1.274 −0.1933 0.8872 −0.1612

3.9206 3.2178 5.0459 3.9336 1.0307 0.857 1.4648 1.8359 −4.0747 −3.5721

−2.2454 −2.3882 −3.8345 −2.8048 −0.9492 −0.9718 −1.3284 −2.2445 2.9953 3.1331

0.5058 −1.7821 −2.0962 −1.5826 0.1563 −1.1757 0.7518 0.1823 1.4603 0.3831

3
777777777775

,

K2 =

2
666666666664

−1.0337 −0.3553 −0.2657 0.0242 −0.4822 0.9645

−2.1032 0.6602 1.87 −2.2567 0.9705 −0.9634

−1.0651 −0.1905 0.6035 −1.0394 −0.2655 −0.0107

1.9608 0.0777 −0.4632 0.9336 −0.3145 −0.7875

−2.0305 −0.1257 −0.0928 0.1214 0.7204 0.1113

1.2178 0.0699 −0.6156 0.8722 1.1659 −1.9622

−0.8123 0.2242 −0.3272 −0.5815 −0.2743 1.1007

−0.3233 0.1759 0.208 −0.685 0.76 −0.581

3
777777777775

.

It is straightforward to see that the closed loop model becomes stable along the pass. To check it,
the conditions of Theorem 4.5 or Theorem 4.6 or Theorem 4.7 can be applied (output matrices
of that condition are skipped here due to their large dimensions). As a partial proof of the
stability along the pass in the closed loop, it can be easily checked that r(A + BK1) = 0.49 and
r(D0 + DK2) = 0.76.

Remark 4.4 It is to note that the time values given in the above tables are the time values
obtained for the single solution of the considered problem. Since the cluster, on which the problem
is solved, is connected with the ”open” academic network using Fast Ethernet switches and it is
working under TCP/IP protocol, those results depend on the current state of the network, i.e.
whether other computers (not involved into cluster) in the common network use switches and
hence limit the bandwidth (since the cluster members PCs are ”normal” laboratory computers it
was impossible to separate the cluster from the external influence, however the simulations were
made during the nights, when the load of the network is relatively small).
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It is worth to mention that the counter-example, i.e. when Theorem 4.10 is successful and
Theorem 4.9 fails, had not been found.
In view of this fact and above examples, it is natural to try to compare presented synthesis

methods. On one hand, the application of Theorem 4.10 demands to apply much less decision
variables, which is the crucial parameter (Example 4.3) and (what is the consequence) the
solution is obtained much sooner. On the other hand, Theorem 4.9 appeared to be feasible in
more cases than Theorem 4.10. Hence it can be supposed that Theorem 4.9 is less conservative
than the other one.
This situation is somehow similar to Example 4.1, where the LMI condition involving more

variables appeared to be feasible since the other has not provided the feasible solution. Hence
it can be concluded that increasing the number of the decision variables causes the reduction of
the condition conservativeness.
Due to the above remark, in the sequel of this dissertation, when possible (i.e. the sizes of

problems are small enough), to solve the problem of synthesis (analysis) of the discrete LRP,
Theorem 4.9 (Theorem 4.6) is applied.
Concluding the results of above examples, it is straightforward to see that according to the

intuition, the speed of computations increases when more of PC nodes in the cluster is used. It
is however to see that for the small problems, it is not sufficient to increase the number of PC
members (see Table in Example 4.3, where in first 3 rows the computation times obtained with
8 PCs are smaller than those obtained with 16 PCs used in the cluster) over some limit. It is
due to the fact that for the small problems and too many PCs in the cluster used, much more
effort is put to communicate between nodes in the cluster and to synchronize the computations,
than to take the advantage of the parallel computing. Hence the following conclusion is natural:
the increase of the cluster member PCs is purposeful only for the large size problems.
The obtained results prove the usefulness of the PC clusters and SDP solvers to solve prob-

lems of analysis and synthesis of LRPs.

4.4.2 Differential case

The LMI condition similar to that given in Theorem 4.9 can be provided here for the controller
design for the differential LRP (2.14)-(2.15) Firstly, define the control law over 0 ≤ t < α, k ≥ 0

uk+1(t) = K1xk+1(t) + K2yk(t), (4.16)

where again K1 and K2 are appropriately dimensioned controller matrices to be designed. Now,
using the LMI stability test and defined feedback loop (4.16), the following result can be pre-
sented.

Theorem 4.11 The differential LRP is stable along the pass under the control law of (4.16) if
there exist matrices Y > 0, Z > 0, M and N of appropriate dimensions such that the following
LMI holds  Y AT + AY + NT BT + BN B0Z + BM Y CT + NT DT

ZBT
0 + MT BT −Z ZDT

0 + MT DT

CY + DN D0Z + DM −Z

 < 0. (4.17)

Then controllers K1 and K2 are then given by

K1 = NY −1, K2 = MZ−1. (4.18)
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For the proof and detailed description see [49, 139].

Example 4.5 Consider the following unstable model of differential LRP of (2.14)-(2.15)

A =


−3.6 0.2 −1.4 −1.7
0.1 −6.3 1.6 1.9
2.9 −0.2 −4.9 −5.7
−4.4 −1.4 −2.7 −1.1

 , B =


1.7 −2.2 1.9
1.4 −3.4 −3.4
1.3 −2 −1.6
0.5 −2.1 2.8

 , B0 =


−1 1
0.6 0.6
0.5 0.9
−0.3 0

 ,

C =

[
−0.5 −0.4 −0.2 −0.1

0 −0.6 0.4 −0.6

]
, D0 =

[
−1.4 −0.4
−0.1 0

]
, D =

[
−4.3 −5.7 −5.5

4 4.7 −4.7

]
.

The application of the LMI condition given in Theorem 4.11 provides the following matrices

Y =


1738.3753 1398.8361 −84.9254 1393.9339
1398.8361 3606.6064 72.8413 2472.91
−84.9254 72.8413 1141.8682 −598.2236
1393.9339 2472.91 −598.2236 3190.6964

, Z =

[
1711.7330 43.6538
43.6538 2550.9263

]
,

N =

 1553.8209 3379.6068 −18.2156 4862.1008
−1258.8102 −2500.7549 −51.2653 −3718.7458
−63.5197 −596.0789 −18.2064 −232.6494

, M =

 −182.2183 −618.65
−90.2886 372.7029
−116.1564 −88.4136

 .

Hence the controller matrices which ensure stability along the pass under the control defined
in (4.16) and computed due to (4.18) become

K1 =

 −0.5515 −0.5170 1.2315 2.3964
0.3483 0.4909 −1.0424 −1.8936
0.1038 −0.2886 0.0725 0.1190

, K2 =

 −0.1003 −0.2408
−0.0565 0.1471
−0.0670 −0.0335

 .

4.5 Determining of the 2D stability margins

In some cases, it is required to find out how far from the ”stability border” is the considered
discrete LRP. For the classical 1D theory (discrete case) the stability margin is defined as a
maximal real number σ > 0 such that r

(
(1 + σ)A

)
< 1.

As for 2D discrete linear systems described by the Roesser and Fornasini Marchesini state-
space models, the stability margin for discrete linear LRPs has been defined [17] as the shortest
distance between a singularity of the process and the stability along the pass limit, which is the
boundary of the unit bidisc, i.e. T

2 := {(z1, z2) : |z1| = 1, |z2| = 1 }. Hence the stability
margin is a measure of the degree to which the process will remain stable along the pass under
variations in the process state-space model matrices which define this property. Hence so-called
generalized stability margin for discrete LRPs of (2.9)-(2.10) is defined as follows.

Definition 4.1 The generalized stability margin σβ for discrete LRPs of (2.9)-(2.10) is defined
as the radius of a largest bidisc, in which the 2D characteristic polynomial satisfies

C (z1, z2) 6= 0 ,∈ U
2
σβ

= {(z1, z2) : |z1| ≤ 1 + (1− β) σβ, |z2| ≤ 1 + βσβ} , (4.19)

where 0 ≤ β ≤ 1.
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In particular, q1 and q2 give the stability margins corresponding to z1 and z2 respectively,
i.e. along the pass and pass-to-pass respectively. In the sequel the following lemma is helpful

Lemma 4.1 Given qi ∈ R, qi > 0, i = 1, 2 such that

Ĉ (z1, z2) = det

[
I − z1(1 + q1)A −z1(1 + q1)B0

−z2(1 + q2)C I − z2(1 + q2)D0

]
6= 0 (4.20)

in U
2
, then

C
(
z′1, z

′
2

)
= det

[
I − z′1A −z′1B0

−z′2C I − z′2D0

]
6= 0 (4.21)

in U2
q , where

U
2
q =

{(
z′1, z

′
2

)
:
∣∣z′1∣∣ ≤ 1 + q1, :

∣∣z′2∣∣ ≤ 1 + q2

}
. (4.22)

Now, it is possible to establish the main result on the computation of the lower bounds for
the stability margins defined above.

Theorem 4.12 For a given β such that 0 ≤ β ≤ 1, a lower bound for the generalized stability
margin σβ is given by the solution of the following quasi-convex optimization problem:
Maximize σβ subject to P > 0, Q > 0, σβ > 0 and the LMI Q− P 0 (1 + (1− β)σβ) ÂT

1 P

0 −Q (1 + βσβ) ÂT
2 P

(1 + (1− β)σβ) PÂ1 (1 + βσβ) PÂ2 −P

 < 0, (4.23)

where Â2 and Â2 are defined in (4.8).

Proof. Noting the result of Lemma 4.1 first write the condition of Theorem 4.5 for stability
along the pass in terms of the matrix

Υ =

[
(1 + q1)A (1 + q1)B0

(1 + q2)C (1 + q2)D0

]
.

Now set q1 = (1 − β)σβ and q2 = βσβ, note again the definition of the stability margins, and
apply the Schur complement (Lemma 3.1) with

Σ3 =

[
Q− P 0

0 −Q

]
, Σ1 = P−1, Σ2 =

[
(1 + (1− β)σβ) PÂ1 (1 + βσβ) PÂ2

]
to obtain (4.23). �
In computational terms, it is straightforward to transform the maximization problem which

defines the computation of the generalized eigenvalue problem which can be solved using, e.g.
the Matlab LMI Control Toolbox. In the case of an arbitrary β ∈ [0, 1], the following
result can be presented.
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Lemma 4.2 For β ∈ [0, 1], a lower bound for the generalized stability margins q1 = βσβ and
q2 = (1− β)σβ can be obtained from the solution of the generalized eigenvalue problem:

minimize λ := σ−1
β ,

subject to

{
0 < B(x),

A(x) < λB(x),

where

A(x) =

 0 0 (1− β)ÂT
1 P

0 0 βÂT
2 P

(1− β)PÂ1 βPÂ2 0

 , B(x) = −

 Q− P 0 ÂT
1 P

0 −Q ÂT
2 P

PÂT
1 PÂ2 −P

 .

As an example to illustrate the computation of the stability margins, the following example
is provided.

Example 4.6 Consider the discrete LRP of (2.9)-(2.10) described by the following matrices

A =


−0.35 0.35 0.32 −0.16
0.2 0.09 0.14 −0.21
−0.12 0 0.32 −0.16
0.36 0.4 0.16 0.03

 , B =


0.45 −0.26
−0.38 0.41
0.68 0.09
0.14 −0.11

 , B0 =


−0.36 −0.2
−0.49 0.16
0.39 −0.22
−0.3 −0.03

 ,

C =

[
0.19 0.29 0.02 −0.33
0.12 0.46 0.38 0.48

]
, D =

[
−0.23 0.38
−0.25 0.24

]
, D0 =

[
−0.44 0.08
0.49 −0.08

]
.

Beneath, the lower bounds for stability margins calculated by using the condition of Theorem 4.12
for arbitrary chosen β such that 0 ≤ β ≤ 1 are presented

β σβ q1 q2

0 0.4629 0.4629 0
0.1 0.4685 0.4216 0.0468
0.2 0.4777 0.3822 0.0955
0.3 0.481 0.3367 0.1443
0.4 0.4845 0.2907 0.1938
0.5 0.4854 0.2427 0.2427
0.6 0.4873 0.1949 0.2924
0.7 0.4823 0.1447 0.3376
0.8 0.4821 0.0964 0.3857
0.9 0.4716 0.0472 0.4244
1.0 0.4608 0 0.4608

Table 4.4. Computed values of stability margins
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4.6 2D stabilization to the prescribed stability margins

The controller design objective is clearly that of achieving stability along the pass closed loop
with a prescribed lower bound on the stability margins in the along the pass and pass to pass
directions respectively. Here such bounds are denoted by q1 and q2 respectively and the following
theorem regards the 2D controller design to the prescribed stability margins.

Theorem 4.13 Discrete LRPs of the form described by (2.9)-(2.10) are stable along the pass
under control laws of the form (4.11) with K defined by (4.14) and with prescribed lower bounds
on the stability margins q1, q2, corresponding to z1 and z2 respectively, if there exist matrices
Y > 0, Z > 0 and N of the appropriate dimensions such that the following LMI is feasible

Z − Y 0 (1 + q1)
(
Y ÂT

1 + NT B̂T
1

)
0 −Z (1 + q2)

(
Y ÂT

2 + NT B̂T
2

)
(1 + q1)

(
Â1Y + B̂1N

)
(1 + q2)

(
Â2Y + B̂2N

)
−Y

 < 0. (4.24)

Proof. For β ∈ [0, 1], lower bounds for the generalized stability margins are defined as follows
q1 = βσβ, q2 = (1−β)σβ . Write the LMI stability along the pass condition (4.23) for the closed
loop system as

Q− P 0 (1 + q1)
(
ÂT

1 + KT B̂T
1

)
P

0 −Q (1 + q2)
(
ÂT

2 + KT B̂T
2

)
P

(1 + q1) P
(
Â1 + B̂1K

)
(1 + q2) P

(
Â2 + B̂2K

)
−P

 < 0. (4.25)

Left and right multiply (4.25) by diag(P−1, P−1, P−1) and substitute Y = P−1, Z = P−1QP−1

to obtain
Z − Y 0 (1 + q1)

(
Y ÂT

1 + Y KT B̂T
1

)
0 −Z (1 + q2)

(
Y ÂT

2 + Y KT B̂T
2

)
(1 + q1)

(
Â1Y + B̂1KY

)
(1 + q2)

(
Â2Y + B̂2KY

)
−Y

 < 0.

Finally, use (4.14) to obtain LMI of (4.24), what completes the proof. �

Example 4.7 To illustrate the application of Theorem 4.13 consider the following state-space
model of the discrete LRP of (2.9)-(2.10) which is unstable. Assume also that the following
stability margins q1 = 0.2 and q2 = 0.3 are required to be ensured in closed loop system under
the feedback loop (4.11)

A =

 −0.7 0.85 1.01
−1.13 −0.39 −0.66
−1.02 −0.08 0.88

 , B =

 0.76 2.39
1.9 −0.62
−0.06 0.15

 , B0 =

 −1.16 0.05
0.9 −0.75
−1.15 0.52

 ,

C =

[
−0.77 −0.19 0.42

0 0.39 1.11

]
, D =

[
−0.75 0.16
−0.94 1.14

]
, D0 =

[
−1.47 −2.14
2.56 0.13

]
.

Application of Theorem 4.13 provides the following controllers

K1 =

[
−0.1863 −0.1203 0.4599
0.4336 −0.2884 −0.576

]
, K2 =

[
0.4398 −0.9362
0.0088 0.5331

]
,
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which ensure the stability along the pass and drive the closed loop system to the required stability
margins. The following table illustrates calculated stability margins for the closed loop system.

β σβ q1 q2

0 0.285 0.285 0
0.1 0.2879 0.2592 0.0288
0.2 0.3447 0.2758 0.0689
0.3 0.3842 0.269 0.1153
0.4 0.4357 0.2614 0.1743
0.5 0.5081 0.2541 0.2541
0.6 0.6045 0.2418 0.3627
0.7 0.7463 0.2239 0.5224
0.8 0.9889 0.1978 0.7911
0.9 1.5122 0.1512 1.3609
1.0 2.5632 0 2.5632

Table 4.5. Obtained values of stability margins

4.7 Decoupling for the LRPs

Here, one of the ”analytic” approaches to simplify the LRP synthesis tasks and hence to achieve
significant numerical savings is presented [134].
When considering the discrete LRPs of (2.9)-(2.10) or (2.19)-(2.20) in some cases it is possible

to simplify the structure of 2D model in the way to limit significantly the numerical efforts. It
can be done by introducing the following feedback control laws (depending on the part of model
which is to be simplified)

uk+1(p) = Kyyk(p) + ûk+1(p) (4.26)

or
uk+1(p) = Kxxk+1(p) + ûk+1(p), (4.27)

where Kx or Ky are controllers to be designed. Note that above control laws are clearly parts
of (4.11) hence it can be treated that it is applied again, however Kx or Ky introduced plays
a bit different role than original controllers K1 and K2.
The stability properties of processes described by (2.9)-(2.10) can be compactly summarized

in terms of the so-called augmented plant matrix Υ (2.18) and under the action of a control law
of the form (4.26) this is mapped to

Υc =

[
A B0 + BKy

C D0 + DKy

]
and under the control law of the form (4.27) is mapped to

Υc =

[
A + BKx B0

C + DKx D0

]
.

For the generalized LRPs of (2.19)-(2.20) only the first of the above mappings holds.
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It is straightforward to see that using (4.26), the matrix D0 governing asymptotic stability is
mapped to D0 +DKy and it follows immediately that this control law can achieve this property
in the closed loop if and only if the pair {D0, D} is controllable in classical 1D sense. Similarly,
using (4.27), the matrix A governing the stability of every single pass is mapped to A + BKx

and it follows immediately that this control law can achieve this property in the closed loop if
and only if the pair {A,B} is again controllable in the classical 1D sense.
Note also that the application of (4.26) or (4.27) influences always the second matrix, i.e.

B0 or C, hence it can be used for simplification of the model (decoupling of the dynamics).
Consider first the control law of (4.26) and assume

r(D0 + DKy) < 1,

B0 + BKy = 0.

Then the state dynamics on the every current pass are in fact independent from the state
dynamics from the previous passes. Hence the process becomes to some extent the series of the
independent 1D systems (from the state dynamics point of view). Asymptotic stability can be
achieved also, but it can be more difficult than for the case with no equality constraints, i.e.
B0 + BKy = 0.
On the other hand, apply (4.27) to reach

r(A + BKx) < 1,

C + DKx = 0.

Then from the pass profile point of view, the repetitive process dynamics are equivalent to the
finite (due to that the pass length α is finite) number of independent dynamics from the pass
to pass direction (for each point p, 0 ≤ p ≤ α− 1). Hence the asymptotic stability requirement
(if satisfied) would give the same effect as the stronger along the pass one. Note that this refers
only to the pass profile dynamics but r(A + BKx) < 1 guarantees that the state dynamics
asymptotically decreasing along the pass.
The following results can be stated on the application of control laws (4.27) or (4.26).

Theorem 4.14 Suppose that the discrete LRP described by (2.9)-(2.10) or (2.19)-(2.20) is
subject to a control law of the form (4.27). Then stability of A + BKx with simultaneous
decoupling holds if and only if there exist matrices Px > 0, Gx, and Nx of the appropriate
dimensions such that the following LMI holds[

−Px AGx + BNx

GT
x AT + NT

x BT Px −Gx −GT
x

]
< 0, (4.28)

CGx + DNx = 0. (4.29)

When this condition holds, Kx can be computed as

Kx = NxG−1
x

Theorem 4.15 Suppose that the discrete LRP described by (2.9)-(2.10) is subject to a control
law of the form (4.26). Then stability with decoupling holds under the action of this control law
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if and only if there exist matrices Py > 0, Gy and Ny of the appropriate dimensions such that
the following LMI holds [

−Py D0Gy + DNy

GT
y DT

0 + NT
y DT Py −Gy −GT

y

]
< 0, (4.30)

B0Gy + BNy = 0. (4.31)

When this condition holds, Ky can be computed as

Ky = NyG
−1
y .

Proofs of both these Theorems come directly from the previous analysis together with Theo-
rem 4.4.
It is obvious that both the results combined together give an efficient way to achieve the

stability along the pass for the obtained closed loop process. Hence the following result appears.

Theorem 4.16 Suppose that the discrete LRP described by (2.9)-(2.10) is subject to a control
law of the form (4.11) (with controllers Kx and Ky). Then the both, state and the pass profile
dynamics are decoupled and the overall process is stable along the pass.

The proof is immediate on applying the results of both Theorems 4.15 and 4.14.
The approach to the controller design presented aforementioned provides a very effective

means of controlling the repetitive processes considered but this is subject to several strong
limitations which may hinder its applicability.
First, two matrix equations in this last result must be solved and the existence of a solution

requires that
rank(D) = rank([D, CGx])

and
rank (B) = rank([B, B0Gy]).

The point here is that the decision matrices Gx and Gy in the LMIs are also part of the conditions
for the existence of solutions which can be a source of serious problems. If no solutions exist,
then one possibility is to attempt approximate decoupling by minimizing a norm applied to
CGx + DNx and BGy + BNy.
This approach can be also used for the generalized model of (2.19)-(2.20) but then the stabil-

ity along the pass cannot be achieved. However, the problem of the synthesis towards asymptotic
stability, which originally is related to the necessity of handling the possibly enormously large
matrices (see Theorems 4.2 or related synthesis conditions) can be transformed to the signifi-
cantly reduced (in the dimensionality of the problem meaning) form. In particular, suppose that
the current pass state vector is decoupled from the pass profile updating equation in (2.19)-(2.20)
using the control law (4.27) (i.e. (4.28)-(4.29) hold), where ûk+1(p) is an auxiliary current pass
control input vector. Then the resulting closed loop state-space model becomes

xk+1(p + 1) = (A + BKx)xk+1(p) + Bûk+1(p) +
α−1∑
j=0

Bjyk(j), (4.32)

yk+1(p) = Dûk+1(p) +
α−1∑
j=0

Djyk(j). (4.33)
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Hence the 1D equivalent model matrices become (according to (2.27))

Φ =


D0 D1 . . . Dα−1

D0 D1 . . . Dα−1

...
...
. . .

...
D0 D1 . . . Dα−1

 , ∆ =


D 0 0 . . . 0
0 D 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . D

 . (4.34)

Note that the matrix Φ of (4.34) has (α− 1)m zero eigenvalues and the remaining m are equal
to eigenvalues of the matrix

∑α−1
j=0 Dj . Hence this fact provides in effect a computationally more

efficient test for asymptotic stability for the considered case, i.e. instead of testing r(Φ), where
Φ have a huge dimension, r(

∑α−1
j=0 Dj) can be checked. In this way, handling of large numbers

of decision variables is avoided.
The form of Φ here can also be exploited in the design of a control law of the following form

which is of the structure of (4.3), however it is different in such a way that is constructed from
the ”external” input vectors ûk+1(p) defined in (4.27)

Û(l) = KV (l), (4.35)

where Û(l) is the 1D equivalent model super-vector, to ensure asymptotic stability of the original
process. In particular, suppose that the structure of the controller matrix is taken to be

K =


K0 K1 . . . Kα−1

K0 K1 . . . Kα−1

...
...
...

...
K0 K1 . . . Kα−1

 , (4.36)

which yields a 1D equivalent model with state matrix

Φ̃ := Φ + ∆K (4.37)

and the following result can be presented.

Theorem 4.17 Suppose that the generalized discrete LRP of the form (2.19)-(2.20) is subject
to a control law (4.27), which is designed to give (4.32)-(4.33). Suppose also that (4.32)-(4.33)
is expressed in 1D equivalent model form (2.24)–(2.25) (with Û(l) replacing U(l)) and a control
law of the form (4.35) (i.e. Û(l) = KV (l)) applied, where K has the structure of (4.36). Then
the resulting closed loop process is asymptotically stable if and only if there exist matrices P > 0,
G, Nj , j = 0, 1, . . . , α− 1 such that the following LMI holds

−P
α−1∑
j=0

(
DjG + DNj

)
α−1∑
j=0

(
GT DT

j + NT
j DT

)
P −G−GT

 < 0. (4.38)

Also if this condition holds, the block entry Kj in the controller matrix K of (4.36) is given by

Kj = NjG
−1, ∀j = 0, 1, . . . , α− 1.
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Proof. First, set D =
α−1∑
j=0

Dj , K =
α−1∑
j=0

Kj , and N =
α−1∑
j=0

Nj . In these terms, the resulting closed

loop process can be recognized to be asymptotically stable if and only if there exists W > 0
such that

(D + DK)T W (D + DK)−W < 0. (4.39)

Next, make an obvious application of the Schur complement formula to (4.39) and pre- and

post-multiply the result by

[
I 0
0 W

]
to obtain

[
−W (D + DK)T W

W (D + DK) −W

]
< 0.

Now set P = W−1 and left- and right-multiply the above LMI by diag(P, P ) to obtain[
−P P (D + DK)T

(D + DK)P −P

]
< 0.

Also using K = NP−1 gives [
−P PDT +N T DT

DP + DN −P

]
< 0. (4.40)

Now, it is necessary to establish that (4.40) is equivalent to (4.38) where this last condition is
equivalent to [

−P DG + DN
GDT +N T DT P −G−GT

]
< 0. (4.41)

To show the necessity, assume that G = P and note that (4.41) becomes (4.40) since the LMI
is symmetric. For sufficiency, left multiply (4.41) by [ I |D+DNG−1 ] (note that G is invertible
since G + GT > 0) and right multiply the result by its transpose to obtain (4.39). Next, note
that

K = NG−1 = (
α−1∑
j=0

Nj)G−1 =
α−1∑
j=0

(NjG
−1) =

α−1∑
j=0

Kj (4.42)

and (4.38) ensures that the controller K is such that

r
(
(
α−1∑
j=1

Dj) + DK
)

< 1 (4.43)

and, in turn (4.43) is equivalent to r(Φ + ∆K) < 1. This completes the proof. �
A simplified form of the above result arises, when it is assumed that

Kj = K̂, j = 0, 1, . . . , α− 1. (4.44)

Also if this condition holds, then it is easy to conclude that K = αK̂, and from (4.42) N of (4.38)
satisfies N = αN̂ . Hence the following 1D controller matrix structure can be assumed

K =


K̂ K̂ . . . K̂

K̂ K̂ . . . K̂
...
...
...
...

K̂ K̂ . . . K̂

 . (4.45)
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In summary, therefore, a procedure for controller design to achieve asymptotic stability
of processes described by (2.19)-(2.20) has been developed. The first step is to use preliminary
feedback action to decouple the current pass state vector from the pass profile updating equation
(which, however, is not always possible). This step does not reduce the dimension of the matrix
Φ but crucially greatly simplifies its spectrum, which lowers the numerical efforts in the final
controller design.

Example 4.8 Consider the case of (2.19)-(2.20) when α = 20 and

A =

 1.99 −0.96 0
0 0 −1.87

−2.36 −2.82 −0.32

 , B =

 0 1.54 2.13
2.24 0 −1.43
0.92 −2.03 1.18

 ,

B =
[

B0 B1 . . . B19

]
=

 −1.44 −0.96 −2.85 0 0 1.33 1.47 0 0.88 −0.87
0 −2.54 0 −0.71 1.86 −1.87 0 0 2.81 2.20
0 2.07 0 0.10 2.62 0 2.40 3.0 0.53 −0.29

0.56 −0.09 −2.36 −2.63 0 −2.80 0.74 2.21 0 0.03
−1.88 −0.33 0 0 0 1.92 1.77 0 2.58 0.14
1.33 0 1.0 0 0 −1.27 2.83 0.67 1.04 0.51

0.03 0 0 1.03 −0.37 −2.15 0.82 2.95 −1.59 −0.96
0 0.50 0 0 1.24 0.56 0 0 2.02 −2.84
0 −2.96 0 −2.22 0 0 0 1.08 −0.84 −0.32

−2.02 −0.47 −1.45 2.09 0 0.68 0.25 0.07 2.60 0
1.94 0.76 0.60 0 −0.81 0 2.87 −1.85 −0.15 −0.13
−2.19 0 −1.18 −1.67 −0.98 −2.63 0 0 0.99 0

 ,

C =

[
1.38 1.69 −2.21
0 0 1.62

]
, D =

[
−0.46 −2.89 2.34

0 −0.18 −2.12

]
,

D =
[

D0 D1 . . . D19

]
=

[
0.24 0 0 −1.67 0 0.49 0 −0.90 −1.46 1.68
0.94 1.17 −1.54 1.91 0 −1.74 −0.77 −0.78 0 −1.66

−1.92 0.05 −0.6 0 0 1.49 −0.16 0.72 0 1.13
0.95 0.34 0 −1.79 0 0 −0.68 −1.43 −1.25 1.87

0 0 1.13 −1.43 0 0 0 −0.91 0.06 0.17
−0.44 0 0 0 1.03 0 −0.76 1.47 −0.48 1.79

0 −1.15 0 0.62 −0.04 0.20 0 1.45 0.72 1.49
−0.83 −1.73 −0.77 0 −0.92 −1.75 −1.06 0 0 0

]
.

This model is unstable since r(Φ) = 6.9248× 107. Applying Theorem 4.14 (LMI (4.28) and
the constraint (4.29)) in this case yields the solution matrices

Px =

 1609.25 −3472.8 −3717.48
−3472.8 8289.92 8846.9
−3717.48 8846.9 9450.12

, Gx =

 970.49 −1856.2 −1998.97
−2065.29 4755.64 5082.24
−2206.71 5048.48 5413.21

,
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Nx =

 −3378.43 65.5446 7105.47
108.13 108.64 90.05
−1695.44 3848.58 4128.86


and the decoupling controller matrix Kx applicable in (4.27) is given by

Kx =

 −2.9399 −3.7553 3.7526
0.8846 1.1064 −0.6955
−0.0751 −0.0939 0.8232

 .

Hence the decoupling of the dynamics is granted. Then the application of Theorem 4.17 yields
the following matrices (the controller structure assumptions (4.44) and (4.45) employed)

P =

[
407022367 0

0 407022367

]
, G =

[
407022367 0

0 407022367

]
,

N̂ =

 −8203055 1106302
−60008273 5489886
−58070224 −22833155


and hence

K̂ =

 −0.0202 0.0027
−0.1474 0.0135
−0.1427 −0.0561

 .

Finally, it is easy to see that the resulting closed loop process is asymptotically stable as required.

Remark 4.5 Note that the presented approach for the decoupling the dynamics can be (after
the appropriate reformulations) extended for the class of differential LRPs of (2.14)-(2.15).

4.8 Successive Stabilization Algorithm

The analysis presented in the previous section has provided a numerically efficient method of
ensuring asymptotic stability of generalized discrete LRPs using the 1D equivalent model, where
the numerical efforts necessary to apply it are lowered significantly. However, the requirements
for the use of this approach can be difficult to met and in such a case the method may not work.
In this section, the alternative methodology of the use of the so-called successive (iterative)

stabilization procedure is outlined (see [54, 70, 134]). The basic idea is that the process is driven
to be asymptotically stable over a short pass length, which significantly reduces the numerical
efforts necessary to accomplish the task, and then subsequently this design is augmented by
increasing the pass length. It is done by using only the control action, which preserves the
original repetitive process state-space model structure. This approach improves the numerical
conditioning of the task to be performed and hence in many cases, allows to solve the large
problems, which was not possible to do directly.
To proceed, suppose that the feedback controller matrix K applicable in (4.35) is assumed

to be of the form (4.36). Such a choice for K ensures that the closed loop system retains the
structure of (2.19)-(2.20). Hence K can be treated as a special set of 2D controllers Kj , j =
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0, . . . , α−1, which influence the dynamics from pass-to-pass (and along the pass as well). It can
be presented in the following form

uk+1 = Kxxk+1(p) +
α−1∑
j=0

Kjyk(j). (4.46)

The structure of (4.36) for K can be achieved by setting

G =


G0 0 . . . 0
0 G1 . . . 0
...
...
...

...
0 0 . . . Gα−1

 and N =


N0 N1 . . . Nα−1

N0 N1 . . . Nα−1

...
...
...

...
N0 N1 . . . Nα−1


in the condition of Theorem 4.4. Then if this condition holds, K0 = N0G

−1
0 , K1 = N1G

−1
1 , . . .,

Kα−1 = Nα−1G
−1
α−1, and also Φ̃ can be written in the block form Φ̃ = [Φ̃ij ], where

Φ̃ij =


Dj + DKj , i = 1, j = 0, 1, . . . , α− 1,

Dj + DKj +
i−1∑
t=0

(C̃ÃtBj + C̃ÃtBKj), i = 2, 3, . . . , α, j = 0, 1, . . . , α− 1,

=


D̃j , i = 1,

D̃j +
i−1∑
t=0

(C̃ÃtB̃j), i = 2, 3, . . . , α− 1.

Hence it follows immediately that the closed loop process with the controller matrix K of
the form (4.36) has a state-space model of the form (2.19)-(2.20) with Ã = A + BKx, B̃ = B,
C̃ = C + DKx, D̃ = D and

B̃j = Bj + BKj , D̃j = Dj + DKj , j = 0, 1, . . . , α− 1.

Remark 4.6 Note that the application of the controller Kx is optionally here. If the decoupling
(driving C to zero) or at least the stabilization of A is required, it can be done using procedure
presented in Section 4.7 (Theorem 4.14) before the successive procedure starts. If one decides
that this preliminary action is not necessary (e.g. when A has been found to be Schur-stable)
that part can be skipped.

The design procedure in the framework of successive stabilization described above is as
follows.

Successive Stabilization Algorithm

Step 1 Choose an initial stabilization problem size q as a multiple of m and
an interval number h > 0. Set iteration counter z = 1.

Step 2 Using (4.6), (4.7) for Φq×q compute the partial control law matrices
K0, K1, . . . ,K q

m
−1.

Step 3 Modify Φ as in (4.37) using the matrices Kj , computed above under
the assumption that Kj = 0, ∀j ≥ q

m .
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Step 4 Check if the resulting closed loop process is asymptotically stable. If
yes, then stop and compute the resulting closed loop model matrices
for the repetitive process state-space model. If no, go to Step 5.

Step 5 Check if q + h > mα and if yes, go to Step 6. If no, increase z by 1, set
q = q + h and return to Step 2.

Step 6 Check if q = mα and if yes, then terminate the algorithm since closed
loop asymptotic stability cannot be achieved by this method. If no,
increase z by 1, set q = mα and return to Step 2.

Remark 4.7 For the sufficient large mα and small q and h the evaluation of the above algorithm
can take a very long time but overall it compares very favorably with solving the stabilization
problem with the full Φ.

To highlight the evaluation of the Successive Stabilization Algorithm the following examples
are given.

Example 4.9 Consider the discrete LRP of (2.19)-(2.20) defined by the following matrices
when α = 16

A =

[
0.74 −0.03
−0.02 0.74

]
, B =

[
1.15
1.66

]
, C =

[
0.7 0.34

]
, D =

[
0.8

]
,

B =
[

B0 B1 . . . B15

]
=

[
−0.45 −0.41 0.78 0.83 −0.38 0.52 −0.41 0.43
−0.54 0.11 −0.45 0.56 −0.53 −0.14 0.89 0.57

−0.51 −0.72 0.4 0.58 −0.57 0.24 0.26 −0.18
0.24 −0.77 −0.62 −0.95 −0.32 −0.19 −0.15 0.47

]
,

D =
[

D0 D1 . . . D15

]
=

[
0.83 −0.52 −1.03 0.32 0.71 0.61 −0.05 0.76

−0.57 −0.29 1.02 −0.07 0.07 −0.98 0.27 0.37
]
.

Here r(Φ) = 1.081 and this process is asymptotically unstable. Attempts to design a control law
towards asymptotic stability by the direct route using Theorem 4.3 or Theorem 4.4 failed. In
this case it is possible to try to solve this problem applying the presented Successive Stabilization
Algorithm (the preliminary stabilization of A has been skipped since it is unnecessary r(A) < 1).
To commence the algorithm, set q = 2 and h = 1. Then Step 1 gives

K1
j =

[
−0.2546 0.3918

]
,

where the superscript denotes the iteration counter. Hence

B̃1
0 =

[
−0.7468
−0.9580

]
, B̃1

1 =

[
0.0376
0.7558

]
, D̃1

0 =
[

0.6236
]
, D̃1

1 =
[
−0.2081

]
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and B̃1
j = B0

j , D̃1
j = D0

j ∀j > 1.
Proceeding with the iterative procedure now gives in turn

K2
j =

[
0.2618 −0.0879 0.1173

]
,

K3
j =

[
−0.2190 0.3807 −0.0401 −0.5236

]
,

K4
j =

[
0.2621 −0.0847 0.1270 −0.0042 0.0484

]
,

K5
j =

[
−0.2002 0.3760 −0.0614 −0.5271 0.0150 −0.3523

]
,

K6
j =

[
0.2771 −0.0887 0.1098 −0.0067 0.0605 0.0046 0.0184

]
,

K7
j =

[
−0.1893 0.3742 −0.0731 −0.5292 0.0217 −0.3502 0.0016 −0.4778

]
,

K8
j =

[
0.2975 −0.0973 0.0855 −0.0087 0.0824 0.0145 0.0154 0.0096 0.3036

]
,

K9
j =
[
−0.1893 0.3743 −0.0732 −0.5293 0.0219 −0.3503 0.0017 −0.4778 0 0.5242

]
,

Finally, the stabilized process matrices corresponding to B and D are given by

B9 =
[

B̃0 B̃1 . . . B̃15

]
=

[
−0.6719 0.0175 0.6437 0.2220 −0.3593 0.1129 −0.4106 −0.1195
−0.8500 0.7268 −0.5668 −0.3156 −0.4959 −0.7176 0.8909 −0.2262

−0.5133 −0.119 0.4 0.58 −0.57 0.24 0.26 −0.18
0.2448 −0.1022 −0.62 −0.95 −0.32 −0.19 −0.15 0.47

]
,

D9 =
[

D̃0 D̃1 . . . D̃15

]
=

[
0.6761 −0.2221 −1.0919 −0.1103 0.7316 0.3313 −0.0530 0.3710

−0.5662 −0.1354 1.02 −0.07 0.07 −0.98 0.27 0.37
]
.

The values of r(Φ̃) (the matrix to which Φ is mapped to closed loop according to (4.37)) during
these iterations are given in Table 4.6 Here, the closed loop asymptotic stability is achieved after

Iteration no. 0 1 2 3 4 5 6 7 8 9

l r(Φ̃) 1.09 1.18 1.7 1.13 1.92 1.38 2.02 4.34 3.5 0.86

Table 4.6. The spectral radius values of Φ̃ during the iterations

nine iterations. Note also that when the direct route was attempted, the LMI has been found to
be unsolvable numerically.
Figures 4.7 a) and b) show the free evolution (i.e. U(l) = 0, l = 0, 1, . . .) open and closed loop

model respectively with boundary conditions xk(0) = [1 − 0.5]T , k = 1, 2, . . . and y0(p) = 0.1,
0 ≤ p ≤ 15.
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Figure 4.7. The process responses: (a)- open loop and (b)- closed loop

To prove the applicability of the successive stabilization algorithm for the cases of higher
dimensioned LRPs, refer to the following example.

Example 4.10 Consider the unstable discrete LRP of (2.19)-(2.20) defined by the following
matrices when α = 100

A =

[
0.47 0.66
0.66 −0.11

]
, B =

[
0.58
0.68

]
,

B =
[
−0.81 −0.12 −0.2 0.41 0.03 0.07 −0.2 0.06 −0.14 −0.07
0.05 0.04 0.22 0.4 0.4 −0.35 −0.02 −0.2 0.24 −0.03

−0.14 −0.15 −0.14 −0.15 −0.03 −0.06 −0.01 −0.01 −0.07 0.02
0.02 −0.02 0.02 0.05 −0.05 0 0.08 0 0.02 0.03

0.02 −0.07 0.09 −0.07 −0.06 0.04 −0.05 −0.02 −0.07 −0.05
0.06 0.07 0.03 0.02 0.08 0.06 0 −0.03 −0.02 −0.05

−0.02 0.04 −0.04 0.06 0.05 −0.01 0.06 −0.02 −0.02 −0.05
0.02 −0.01 −0.02 −0.01 −0.04 0.05 0 −0.03 0.04 −0.03

−0.05 −0.04 −0.04 −0.03 0.01 0.04 0.04 0.02 0.01 0.03
0.05 0.04 −0.03 0.03 0.02 0.01 −0.02 −0.03 0.01 −0.02

−0.01 0.04 0.02 0.02 −0.04 0.01 −0.03 0.03 0.01 0.03
−0.02 0.02 −0.03 −0.03 0 −0.02 −0.02 0.03 0.03 0.03

0.03 0.02 −0.01 −0.02 0 −0.02 0 0.02 0.01 −0.03
0 −0.02 0.01 −0.02 −0.03 0 −0.01 −0.02 0.03 0.02

0 0.01 0.03 −0.03 0.01 0.01 0.01 0 0.02 −0.02
0 0.01 0.03 −0.01 −0.03 0 −0.02 −0.01 −0.01 0.02

0 0.01 −0.02 −0.01 0.01 0 0.01 −0.01 −0.02 0.01
−0.01 0.01 −0.02 0 0.02 −0.03 −0.01 0.02 −0.01 −0.02

−0.01 0.01 −0.01 −0.01 0.01 −0.02 −0.01 −0.02 0 −0.01
0.02 −0.02 −0.02 0.01 0 0.02 0 0.01 0.01 0.02

]
,

C =
[

0.16 0
]
, D =

[
0.14

]
,
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D =
[
−0.41 −0.27 −0.6 0.53 0.37 −0.03 0.04 0 0.24 −0.21

−0.1 −0.06 −0.13 0.08 0.04 −0.08 −0.01 −0.06 −0.11 −0.08

0.01 0.08 0.08 0.04 −0.05 0 0.05 0.03 −0.08 −0.03

−0.05 −0.04 −0.05 −0.06 −0.01 −0.03 −0.05 −0.01 −0.02 0.04

−0.05 0.05 0.05 0.05 0.03 −0.04 −0.02 0.02 −0.04 0.04

0 0.04 −0.01 0.03 −0.04 0.01 −0.01 0.01 −0.02 0.02

−0.03 −0.02 0 0.03 −0.03 0 −0.02 0.02 0 0.02

−0.02 0.02 −0.03 0.01 0.03 −0.01 −0.01 0 0.01 −0.01

0.02 0.02 0 0 −0.02 0 −0.02 0 −0.01 0.01

0.02 −0.01 −0.01 0 −0.01 0.02 −0.01 0 −0.01 0
]
.

The considered LRP is unstable since r(Φ) = 1.4876 and the direct application of Theorems 4.3
or 4.4 failed. Hence Successive Stabilization Algorithm has been applied with the following para-
meters: q = 10 and h = 10. The stability in the closed loop has been obtained after 2 iterations.
The controller computed in the 2nd iteration becomes

K2 =
[
−0.1569 −0.1211 −0.2795 0.2016 0.1442 0.0037 0.0277 0.0091 0.1013 −0.0912

0.2275 0.2096 0.2622 0.0135 0.0045 0.1447 −0.0190 0.0781 0.1782 0.0604
]

and it is easy to check that application of this controller provides the considered model in the
closed loop configuration asymptotically stable.

Remark 4.8 There arises the natural question of the applications of the presented above algo-
rithm in comparison with application of PC clusters in problems of stabilization of LRPs. Note
that those solutions for dealing with possible large dimensions problems are not contradictory.
Hence those ways can be applied interchangeably. It can be said that solutions like the above
algorithm try to simplify the problem itself, exploiting its characteristic structure and PC clus-
ters provide the unlimited (in theory) computational capability, which can help to overcome all
problems which appear when the high computational ability is required.
What is more, there are no obstacles to use those two approaches together, i.e. apply the

successive stabilization algorithm run on PC cluster. In that point of view the successive sta-
bilization algorithm can be treated as a preprocessing phase to obtain the easier problem from
the computational viewpoint, and the usage of the supercomputer allows to solve this task much
faster than the original one (large dimensioned).

4.9 Output feedback based controller design

The previous considerations regarding the synthesis (the controller design) of LRP towards
stability along the pass were based on the assumption that for the control issues, the full infor-
mation from the past, i.e. state vectors and pass profiles, were available for use. In some cases
the state vector xk+1(p) may not be available or, at best, only some of its entries are. In this
situation two approaches for the stabilization are available. First possibility to deal with this is
the construction of the 2D state observer and the application of that estimated state during the
controller design procedure (see e.g. [140, 141, 142]).
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The second way is to try to control the LRP directly, using only the pass profile (outputs)
vectors. This approach has been outlined in [135] or with extended control law in [137, 136] and
is the original author’s contribution.
The application of the output based feedback control laws to achieve closed loop stability

along the pass is now considered. The first control law considered here has the following form
over 0 ≤ p ≤ α− 1, k ≥ 0

uk+1(p) = K̃1yk+1(p) + K̃2yk(p). (4.47)

This control law is, in general, weaker than that of (4.11) and examples are easily given where
stability along the pass can be achieved using (4.11) but not (4.47). It is important to note here
that by definition the pass profile produced on each pass is available for control purposes before
the start of each new pass. As such, this control law (and extensions) assumes storage of the
required previous pass profiles and that they are not corrupted by noise etc.
The block scheme of the closed loop process under the control law of (4.47) is shown in

Figure 4.8.
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Figure 4.8. Output control scheme

To consider the effect of a controller of the form (4.47) on the process dynamics, first sub-
stitute the pass profile equation of (2.10) into (4.47) to obtain (assuming the required matrix
inverse exists)

uk+1(p) = (I − K̃1D)−1K̃1Cxk+1(p) + (I − K̃1D)−1[K̃2 + K̃1D0] yk(p) (4.48)

and hence (4.48) can be treated as a particular case of (4.11) with

K1 = (I − K̃1D)−1K̃1C, (4.49)

K2 = (I − K̃1D)−1(K̃2 + K̃1D0).
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This route may encounter serious numerical difficulties (arising from the fact that (4.49) is a
set of matrix nonlinear algebraic equations) and hence proceed with it by rewriting these last
equations to obtain

(I − K̃1D)K1 = K̃1C,

(I − K̃1D)K2 = K̃2 + K̃1D0,

and assume that
K1 = L1C. (4.50)

Note that this assumption imposes no restrictions on the results developed here but could be
a source of difficulty in other cases e.g. in uncertainty analysis, where the resulting robust
control problem may not be convex.
It now follows immediately that

K̃1 = L1(I + DL1)−1, (4.51)

K̃2 = [I − L1(I + DL1)−1D]K2 − L1(I + DL1)−1D0,

for any L1 such that I + DL1 is nonsingular, and the following result can be presented.

Theorem 4.18 Suppose that the discrete LRP of the form described by (2.9)-(2.10) is subject
to a control law of the form (4.47) and that (4.50) holds. Then the resulting closed loop process is
stable along the pass if there exist matrices Y > 0, Z > 0, X > 0 and N such that the following
LMI holds  Z − Y (∗) (∗)

0 −Z (∗)
Â1Y + B̂1NC̃ Â2Y + B̂2NC̃ −Y

 < 0, (4.52)

XC̃ = C̃Y,

where B̂1, B̂2, Â1, Â2, N are defined as in Theorem 4.9, and C̃ = diag(C, I). Also if this
condition holds, the controller matrices K̃1 and K̃2 can be obtained from (4.51), where[

L1 K2

]
= NX−1 (4.53)

and it is required that I + DL1 is nonsingular.

Proof. From (4.53) it is straightforward to see that N = LX, L := [L1 K2] and substitution
into the LMI of (4.52) now gives with XC̃ = C̃Y applied Z − Y (∗) (∗)

0 −Z (∗)
Â1Y + B̂1LC̃Y Â2Y + B̂2LC̃Y −Y

 < 0.

Finally, set LC̃ = K to obtain the LMI stabilization condition (i.e Theorem 4.5 or 4.6 applied
to the closed loop process), which completes the proof. �
The design developed above is easily implemented using LMI toolboxes such as Scilab

LMI Optimization Package or Matlab LMI Control Toolbox, but has the possible
disadvantage that it is based on a sufficient but not necessary stability condition. (Also the
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equality constraint of (4.50) can be a source of the serious numerical difficulties when using the
Matlab but thanks to the application of Scilab such problems are avoided and hence Scilab
is used in the numerical computations reported here.) This means that there could appear not
insignificant degree of conservativeness in the sense that in some cases it will fails to produce
a stabilizing controller, when one actually exists. To decrease the level of conservativeness
present, an extension of the control law considered in this section based on the additional use of
the delayed current pass profile and pass-to-pass profile information, is developed. It is to note
that the pass profile has already been generated by the process evolution and hence is available
for the control purposes.

Example 4.11 Consider the case of (2.9)-(2.10) defined by

A =

 0.06 −1.62 0
−0.98 0.28 −2.89
0.03 2.66 2.63

 , B =

 −1.43 −2.13
1.23 1.48
2.91 −2.18

 , B0 =

 0.04 0
0 0
0 1.04

 ,

C =

[
−1.40 −0.03 −2.70
0.52 0 −2.15

]
, D =

[
−1.64 −0.52
−0.71 0.11

]
, D0 =

[
−0.28 −0.31
1.15 −0.31

]
.

In this case, the design algorithm of Theorem 4.18 is successful with X = diag(X1, X2), where

X1 =

[
606209.9 −862471.7
−862471.7 1346539.1

]
, X2 =

[
5077595.6 −2067002.5
−2067002.5 11684609.3

]

and N =

[
−178963.77 260104.7 439963.13 −2530866.6

4116.45 −35496.08 −360858.98 2093081.41

]
,

where Y and Z are omitted due to space limitations. Then the matrices L1 and K2 of (4.53) are

L1 =

[
−0.2299 0.0459
−0.3462 −0.2481

]
, K2 =

[
−0.0016 −0.2169
0.002 0.1795

]
,

which using (4.51) yield the output controller matrices applicable in (4.47)

K̃1 =

[
−0.1523 0.0576
−0.2020 −0.2524

]
, K̃2 =

[
−0.1103 −0.2163
0.2363 0.1355

]
.

4.9.1 Output controller design (extension)

In Section 4.9 the control law, which included a contribution from the last but one pass profile has
been used. Here, the investigation of the application of delayed current pass profile information
in the control law is done. First define the delay operators z1, z2 in the along the pass (p) and
pass-to-pass (k) directions, respectively, as (2.13)

xk(p) := z1xk(p + 1), xk(p) := z2xk+1(p).

The particular control law investigated here is given by

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) + K̃3yk+1(p− 1), (4.54)
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which can be recasted to

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk+1(p− 1), (4.55)

where

K1 =(I − K̃1D)−1K̃1C,

K2 =(I − K̃1D)−1(K̃2 + K̃1D0),

K3 =(I − K̃1D)−1K̃3.

Again, by assumption that K1 = L1C it is to see that

K̃1 = L1(I + DL1)−1,

K̃2 = [I − L1(I + DL1)−1D]K2 − L1(I + DL1)−1D0,

K̃3 = [I − L1(I + DL1)−1D]K3.

The closed loop process now is given by

xk+1(p + 1) = (A + BL1C)xk+1(p) + (B0 + BK2)yk(p) + BK3yk+1(p− 1),

yk+1(p) = (C + DL1C)xk+1(p) + (D0 + DK2)yk(p) + DK3yk+1(p− 1).

This last description is again not in the form, to which Theorem 4.5 can be applied but, by
the following method presented in Section 4.9, it is possible to obtain an equivalent state-space
model, for which this is the case. In particular, apply (2.13) to the above model to obtain

xk(p) = z1(A + BL1C)xk(p) + z1z2(B0 + BK2)yk(p) + z2
1BK3yk(p),

yk(p) = (C + DL1C)xk(p) + z2(D0 + DK2)yk(p) + z2
1DK3yk(p)

and introduce the following characteristic polynomial of the above system

Cc(z1, z2) := det

[
I − z1Ã −z1z2B̃0 − z2

1BK3

−C̃ I − z2D̃0 − z2
1DK3

]
,

which is obviously equivalent to replacing the right-hand side by

det

[
I − z1Ã −z2B̃0 − z1BK3

−z1C̃ I − z2D̃0 − z2
1DK3

]
.

The application of appropriate elementary operations (which leave the determinant invariant)
to the right-hand side of this last expression now yields that it can be replaced by

Cc(z1, z2) = det

 I − z1Ã 0 −z2B̃0 − z1BK3

0 I −z1DK3

−z1C̃ −z1I I − z2D̃0

 . (4.56)

where

Ã = A + BL1C, B̃0 = B0 + BK2,

C̃ = C + DL1C, D̃0 = D0 + DK2
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and define

Ã1 =

 Ã 0 BK3

0 0 DK3

C̃ I 0

 , Ã2 =

 0 0 B̃0

0 0 0
0 0 D̃0

 . (4.57)

Now, it is possible to replace the right-hand side of the expression defining Cc(z1, z2) of (4.56)
by

det(I − z1Ã1 − z2Ã2), (4.58)

where
Ã1 = A1 + B1K, Ã2 = A2 + B2K

and A1 =

A 0 0
0 0 0
C I 0

 , A2 =

 0 0 B0

0 0 0
0 0 D0

, B1 =

B 0 B

0 0 D

D 0 0

, B2 =

 0 B 0
0 0 0
0 D 0

 (4.59)

and finally K =

 K1 0 0
0 0 K2

0 0 K3

 . (4.60)

Remark 4.9 Note that the characteristic polynomial (4.58) is the same as the characteristic
polynomial of the 2D FM and it has the same form as the characteristic polynomial of (2.12),
defined for the discrete LRP. Hence known procedures for the controller design can be applied.

Due to the above remark, Theorem 4.18 is now applicable and the following result can be
presented.

Theorem 4.19 Suppose that a discrete LRP of (2.9)-(2.10) is subject to a control law defined
by (4.55) with K1 satisfying (4.50). Then the resulting closed loop process is stable along the
pass if there exist matrices Y > 0, X = diag(X1, X2, X3) > 0 and Z > 0 such that Z − Y (∗) (∗)

0 −Z (∗)
A1Y + B1NĈ A2Y + B2NĈ −Y

 < 0, (4.61)

XĈ = ĈY,

where A1, A2, B1, B2 are given by (4.59),

Ĉ =

 C 0 0
0 I 0
0 0 I

 , N =

 N1 0 0
0 0 N2

0 0 N3

 (4.62)

and

 L1 0 0
0 0 K2

0 0 K3

 = NX−1. (4.63)

Proof. This is virtually identical to that of Theorem 4.18 and hence the details are omitted
here. �
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4.9.2 Output controller design (further extensions)

In this section another set of additional delayed factors joined to the control law is considered.
The control law considered in this section has the following form and is, in effect, (4.47) aug-
mented at the point p by additive contributions from the same point on the last but one pass
profile and the point p−1 on the previous pass profile

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) + K̃3yk(p− 1) + K̃4yk−1(p). (4.64)

Substituting (2.10) into the control law (4.64) now yields that this last control law is, in fact, a
particular case of the so-called extended, mixed state, pass profile controller

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk(p− 1) + K4yk−1(p). (4.65)

This last control law is, in effect, again an extension of (4.47) but here it is used as an
intermediate step in the computation of the matrices K̃i, i = 1, . . . , 4, through use of the
following result.

Theorem 4.20 Suppose that the discrete LRP of the form described by (2.9)-(2.10) is subject
to a control law of the form (4.65) and that (4.50) holds. Then the resulting closed loop process
is stable along the pass if there exist matrices Y > 0, X = diag(X1, X2, X3, X4) > 0, Z > 0 and
N such that  Z − Y (∗) (∗)

0 −Z (∗)
Â1Y + B̂1NĈ Â2Y + B̂2NĈ −Y

 < 0, (4.66)

XĈ = ĈY,

where

Â1 =


A −I 0 B0

0 0 0 0
0 0 0 0
0 0 0 0

, Â2 =


0 0 0 0
0 0 0 0
0 0 0 0
C 0 −I D0

, B̂1 =


B 0 0 B

0 B 0 0
0 D 0 0
0 0 0 0

 ,

B̂2 =


0 0 0 0
0 0 B 0
0 0 D 0
D 0 0 D

, N =


N1 0 0 0
0 0 0 −N3

0 0 0 −N4

0 0 0 N2

, Ĉ =


C 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,

with 
L1 0 0 0
0 0 0 K3

0 0 0 K4

0 0 0 K2

 = NX−1. (4.67)

Also if (4.66) holds, the controller matrices K̃1 and K̃2 can be computed using (4.51) and then

K̃3 = [I − L1(I + DL1)−1D]K3, (4.68)

K̃4 = [I − L1(I + DL1)−1D]K4,

where it is assumed that I + DL1 is nonsingular.
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Proof. Substitute (4.65) into (2.9)-(2.10) and using (4.50) the following closed loop state-space
model is obtained

xk+1(p+1) = (A+BL1C)xk+1(p)+(B0+BK2)yk(p)+BK3yk(p−1)+BK4yk−1(p), (4.69)

yk+1(p) = (C+DL1C)xk+1(p)+(D0+DK2)yk(p)+DK3yk(p−1)+DK4yk−1(p).

This last description is not in the form to which Theorem 4.5 can be applied but it is possible to
obtain an equivalent state-space model for which this is the case. Here the route is by using the
delay operators of (2.13) and the 2D characteristic polynomial. To begin, apply (2.13) to (4.69)
to obtain the closed loop model. Next, again introduce the characteristic polynomial of that as

Cc(z1, z2) := det

[
I − z1Ã −z1B̃0 − z2

1F1 − z1z2F3

−z2C̃ I − z2D̃0 − z1z2F2 − z2
2F4

]
,

where Ã = A + BL1C, B̃0 = B0 + BK2, F1 = BK3, F2 = DK3,

C̃ = C + DL1C, D̃0 = D0 + DK2, F3 = BK4, F4 = DK4.

The application of the appropriate elementary operations (which leave the determinant invari-
ant) to the right-hand side of this last expression now yields that it can be replaced by

det


I − z1Ã z1I 0 −z1B̃0

0 I 0 z1F1 + z2F3

0 0 I z1F2 + z2F4

−z2C̃ 0 z2I I − z2D̃0

 . (4.70)

At this stage, the closed loop state-space model has a 2D characteristic polynomial, which is
of the form required for use (in the form of (4.58)) and therefore Theorem 4.18 can be directly
applied.
Application of Theorem 4.5 together with some algebraic operations now yield directly the

LMI of (4.66) as a sufficient condition for the closed loop stability along the pass. Finally, by an
identical argument to that of the previous section, it is straightforward to see that K̃1 and K̃2

can be computed using (4.51) and K̃3 and K̃4 using (4.68), provided that I+DL1 is nonsingular,
and the proof is complete. �

Example 4.12 As a numerical example consider the following process, with xk+1(0) = 1, k ≥
0, y0(p) = 1, 1 ≤ p ≤ 19, which is unstable along the pass since r(D0) > 1,

A =

 −1.36 −1.29 −0.8
0.15 0.34 0
−0.19 0 −1.36

, B0 =

 0.44 0.51
0.93 0.14
0.65 0

, B =

 0.18 −2.35 0.8
1.07 −2.5 0.5
−0.43 0.8 2.82

,

C =

[
−0.38 0 −0.37

0 0 −0.98

]
, D =

[
−2.85 −0.65 −2.5
−0.28 −2.98 1.96

]
, D0 =

[
−1.15 0
−0.42 1.13

]
.

In this case

K̃1 =

 49.5 −40.8
14.27 −11.77
−44.49 36.46

, K̃2 =

 −1.77 0.96
−0.18 0.31
1.26 −0.97

 ,
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K̃3 = 10−12 ×

 0.37 −0.33
0.11 −0.1
−0.33 0.29

 , K̃4 = 10−13 ×

 0.68 −0.6
0.2 −0.17
−0.61 0.53

 .

Figure 4.9 shows the corresponding stable along the pass responses with the control law
of (4.47) defined in Section 4.9 applied. Figure 4.10 shows the stable along the pass responses
with the control law of (4.64) applied. It is straightforward to notice that responses of the con-
trolled processes with partial or full set of controllers do not differ.
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Figure 4.9. The controlled responses (only controllers K̃1 and K̃2 applied)
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Figure 4.10. The controlled responses (full set of controllers applied)

Remark 4.10 Note that in the example here the elements of K̃3 and K̃4 are significantly smaller
in magnitude than those in the other controller matrices. Also if these matrices are deleted from
the control law then it can be verified that the closed loop process is still stable along the pass
and there is very little difference in the controlled response. Note also that direct use of the
design method of Theorem 4.18 fails to give a stable design. Hence it can be conjectured that
this last design method can be exploited to reduce the degree of conservativeness due to the use
of a sufficient but not necessary stability condition.

The presented method of improving the control law by the adding the delayed factors proved
its applicability. Nevertheless, here only two possible choices of the delayed factors incorporated
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into the control law (and the way how to deal with them) have been presented. Naturally, those
particular choices have not exploited the whole palette of abilities for the right choice of the
delayed factors used in the control law. It is straightforward to see that there can be proposed
any other structure of the control law and it can provide more conservativeness of the stability
condition reduction. What is worth mentioning here that presented stability conditions are the
sufficient ones and by increasing the number of the additional factors used in the control law, it
can be treated as approaching to the sufficient and necessary condition (the similar work on LMI
sufficient and necessary stability conditions obtained by increasing the state vector by additional
delayed factors for 2D systems can be found in [52]).
However, it has be noted that, in theory there can be used any of the additional set of delayed

factors to construct the control law, but on the other hand, in practice, the resulting LMI can
be so high dimensioned that it can be unsolvable using the single PC computer e.g. due to the
RAM limits (for comparison see Example 2.1). Hence as a middle-range remedy, the PC cluster
can be used for computations. Yet, it has to be outlined that from the practical viewpoint, the
unlimited increasing the number of additional factors in the control law is impossible.

4.9.3 Output controller design for differential LRPs

It is also possible to define the output control scheme for the differential LRP of (2.14)-(2.15).
Again it is assumed that the state vector xk+1(t) may not be available or, at best, only some of
its entries are. Hence the use of output based feedback based control laws to achieve closed loop
stability along the pass is assumed. The control law has the following form over 0 ≤ t < α, k ≥ 0

uk+1(t) = K̃1yk+1(t) + K̃2yk(t). (4.71)

This control law is, in general, weaker than that of (4.16) and examples are easily given where
stability along the pass can be achieved using (4.16) but not (4.71). It is important to note here
that by definition the pass profile produced on each pass is available for control purposes before
the start of each new pass. As such, this control law (and extensions) assumes storage of the
required previous pass profiles and that they are not corrupted by noise etc.
To consider the effect of a controller of the form (4.71) on the process dynamics, first sub-

stitute the pass profile equation of (2.15) into (4.71) to obtain (assuming the required matrix
inverse exists)

uk+1(t) = (I − K̃1D)−1K̃1Cxk+1(t) + (I − K̃1D)−1[K̃2 + K̃1D0]yk(t) (4.72)

and hence (4.72) can be treated as a particular case of (4.16) with

K1 = (I − K̃1D)−1K̃1C,

K2 = (I − K̃1D)−1(K̃2 + K̃1D0). (4.73)

This route may encounter serious numerical difficulties (arising from the fact that (4.73) is a set
of matrix nonlinear algebraic equations) and hence it is possible to proceed by rewriting these
last equations finally to obtain

(I − K̃1D)K1 = K̃1C, (4.74)

(I − K̃1D)K2 = K̃2 + K̃1D0
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and assume that
K1 = L1C. (4.75)

Note that this assumption imposes no restrictions on the results developed here but could be a
source of difficulty in other cases, e.g. in uncertainty analysis where the resulting robust control
problem may not be convex.
It now follows immediately that

K̃1 = L1(I + DL1)−1, (4.76)

K̃2 = [I − L1(I + DL1)−1D]K2 − L1(I + DL1)−1D0,

for any L1 such that I+DL1 is nonsingular, and the following result is immediate to be presented.

Theorem 4.21 Suppose that the differential LRP of the form described by (2.14)-(2.15) is
subject to a control law of the form (4.71) and that (4.75) holds. Then the resulting closed loop
process is stable along the pass if there exist matrices Y > 0, Z > 0, X > 0 and N such that
the following LMI holds Y AT + AY + CT NT BT + BNC B0Z + BM Y CT + CT NT DT

ZBT
0 + MT BT −Z ZDT

0 + MT DT

CY + DNC D0Z + DM −Z

 < 0, (4.77)

XC = CY.

If this condition holds, then the control law matrices L1 and K2 are given by

L1 = NX−1, K2 = MZ−1 (4.78)

and it is required that I +DL1 is nonsingular. To compute the output controllers it is necessary
to apply (4.76)

Proof. From (4.78), it is clear that N = L1X and substitution into the LMI of (4.77) with
XC = CY applied, gives Y (AT + CT LT

1 BT ) + (A + BL1C)Y B0Z + BM Y (CT + CT LT
1 DT )

ZBT
0 + MT BT −Z ZDT

0 + MT DT

(C + DL1C)Y D0Z + DM −Z

 < 0.

Finally, set L1C = K1 to obtain the following stabilization condition (i.e. Theorem 4.8 applied
for the closed loop process) Y (AT + KT

1 BT ) + (A + BK1)Y (B0 + BK2)Z Y (CT + KT
1 DT )

Z(BT
0 + KT

2 BT ) −Z Z(DT
0 + KT

2 DT )
(C + DL1C)Y (D0 + DK2)Z −Z

 < 0,

which completes the proof. �
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Example 4.13 To present the applicability of Theorem 4.21 consider again the model of un-
stable differential LRP of (2.14)-(2.15), given already in Example 4.5. The application of LMI
of (4.77) provides the following matrices

Y =


3655.0895 1147.6759 −2149.7151 2818.2736
1147.6759 12184.4771 −2728.2939 6961.7644
−2149.7151 −2728.2939 3941.0220 −3581.9408
2818.2736 6961.7644 −3581.9408 8375.9234

 ,

X =

[
4276.9989 6478.9114
6478.9114 16645.8298

]
, Z =

[
9075.6366 −1597.9599
−1597.9599 14232.5180

]
,

N =

 −1986.9541 −15060.1217
1457.1815 10696.0362
772.1232 1991.0073

, M =

 366.6512 −3468.5115
−1386.4838 2340.5496
−904.3451 −242.8691

 .

Hence

L1 =

 2.2075 −1.7639
−1.5416 1.2426
−0.0016 0.1202


and the state/output controllers become

K1 =

 −1.1038 0.1754 −1.1471 0.8376
0.7708 −0.1289 0.8054 −0.5914
0.0008 −0.0715 0.0484 −0.0720

, K2 =

 −0.0026 −0.2440
−0.1263 0.1503
−0.1047 −0.0288

 .

Finally, the output controllers computed according to (4.76) become

K̃1 =

 67.1230 −11.4202
−47.9335 8.1772
−11.7664 2.2440

, K̃2 =

 3.8255 1.5022
−2.8554 −1.0938
−0.7245 −0.3024

 .

Remark 4.11 Note that for the differential LRPs, it is possible to use the extended set of the
output controllers as well. It can be done in the similar manner to that presented for the discrete
LRPs in Sections 4.9.1-4.9.2. This could again lead to the conservativeness reduction in exactly
the same way as it has a place in the discrete case.

The output controller design with application of parallel computing

Note that the application of the LMI conditions aforementioned may cause the unintended
increase of the number of the decision variables. The second aspect of that control scheme
regards the use of extended output control approaches and what follows, the growth of the total
size of the LMI. Hence it appears to be quite natural, to employ the computational power,
which is governed by the use of the parallel computing techniques. However, it is to note
that there arises a serious obstacle in using the parallel SDP software (Sdpara), since in the
considered output based synthesis the equality constraints appear. It is straightforward to see
that the definition of SDP problem of (3.10), given in Section 3.5, does not involve the equality
constraints. Hence the elimination of the LMI with the equality constraints into the one without
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them is required (as presented in Section 3.6), before performing the construction of the LMI
into the valid SDP form (as presented in Section 3.5).
The procedure presented in Section 3.6 can be successfully applied to the considered here

output controller design. To perform the elimination of the equality constraints, first note
that XC = CY (in all considered cases) has to be rewritten as XC − CY = 0. Then note
that matrices X and Y are constructed of the decision variables over which the LMI is solved.
However, it is necessary to remain that there are also additional decision variables, i.e. those
of which matrices Z and N are constructed. What is important here that vector b in this case
equals 0, hence the appropriate mapping can be presented as follows

F (y) = F (H](x)) < 0.

To solve such a problem using the SDP solver, when the equality constraints have been elimi-
nated, from the resulting LMI of F (y) the valid form of SDP (according to procedure presented
in Section 3.5) has to be performed. Then after computing the vector y, it has to be re-mapped
back into x, matrices of the original LMI (here X, Y , Z, N) have to be constructed and, finally,
the controller matrices have to be computed.
The appropriate Matlab function regarding the extended control scheme considered in

Section 4.9.2, which performs all required steps of equality constraints elimination and saves the
resulted problem into the file as a valid SDP problem, has been attached in Appendix B.3.

4.10 Model Matching Based Controller Design

The controller design procedures outlined in Sections 4.2 and 4.4 guarantee the closed loop
stability (asymptotic or/and along the pass) but not resulting closed loop dynamics. Here, new
results are given, which address the currently open question of how to design a control laws for
discrete LRPs for both closed loop stability (asymptotic or along the pass) and obtaining the
assumed reference model.

4.10.1 1D model matching (asymptotic stability)

Model following control is a long standing technique in 1D systems theory and there has also been
some work on this problem for 2D discrete linear systems described by the Roesser and Fornasini
state-space models [24]. In the remainder of this section, some new results are presented, which
provide a possible starting point for the development of a mature model following control theory
for discrete LRPs.
Note that since in this section, asymptotic stability is considered, the 1D equivalent model of

LRP described by (2.24)-(2.25) (provided for the basic discrete LRP of (2.9)-(2.10) or generalized
LRP of (2.19)-(2.20)) is now investigated. First, note that in (2.25), the system matrix Φ
describes the contribution of the previous pass profile to the current one. Also, under the action
of the control law (4.3), this matrix is ‘mapped’ as follows

Φ → Φ + ∆K.

Due to the fact that the considered model on average is large-dimensioned, the known 1D
techniques (see e.g. [45, 143]) of poles placement can fail or in general be disturbed. Instead,
the following solution can be proposed.
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Suppose first that the additional goal of the controller design over ensuring asymptotic
stability is now to provide such a controller to assign the closed loop system matrix to become
a’priori set matrix, say Φ̂, which guarantees the required closed loop process dynamics. This
matrix is selected to give a state-space model whose behavior is such that, it satisfies at least
some of the overall process dynamical specifications.
Hence the following easily proved result is relevant.

Theorem 4.22 Suppose that a discrete LRP (2.9)-(2.10) or generalized LRP (2.19)-(2.20))) is
given in the 1D equivalent model of (2.24)-(2.25) and is subject to a control law defined in terms
of the 1D equivalent model by (4.3). Then the resulting closed loop process is asymptotically
stable with the required matrix Φ̂ if there exist matrices P > 0, G and N such that the following
LMI holds [

−P (Φ− Φ̂)G + ∆N

GT (Φ− Φ̂)T + NT ∆T P −G−GT

]
< 0, (4.79)

where Φ and ∆ are of the structures defined in (2.26) or (2.27). Also the control law matrix K

here is computed using (4.7) in such a way that

Φ− Φ̂ + ∆K = 0. (4.80)

Proof. First note again that, if the LMI (4.79) holds then the control law matrix K of (4.3) is
given by (4.7). Also, it is a standard fact that it is possible to obtain from the LMI solver K

such that (4.80) holds. In such a case, the closed loop system matrix becomes

Φ̃ := Φ + ∆K = Φ̂,

which completes the proof. �
It is essential to note here that it is impossible to obtain an arbitrarily specified model matrix

Φ̂ starting from an arbitrary specified Φ. However, conditions under which (4.80) has a solution
can be characterized easily starting from, for example, Cramer’s rule for linear vector equations
and the matrix Kronecker matrix product.
In terms of 1D system this case can be treated as one of wide range of poles location technique.

Remark 4.12 The importance of the above theorem comes from the fact that when the LMI
techniques are used to synthesis, there seldom happens that the computed controller drives the
closed loop system to zero, i.e. Φ + ∆K = 0. This, in general, is referred to be negative and
in the classical 1D theory is so-called the deadbeat control. In terms of physical systems this
situation denotes application of the control of the high magnitude.

The applicability of the model matching approach presented here is provided by the following
Example. This approach has been also applied in Example 5.3.

Example 4.14 Consider the following model of (2.19)-(2.20), with α = 8

A=

 0.2 0 0.5
0 0.5 0

0.5 0 −0.5

, B=

 0.2 0.7
0.5 1.0
0.5 0.7

 , C =
[

0.1 0 0.6
]
, D=

[
0.7 0.9

]
,
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B =
[

B0 B1 . . . B7

]
=

 0 0.4 −0.5 0 0 0 0.3 0.2
−1.5 −0.2 −0.1 −0.3 0 0 0 0.1
1.9 0.7 0.4 −0.2 0.1 0.1 0.3 −0.2

,
D =

[
D0 D1 . . . D7

]
=
[

2.3 0 0.9 0.2 0.2 −0.5 0.2 0.3
]
.

The required system matrix has been set to be Φ̃ = diag(0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1).
The application of Theorem 4.22 provides the following controller

K =



−0.7672 0.0091 −0.5055 −0.0691 −0.1198 0.2574 −0.1054 −0.1380
−1.0700 −0.0071 −0.6068 −0.1685 −0.1290 0.3553 −0.1402 −0.2260
−1.2692 0.1512 −0.2949 −0.0226 −0.0578 0.0796 −0.1376 −0.0273
−1.9798 0.1497 −0.4716 0.0450 −0.1311 0.1420 −0.2347 −0.0288
−0.8009 −0.2686 0.0622 −0.0643 −0.0984 0.1915 −0.1423 −0.1376
−1.1361 −0.3842 0.0565 −0.1064 −0.0938 0.2602 −0.1910 −0.2135
−1.1490 −0.1487 −0.4169 0.2821 −0.0700 0.0579 −0.1458 −0.0206
−1.7799 −0.2311 −0.6268 0.3712 −0.1093 0.1287 −0.2424 −0.0317
−0.7554 −0.1994 −0.1639 −0.2024 0.1384 0.1809 −0.1450 −0.1434
−1.1166 −0.2879 −0.2447 −0.2779 0.1649 0.2645 −0.1929 −0.2088
−1.1674 −0.1328 −0.3610 0.0903 −0.1779 0.2300 −0.1564 −0.0163
−1.7544 −0.2136 −0.5318 0.1108 −0.2498 0.3240 −0.2340 −0.0345
−0.7544 −0.2041 −0.1456 −0.1624 −0.0191 0.1081 −0.0290 −0.1574
−1.1149 −0.2795 −0.2312 −0.1977 −0.0408 0.1530 −0.0627 −0.1988
−1.2917 −0.1528 −0.3921 0.0993 −0.1448 0.1240 −0.2270 0.0312
−1.6607 −0.1964 −0.5041 0.1277 −0.1862 0.1594 −0.2919 0.0401



.

4.10.2 2D model matching (stability along the pass)

Similarly as it has a place for 1D equivalent model and the concept of asymptotic stability, the
model matching technique can be defined as well for the concept of stability along the pass. It is
even more meaningful here, since there are no results regarding the 2D models poles placement
available.
To provide the 2D model matching, note that the state-space quadruple {A,B0, C, D0}

describes the contribution of the previous pass profile to the current one. Also, under the action
of the control law (4.11) this quadruple is ‘mapped’ as follows[

A B0

C D0

]
→

[
A + BK1 B0 + BK2

C + DK1 D0 + DK2

]
.

Suppose also that the synthesis goal here is to assign the closed loop matrices here to {A,
B0, C, D0 }, where these matrices are selected to give a state-space model whose behavior the
controlled process is required to follow (in terms of the contribution of the previous pass profile
to the current one). Then the following result is relevant.

Theorem 4.23 Suppose that a discrete LRP of (2.9)-(2.10) is subjected to a control law of
the form (4.11). Then the resulting closed loop process is stable along the pass and reaches the
required form {A, B0, C, D0} if there exist matrices Y > 0, Z > 0 and N of the appropriate
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dimensions such that the following LMI holds Z − Y 0 Y ÃT
1 + NT B̂T

1

0 −Z Y ÃT
2 + NT B̂T

2

Ã1Y + B̂1N Ã2Y + B̂2N −Y

 < 0, (4.81)

where Ã1 =

[
A−A B0 − B0

0 0

]
, Ã2 =

[
0 0

C − C D0 −D0

]
and the other matrices are the same as in the previous cases, where the goal of controller design
towards stability along the pass was considered. If condition (4.81) holds, then the required
controllers K1 and K2 are computed using (4.14).

Proof. First note again that, if the LMI (4.12) holds, then the control law matrix K = [K1 K2]
is given by (4.14). Also, it is a standard fact that it is possible to obtain from the LMI solver
matrix K such that [

A−A B0 − B0

C − C D0 −D0

]
+

[
B

D

]
[K1 K2] = 0 (4.82)

holds. In which case, the closed loop system matrices are such that[
Ã B̃0

C̃ D̃0

]
:=

[
A + BK1 B0 + BK2

C + DK1 D0 + DK2

]
=

[
A B0

C D0

]
,

which completes the proof. �
It is essential to underline here that it is impossible to obtain an arbitrarily specified set

{A, B0, C, D0} starting from a given set {A, B0, C, D0}. However, conditions under which
(4.82) has a solution can be characterized using, for example, Cramer’s rule for linear vector
equations and the matrix Kronecker matrix product.
The result of Theorem 4.23 is appreciated especially in the case of synthesis of 2D systems,

where there are no explicit connections between the properties of the system and the poles of
the transfer function. As it was shown e.g. in [50], poles of the polynomial of two (or more)
variables become the continuous functions located on the complex plane. Hence for 2D systems,
in most cases it is impossible to analyze the problem of poles location, using 1D theory based
techniques.
For this approach there also arises the case considered before for asymptotic stability regard-

ing the issues of the deadbeat control.

Example 4.15 To present how Theorem 4.23 works consider the model of physical process of
metal rolling presented in Section 2.5.1. The process is modeled as discrete LRP with the state-
space representation of (2.35). Note that the basic stabilization of Theorem 4.9 provides the
following controllers

K1 =
[

86.667 −37.372 −66.667 33.333
]
, K2 =

[
35.333

]
,

which causes the closed loop model becomes so-called ”zero-model”, i.e. (in this case)

[
A + BK1 B0 + BK2

C + DK1 D0 + DK2

]
=


0 0 0 0 0

1.0 0 0 0 0
0 0 0 0 1.0
0 0 1.0 0 0
0 0 0 0 0

 .
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Then in this case the application of the 2D model matching procedure of Theorem 4.23 is neces-
sary with chosen closed loop required plant matrix defined as

[
A B0

C D0

]
=


0.1 −0.1 0.1 0.1 0.7
1.0 0 0 0 0
0 0 0 0 1.0
0 0 1.0 0 0

0.1 −0.1 0.1 0.1 0.7

 . (4.83)

The LMI (4.81) provides the following controllers

K1 =
[

82.13 −32.84 −71.2 28.8
]
, K2 =

[
3.6

]
and it can be easily checked that the closed loop model plant matrix with the above controllers
applied becomes (4.83) as it was required.
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Chapter 5

Control for performance

In the practical control schemes the goal of ensuring the stability in the closed loop is too less.
Now, when the LMI conditions for determining the controllers (towards asymptotic stability
and/or stability along the pass) have been presented in the previous chapter, it is natural to
extend the synthesis of LRP to the performance requirements under the appropriate control.
To formalize the concept of performance used here, the goals of the considered in this chapter

control schemes are defined as follows:

• the stability (asymptotic or along the pass) in the closed loop system configuration,

• after the sufficient large number of passes the process is driven to the required reference
signal yref (p), 0 ≤ p ≤ α− 1 (yref (t), 0 ≤ t < α),

• rejection of the disturbances that influence the controlled LRP.

In this chapter, the disturbed state-space models of LRPs are considered. Hence discrete LRP
of (2.9)-(2.10) now has the following form over 0 ≤ p ≤ α− 1

xk+1(p + 1) = Axk+1(p) + B0yk(p) + Buk+1(p) + Ew(p), (5.1)

yk+1(p) = Cxk+1(p) + D0yk(p) + Duk+1(p) + Fw(p) (5.2)

and differential LRP of (2.14)-(2.15) has the following form over 0 ≤ t < α respectively

ẋk+1(t) = Axk+1(t) + B0yk(t) + Buk+1(t) + Ew(t), (5.3)

yk+1(t) = Cxk+1(t) + D0yk(t) + Duk+1(t) + Fw(t). (5.4)

There should be underlined that in this case, it is assumed that disturbances do not change in the
from pass to pass (k) direction, i.e. wk1(p) = wk2(p), 0 ≤ p ≤ α−1 (wk1(t) = wk2(t), 0 ≤ t < α)
for any two pass numbers k1, k2 ∈ Z. Nevertheless, the disturbances can be dynamic in the
along the pass direction p (or t). Due to that assumption the disturbance vector is denoted as
w(p) (w(t)) (without explicit number of pass given).
It is also important to underline that the assumed performance objectives are by no means

exhaustive and what is being undertaken here is an examination of the feasibility of designing
one possible control law structure.
Results presented in this chapter are the basis for the following publications (already pub-

lished or being at the process of publication) – see the references: [25, 144] – Sections 5.1 and 5.2;
[25, 133, 145] – Section 5.3 and [146, 147, 138, 148] – Section 5.4 and are original author’s results.
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5.1 Direct control scheme

As the first approach to obtain the reference signal yref (p), 0 ≤ p ≤ α−1 for LRPs of (5.1)-(5.2)
in the closed loop system the following control law is considered

uk+1(p) = K1xk+1(p) + K2yk(p) + K3rk+1(p), (5.5)

where K1 and K2 are defined (and have the meaning) as in (4.11), i.e. are about to ensure the
stability along the pass and additionally factor K3rk+1(p), 0 ≤ p ≤ α− 1 is added to drive the
closed loop system to the required reference signal. Such an approach is common with 1D linear
systems (see e.g. [37]). Here, only first two of the goals presented in the introduction of that
chapter are assumed to be satisfied, i.e. it is assumed that there are no disturbances influencing
the considered process (i.e. w = 0).
The sequence rk+1(p) is an m × 1 column vector representing desired the behavior on

pass k + 1, k ≥ 0, and K3 is an r × m controller matrix to be selected. It is assumed that
limk→∞K3rk+1(p) = yref (p), 0 ≤ p ≤ α − 1. Since the closed loop system is stable along the
pass, output of the system should reach the defined additional factor K3rk+1(p) (at last yref (p)).
The application of (5.5) results the following closed loop state-space model

xk+1(p + 1) = (A + BK1)xk+1(p) + (B0 + BK2)yk(p) + BK3rk+1(p), (5.6)

yk+1(p) = (C + DK1)xk+1(p) + (D0 + DK2)yk(p) + DK3rk+1(p). (5.7)

Obvious questions which now arise are:

• what is a suitable choice for rk+1(p)?

• how the appropriate control law can be designed to give stability along the pass plus
performance?

The answer for the first question from the above has been already partially given, i.e. it has
been stated that the following should satisfy limk→∞K3rk+1(p) = yref (p), 0 ≤ p ≤ α− 1. This
condition allows to change the value of the signal rk+1(p) when k increases but in practise, it
is assumed that the whole sequence rk+1(p) is swapped with yref (p) independently of current
pass number k. There still is the open question about the choosing the appropriate reference
signal yref (p) and this should be chosen as a value fulfilling the physical requirements of the
considered system.
The answer for the second question regarding the design of the controllers applicable in (5.5)

has been given in the previous chapter when the controller design procedure has been presented
(Section 4.4) or in its ”improved” version e.g. the controller design to required stability margins
(Section 4.5) or the model matching procedure (Section 4.10.2). The case of choosing the
controller K3 is still open and there are no ready solutions applicable in every case.
To illustrate, what can be achieved here, the emphasis is put on the single-input single-output

case and use the metal rolling problem data, aforementioned in Section 2.5.1. In this application,
an appropriate choice for the current pass reference signal is rk+1(p) = −1, 0 ≤ p ≤ α−1, k ≥ 0,
i.e the objective is to reduce the material thickness by one unit, which is modeled by a downward
unit step applied at p = 0 on each pass.

Remark 5.1 Note that since the process is linear, any target reduction by a constant amount
can be studied by simple scaling of the output pass profiles to a unit step demand.
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One possible way of designing the control law is to note that K3 does not influence stability
along the pass. Hence it is possible to execute the LMI design of Section 4.10.2 to obtain control
law matrices K1 and K2, which ensure closed loop stability along the pass and then attempt
to select a suitable K3 to meet the performance requirements by ‘tuning’ the response of the
resulting closed loop process model.

Example 5.1 In the case of the given numerical data (metal rolling process defined in Sec-
tion 2.5.1), it is easily checked that this model is unstable along the pass and the stabilization
procedure of Theorem 4.23 (Section 4.10.2) provides the following control law matrices K1 and
K2

K1 =
[

82.13 −32.84 −71.2 28.8
]
, K2 =

[
3.6

]
and in the resulting stable along the pass closed loop process

[
A B0

C D0

]
=


0.1 −0.1 0.1 0.1 0.7
1.0 0 0 0 0
0 0 0 0 1.0
0 0 1.0 0 0

0.1 −0.1 0.1 0.1 0.7

 .

Figures 5.1 a) and b) show the sequence of pass profiles and the tracking error on each pass for
the case when K3 = −4.53 and with zero initial/boundary conditions assumed where this value
was derived by repeated numerical experimentation with the objective of obtaining the smallest
error between rk+1(p) and yk(p) anywhere in the domain of operation. This can be treated as an
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Figure 5.1. Pass profiles (a) and tracking error (b)

acceptable design, especially as it does not contain any oscillations in the transients along any
pass (not a desirable feature in material rolling, however it is straightforward to see that for the
first 50 passes the tracking error is meaningful and what is more it still is relatively large at the
beginnings of all passes.
When for the same process the nonzero initial state vectors have been assumed (here chosen

arbitrary as dk+1 = [−0.71 0.78 − 0.7 0.19]T , ∀k) the dynamics of the process under control

102



Control for performance

0

20

40

60

80

100 1
2

3
4

5
6

7
8

9
10

−1

−0.8

−0.6

−0.4

−0.2

0

points on passpasses

0

20

40

60

80

100 1
2

3
4

5
6

7
8

9
10

−1

−0.8

−0.6

−0.4

−0.2

0

points on passpasses

Figure 5.2. Pass profiles (a) and tracking error (b)

is more effective (the tracking error is significantly smaller, especially at the beginnings of the
following passes) - see Figures 5.2 a) and b).

5.2 Indirect control scheme

The empirical nature of the previous approach, however, means that it is clearly not feasible in
the general case. Next a systematic method for the task under consideration is developed and
again is illustrated on the material rolling problem data. Again only first two goals presented in
the introduction are to be satisfied here, i.e. there are no disturbances influencing the system.
This new approach is based on a (simple structure) re-formulation of the problem, starting

from the fact that the control task here is to drive the process pass profiles to some prescribed
reference signal yref (p), which in the material rolling case is a constant positive thickness after
the rolling operation is complete, i.e. yref (p), 0 ≤ p ≤ α− 1 and in the general case can be any
profile that can be thought. It is an immediate consequence (see Section 4.3) of the stability
theory that if asymptotic stability holds then the pass profile sequence converges to a steady, or
so-called limit, profile described for discrete linear repetitive processes by a 1D linear systems
state-space model. Here it is necessary to specify this limit profile as yref (p).
To solve this last problem introduce a new, modified output vector variable termed the

incremental (or residual) pass profile vector as

ŷk(p) := yk(p)− yref (p). (5.8)

Then it is clear that the design requirement (stability along the pass) here requires that

ŷk(p) → 0, 0 ≤ p ≤ α− 1, k →∞. (5.9)

Now replace the process state-space model (5.1)-(5.2) (without disturbances as mentioned) by
the following one obtained from it by substitution using (5.8)

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0ŷk(p),

ŷk+1(p) = Cxk+1(p) + Duk+1(p) + D0ŷk(p).
(5.10)
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and apply to it the following control law (which is clearly of the form (4.11), i.e. current pass
state feedback augmented in this case by feedforward of the difference between yk(p) and yref (p))

uk+1(p) = K1xk+1(p) + K2ŷk(p)

= K1xk+1(p) + K2(yk(p)− yref (p)).

Also choose this control law to transform the process of (5.10) into the form of those for which
any of the controller design result e.g. Theorem 4.23 holds. Then it follows immediately that
this resulting closed loop model must be stable along the pass and also (5.9) holds. Moreover,

xk(p) → 0, 0 ≤ p ≤ α− 1, k →∞, (5.11)

which is natural, and most frequently obtained result, when using the LMI based approach to
controller design. Also, no oscillations can occur in the resulting pass profiles (which is clearly
a required feature in the specific material rolling example considered here) since the model
matching approach has been applied.
Given this designed feedback law and converting back to the original pass profile vector yk(p)

the following resulting closed loop state-space model is obtained

xk+1(p + 1) = (A + BK1)xk+1(p) + (B0 + BK2)(yk(p)− yref (p)),

yk+1(p) = (C + DK1)xk+1(p) + (D0 + DK2)yk(p) + (I − (D0 + DK2))yref (p),

which is stable along the pass and whose limit pass profile, due to (5.9) and (5.11), is clearly
equal to yref (p), i.e. the control design task has been exactly achieved.

Example 5.2 To illustrate this approach, the material rolling process described in Section 2.5.1
is considered again. The model and controllers are the same as in Example 5.1. To execute
the presented design, the following reference signal has been assumed yref (p) = −1, 0 ≤ p ≤
α − 1, k ≥ 0. This produces the simulation results of Figures 5.3 a) and b) for the resulting
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Figure 5.3. Pass profiles (a) and tracking error (b)

closed loop process in the case of zero boundary conditions and these confirm that the design
objective has indeed been achieved.
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What is worth to mention here is that the above approach is more robust to changes of the
boundary conditions and even in the ”worst” case (zero initial state vectors) works better in
comparison with result from Section 5.1 (refer to Example 5.1).

Remark 5.2 It is also possible to present the above control schemes for the differential LRP
of (5.3)-(5.4). It is the straightforward operation and its only difference comes from the controller
design conditions to be applied. Hence due the relatively poor performance (in comparison with
results presented in the sequel of this chapter) is skipped here.

5.3 Feedforward/Feedback control of LRPs

In this section, the basic design task is the development of the control laws which give asymp-
totic stability or stability along the pass and completely reject the effects of the disturbance is
considered. What is more, in this case, it is assumed that the disturbance sequence is known.

5.3.1 Discrete LRPs – asymptotic stability – 1D equivalent model

The particular aim of the design is to achieve asymptotic stability and complete decoupling of
the effects of the disturbance term w(p) on the closed loop performance and simultaneously drive
the process to the required reference signal Vref , i.e. limit pass profile [17, 149] of the process
defined in terms of the 1D equivalent model by V∞ := V (l)

l→∞
has to be equal to the pre-specified

vector Vref .
To begin analysis, define Vref as

Vref =
[

yref (0)T yref (1)T . . . yref (α− 1)T
]T

and next rewrite the 1D equivalent model equation (2.25) as

V (l + 1) = ΦV (l) + ∆U(l) + Θ0dl + ΩyW. (5.12)

Then the control task here is to ensure asymptotic stability closed loop and also

V (l) → Vref , l →∞.

If asymptotic stability holds, i.e. r(Φ) < 1, then

V (l + 1)− V (l) → 0, l →∞,

which is equivalent to
V (l + 1) = V (l) ≡ Vs, l →∞, (5.13)

where Vs denotes the limit profile and obviously, it is required that Vs = Vref ). Now apply
(5.13) to (5.12) and, with Us denoting the control input vector applied on the limit profile,
(5.12) converges to

Vref = ΦVref + ∆Us + Θ0ds + ΩyW. (5.14)

where ds denotes the initial state vector on the limit profile.
Subtracting (5.14) from (2.25) now yields

V (l + 1)− Vref = Φ
(
V (l)− Vref

)
+ ∆

(
U(l)− Us

)
+ Θ0(dl − ds), (5.15)
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and define the incremental (residuals) supervectors as

V̂ (l + 1) = V (l + 1)− Vref ,

Û(l + 1) = U(l + 1)− Us,

d̂l = dl − ds.

Hence (5.15) can be written in the following form

V̂ (l + 1) = ΦV̂ (l) + ∆Ûl + Θ0d̂l. (5.16)

The key point now is that the disturbance w(p) has been decoupled from the dynamics of (5.16).
Suppose, however that the dynamics of the resulting limit profile do not meet the specifications
(for example, in the single-input single-output (SISO) case the dynamics are not ‘sufficiently
well‘ damped) then one option is to choose Û(l) as a feedback control law of the form

Û(l) = KV̂ (l) ⇒ U(l)− Us = K
(
V (l)− Vref

)
,

where K is designed as in Section 4.2 but using the incremental model (5.16).
It is now immediate that the control law which drives the original process to the demanded

Vref and simultaneously decouples the influence of the disturbance is

U(l) = KV (l)−KVref + Us. (5.17)

which is a combination of feedback action and feedforward action (from pass-to-pass). The only
remaining task to enable implementation of (5.17) is the need to explicitly compute Us. This
can be undertaken by rewriting (5.14) as

∆Us = (I − Φ)Vref − ΩyW −Θ0ds (5.18)

and it follows immediately that not all possible Vref can be obtained by a valid control sequence.
In particular, only those Vref which satisfy

rank
[
∆ | (I − Φ)Vref − ΩyW −Θ0ds

]
= rank

[
∆
]
, (5.19)

can be obtained. Due to the structure of ∆, it is immediate that if D (the matrix which describes
how the current pass input vector couples to the current pass profile in (5.1)-(5.2)) is a full row
rank matrix, then (5.18) is solvable and the solution is

Us = ∆]
(
(I − Φ)Vref − ΩyW −Θ0ds

)
, (5.20)

where (·)] denotes the pseudo-inverse of (·).
Note that, if m = r, i.e. ∆ is square and also nonsingular matrix, it is possible to replace

the pseudo-inverse with the inverse and then (5.20) becomes

Us = ∆−1
(
(I − Φ)Vref − ΩyW −Θ0ds

)
. (5.21)

Note that if D is square and nonsingular then (5.21) is valid in this case. In the general
case, however, it will often be the case that the dimension of the pass profile vector exceeds that
of the input vector and hence neither D or ∆ are full row rank matrices. As noted before, not
all possible limit profile vectors can be achieved under this design. There is, however, a way
of reducing the limitations this may impose. This is due to the fact that it may be possible to
choose d∞ to ensure that (5.19) holds.
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Example 5.3 The material rolling process given before is considered. Note that this process is
asymptotically stable open loop since this property requires that r(D0) < 1 and here for positive
M, λ1, λ2

D0 =
T 2 + M

λ1

T 2 + M
λ1

+ M
λ2

< 1 → r (D0) < 1.

The matrices are assumed as follows

E = [1 0 0 0]T , F = 1.

Suppose, however that other performance specifications do not hold. Then it is assumed that
the model matching procedure presented formerly in Section 4.10.1 is applied with the reference
2D model defined as in Example 4.15. Hence the 1D reference model is constructed and the
appropriate controller is to be computed. The controller matrix K used for the feedforward
feedback control scheme of (5.17) computed according to Theorem 4.22 has the form

K =
[

K1 K2 . . . K20
]

=


k1 0 0 . . . 0
k2 k1 0 . . . 0
k3 k2 k1 . . . 0
...
...
...
. . .

...
k20 k19 k18 . . . k1

 ,

where

K1 =
[
3.6 −13.71 19.78 −1.72 −2.55 −0.08 0.25 0.03 −0.02 −0.01 0.01 0 . . . 0

]T
.

The required output (reference signal) is assumed to be yref (p) = −1 ∀p and the boundary
conditions are zero (xk+1(p) = [ 0 0 0 0]T , k ≥ 0 and y0(p) = 0, 0 ≤ p ≤ α − 1). Note that
the negative downward step here is to agree with the physical fact that the thickness of the bar
is reduced on each successive pass through the rolling mechanism. It is also assumed that the
disturbance sequence w(p) is as shown in Figure 5.4 a), i.e. a sine wave with amplitude 0.5
shifted by −2 with some random value from the range (0, 1) added.
The pass length has been assumed to be α = 20, and the performance specification is that

there are no oscillations in the dynamics along any pass (including the limit profile). The control
vector here Us is computed to be

Us =
[

10 −17 −19.28 −24.3 −27.52 −28.63 −27.52 −24.3 −19.3 −13

−5.96 1.04 7.36 12.38 15.6 16.71 15.6 12.38 7.36 1.04
]T

.

The output of the process with the control applied is shown in Figure 5.4 b) and the required
performance specification is achieved.

5.3.2 Discrete LRPs – stability along the pass

Now the solution of the feedforward feedback control problem under stability along the pass,
i.e. when asymptotic stability in the design objectives listed earlier in the previous section is
replaced by the stronger requirement of stability along the pass.
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Figure 5.4. Disturbances (a) and pass profiles (b)

Suppose that stability along the pass holds. Then as k →∞ it is expected that for 0 ≤ p ≤
α− 1, xk+1(p) = xk(p), yk+1(p) = yref (p) and hence

x∞(p + 1) = Ax∞(p) + Bu∞(p) + B0yref (p) + Ew(p), (5.22)

yref (p) = Cx∞(p) + Du∞(p) + D0yref (p) + Fw(p). (5.23)

Now introduce

ŷk(p) = yk(p)− yref (p),

x̂k(p) = xk(p)− x∞(p),

ûk(p) = uk(p)− u∞(p).

Then subtract (5.22)-(5.23) from (5.1)-(5.2) to obtain

x̂k+1(p + 1) = Ax̂k+1(p) + Bûk+1(p) + B0ŷk(p), (5.24)

ŷk+1(p) = Cx̂k+1(p) + Dûk+1(p) + D0ŷk(p) (5.25)

and in this so-called residual (incremental) model. Note that the influence of the disturbance
vector has been completely decoupled.
Suppose now that a stabilizing control law is required. Then this can be achieved by writing

ûk+1(p) = K1x̂k+1(p) + K2ŷk(p)

or, equivalently using the original variables,

uk+1(p) = u∞(p) + K1xk+1(p)−K1x∞(p) + K2yk(p)−K2yref (p) (5.26)

and the task now is to construct x∞(p) and u∞(p) when w(p) and yref (p) are known.
From the algebraic equation of (5.23) for yref (p) it comes that

Du∞(p) = (I −D0)yref (p)− Cx∞(p)− Fw(p).
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Here, it is to note again (similarly as for the asymptotic stability case) that not all yref (p) are
available under this design. In particular, only those which ensure that

rank
[
D | (I −D0)yref (p)− Cx∞(p)− Fw(p)

]
= rank

[
D
]

(5.27)

are allowed. Suppose now that this condition holds (as is the case when D is full row rank).
Then it is straightforward to see that

u∞(p) = D]
(
(I −D0)yref (p)− Cx∞(p)− Fw(p)

)
. (5.28)

Also if D is square and nonsingular, the pseudo inverse can be replaced by the matrix inverse
and then

u∞(p) = D−1
(
(I −D0)yref (p)− Cx∞(p)− Fw(p)

)
. (5.29)

Once u∞(p) has been computed over 0 ≤ p ≤ α− 1 then

x∞(p + 1) = (A−BD−1C)x∞(p) + (B0 + BD−1(I −D0))yref (p) + (E −BD−1F )w(p) (5.30)

(which is simply a 1D discrete linear systems state equation which can be computed given d∞
— the strong limit of the known pass state initial vector sequence) and the overall control law is
of the form (5.26) where K1 and K2 are the control law matrices computed by the LMI method
to give stability along the pass closed loop.

5.3.3 Differential LRPs – stability along the pass

It is also possible to present the feedforward-feedback control scheme for the differential case of
LRP. However, it is to note that there arises the serious problem in determining the steady-state
state vector values.
To start with this consideration, remain the well known result (see e.g. [38] and references

therein). The solution for the 1D differential equation

ẋ(t) = Ax(t) + Bu(t)

is given by

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ.

Goals of the considered control scheme are defined the same as before (see the introduction
of this chapter).
Suppose that stability along the pass holds. Then as k →∞ it is expected that for 0 ≤ t <

α, xk+1(t) = xk(t), yk+1(t) = yref (t) and hence the steady state model becomes

ẋ∞(t) = Ax∞(t) + B0yref (t) + Bu∞(t) + Ew(t), (5.31)

yref (t) = Cx∞(t) + D0yref (t) + Du∞(t) + Fw(t). (5.32)

Then introduce the following residual variables

ŷk(t) = yk(t)− yref (t),

x̂k(t) = xk(t)− x∞(t),

ûk(t) = uk(t)− u∞(t).
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Next, subtract (5.31)-(5.32) from (5.3)-(5.4) to obtain

˙̂xk+1(t) = Ãx̂k+1(t) + Bûk+1(t) + B̃0ŷk(t),

ŷk+1(t) = C̃x̂k+1(t) + Dûk+1(t) + D̃0ŷk(t)

and in this so-called residual model the influence of the disturbance has been rejected. Now the
application of the stabilizing control law is required. Then this can be achieved by considering
the following control law (which is the residual version of (4.16))

ûk+1(t) = K1x̂k+1(t) + K2ŷk(t)

or, equivalently using the original variables,

uk+1(t) = u∞(t) + K1xk+1(t)−K1x∞(t) + K2yk(t)−K2yref (t) (5.33)

and the task now is to construct x∞(t) and u∞(t), when w(t) and yref (t) are assumed to be
known.
Note that equation of (5.32) is static hence assuming that there exists - the inverse of D (in

a case when D is square and nonsingular) or - the pseudo-inverse denoted by D] (in a case when
D is not square or/and nonsingular) - it can be written as

u∞(t) = D−1((I −D0)yref (t)− Cx∞(t)− Fw(t)) (5.34)

or
u∞(t) = D]((I −D0)yref (t)− Cx∞(t)− Fw(t)).

Hence (5.31) becomes

ẋ∞(t) = (A−BD−1C)x∞(t) + (B0 + BD−1(I −D0))yref (t) + (E −BD−1F )w(t), (5.35)

which is the differential equation.
Define the matrices

Ã = A−BD−1C, B̃0 = B0 + BD−1(I −D0), Ẽ = E −BD−1F.

It is straightforward to see that the solution for (5.35) becomes

x∞(t) = eÃtx∞(0) + B̃0

∫ t

0
eÃ(t−τ)yref (τ)dτ + Ẽ

∫ t

0
eÃ(t−τ)w(τ)dτ (5.36)

and then, the input sequence u∞(t) can be computed using (5.34)

Remark 5.3 It is necessary to mention that there can arise serious numerical problems when
attempting to determine the steady state components x∞(t) and u∞(t). This is due to the
requirement of integration in (5.36), which acts like a ’bottleneck’ here. It is also possible to
compute x∞(t) using the Laplace transform but, even that approach does not provide the required
efficiency.
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Example 5.4 To highlight the last result consider the case, when yref (t) = const ∈ Rm (the
simplest possible case) and w(t) is an integrable function. Hence take yref (t) = −1 and dis-
turbances as a full along the pass period of sine wave with the amplitude of 0.5, i.e. w(t) =
0.5sin(2Πt

α ). For this particular case (5.36) becomes

x∞(t) =eÃt −
B̃0

(
−1 + eÃt

)
Ã

− Ẽα

(
2π

(
cos(

πt

α
)
)2

− π + Ãα sin(
πt

α
) cos(

πt

α
)− πeÃt

)(
Ã2α2 + 4π2

)−1
,

which is the function of t and hence it is possible to compute x∞(t) for any specified t, however
it is not trivial.

Hence when x∞(t) is provided, it is possible to compute u∞(t). Note that since it is possible
to apply the stabilization procedure for the residual model for computing controllers K1 and
K2, all factors necessary to (5.33) have been provided.

5.3.4 Discrete LRPs – stability along the pass – output control

When the control scheme presented above is considered, it is strictly possible to swap the original
state/output control law of (5.26) with the control law taking the advantage of the pass profiles
(outputs) only sequence. It then becomes that (5.26) should be presented in the form similar
to (4.47) or any extension of that control law (e.g. (4.54) or (4.64)).
Hence now it is assumed that the incremental model of (5.24)-(5.25) is given and disturbances

have been already decoupled in this model.
Suppose again that a stabilizing control law is required. Then this can be achieved by

rewriting (4.47) into the form appropriate for process of (5.24)-(5.25) which becomes as follows

ûk+1(p) = K̃1ŷk+1(p) + K̃2ŷk(p)

or, equivalently,

uk+1(p) = u∞(p) + K̃1yk+1(p) + K̃2yk(p)− (K̃1 + K̃2)yref (p), (5.37)

since {
yk(p)

yk+1(p)
≈ yref (p) when k → +∞.

The task now is to construct again u∞(p) when w(p) and yref (p) are known. It can be done by
the same operations as presented in the previous section. Hence apply (5.28) (or (5.29) for the
square and nonsingular D) to compute u∞(p) and (5.30) to compute x∞(p).
In this case the overall control law is of the form (5.37), where K̃1 and K̃2 are the output

control law matrices computed by the LMI method to give stability along the pass closed loop
system.
It is straightforward to see that since x∞(p) has been computed, it can be used backward to

compute entries of u∞(p), 0 ≤ p ≤ α− 1.
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Remark 5.4 As a possible drawback of the presented approach can be the fact that even, if
the sequence of the steady state vectors x∞(p) is not explicitly incorporated into the control
law (5.37), it still has to be determined as necessary to compute u∞(p). Hence the numerical
efforts are increasing and, on the other hand, the necessity of additional computations can cause
the numerical problems. Nevertheless, note that this step can be done off-line the control scheme
(before the application of the control sequence), i.e. since (5.30) uses only known vectors (yref (p),
w(t) and d∞) and model matrices there are no apparent problems in computing it.

Example 5.5 Consider a case of (5.1)-(5.2) described by the following matrices

A =

 0.8 0.19 0.6
−0.08 0.21 −0.73
−0.63 0.56 0.78

 , B =

 2.5
−1.45
−0.76

 , B0 =

 0
0.75
−0.7

 , E =

 −0.23
0.7
0.05

 ,

C =
[

0.29 −0.06 0.01
]
, D =

[
1.14

]
, D0 =

[
1.09

]
, F =

[
0.61

]
.

The pass length has been set as α = 1000. The reference signal has been set to 3 full periods
of cosine function yref (p) = cos(−3πp

0.5∗α + 6π) over 0 ≤ p ≤ α − 1. The boundary conditions
are y0(p) = −1 + sin(−5πp

0.5∗α + 10π) over 0 ≤ p ≤ α − 1 and dk+1 = [1.8 −1.1 0.43]T . The
disturbances that influence the system have been set as random values over 0 ≤ p ≤ α − 1,
generated with the following Matlab formula

w(p)=round((rand()-0.5)*100)/100

and are shown in Figure 5.5 a)

a) b)

Figure 5.5. Disturbances (a) and pass profiles (b)

Due to the output controller design presented in Theorem 4.18 the following controllers have
been computed

K̃1 = 6.4319, K̃2 = −4.8532.

Figure 5.5 b) shows the output of the controlled system.
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5.4 Proportional plus Integral control of LRPs

In this section, the goals defined in the introduction of the chapter are again considered. To
remain those, the basic design task is the development of control laws, which give asymptotic
stability or/and stability along the pass and completely reject the effects of the disturbance
terms (the same as before) is considered. In this section the proportional plus integral control
approach is assumed to be applied. For the classical 1D systems the similar control scheme has
been considered, for the description refer to [150] and references therein.

5.4.1 Discrete LRPs – asymptotic stability – 1D equivalent model

Again, an obvious target is to force the closed loop process to produce a pre-specified pass profile
vector, say

Vref =
[

yref (0)T yref (1)T . . . yref (α− 1)T
]T

on a pre-specified pass. Also, this pass could be chosen as any finite value of k but here the
request is that Vref is the resulting limit profile.
If it is assumed that Vref has only zero entries and there are no disturbances present, then

asymptotic stability alone is enough to ensure this property. Here the more general case is
considered when disturbances are present and also the target limit profile contains constant but
non-zero entries. The method is to develop the scheme of proportional plus integral control for
these processes in the pass-to-pass direction.
To begin, first note that the tracking error for any fixed value of l, say l∗, is given by

V (l∗)− Vref and summing this over l passes gives the so-called total tracking error R(l), i.e.

R(l) =
l∑

j=0

(V (l∗)− Vref )

and hence
R(l + 1) = R(l) + V (l + 1)− Vref . (5.38)

Now, introduce the so-called extended state vector, which incorporates the total tracking error,
as

Z(l) =

[
V (l)
R(l)

]
.

Then using (2.25) and (5.38), the evolution of Z(l) is governed by[
I 0
−I I

]
Z(l + 1) =

[
Φ 0
0 I

]
Z(l) +

[
∆
0

]
U(l)

+

[
0
−I

]
Vref +

[
Θ0

0

]
dl +

[
Ωy

0

]
W

or

Z(l + 1) =

[
Φ 0
Φ I

]
Z(l) +

[
∆
∆

]
U(l) +

[
0
−I

]
Vref +

[
Θ0

Θ0

]
dl +

[
Ωy

Ωy

]
W, (5.39)
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where

Ωy =


F 0 0 . . . 0

CE F 0 . . . 0
CAE CE F . . . 0
...

...
...

. . .
...

CAα−2E CAα−3E CAα−4E . . . F

 .

Suppose now that asymptotic stability holds. Then as l →∞

Z(l + 1) = Z(l) ≡ Z∞

and also from (5.39)

Z∞ =

[
Φ 0
Φ I

]
Z∞ +

[
∆
∆

]
U∞ +

[
0
−I

]
Vref +

[
Θ0

Θ0

]
d∞ +

[
Ωy

Ωy

]
W, (5.40)

where U∞ denotes the input applied on the limit profile and d∞ the known state initial vector
for the limit profile.
Now introduce the so-called residual variables (the incremental vectors)

Ẑ(l) = Z(l)− Z∞, Û(l) = U(l)− U∞,

V̂ (l) = V (l)− Vref , R̂(l) = R(l)−R∞,

d̂l = dl − d∞,

and subtract (5.40) from (5.39) to obtain the incremental process dynamics as

Ẑ(l + 1) =

[
Φ 0
Φ I

]
Ẑ(l) +

[
∆
∆

]
Û(l) +

[
Θ0

Θ0

]
d̂l

= Φ̂Ẑ(l) + ∆̂Û(l) + Θ̂0d̂l. (5.41)

This last linear system is unstable as a 1D equivalent model, due to the structure of the matrix
Φ̂ but the external disturbance vector W has been completely decoupled. Hence if it is possible
to make this model asymptotically stable, then both: the disturbance rejection and also the
required limit profile are ensured. Consider, therefore, the following control law for (5.41)

Û(l) = K̂Ẑ(l) =
[

K̂1 K̂2

] [ V̂ (l)
R̂(l)

]
(5.42)

or, equivalently,

U(l) = K̂
(
Z(l)− Z∞

)
+ U∞ =

[
K̂1 K̂2

] [ V (l)− Vref

R(l)−R∞

]
+ U∞, (5.43)

i.e. proportional plus integral action, where R∞ denotes limit as l →∞ of R(l).
To implement the control law of (5.43), it is clearly required to have R∞ and U∞. To provide

these, first note that the second block row in (5.40) can be rewritten as

(I − Φ)Vref −Θ0d∞ − ΩyW = ∆U∞ (5.44)
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and hence (when letting l →∞ in (5.42)), it is straightforward to note that

U∞ − K̂1Vref − K̂2R∞ = 0. (5.45)

Now substitute (5.45) into (5.44) to obtain

[I − Φ−∆K̂1]Vref −Θ0d∞ − ΩyW −∆K̂2R∞ = 0

and this last expression gives the condition which must hold to achieve Vref under the control
law (5.43), i.e.

rank
[
I − Φ−∆K̂1

]
= rank

[
I − Φ−∆K̂1 |Θ0d∞ + ΩyW + ∆K̂2R∞

]
. (5.46)

Note also that, if K̂1 stabilizes Φ, i.e. ensures that r(Φ + ∆K̂1) < 1, then
[
I − Φ − ∆K̂1

]
is

invertible and this last condition always holds.
Suppose now that (5.46) holds, then it can be used to compute R∞ and hence, using (5.45),

U∞. Moreover, using (5.45), it is possible to rewrite the proportional plus integral control
law (5.43) as

U(l) = K̂1V (l) + K̂2R(l) = K̂Z(l) (5.47)

and the controller K̂ here can, in effect, be computed using Theorem 4.3 or Theorem 4.4
since (5.41) is a 1D state equation with Φ̂ as a system matrix and ∆̂ as an input matrix.
Then (5.47) is in the form of a 1D state feedback control law. This leads to the main design
result.

Theorem 5.1 Suppose that a discrete LRP described by (5.1)-(5.2), given in the form of (5.41)
is subject to the control law which can be written in the form (5.47). Then the resulting closed
loop process is asymptotically stable with prescribed limit profile Vref if there exist matrices
P̂ > 0, Ĝ, L̂ such that the following LMI condition holds[

−P̂ Φ̂Ĝ + ∆̂L̂

ĜT Φ̂T + L̂T ∆̂ P̂ − Ĝ− ĜT

]
< 0.

Also if this condition holds, then the controller matrix in (5.42) or (5.43) is given by

K̂ = L̂Ĝ−1. (5.48)

Proof. This follows identical steps to that of Theorem 4.4 and hence the details are omitted
here. �

Example 5.6 As a numerical example, consider the following case of (5.1)-(5.2)

A =

 0.23 0.36 0.37
0.29 0.14 0.10
0.74 0.39 0.69

 , B =

 3.12
−4.89
5.77

 , B0 =

 0.29
0.28
0.17

 , E =

 0.19
0.04
0.1

 ,

C =
[

0.17 0.48 0.38
]
, D = 1.29, D0 = −1, F = 0.2

with α = 20. Note that the considered model is asymptotically unstable since r(D0) = 1. The
boundary conditions are provided in the static form dk+1 = [ 1.83 −4.1 −4.65 ]T , k ≥ 0 and
y0(p) = 0, 0 ≤ p ≤ α−1. For the purpose of simulation the disturbance signal has been assumed
as which denotes the sampled full period of the sine wave with the amplitude of −1 along the
pass. The reference signal has been chosen as yref (p) = −10, 0 ≤ p ≤ α− 1. The application of
Theorem 5.1 provides the following controllers
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K̂1 =
[

K̂1
1 K̂2

1 K̂3
1 . . . K̂20

1

]

=


k̂1

1 0 0 . . . 0
k̂2

1 k̂1
1 0 . . . 0

k̂3
1 k̂2

1 k̂1
1 . . . 0

...
...

...
. . .

...
k̂20

1 k̂19
1 k̂18

1 . . . k̂1
1

 ,

K̂2 =
[

K̂1
2 K̂2

2 K̂3
2 . . . K̂20

2

]

=


k̂1

2 0 0 . . . 0
k̂2

2 k̂1
2 0 . . . 0

k̂3
2 k̂2

2 k̂1
2 . . . 0

...
...

...
. . .

...
k̂20

2 k̂19
2 k̂18

2 . . . k̂1
2

 ,

where

K̂1
1 =

[
0.77 0.50 1.42 0.90 2.05 −1.62 2.99 −2.79 4.46 −4.62

6.75 −7.49 10.36 −12.01 16.02 −19.01 24.90 −30.22 38.84 −47.69
]T

,

K̂1
2 =

[
0.39 0.21 0.66 0.38 0.94 0.70 −1.37 1.22 −2.02 2.04

−3.04 3.32 −4.66 5.34 −7.18 8.50 −11.15 13.48 −17.38 21.28
]T

.

To present the usefulness of the considered approach the set of tests has been performed. The
following figures show the output of the considered process with controllers computed according to
Theorem 5.1 (Figure 5.6 a)) and (to compare the result and prove the applicability) Theorem 4.4
(Figure 5.6 b)) applied.
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a) The output with controller (5.47) b) The output with controller computed
applied according to Theorem 4.4 applied

Figure 5.6. Pass profiles produced under varied sets of controllers applied

It is straightforward to see that only application of the complete control law of (5.47) provides
the disturbances rejection, required output value and the appropriate dynamics. These are shown
in Figure 5.6 a).In comparison, Figure 5.6 b) presents the same process, with controllers com-
puted according to Theorem 4.4 (the control law of (4.3) applied). On the other hand, Figure 5.7
presents the output with only K̂1 of controller (5.47) applied. The applicability of the integral
part in the control law is straightforward to see if refer to Figure 5.7. The integral part of the
control law in this case ensures the acceptable performance of the closed loop system.
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Figure 5.7. The output with only K̂1 of controller (5.47) applied

5.4.2 Discrete LRPs – stability along the pass

In terms of ‘acceptable, or desired, performance from a given example, in general the stronger
demand regarding the stability is ensuring stability along the pass — this guarantees the ex-
istence of a limit profile which is stable as a 1D discrete linear system. The problem, how to
ensure stability along the pass for examples have been presented in Section 4.4. In particular, it
has been shown that a control law of the form (4.11) can be used to give this property. Moreover,
the design of the control law matrices can be implemented using LMIs where the basic result
starts from interpreting Theorem 4.5 for the resulting closed loop state-space model.
Again, the question stated here is how to obtain a specified limit profile yref (p) in the

presence of disturbances.
Consider the state-space model (5.1)-(5.2) at the point p on the pass k. Then the total

tracking error at this point is defined as

χk(p) :=
k∑

j=0

(
yj(p)− yref (p)

)
,

i.e. the error at the point p summed from pass 0 to k. Substitution from the process state-space
model now gives

χk+1(p) = χk(p) + yk+1(p)− yref (p) (5.49)

= χk(p) + Cxk+1(p) + D0yk(p) + Duk+1(p) + Fw(p)− yref (p).

Now, introduce the so-called extended output (pass profile) vector

zk+1(p) :=

[
yk+1(p)
χk+1(p)

]
.

Then (5.49) yields

zk+1(p)=

[
C

C

]
xk+1(p)+

[
D0 0
D0 I

]
zk(p)+

[
D

D

]
uk+1(p)+

[
0
−I

]
yref (p)+

[
F

F

]
w(p).
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Suppose now that the process of (5.1)-(5.2) is asymptotically stable, i.e. r(D0) < 1, then as
k →∞

xk+1(p) = xk(p) ≡ x∞(p),

yk+1(p) = yk(p) ≡ y∞(p),

uk+1(p) = uk(p) ≡ u∞(p)

and let χ∞(p) denote lim k→∞ χk(p). Then it can be written

χk+1(p) = χk(p) ≡ χ∞(p)

and hence

x∞(p + 1) = Ax∞(p) + B0y∞(p) + Bu∞(p) + Ew(p), (5.50)

z∞(p) =

[
C

C

]
x∞(p)+

[
D0 0
D0 I

]
zs(p)+

[
D

D

]
us(p)+

[
0
−I

]
yref (p)+

[
F

F

]
w(p), (5.51)

where z∞(p) = limk→∞ zk(p).
Next, define the following so-called incremental vectors

ẑk(p) = zk(p)− z∞(p),

ûk(p) = uk(p)− u∞(p),

x̂k(p) = xk(p)− x∞(p).

Then using (5.1)-(5.2) and (5.50)-(5.51), it is straightforward to obtain

x̂k+1(p + 1) = Ax̂k+1(p) + B̂0ẑk(p) + Bûk+1(p), (5.52)

ẑk+1(p) = Ĉx̂k+1(p) + D̂0ẑk(p) + D̂ûk+1(p), (5.53)

where

B̂0 =
[

B0 0
]
, Ĉ =

[
C

C

]
, D̂0 =

[
D0 0
D0 I

]
, D̂ =

[
D

D

]
and the key point now is that the influence of the disturbance has been completely rejected.
The task now is to meet the specification, when the limit profile (for the original process) be
equal to the prescribed vector yref (p). Note that (5.52)-(5.53) is of the structure of discrete LRP
of (2.9)-(2.10) and hence known (formerly presented) methods for the synthesis can be applied.
What is more, the matrix D̂0 in (5.53) always has eigenvalues with modulus at least equal

to unity and hence this discrete LRP state-space model is asymptotically unstable and hence
unstable along the pass. To obtain any (and in particular the required) limit profile from it, the
control action must be applied. Moreover, in order to make this limit profile equal to yref (p)
with the specified 1D transient performance specifications, stability along the pass in the closed
loop is also required.
Now consider applying the control law, which is of the form (4.11) but applied for the

extended model (5.52)-(5.53)

ûk+1(p) = Kxx̂k+1(p) + Kz ẑk(p) (5.54)

= Kxx̂k+1(p) + Kz1ŷk(p) + Kz2χ̂k(p)

=
[

Kx Kz1 Kz2

] x̂k+1(p)
ŷk(p)
χ̂k(p)

 .
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Then the following result gives an LMI based sufficient condition for closed loop stability along
the pass together with a formula for computing the control law matrices. The proof of this result
follows immediately on interpreting Theorem (4.9) and hence the details are omitted here.

Theorem 5.2 Suppose that a control law of the form (5.54) is applied to a discrete LRP de-
scribed by a state-space model of the form (5.52)-(5.53). Then the resulting closed loop process
is stable along the pass if there exist matrices Y > 0, Z > 0, and N such that the following LMI
holds  Z − Y 0 Y ÃT

1 + NT B̃T
1

0 −Z Y ÃT
2 + NT B̃T

2

Ã1Y + B̃1N Ã2Y + B̃2N −Y

 < 0,

where

Ã1 =

[
A B̂0

0 0

]
, Ã2 =

[
0 0
Ĉ D̂0

]
, B̃1 =

[
B

0

]
, B̃2 =

[
0
D̂

]
.

If this condition holds, then the matrices in the control law are given by

[Kx Kz1 Kz2] = NY −1

Suppose now that this last result holds. Then it follows immediately that y∞(p) = yref (p)
as required. Moreover

uk+1(p) = Kx

(
xk+1(p)− x∞(p)

)
+ Kz1

(
yk(p)− yref (p)

)
+ Kz2

(
χk(p)− χ∞(p)

)
+ u∞(p)

and also
−Kxx∞(p)−Kz1yref (p)−Kz2χ∞(p) + u∞(p) = 0.

Hence the final form of the control law to be applied to the original process is

uk+1(p) = Kxxk+1(p) + Kz1yk(p) + Kz2χk(p). (5.55)

Rewrite now the part of the right-hand side of the control law (5.54) in the form

Kxxk+1(p) + Kz1yk(p) =
[

Kx Kz1

] [ xk+1(p)
yk(p)

]
=: KXa

k+1(p),

whereXa
k+1(p) is termed the augmented state vector. Then immediately, it is to see that the final

control law (5.55) has a two term structure, where the first termKXa
k+1(p) is static (proportional

control action for stability) and the second Kz2χk(p) is the integral action to enforce the tracking
of the requested limit profile yref (p).

Example 5.7 Consider the case of (5.1)-(5.2) given by

A =


0.92 0.14 −0.98 0.41
−0.76 −0.93 −0.62 0.13
0.68 −0.65 1.02 −0.81
0.94 0.04 0.83 0.2

, B =


0.99 −0.99 0.07
0.07 −0.94 −0.63
0.98 −0.73 0.02
−0.37 0.19 −0.65

, E =


0.91
0.59
0.18
0.31

,
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B0 =


−0.01 −0.43
0.29 −0.13
0.98 1.09
1.09 0.17

, C =

[
−0.75 0.75 0.31 0.84
−0.86 0.99 0.33 −0.84

]
,

D =

[
−0.33 −0.14 0.59
−0.18 0.94 −0.17

]
, D0 =

[
1.11 −0.66
0.46 1.23

]
, F =

[
−0.06
0.36

]
,

over the pass length α = 100. The disturbances w(p) are two full periods of sine wave. This
example is asymptotically unstable, and hence unstable along the pass, since r(D0) = 1.2919.

The application of Theorem 5.2 provides the following controller matrices

Kx =

 −1.7945 1.0158 0.134 1.1219
0.5075 −0.5836 −0.5438 1.1854
0.3834 −0.7341 −0.6099 −0.4623

,

Kz1 =

 1.8756 −0.6793
0.0952 −1.3957
−0.7203 0.3862

, Kz2 =

 0.0673 0.0407
0.0441 −0.0559
−0.0606 0.0056

 .

In order to accomplish the requested quality of the closed loop performance, the emphasis is put
on the fact that the limit profile is a 1D discrete linear system and follows the standard route
of using a step signal applied in each of two channels in turn. Figure 5.8 shows the closed loop
responses to the case when yref (p) = [ −3 0 ]T , 0 ≤ p ≤ 99. Here, the interaction in the second
channel is relatively large at the beginning, but it is to note that the process converges quickly to
the limit profile which has exactly the along the pass dynamics predicted and, in particular, the
integral term completely removes the interaction. Figure 5.9 shows the closed loop responses in
the case when yref (p) = [ 0 3 ]T , 0 ≤ p ≤ 99, and the same comments hold. (These simulations
are made for the following boundary conditions dk+1 = [ −1.33 − 0.32 1.13 − 1.57 ]T and initial
profile y0(p) = 0, 0 ≤ p ≤ α− 1.)

a) b)

Figure 5.8. First (a) and second (b) channel responses to [−3 0]T

Note that in both presented cases, there is an influence of disturbances visible on the presented
figures. However, it vanishes when the evolution of the system continues, i.e. the disturbance
effect is decoupled from the output.
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a) b)

Figure 5.9. First (a) and second (b) channel responses to [0 3]T

5.4.3 Differential LRPs – stability along the pass

The proportional plus integral control scheme can be also provided for differential LRP of (5.3)-
(5.4). Still, three main control goals defined before are to be meet. The whole following procedure
follows the discrete case.
First, for the pass k and the position t : 0 ≤ t < α along this pass define the total tracking

error χk(t) as

χk(t) =
k∑

j=0

(
yj(t)− yref (t)

)
.

Then it follows immediately that

χk+1(t) = χk(t) + yk+1(t)− yref (t)

or, using (5.4),

χk+1(t) = χk(t) + Cxk+1(t) + Duk+1(t) + D0yk(t) + Fw(t)− yref (t). (5.56)

Also, introduce the so-called extended pass profile vector as

zk(t) =

[
yk(t)
χk(t)

]
.

Then use of (5.4) together with (5.56) yields the following state-space model of the so-called
augmented linear repetitive process

ẋk+1(t) = Axk+1(t) + [B0 0 ] zk(t) + Buk+1(t) + Ew(t), (5.57)

zk+1(t) =

[
C

C

]
xk+1(t) +

[
D0 0
D0 I

]
zk(t) +

[
0
−I

]
yref (t) (5.58)

+

[
D

D

]
uk+1(t) +

[
F

F

]
w(t).
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Suppose that as k →∞, xk(t) → x∞(t), uk(t) → u∞(t) and yk(t) → yref (t), χk(t) → χ∞(t),
(hence zk(t) → z∞(t)). Then from (5.57)-(5.58), it is straightforward to obtain

ẋ∞(t) = Ax∞(t) + [B0 0 ] z∞(t) + Bu∞(t) + Ew(t), (5.59)

z∞(t) =

[
C

C

]
x∞(t) +

[
D0 0
D0 I

]
z∞(t) + (5.60)[

D

D

]
u∞(t) +

[
0
−I

]
yref (t) +

[
F

F

]
w(t).

Now define the following incremental vectors

ẑk(t) = zk(t)− z∞(t), (5.61)

ûk(t) = uk(t)− u∞(t),

x̂k(t) = xk(t)− x∞(t).

Then subtracting (5.59)-(5.60) from (5.57)-(5.58) and using (5.61) yields

˙̂xk+1(t) = Ax̂k+1(t) + B̂0ẑk(t) + Bûk+1(t), (5.62)

ẑk+1(t) = Ĉx̂k+1(t) + D̂0ẑk(t) + D̂ûk+1(t), (5.63)

where

B̂0 =
[

B0 0
]
, Ĉ =

[
C

C

]
, D̂0 =

[
D0 0
D0 I

]
, D̂ =

[
D

D

]
and hence the disturbance term w(t) is completely decoupled from the process dynamics. The
only problem in the above analysis is that (5.62)-(5.63) is asymptotically unstable (this property
is determined by the eigenvalues of the matrix D̂0 and some of these are equal to unity) and
hence unstable along the pass. Consequently, the result is only achievable, if it is possible to
find a control law to govern this property.
Next, consider the control law defined by

ûk+1(t) = Kxx̂k+1(t) + Kz ẑk(t) (5.64)

= Kxx̂k+1(t) + Kz1ŷk(t) + Kz2χ̂k(t)

=
[

Kx Kz1 Kz2

] x̂k+1(t)
ŷk(t)
χ̂k(t)

 ,

which is the differential LRP version of the classical proportional plus integral control action.
(In the case of the integral action, this arises from the total tracking error contribution which is
formed by summing across the passes.)
Now the following result which shows how to design this control law to ensure that (5.52) is

stable along the pass can be presented

Theorem 5.3 Suppose that the model of (5.62)-(5.63) is a subject to the control law of the
form (5.64). Then the resulting closed loop process is stable along the pass if there exist matrices
Ŷ > 0, Ẑ > 0, M̂ and N̂ such that the following LMI holds Ŷ AT + AŶ + N̂T BT + BN̂ B̂0Ẑ + BM̂ Ŷ ĈT + N̂T D̂T

ẐB̂T
0 + M̂T BT −Ẑ ẐD̂T

0 + M̂T D̂T

ĈŶ + D̂N̂ D̂0Ẑ + D̂M̂ −Ẑ

 < 0. (5.65)
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If this condition holds, the control law matrices Kx and Kz are given by

Kx = N̂ Ŷ −1, Kz = M̂Ẑ−1. (5.66)

Proof. Simply note that (5.62)-(5.63) is of the form (2.14)-(2.15) and hence Theorem 4.8 can
be applied to the closed loop process state-space model. �
To show how (5.64) can be actually employed, note that

ûk+1(t) = uk+1(t)− u∞(t) (5.67)

= Kxx̂k+1(t) + Kz

[
yk(t)− yref (t)
χk(t)− χ∞(t)

]

or, using the original variables,

uk+1(t)=Kx

(
xk+1(t)−x∞(t)

)
+Kz1

(
yk(t)−yref (t)

)
+Kz2

(
χk(t)−χ∞(t)

)
+u∞(t). (5.68)

This control law can also be applied to the process in non-incremental form, i.e. as

uk+1(t) = Kxxk+1(t) + Kz1yk(t) + Kz2χk(t). (5.69)

Then from (5.67), it is straightforward to see that

−Kxx∞(t)−Kz1yref (t)−Kz2χ∞(t) + u∞(t) = 0. (5.70)

Consequently, on any pass, it is not required to know information, which is generated on future
passes, i.e. χ∞(t) and u∞(t), which considerably simplifies the effort required to construct the
control law output to be applied to the process since there is no need to pre-compute these two
terms.

Example 5.8 Consider again the model of unstable (5.3)-(5.4), given in Example 4.5 with the
pass length α = 50. The matrices E and F are assumed as follows

E =


1

0.9
0.6
−0.1

, F =

[
−1.7
1.3

]
.

The application of Theorem 5.3 provides the following matrices

Ŷ =


1671.4553 1312.04 −106.7492 1358.7098
1312.04 3470.7294 64.9729 2383.0249
−106.7492 64.9729 1096.1297 −581.8855
1358.7098 2383.0249 −581.8855 3086.9887

,

Ẑ =


1773.1376 −38.3513 −73.2392 187.5560
−38.3513 2631.0986 58.8763 −134.2619
−73.2392 58.8763 2235.3449 −12.3697
187.5560 −134.2619 −12.3697 2366.2669

 ,
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N̂ =

 1483.1204 3227.0565 −20.1667 4680.0674
−1172.5727 −2407.0977 −60.2941 −3565.3655
−112.0671 −532.3344 6.6859 −244.4569

 ,

M̂ =

 −165.9026 −614.1769 65.9177 −72.8102
−98.6652 399.5965 38.4149 −90.5024
−156.2374 −102.0499 83.3951 97.0102

 .

Hence the PI controllers computed due to (5.66) and applicable in (5.69) become

Kx =

 −0.5789 −0.5339 1.2398 2.4167
0.3985 0.4791 −1.0525 −1.8986
0.0443 −0.2430 0.08 0.1040

 ,

Kz1 =

 −0.0935 −0.2374
−0.0492 0.1496
−0.0924 −0.0386

, Kz2 =

 0.0325 −0.0367
0.0115 −0.0258
0.0356 0.0463

 .

The disturbance has been generated using the following Matlab code

dww=20*pi/(alpha1-1);

W=2*cos(-10*pi:dww:10*pi)+(rand(1,alpha1)-0.5)/5 - 1;

and shown in Figure 5.10.
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Figure 5.10. The disturbance w(t)

The initial pass profile is defined as follows f(t) = [1 1]T , 0 ≤ t < α and the initial state
vectors dk+1 were chosen randomly at the beginning of each pass using the following formula

x0=round((rand(n,1)-0.5)*200)/100;

First, the reference signal is equal to yref (t) = [2 2]T , 0 ≤ t < α.
Figure 5.11 shows the responses of the resulting closed loop process.
This confirms that the design objectives have been satisfied, i.e. closed loop stability along

the pass, the required limit profile is achieved and the influences of the disturbance have been
rejected.
To highlight the proposed method abilities against different reference signals the following

simulations were made ( here α = 40 and dk+1 = [ −0.22 − 0.57 − 0.81 − 0.8 ]T ), where the
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Channel 1 Channel 2

Figure 5.11. The outputs of the closed loop repetitive process for the reference signals [2 2]T

chosen reference signals are shown in Figure 5.12, Figure 5.14 and Figure 5.16 and the closed
loop process pass profile (outputs) dynamics are shown in Figure 5.13, Figure 5.15 and Fig-
ure 5.17, respectively.
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Figure 5.12. The reference signals

5.4.4 Discrete LRPs – stability along the pass – output control

By the analogy to Section 5.3.4, at this moment it is reasonable to ask about the possibility of
application of the output control scheme to proportional plus integral approach. Hence assume
that the incremental model of (5.52)-(5.53) is already given (i.e. the disturbances have been
decoupled) and consider applying the following output control law

ûk+1(p) = K̃z1ẑk+1(p) + K̃z2ẑk(p) (5.71)

=
[

K̃y1 K̃χ1 K̃y2 K̃χ2

]
ŷk+1(p)
χ̂k+1(p)
ŷk(p)
χ̂k(p)


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Channel 1 Channel 2

Figure 5.13. Pass profiles for the reference signal shown in Figure 5.12
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Figure 5.14. The reference signals

for that incremental model. Then the following result gives an LMI based sufficient condition
for closed loop stability along the pass together with a formula for computing the control law
matrices. The proof of this result follows immediately on interpreting Theorem 4.6 for the closed
loop state-space model and hence the details are omitted here.

Theorem 5.4 Suppose that a control law of the form (5.71) is applied to a discrete LRP de-
scribed by a state-space model of the form (5.52)-(5.53). Then the resulting closed loop process
is stable along the pass if there exist matrices Y > 0, Z > 0, X > 0 and N of appropriate
dimensions such that the following LMI holds. Z − Y (∗) (∗)

0 −Z (∗)
Ã1Y + B̃1NC̃ Ã2Y + B̃2NC̃ −Y

 < 0,

XC̃ = C̃Y,

where

Ã1 =

[
A B̂0

0 0

]
, Ã2 =

[
0 0
Ĉ D̂0

]
, B̃1 =

[
B

0

]
, B̃2 =

[
0
D̂

]
, C̃ = diag(Ĉ, I).
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Channel 1 Channel 2

Figure 5.15. Pass profiles for the reference signal shown in Figure 5.14
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Figure 5.16. The reference signals

Channel 1 Channel 2

Figure 5.17. Pass profiles for the reference signal shown in Figure 5.14
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If this condition holds then the matrices in the control law are given by[
K̃y1 K̃χ1 K̃y2 K̃χ2

]
= NX−1.

Proof. Note that the above LMI is the output controller design condition for the dynamical
process described as the discrete LRP. Hence the proof is the same as that for Theorem 4.18. �
Suppose now that this last result holds. Then it follows immediately that y∞(p) = yref (p),

as required. Moreover, using the original variables

uk+1(p) = u∞(p) +
[

K̃y1 K̃χ1 K̃y2 K̃χ2

]
yk+1(p)− yref (p)
χk+1(p)− χ∞(p)
yk(p)− yref (p)
χk(p)− χ∞(p)


and also

−K̃y1yref (p)− K̃χ1χ∞(p)− K̃y2yref (p)− K̃χ2χ∞(p) + u∞(p) = 0.

Hence the final form of the control law to be applied to the original process becomes

uk+1(p) = K̃y1yk+1(p) + K̃χ1χk+1(p) + K̃y2yk(p) + K̃χ2χk(p). (5.72)

Example 5.9 Consider the unstable along the pass case of (5.1)-(5.2) given by

A=


0.48 −0.45 −0.11 −0.07
−0.14 −0.38 −0.02 −0.28
−0.31 −0.2 0.64 0

0 0.89 0 0

, B=


−1.65 −0.3 0.89 −1.85 −0.46
1.96 2.0 −2.88 −1.47 1.54
0.86 0.9 0.3 −2.78 0.42
−0.31 −0.03 0.38 −2.52 −1.66

, E =


0.9
−0.54
0.21
−0.03

,

B0 =


0.91 1.12 −0.55
0.07 −0.15 0
0.64 0.8 0.72
−0.35 −1.23 −1.34

, C =

 0 0 0.96 0.46
−0.9 0 0.31 0.52
−0.5 −0.7 −0.88 0.86

, D0 =

 0.62 −1.25 1.49
−1.67 −1.33 1.64
−0.6 0.83 −0.41

,

D=

 0 0 −2.95 −2.59 1.98
1.71 −1.15 −2.03 −0.06 0
0 0.96 −2.68 0 2.68

, F =

 0.78
0.52
−0.09

 ,

over the pass length α = 200.
The application of Theorem 5.4 now gives the following control law matrices

[
K̃y1 K̃χ1

]
=


4.0771 −73.2805 258.1872 −50.3334 −94.4855 −294.2185
−9.0022 333.8740 −1150.4221 212.6543 425.1280 1308.7428
−7.7820 −161.6879 531.2070 −82.6427 −202.0817 −602.8251
0.9191 178.8760 −603.4201 104.2615 225.5047 685.4912
−11.9540 −348.1242 1154.4250 −185.6538 −435.9741 −1311.0963

 ,

[
K̃y2 K̃χ2

]
=


0.1532 −1.4666 −0.9546 45.0450 70.3964 284.7620
−1.2662 3.5121 0.6782 −190.0204 −316.6087 −1266.4867
0.7462 −1.7986 0.2572 73.9629 150.6724 582.5045
−0.7509 1.7314 −0.3246 −93.1951 −167.9548 −663.0818
1.5462 −2.9682 0.2081 166.0077 324.9438 1267.0353

 .

Due to the space limitations in the dissertation, the figures illustrating the outputs of the
considered system under control are skipped.
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5.4.5 Differential LRPs – stability along the pass – output control

Analogously, as it had a place for discrete LRP, it is possible as well to link the concept of output
controller design with PI control scheme for differential LRPs. Note that for the incremental
model of (5.62)-(5.63) it is also possible to define the output control law. Remind that in the
incremental model of (5.62)-(5.63) the disturbances have been rejected. Hence define the output
control law for that incremental model as

ûk+1(t) = K̃1ẑk+1(t) + K̃2ẑk(t) (5.73)

= K̃11ŷk+1(t) + K̃12χ̂k(t) + K̃21ŷk(t) + K̃22χ̂k(t)

=
[

K̃11 K̃12 K̃21 K̃22

]
ŷk+1(t)
χ̂k(t)
ŷk(t)
χ̂k(t)

 .

Note that (5.73) can be treated as a special case of (4.71) since zk(t) is now the extended
pass profile vector. Hence (5.73) can be presented as

uk+1(t) = (I − K̃1D̂)−1K̃1Ĉx̂k+1(t) + (I − K̃1D̂)−1[K̃2 + K̃1D̂0]ẑk(t) (5.74)

and it is straightforward to see that (5.74) can be treated as a particular case of (5.73) with

Kx = (I − K̃1D̂)−1K̃1Ĉ,

Kz = (I − K̃1D̂)−1(K̃2. + K̃1D̂0) (5.75)

This route may again, however, encounter serious numerical difficulties (arising from the fact
that (5.75) is a set of matrix nonlinear algebraic equations) and hence proceed by rewriting
these last equations to obtain

(I − K̃1D̂)Kx = K̃1Ĉ,

(I − K̃1D)Kz = K̃2 + K̃1D̂0

and assume that Kx = LxĈ. Now, it follows immediately that

K̃1 = Lx(I + D̂Lx)−1, (5.76)

K̃2 = [I − Lx(I + D̂Lx)−1D̂]Kz − Lx(I + D̂Lx)−1D̂0

for any Lx such that I + D̂Lx is nonsingular, and the following result is obtained. It shows how
to design this control law to ensure that (5.62)-(5.63) is stable along the pass under the chosen
output control.

Theorem 5.5 Suppose that the model of (5.62)-(5.63) is subject to a control law of the form
of (5.73). Then the resulting closed loop process is stable along the pass if there exist matrices
Ŷ > 0, Ẑ > 0, X̂ > 0, M̂ and N̂ such that the following LMI holds Ŷ AT + AŶ + ĈT N̂T BT + BN̂Ĉ B̂0Ẑ + BM̂ Ŷ ĈT + ĈT N̂T D̂T

ẐB̂T
0 + M̂T BT −Ẑ ẐD̂T

0 + M̂T D̂T

ĈŶ + D̂N̂Ĉ D̂0Ẑ + D̂M̂ −Ẑ

 < 0, (5.77)

X̂Ĉ = ĈŶ . (5.78)
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If this condition holds, the control law matrices Lx and Kz are computed by

Lx = N̂X̂−1, Kz = M̂Ẑ−1. (5.79)

Proof. Simply note that (5.62)-(5.63) is of the form (2.14)-(2.15) and hence Theorem 5.3
can be applied to the closed loop process state-space model. �
When the controller matrices computed using (5.79) are available, then it is necessary to

apply (5.76) to compute the required output controllers.
To present how (5.73) can be actually employed, first note that

ûk+1(t) = uk+1(t)− u∞(t) (5.80)

= K̃1

[
yk+1(t)− yref (t)
χk+1(t)− χ∞(t)

]
+ K̃2

[
yk(t)− yref (t)
χk(t)− χ∞(t)

]
or, using the original variables,

uk+1(t) = K̃11

(
yk+1(t)− yref (t)

)
+ K̃12

(
χk+1(t)− χ∞(t)

)
(5.81)

+K̃21

(
yk(t)− yref (t)

)
+ K̃22

(
χk(t)− χ∞(t)

)
+ u∞(t).

This control law can also be applied to the process in non-incremental form, i.e. as

uk+1(t) = K̃11yk+1(t) + K̃12χk+1(t) + K̃21yk(t) + K̃22χk(t) (5.82)

or
uk+1(t) = (K̃11 + K̃12)yk+1(t) + K̃21yk(t) + (K̃22 + K̃12)χk(t)− K̃12yref (t). (5.83)

Then from (5.80) it is straightforward to see that

− (K̃11 + K̃21)yref (t)− (K̃12 + K̃22)χ∞(t) + u∞(t) = 0. (5.84)

Again, on any pass it is not required to know information which is generated on future passes,
i.e. χ∞(t) and u∞(t), which considerably simplifies the effort required to construct the control
law output to be applied to the process since there is no need to pre-compute these two terms.

Example 5.10 Consider again the model of unstable (5.3)-(5.4), given in Example 4.5 (or
Example 5.8) with the pass length α = 50. The application of Theorem 5.5 provide the following
matrices

Ŷ =


2235.0880 575.9481 −1439.4247 1807.0567
575.9481 7537.5547 −1617.3023 4197.4703
−1439.4247 −1617.3023 2396.1731 −2207.6201
1807.0567 4197.4703 −2207.6201 5138.4367

 ,

Ẑ =


6085.1448 −1221.8324 −201.6942 697.9010
−1221.8324 9451.2316 354.8953 −202.0635
−201.6942 354.8953 8571.7929 −332.5515
697.9010 −202.0635 −332.5515 9048.3441

 ,

X̂ =


2481.4879 0 0 4011.1455

0 10139.1295 4011.1455 0
0 4011.1455 2481.4879 0

4011.1455 0 0 10139.1295

 ,
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N̂ =

 0 0 −1153.3678 −9076.1548
767.5183 6531.1174 0 0

0 0 530.9927 1126.6878



M̂ =

 292.3406 −2264.1748 163.4142 −337.4437
−963.2252 1601.6416 225.3332 −317.5850
−638.6351 −199.1936 276.9223 327.3758

 ,

The state/output controllers computed according to (5.79) and assumption Kx = LxĈ become

Lx =

 4.0135 0.5100 −1.2892 −2.4829
0.8579 1.7867 −2.8881 −0.3394
−0.4982 −0.2348 0.5935 0.3082


and

Kx =

 −1.3621 0.0940 −1.3340 0.9113
1.0151 −0.0563 0.9850 −0.6654
−0.0477 −0.0822 0.0103 −0.0536

, Kz =

 0.0054 −0.2408 0.0275 −0.0421
−0.1247 0.1523 0.0162 −0.0215
−0.1164 −0.0364 0.0328 0.0456

 .

Hence the output PI controllers applicable in (5.82), computed using (5.76) become

K̃11 =

 1727.1714 958.3936
−1221.8575 −678.0020
−321.5754 −178.1257

, K̃12 =

 −1662.4047 −979.1791
1175.8137 692.6759
310.0464 182.4651

,

K̃21 =

 2.2496 0.2697
−1.7322 −0.2185
−0.4408 −0.0783

, K̃22 =

 1688.4483 965.6670
−1194.2895 −683.1710
−314.6651 −179.7127

 .

The disturbances, the boundary conditions and the reference signal have been assumed to be the
same as in Example 5.8. Figure 5.18 shows the response of the resulting closed loop process
under the output control. This confirms that the design objectives have been satisfied.

Channel 1 Channel 2

Figure 5.18. The closed loop process pass profile dynamics for the reference signals [2 2]T
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Channel 1 Channel 2

Figure 5.19. Pass profiles for the reference signal shown in Figure 5.12

Channel 1 Channel 2

Figure 5.20. Pass profiles for the reference signal shown in Figure 5.14

Channel 1 Channel 2

Figure 5.21. Pass profiles for the reference signal shown in Figure 5.16
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To confirm the usefulness of the method, the simulations for the same reference signals as
in Example 5.8 have been made. The respective closed loop process pass profile dynamics are
shown in Figures 5.19, 5.20 and 5.21 respectively. It is easy to see that in this case no visible
differences in the process dynamics when using the state or the output controller.

5.5 Summary

In this chapter the control for performance of LRPs have been considered. There have been
presented four control schemes governing the stability (asymptotic either along the pass) and
requested reference signal yref under assumed control. The application of the output-based
controllers is also possible for the considered control schemes. The additional result is the
rejection of the disturbances. However, the class of disturbances considered here appear to be
narrow (do not change from pass to pass) but only this assumption ensures the ability to totally
reject the disturbances. One practically relevant alternative is to seek to attenuate the effects of
disturbances to a prescribed degree using, for example, H∞, H2, or mixed H2/H∞, techniques.
In which context some significant first results in this direction can be found in [151].
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Analysis and synthesis of nD systems (and Linear Repetitive Processes in particular) is not a
trivial work. Solving those problems requires the application of the special conditions (from the
theoretical standpoint) and has to be supported by using the powerful computational machines
and efficient software packages. The originally existing stability conditions (analysis problem),
based on definitions or the 2D transfer function, have the limited applicability and do not provide
the natural extension to the controller design (synthesis). They also do not deal with additional
aspects e.g. assuring the stability margins. Hence in this dissertation, the LMI conditions for
analysis and synthesis of LRPs are presented and used as a basis for the possible extensions.
It is to note that the solutions to the stated problems are obtained thanks to the application
of the approaches which originally have their sources deep in the Computer Science area. Also,
LRPs alone have strong links to this world, as they can be used to model iterative computational
processes, and their stability represents the iterative process convergence.
In this dissertation two basic types of stability for the LRPs are considered. Those include

asymptotic stability and stability along the pass. Both of those stabilities can cause serious
problems when trying to solve related to them tasks of analysis and/or synthesis. The obsta-
cles which appear include dealing with matrices of the possible huge dimensions (asymptotic
stability) or checking the condition value for the infinite number of combinations of two com-
plex numbers (stability along the pass). The application of LMIs provides the ability to solve
those problems in polynomial to the size of the problem (actually, polynomial to the number of
optimization/decision variables) time.
Regarding stability along the pass, it is to remain that existing analysis/synthesis conditions

have been treated as being the NP-hard, however it is possible to formulate them to the ap-
proximated P problems and the application of the LMI methods allows to solve such problems
efficiently from the numerical standpoint. However, considered resulted LMI conditions are only
the sufficient, instead of original necessary and sufficient ones. Hence this fact (skipping the
necessity of the conditions) can be treated as a ”price”, which is to be paid for the possibility
to solve the considered problem. There have been defined two distinct LMI conditions which
essentially base on the possibility to present the considered model of LRP as RM or FM respec-
tively. Obtained results prove that those conditions work well for considered class of problems
and, what is more, after the appropriate reformulation of the problem, they can be assumed to
approach the necessary and sufficient conditions.
The basic problem, which appears when asymptotic stability is considered, is the dimension-

ality of the problem. This is related to the fact that in such a case the so-called 1D equivalent
model of LRP is investigated. Hence some methods trying to solve that problem have been
presented and tested. First of those is the idea of taking the advantage of the computational
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power, which is governed by the application of the parallel computing techniques. In the dis-
sertation the approach how to reformulate the original LMI problem into, the solvable on the
cluster, SDP problem has been presented. There have been run several tests, which prove the
applicability of the clusters. Note that performed tests show that the computational complexity
for the considered problems can be approximated successfully by the polynomial of the second
degree and the increasing the number of nodes in the cluster causes significant acceleration of
the computations. The advantages of the tested cluster are: providing the way to solve the
highly dimensional problems and the significant acceleration of the computations.
The other developed approaches to handle problems of large (possibly huge) dimensions are

the simplification of the original synthesis task (here called the decoupling of the dynamics) or the
application of the iterative approach (the development of the so-called successive stabilization
algorithm). It should be underlined that the techniques which have their in the Computer
Science, have been successfully employed here to solve the regarded analysis/synthesis problems.
Besides the ”basic” LMI conditions, ensuring those features (for stability investigation and

controller design), several additional aspects regarding the additional dynamical properties of
the considered system have been considered as well. For asymptotic stability that includes 1D
model matching. For stability along the pass, the improvements of the basis conditions include:
computation of 2D stability margins, synthesis to prescribed stability margins and 2D model
matching. There has been developed the controller design scheme basing upon the information
from the pass profile (output) vectors. The topics enlisted above are the theoretical results of
this dissertation. Nevertheless, the numerical examples have been provided for all of the enlisted
topics to highlight them. The series of numerical tests have been performed to test and compare
presented methods.
Developing the appropriate LMI conditions for analysis and synthesis provides the strong

theoretical result, its applicability can be seriously limited in cases when dealing with large-
dimensioned systems. This situation takes a place, when the 2D approaches are used for the
considered LRP with relatively large numbers of states, inputs and outputs or in particular,
when the 1D equivalent model of LRP of the huge dimensionality is considered. In those cases
two possible approaches are feasible to use: first - try to simplify the structure of the considered
problem and then solve it numerically (those are addresses in Sections regarding the decoupling
or successive stabilization); and second - exploit the abilities of the parallel computing, i.e. use
the powerful computational computer cluster with the appropriate solvers installed to solve the
large problems. It is of course purposeful to try to joint the two above ways, i.e. first simplify
the problem and then, solve it on the cluster. As a practical (implementational) results of this
dissertation the methods how to treat, programm and finally solve the LMI conditions using
the parallel computing, is proposed. The presented results prove the applicability of parallel
computing techniques in analysis and synthesis of LRPs.
Note that in context of physical systems (which are modeled as LRPs) checking/assuring

the stability is only the preliminary step. On average a physical system has to do some work
and its result can be treated as obtaining the required output value. This can be seen especially
well when considering the metal rolling process. Its aim is to reduce the thickness of the rolled
bar to required value. Due to that motivation, as a step further to stability/stabilization,
the control schemes for driving the controlled system to the required output value have been
considered. Hence the results regarding the stability of the system are extended. Another topics
considered simultaneously with driving the system to the reference signal is the rejection of
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the external disturbances. In this dissertation four control schemes are presented, i.e. direct,
indirect, feedforward feedback and proportional integral. To present the operation of those
schemes the simulation examples have been provided.
Finally, again it is to emphasize that LRPs and LMI methods have close links to computer

science as belonging to some extent to the algorithmic area. This aspect of the dissertation is
enforced by analytical and numerical tools developed or extended here to simplify the original
complex problem or, at last, to make it possible to solve the problem at all.
According to the practical and theoretical results described above (and in the dissertation)

it can be concluded that the stated thesis has been proved.

Future works

The results presented in this dissertation pass over some aspects which appear in the analysis
and synthesis tasks of LRPs. First, very important are the uncertainty topics related to the fact
that LRPs model the physical systems. Hence the appearance of the model uncertainties is the
natural consequence of the modeling. Those aspects are related close to the robust control and
are still under development. Some preliminary results regarding the uncertain LRPs analysis
can be found e.g. in [48, 152, 153, 20] and it is to note that the author of this dissertation is
also involved into hat work.
Another possible direction of research on LRPs appears in the possible applications area.

As aforementioned, ILC schemes are the iterative procedures and there exist strong theoretical
links, which connect the stability of considered LRPs and the convergence of the modeled ILC
schemes.
Recently, in [154] the problem of the compensator design for self servo-writing in disk drives

has been presented as one, which can be considered and solved as a LRP synthesis problem.
The other possible applications come from the fact that spatially interconnected systems (refer
to [32]) after the appropriate formulations can be modeled as LRPs.
The research work on those topics is still under development and the possible results will be

reported in due course.

136



Appendix A - description of the
selected LMI/SDP solvers

A.1 Matlab - LMI Control Toolbox

Among many applicable scripts and functions it provides the demonstration script called lmidem.
It provides the summary of the main properties due to defining, solving and interpreting the
results of the solved LMIs.
To facilitate defining the variables and constrains, Matlab LMI Control Toolbox pro-

vides the parser script called lmiedit. It allows to define variables together with its dimensions
and its structures and formulate any constraint required in the form similar to the standard
Matlab expressions. As a result of calling lmiedit one gets a block of Matlab code applicable
in the further editing. Hence it can be pasted directly into any Matlab script or the function.
Nevertheless, it is worth to mention that lmiedit has a limitation regarding the defining the
variables. Namely, when it is required to define the variable matrix of a specific structure (e.g.
diagonal or sparse), it should be done ”by hand”.
It is worth mentioning here that during defining LMI with lmiedit, it is necessary to define

only the lower and the diagonal part of the considered LMI. The rest of blocks can be replaced
with (∗). This nice property comes from the symmetry of LMI – since it is symmetric, it is
enough to define only the ”half” of the constraint.

A.1.1 Feasibility problem

Finding any feasible solution x to the LMI system:

F (x) < 0 (5.85)

is called the feasibility problem. Probably, the best example for presenting this problem is the
dynamical system stability investigation. For the continuous 1D system of

ẋ(t) = Ax(t),

the LMI regarding its stability takes the form of

AT P + PA < 0, P = P T > 0.

For the 1D discrete system defined as

xk+1 = Axk, (5.86)
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the LMI regarding the stability states that, the considered system is stable if and only if there
exists P = P T > 0 such that the following LMI holds

AT PA− P < 0. (5.87)

Solving of the feasibility problem presented below for the task of the 1D discrete system (5.86)
stability investigation. Note that the stability condition in term of LMI is provided by (5.87).
The task is now to find out if for a given 1D system matrix A there exists a symmetric matrix
P > 0, satisfying (5.87).
Example 3.2 is a simple feasibility problem. From the control standpoint the feasibility

problem is often used in analysis and synthesis tasks. The following example provides the
solution for the stability investigation for 1D discrete system using the feasibility problem.

Example 5.11 As a example, consider 1D discrete system described by (5.86), where the system
matrix A becomes

A =

[
0.9 0.21

−0.54 −0.03

]
.

The considered system is stable since the eigenvalues of A become 0.7557, 0.1143. Application
of the above specified procedure provide the following tmin = −0.333414 and

P =

[
1.8108 0.4332
0.4332 1.4111

]
.

It means that the feasibility has been proved. What is more, P is symmetric and positive definite
since its eigenvalues become 1.1338, 2.088. The LMI AT PA − P is negative definite since its
eigenvalues become −0.3370, −1.3521.

Remark 5.5 It is possible to specify as many variables and LMI constrains of dimensions that
can differ due to requirements, but it has to be satisfied that the integrity of the conditions
hold. This means that since the multiplication of matrices has a place, all variables has to be of
appropriate dimensions and all blocks in defined LMIs together has to built symmetric constrains.

The process of programming the LMI starts with specifying the matrix variables which are
to be computed by the solver. The following lines show how to ”tell” the solver what kind of
variables are used.

setlmis([]);
P=lmivar(1,[n,1]);

First line of the above code starts the process of specifying the LMI. Second line stands for
that matrix P is symmetric (first input parameter of lmivar is equal 1) and of dimensions n×n

(second input parameter of lmivar is [n 1] - since the matrix is symmetric, i.e. quadratic, only
first entry of the vector matters). Standard options for the structures are available: symmetric
(value 1), rectangular unstructured (2) and other (3). Third option is used to define the matrix
variable of the any required structure e.g. block diagonal with non-zero blocks on the diagonal
only. Although this option is available in lmiedit, matrices of this kind practically must be
defined ”by hand”.
Next step is the specification of the LMI constraint(s). It is done using the lmiterm function.
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lmiterm([1 1 1 P],A’,A);
lmiterm([1 1 1 P],1,-1,);
lmiterm([-2 1 1 P],1,1);
discrete-1D-stability=getlmis;

First input parameter of lmiterm is the 4-entry vector which entries denotes: 1st - the number
(absolute value) of the current LMI being defined and the side (the sign of 1st parameter) of <
which is being defined. So, the construction lmiterm([1 1 1 P],1,1); denotes P < 0 and, on
the other hand, lmiterm([-1 1 1 P],1,1); denotes 0 < P (i.e. P > 0). 2nd and 3rd entries
of that vector denote the location in the LMI, 4th - the matrix variable which is to be computed
and if it is transposed (in such a case − sign is put in the front of the matrix variable). Second
and third parameters of lmiterm become the multipliers that are standing beside the matrix
variable in the defined location. Second denotes the left multiplier and third - right multiplier,
respectively. There can be optional 4th parameter, which is the flag ′s′ and it is used to define
the symmetry of the considered block itself.
First line of the above code denotes AT PA and the second one stand for −P . Note that since

this two lines treads the same location they are combined together as AT PA − P . Third line
of the above code stands for P . So the above code stands for the following stability condition
AT PA− P < 0, P > 0.
Due to the symmetry of defined LMI it is necessary to define only the upper (or lower) and

diagonal part of considered LMI. The rest of blocks can be skipped.
The last line of the above code ends specifying the LMIs. The defined above variable(s) and

LMI constrains now can be accessed by reference to the variable discrete-1D-stability
Next line calls the feasibility problem solver e.g. function feasp. It is straightforward to see

that feasp is called with set of defined LMIs. There are also some optional parameters related
to the accuracy, maximum number of iterations, the stop of the whole procedure condition and
tracing of the execution on the screen, which can be added during calling this function.

[tmin,Pfeasp]=feasp(discrete-1D-stability);

The output values returned after finishing that function are tmin which points out if the solved
problem was feasible (tmin negative) or not (tmin positive). In some cases, there arises the
situation when tmin is positive but very small (rank of 10−6 or similar). This means that
there appeared some apparent problem during the execution and the solver could not certify
the feasibility but, on the other hand, the problem ”seemed to be possible feasible”. This case
can be related to finding such a matrix variables which ensure that set of the eigenvalues of the
considered LMI are not strictly negative but they can be almost zero but still positive.
Second of returned variables (Pfeasp) combines in its structure all of matrix variables which

were sought during the execution of the feasp function. Of course it is reasonable to use it only
in the case when tmin < 0 (feasible case). To extract the original matrix variables which were
sought from that variable it is necessary to call the function dec2mat.

fP=dec2mat(discrete-1D-stability,Pfeasp,P);

After this line variable fP is the sought Lyapunov matrix. Note that here exist two variables
related to the Lyapunov matrix i.e. P and fP . First is used to define the LMI, second is used to
store the computed matrix P . Of course it is proper to replace the above line with the following

P=dec2mat(discrete-1D-stability,Pfeasp,P);
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A.1.2 Minimization of the linear function with LMI constraints

Minimizing a convex objective under LMI constrains is the second kind of defined problems
solvable byMatlab Control Toolbox. It is also a convex problem. This is called linear objective
minimization problem and is defined as follows

min cT x subject to F (x) < 0. (5.88)

To provide a highlight of that problem, consider the following optimization problem ([44])

min trace(X),

subject to AT X + XA + XBBT X + Q < 0,

X > 0,

where A, B and Q = QT are given. For this problem, it can be shown that the minimizer X is
simply the stabilizing solution of the algebraic Riccati equation.
It is clear that this problem (the constraint) is not in the form of LMI. Hence apply the

Schur complement (Lemma 3.1) to obtain the following problem where constraints are given in
LMI form

min trace(X),

subject to

[
AT X + XA + Q XB

BT X −I

]
< 0,

X > 0,

Note that trace(X) is linear function on X and hence the mincx solver can be used to provide
the solution.
To programme that task, using Matlab notation use the following code

setlmis([])
X = lmivar(1,[n 1]) % variable X, full symmetric size nXn
lmiterm([1 1 1 X],1,A,’s’);
lmiterm([1 1 1 0],Q);
lmiterm([1 2 2 0],1);
lmiterm([1 2 1 X],B’,1);
LMIs = getlmis;

Note that specifying of the variables and LMI constrains of the above is done in the same manner
as in the previous case. Now, there arises the problem of defining the cost vector c. The assumed
structure of X can be achieved in two ways, i.e. when the function lmivar has been called -
instead of

X = lmivar(1,[n 1]) % variable X, full symmetric size nXn

call it as

[X,nn,Xstruct] = lmivar(1,[n 1]) % variable X, full symmetric size nXn

and then in variable Xstruct the assumed symmetric structure of X is stored or use function
defcx afterwards. Since the trace of X is to be minimized, it is easy now to define which entries
of X are to be summed in the minimization process. Note that the size of c becomes the
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total number of the decision variables - here n(n+1)
2 and in this case is stored in nn (on general

the total number of variables can be obtained calling decnbr). Hence when considering the
structure of X it is immediate to conclude that the trace of X is the sum of elements numbered
1, 3, 6, . . . , n(n+1)

2 and the entries of c labeled in this manner treat the elements on the diagonal
of X. It is straightforward to see that the cost vector becomes c = [1, 0, 1, 0, 0, 1, 0, 0, 0, 1, . . . , 1]
and can be defined as

i=1:n;
c=zeros(nn,1);
c(i.*(i+1)./2)=1;

Finally, it is necessary to call the mincx function as

[copt,fXopt]=mincx(LMIs,c);

After the execution, the minimal value of the target function i.e. the minimal trace of X is given
in copt. Again, as it had a place in the feasibility problem, matrix X has to be extracted from
Xopt using the dec2mat function as (to distinguish it form the definition of the variable X call
it fX)

fX=dec2mat(LMIs,Xopt,X);

A.1.3 GEVP

Third kind of problem solvable by this toolbox is called generalized eigenvalue minimization
problem (GEVP). It is defined as

min λ subject to


F (x) < λ G(x),

G(x) > 0,

H(x) < 0.

(5.89)

Its name comes from the fact that λ is related to the largest generalized eigenvalue of the pencil(
F (x), G(x)

)
(it is the largest root of the equation det [λG(x)− F (x)] = 0 - see e.g. [155] for

details).
To see the applicability of this kind of problem consider the task of pole placement for 1D

discrete system with LMI. This problem has been formulated as D-stability and considered
in [156, 45, 143].
The task can be considered as providing such a control sequence in the following form

uk = Kxk (5.90)

that the poles of the considered system of (5.86)

xk+1 = Axk + Buk

in the closed loop configuration lay inside the specified region on the complex plane. The
standard stability condition for the discrete system requires D to be the interior of the unit disc.
In this specific case it is required that the closed loop system poles lay inside the ellipse with
the center of (g, 0), vertical radius b and horizontal radius a.
This task can be formulated in term of GEVP as follows. Determine the control law matrix

K applicable in (5.90) that minimizes the vertical radius of the ellipse b > 0 for the given
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horizontal radius a and the center of located in (g, 0) on the complex plane. It can be formalized
as finding matrices: symmetric Y > 0 and N of appropriate dimensions such that the following
generalized eigenvalue problem has a solution

min b,

subject to[
0 (∗)

aY AT + aNT BT − aAY − aBN 0

]
< b

[
2aY (∗)

2gY − Y AT −NT BT −AY −BN 2aY

]
,[

2aY (∗)
2gY − Y AT −NT BT −AY −BN 2aY

]
> 0.

(5.91)

For this case the controller matrix can be computed as

K = NY −1.

The detailed description of this problem can be found in [45].
The process of programming the above problem is done in the same manner as for the

previous cases. The declaration of matrix variables and specifying the LMIs are done with the
following code

setlmis([]);
Y=lmivar(1,[2*n,1]);
N=lmivar(2,[r,2*n]);
lmiterm([-1 1 1 Y],1,1); % X>0
lmiterm([-2 1 1 Y],2*a,1); % this LMI denotes that G(x) >0
lmiterm([-2 2 1 Y],2*g,1); % this LMI denotes that G(x) >0
lmiterm([-2 2 1 Y],-1,A’);
lmiterm([-2 2 1 -N],-1,B’);
lmiterm([-2 2 1 Y],-A,1);
lmiterm([-2 2 1 N],-B,1);
lmiterm([-2 2 2 Y],2*a,1);
lmiterm([-3 1 1 Y],2*a,1); % this LMI denotes b*G(x)>F(x)
lmiterm([-3 2 1 Y],2*g,1);
lmiterm([-3 2 1 Y],-1,A’); % minus means right hand side of this inequality
lmiterm([-3 2 1 -N],-1,B’); % thus b*G(x) (without b)
lmiterm([-3 2 1 Y],-A,1);
lmiterm([-3 2 1 N],-B,1);
lmiterm([-3 2 2 Y],2*a,1);
lmiterm([3 2 1 Y],a,A’);
lmiterm([3 2 1 -N],a,B’);
lmiterm([3 2 1 Y],-a*A,1);
lmiterm([3 2 1 N],-a*B,1);
LMIs=getlmis;

It is to note that there is no explicit multiplication between b and G(x) given, however such a
factor is given in definition of the problem (5.89). This is due to the fact that still we deal with
the LMI solvers and in general the factor (bG(x)) can be treated as a BMI one. Nevertheless,
thanks to the specific construction problems of that form can be solved by LMI solver. To call
the gevp solver use the following construction

142



Appendix A

[b,Opt]=gevp(LMIs,1);

Note that the number 1 given in the above calling deals with the ’BMI-like’ constraints defined
as F (x) < λ G(x). The value of 1 denotes that only one, last constraint in the definition is
’BMI-like’ and hence the solver recognizes it properly. That’s why the order of the constraints
in the above example has been changed it comparison to the definition (5.89) of the problem.
It there would appear two (or, say s) constraints involving b (or in general λ) variable, i.e.
F1(x) < λ G1(x) F2(x) < λ G2(x) ( Fs(x) < λ Gs(x)) then the calling of the gevp should read
as

[b,Opt]=gevp(LMIs,2);

Again, after solving the problem, it is necessary to extract the sought variable matrices

Y=dec2mat(LMIs,Opt,Y);
N=dec2mat(LMIs,Opt,N);

Now, use the formula K = NY −1 to compute the required controller.

A.2 Scilab LMI Optimization Package

Scilab LMI Optimization Package provides two main functions which should be used when
there arises the necessity to solve an LMI.
Function lmitool provides the user-friendly interface which allows to define LMI problems in

the intuitive manner. It has been equipped with very solid help. It is comparable to included in
Matlab LMI Control Toolbox lmiedit. Nevertheless, it suffers the similar disadvantages
as lmiedit, i.e. it is applicable only in cases when the constraints and matrix variables to be
defined are of the simple structure – it does not allow to define more sophisticated structures in
the simple way.
The second important function is lmisolver. Indeed, it is the parser function, which prepares

the input data provided in the LMI form (constraints, data, matrix variables structures) and
finally call the function semidef, which is just the SDP solver (implementing the IPM algorithm
from [125]). Hence it is the interface to semidef. Essentially, the function lmisolver works in
four steps ([121]):

Initial set-up. The sizes and structures of the initial guess are used to set up the
problem and in particular the size of the unknown vector.

Elimination of the equality constraints. Performing the repeated calls to the objective
function, the canonical form of the LMI problem with the possible occurrence of the
equality constraints is generated. This step uses extensively sparse matrices to speed
up the computation and reduce the memory requirements.

Elimination of redundant variables. The equality constraints are eliminated. At this
stage, all solutions of the equality constraints are parameterized. This step involves
using the sparse LU factorization functions. Once, this process is finished, the original
problem is turned into the primal form of SDP given by (3.10).

Optimization. Finally, lmisolver calls the semidef function and optimization process
starts. Itself, it is divided into two stages, i.e. the feasibility stage and optimization
stage.
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Appendix B - codes of the selected
functions

B.1 Matlab

Stability along the pass (discrete) - Theorem 2.3
function [t_min,fP,fQ] = is_stable2D(A,B0,C,D0);

[n1,n2]=size(A);
[m1,m2]=size(D0);

A1=zeros(n1+m1,n2+m2);
A2=zeros(n1+m1,n2+m2);
A1(1:n1,1:n2)=A;
A1(1:n1,n2+1:n2+m2)=B0;
A2(n1+1:n1+m1,1:n1)=C;
A2(n1+1:n1+m1,n2+1:n2+m2)=D0;

setlmis([]);
P=lmivar(1,[n1+m1,1]);
Q=lmivar(1,[n1+m1,1]);

lmiterm([1 1 1 P],A1’,A1); % LMI #1: A1’*P*A1
lmiterm([1 1 1 Q],1,1); % LMI #1: Q
lmiterm([1 1 1 P],1,-1); % LMI #1: -P
lmiterm([1 2 1 P],A2’,A1); % LMI #1: A2’*P*A1
lmiterm([1 2 2 P],A2’,A2); % LMI #1: A2’*P*A2
lmiterm([1 2 2 Q],1,-1); % LMI #1: -Q
lmiterm([2 1 1 P],1,-1); % LMI #2: -P
lmiterm([3 1 1 Q],1,-1); % LMI #3: -Q

is_stable2=getlmis;

[t_min,X_feasp]=feasp(is_stable2);

fP=dec2mat(is_stable2,X_feasp,P);
fQ=dec2mat(is_stable2,X_feasp,Q);

2D controller design (discrete) - Theorem 4.9
function[t_min,K1,K2]=stabilize_2D(A,B,B0,C,D,D0);
% [Z-Y 0 Y*A1’+N’*B1’ ;
% 0 -Z Y*A2’+N’*B2’ ;
% A1*Y+B1*N A2*Y+B2*N -Y] < 0
%0<Y
%0<Z

[n1,n2]=size(A);
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[m1,m2]=size(D0);
[r1,r2]=size(B);

A1=zeros(n1+m1,n2+m2);
A2=zeros(n1+m1,n2+m2);
B1=zeros(n1+m1,r2);
B2=zeros(n1+m1,r2);
A1(1:n1,1:n2)=A;
A1(1:n1,n2+1:n2+m2)=B0;
A2(n1+1:n1+m1,1:n1)=C;
A2(n1+1:n1+m1,n2+1:n2+m2)=D0;
B1(1:n1,1:r2)=B;
B2(n1+1:n1+m1,1:r2)=D;

setlmis([]);
Z=lmivar(1,[n1+m1,1]);
Y=lmivar(1,[n1+m1,1]);
N=lmivar(2,[r2,n1+m1]);

lmiterm([1 1 1 Z],1,1); % LMI #1: Z
lmiterm([1 1 1 Y],1,-1); % LMI #1: -Y
lmiterm([1 2 2 Z],1,-1); % LMI #1: -Z
lmiterm([1 3 1 Y],A1,1); % LMI #1: A1*Y
lmiterm([1 3 1 N],B1,1); % LMI #1: B1*N
lmiterm([1 3 2 Y],A2,1); % LMI #1: A2*Y
lmiterm([1 3 2 N],B2,1); % LMI #1: B2*N
lmiterm([1 3 3 Y],1,-1); % LMI #1: -Y
lmiterm([-2 1 1 Y],1,1); % LMI #2: Y
lmiterm([-3 1 1 Z],1,1); % LMI #3: Z

dis_stabilization=getlmis;

[t_min,X_feasp]=feasp(dis_stabilization, [0 0 0 0 1]);

fY=dec2mat(dis_stabilization,X_feasp,Y) ;
fZ=dec2mat(dis_stabilization,X_feasp,Z);
fN=dec2mat(dis_stabilization,X_feasp,N) ;

Kpom=fN*fY^(-1);
if t_min <0
K1=Kpom(:,1:n1);
K2=Kpom(:,n1+1:n1+m1);
else
disp(’!WARNING! Stabilization uncomplete!’);
K1=zeros(size(B’));
K2=zeros(size(D’));

end

2D controller design (discrete) - Theorem 4.10
function[t_min,K,fN,fP]=stabilize2D2(A,B,B0,C,D,D0);
% [-P A_fal*P+B_fal*N;
% (A_fal*P+B_fal*N)^T -P] < 0
%0<P

[n1,n2]=size(A);
[m1,m2]=size(D0);
[r1,r2]=size(B);

A_fal=[A B0;C D0];
B_fal=zeros(n1+m1,2*r2);
B_fal(1:n1,1:r2)=B;
B_fal(n1+1:n1+m1,r2+1:2*r2)=D;
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setlmis([]);
[P1_pom,n,P11_pom]=lmivar(1,[n1,1]);
[P2_pom,n,P22_pom]=lmivar(1,[m1,1]);
[N1_pom,n,N11_pom]=lmivar(2,[r2,n1]);
[N2_pom,n,N22_pom]=lmivar(2,[r2,m1]);

P_struct=zeros(n1+m1,n1+m1);
P_struct(1:n1,1:n1)=P11_pom;
P_struct(n1+1:m1+n1,n1+1:m1+n1)=P22_pom;
P=lmivar(3,P_struct);
N=lmivar(3,[N11_pom N22_pom; N11_pom N22_pom]);

lmiterm([1 1 1 P],1,-1); % LMI #1: -P
lmiterm([1 2 1 P],1,A_fal’); % LMI #1: P*A_fal’
lmiterm([1 2 1 -N],1,B_fal’); % LMI #1: N’*R’
lmiterm([1 2 2 P],1,-1); % LMI #1: -P
lmiterm([-2 1 1 P],1,1); % LMI #2: P

dis_stabilization=getlmis;

[t_min,X_feasp]=feasp(dis_stabilization,[0 0 0 0 1]);
fN=dec2mat(dis_stabilization,X_feasp,N) ;
fP=dec2mat(dis_stabilization,X_feasp,P);

Kpom=fN*fP^(-1);
if t_min <0
K1=Kpom(1:r,1:n);
K1=Kpom(1:r,n+1:n+m);
else
disp(’!WARNING! Stabilization uncomplete!’);
K1=0;
K2=0;

end

B.2 Scilab

1D discrete system controller design
function [wporzo, X,K]=stabilize_1D(A,B)

Mbound = 1e3;
abstol = 1e-16;
nu = 10;
maxiters = 100;
reltol = 1e-16;
options=[Mbound,abstol,nu,maxiters,reltol];

///////////DEFINE INITIAL GUESS AND PRELIMINARY CALCULATIONS BELOW
[n,r]=size(B);
X_init=zeros(n,n);
N_init=zeros(r,n);

XLIST0=list(X_init, N_init);
errcatch(9999,"continue") ;
[XLIST,OPT]=lmisolver(XLIST0,stabilize_1D,options);

wporzo=1;
if iserror(9999)==1 then
wporzo=-1;

end
[X, N]=XLIST(:);
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K=N*X^-1;

/////////////////EVALUATION FUNCTION////////////////////////////
function [LME,LMI,OBJ]=stabilize_1D_eval(XLIST)

[X,N]=XLIST(:);

/////////////////DEFINE LME, LMI and OBJ BELOW
LME=list(X-X’);
LMI=list(X-eye(), [X, -X*A’-N’*B’; -A*X-B*N, X ]-eye() );
OBJ=[];

Calling and checking the result in Scilab

--> A=rand(3,3)*3;
--> B=rand(3,2);
--> [ok, X,K]=stabilize_1D(A,B);
--> max(abs(spec(A+B*K)))

2D extended output controller design (discrete) - Theorem 4.20

The stabilization function

function [wporzo, Z, Y, X, N]=stab_out_ext(A, B0, C, D0, B, D,opcja)
gstacksize(10000001)

Mbound = 1e3;
abstol = 1e-16;
nu = 10;
maxiters = 100;
reltol = 1e-16;
options=[Mbound,abstol,nu,maxiters,reltol];

///////////DEFINE INITIAL GUESS AND PRELIMINARY CALCULATIONS BELOW
[n,m]=size(B0);
[n,r]=size(B);

X1_init=zeros(n,n);
X2_init=zeros(m,m);
X3_init=zeros(m,m);
X4_init=zeros(m,m);

Y_init=zeros(2*m+2*n,2*m+2*n);
Z_init=zeros(2*m+2*n,2*m+2*n);

N1_init=zeros(r,m);
N2_init=zeros(r,m);
N3_init=zeros(r,m);
N4_init=zeros(r,m);

errcatch(9999,"continue")

XLIST0=list(Z_init, Y_init, X1_init, X2_init, X3_init, X4_init, N1_init, N2_init, N3_init, N4_init)

[XLIST,OPT]=lmisolver(XLIST0,stab_out_ext_eval_full,options);

wporzo=1;
if iserror(9999)==1 then
wporzo=0;

end
[Z, Y, X1, X2, X3, X4, N1, N2, N3, N4]=XLIST(:);

X=zeros(3*m+n,3*m+n);
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X(1:n,1:n)=X1;
X(n+1:m+n,n+1:m+n)=X2;
X(m+n+1:2*m+n,m+n+1:2*m+n)=X3;
X(2*m+n+1:3*m+n,2*m+n+1:3*m+n)=X4;

N=[N1, zeros(r,n), zeros(r,m), zeros(r,m);...
zeros(r,m), zeros(r,n), zeros(r,m), -N3;...
zeros(r,m), zeros(r,n), zeros(r,m), -N4;...
zeros(r,m), zeros(r,n), zeros(r,m), N2];

/////////////////EVALUATION FUNCTION////////////////////////////

function [LME,LMI,OBJ]=stab_out_ext_eval_full(XLIST);
[Z, Y, X1, X2, X3, X4, N1, N2, N3, N4]=XLIST(:);
/////////////////DEFINE LME, LMI and OBJ BELOW

X=zeros(3*m+n,3*m+n);
X(1:n,1:n)=X1;
X(n+1:m+n,n+1:m+n)=X2;
X(m+n+1:2*m+n,m+n+1:2*m+n)=X3;
X(2*m+n+1:3*m+n,2*m+n+1:3*m+n)=X4;

A1=zeros(2*m+2*n,2*m+2*n);
A1(1:n,1:2*m+2*n)=[A, -eye(A), zeros(n,m), B0];
A2=zeros(2*m+2*n,2*m+2*n);
A2(2*n+m+1:2*m+2*n,:)=[C, zeros(m,n), -eye(D0), D0];

Bfal1=[B, zeros(n,r), zeros(n,r), B ; ...
zeros(n,r), B, zeros(n,r), zeros(n,r);...
zeros(m,r), D, zeros(m,r), zeros(m,r);...
zeros(m,r), zeros(m,r), zeros(m,r), zeros(m,r)];

Bfal2=[zeros(n,r), zeros(n,r), zeros(n,r), zeros(n,r) ; ...
zeros(n,r), zeros(n,r), B, zeros(n,r);...
zeros(m,r), zeros(m,r), D, zeros(m,r);...
D, zeros(m,r), zeros(m,r), D];

N=[N1, zeros(r,n), zeros(r,m), zeros(r,m);...
zeros(r,m), zeros(r,n), zeros(r,m), -N3;...
zeros(r,m), zeros(r,n), zeros(r,m), -N4;...
zeros(r,m), zeros(r,n), zeros(r,m), N2];

Cfal=[C, zeros(m,n), zeros(m,m), zeros(m,m);...
zeros(n,n), eye(n,n), zeros(n,m), zeros(n,m);...
zeros(m,n), zeros(m,n), eye(m,m), zeros(m,m);...
zeros(m,n), zeros(m,n), zeros(m,m), eye(m,m)];

LME=list(X-X’, Y-Y’, Z-Z’, X*Cfal-Cfal*Y);
LMI=list(X-eye(), Y-eye(), Z-eye(), [Y-Z, zeros(A1), -Cfal’* N’*Bfal1’ - Y*A1’;...

zeros(A1), Z, -Cfal’* N’*Bfal2’ - Y*A2’;...
-A1*Y - Bfal1*N*Cfal, -A2*Y - Bfal2*N*Cfal, Y]-eye());

OBJ=[]

Computation of the output controllers for model stored in example.mat file

//stabilize_output.sci
//script for the output stabilization
mtlb_load example.mat
getf(’stab_out_ext.sci’);
[n,m]=size(B0);
[n,r]=size(B);
[w, fZ, fY, fX, fN]=stab_out_ext(A, B0, C, D0, B, D);

if w==1,
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L=fN*inv(fX);
L1=L(1:r,1:m);
K1=L1*C;
K2=L(3*r+1:4*r,n+2*m+1:n+3*m);
K3=-L(r+1:2*r,n+2*m+1:n+3*m);
K4=-L(2*r+1:3*r,n+2*m+1:n+3*m);

K1fal=L1*inv((eye(m,m)+D*L1));
K2fal=(eye(r,r)-K1fal*D)*K2 - K1fal*D0;
K3fal=(eye(r,r)-K1fal*D)*K3;
K4fal=(eye(r,r)-K1fal*D)*K4;

end;

calling in Scilab

--> exec(’stabilize_output.sci’)

B.3 SDPA (SDPARA)

Matlab function which prepares the appropriate SDPA (SDPARA) task file

2D controller design (discrete) - Theorem 4.10

function f_parse_stabilize2D2(A,B0,B,C,D0,D)
%function which prepares the data in the form callable by SDPA(RA)
%2D controller design
%
clc
[n,n]=size(A);
[m,r]=size(D);
AA= [A B0; C D0];
BB=[B zeros(n,r); zeros(m,r) D];
nazwa_dat=[’stabilizacja2D_’ num2str(n) ’X’ num2str(r) ’X’ num2str(m) ’_W.dat’]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%total number of decision variables Z Y N
nbr_of_var = n*(n+1)/2 + m*(m+1)/2 + r*(m+n) +1
tic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fid=fopen(nazwa_dat, ’w’);
fprintf(fid,’"Example 2D stabilization: mDIM = ’);
fprintf(fid,’%i ’,nbr_of_var);
fprintf(fid,’,nBLOCK = 2’);
fprintf(fid,’,bLOCKsTRUCT = %i %i"\n’, 2*(m+n), m+n);
fprintf(fid,’%i = mDIM \n’,nbr_of_var);
fprintf(fid,’2 = nBLOCK \n’);
fprintf(fid,’(%i, %i) = bLOCKsTRUCT \n’, 2*(n+m), m+n);
fprintf(fid,’\n’);
%target vector c
for jj=1:nbr_of_var-1
fprintf(fid,’%i ’,0);

end
fprintf(fid,’%i ’,1);
fprintf(fid,’\n\n’);
%vertices of the canonic form of LMI
mac=zeros(2*(n+m));
for j=1:2*(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:2*(n+m)));
fprintf(fid,’\n’);

end
for j=1:(n+m)
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wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:(n+m)));
fprintf(fid,’\n’);
%fprintf(fid,’, \n’);

end
fprintf(fid,’\n’);

setlmis([]);
[Q1,nn1,QQ1]=lmivar(1,[n 1]);
[Q2,nn1,QQ2]=lmivar(1,[m 1]);
QQ=[QQ1 zeros(n,m); zeros(m,n) QQ2];
for i=1:nn1
Qpom=zeros(n+m);
Qpom(QQ==i)=1;
mac=[Qpom -Qpom*AA’; -AA*Qpom Qpom];
for j=1:2*(n+m)
wiersz=mac(j,:);
for jj=1:2*(n+m)
if wiersz(1,jj)==0.0
fprintf(fid,’%i ’,0);

else
fprintf(fid,’%2.2f ’,wiersz(1,jj));

end
end
fprintf(fid,’\n’);

end
mac=[];
mac=Qpom;
for j=1:(n+m)
wiersz=mac(j,:);
for jj=1:(n+m)
if wiersz(1,jj)==0.0
fprintf(fid,’%i ’,0);

else
fprintf(fid,’%2.2f ’,wiersz(1,jj));

end
end
fprintf(fid,’\n’);

end
fprintf(fid,’\n’);

end

[N1,nn2,NN1]=lmivar(2,[r n]);
[N2,nn2,NN2]=lmivar(2,[r m]);
NN=[NN1 NN2; NN1 NN2];
for i=nn1+1:nn2
i
Npom=zeros(2*r,n+m);
Npom(NN==i)=1;
mac=[zeros(n+m) -Npom’*BB’; -BB*Npom zeros(n+m)];
for j=1:2*(n+m)
wiersz=mac(j,:);
for jj=1:2*(n+m)
if wiersz(1,jj)==0.0
fprintf(fid,’%i ’,0);

else
fprintf(fid,’%2.2f ’,wiersz(1,jj));

end
end
fprintf(fid,’\n’);

end
mac=[];
mac=zeros(n+m);
for j=1:(n+m)
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wiersz=mac(j,:);
for jj=1:(n+m)
if wiersz(1,jj)==0.0
fprintf(fid,’%i ’,0);

else
fprintf(fid,’%2.2f ’,wiersz(1,jj));

end
end
fprintf(fid,’\n’);

end
fprintf(fid,’\n’);

end
%last vertex
mac=eye(2*(n+m));
for j=1:2*(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:2*(n+m)));
fprintf(fid,’ \n’);

end
mac=[];
mac=eye(n+m);
for j=1:(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:(n+m)));
fprintf(fid,’ \n’);

end
fprintf(fid,’\n’);
ex1=getlmis;
fclose(fid);
nazwa_mat=[’s2D_’ num2str(n) ’X’ num2str(r) ’X’ num2str(m) ’_W’]
eval([’save ’ nazwa_mat])

2D output controller design (discrete) with the elimination of the equality con-
straints - Theorem 4.18

function f_parse_stabilize2D2(A,B0,B,C,D0,D)

[n,m]=size(B0);
[n,r]=size(B);
nazwa_dat=[’stabilizacja2D_out_bezX_’ num2str(n) ’X’ num2str(r) ’X’ num2str(m) ’.dat’]
A1=[A B0; zeros(m,n+m)];
A2=[zeros(n,n+m); C D0];
B1=[B; zeros(m,r)];
B2=[zeros(n,r); D];
Cfal=[C zeros(m,m); zeros(m,n) eye(m,m)];
[mC,nC]=size(Cfal);
setlmis([]);
[Y,nnY,YY]=lmivar(1,[n+m 1]);
[X,nnX,XX]=lmivar(2,[2*m 2*m]);
[Z,nnZ,ZZ]=lmivar(1,[n+m 1]);
[N,nnN,NN]=lmivar(2,[r 2*m]);

H=zeros(mC*nC,nnN);
for i=1:nnY
YCpom=zeros(n+m);
YCpom(YY==i)=1;
mac=[-Cfal*YCpom];
for j=1:mC*nC
macT=mac’;

if macT(j) ~= 0
H(j,i)=macT(j);

end
end
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end

for i=nnY+1:nnX+nnY
XCpom=zeros(2*m);
XCpom(XX==i)=1;
mac=[XCpom*Cfal];
for j=1:mC*nC
macT=mac’;

if macT(j) ~= 0
H(j,i)=macT(j);

end
end

end
NullSpace=null(H,’r’);
[l_starych,l_nowych]=size(NullSpace);
nbr_of_var=l_nowych+1;
fid=fopen(nazwa_dat, ’w’);
fprintf(fid,’"Example of 2D output stabilization: mDIM = ’);
fprintf(fid,’%i ’,nbr_of_var);
fprintf(fid,’,nBLOCK = 4 "\n’);

fprintf(fid,’%i = mDIM \n’,nbr_of_var);
fprintf(fid,’4 = nBLOCK \n’);
fprintf(fid,’%i %i %i 1 = bLOCKsTRUCT ’, 3*(n+m), m+n, m+n);
fprintf(fid,’\n \n’);
for jj=1:nbr_of_var-1
fprintf(fid,’%i ’,0);

end
fprintf(fid,’%i ’,1);
fprintf(fid,’ \n’);

fprintf(fid,’ \n’);
mac=zeros(3*(n+m));
for j=1:3*(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:3*(n+m)));
fprintf(fid,’\n’);

end
mac=zeros(n+m);
for j=1:(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:n+m));
fprintf(fid,’\n’);

end
mac=zeros(n+m);
for j=1:(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:n+m));
fprintf(fid,’\n’);

end
fprintf(fid,’0 \n \n’);

for i=1:l_nowych
wierzcholek1=zeros(3*(m+n));
wierzcholek2=zeros(m+n);
wierzcholek3=zeros(m+n);
wierzcholek4=zeros(2*m);
for j=1:nnY
Ypom=zeros(n+m);
Ypom(YY==j)=1;
mac1=[Ypom zeros(n+m) -Ypom*A1’;...
zeros(n+m) zeros(n+m) -Ypom*A2’ ;...
-A1*Ypom -A2*Ypom Ypom];

wierzcholek1=wierzcholek1+NullSpace(j,i)*mac1;
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mac2=Ypom;
wierzcholek2=wierzcholek2+NullSpace(j,i)*mac2;

end
for j=nnX+1:nnZ
Zpom=zeros(m+n);
Zpom(ZZ==j)=1;
mac1=[-Zpom zeros(n+m) zeros(n+m) ;...

zeros(n+m) Zpom zeros(n+m);...
zeros(n+m) zeros(n+m) zeros(n+m)];

wierzcholek1=wierzcholek1+NullSpace(j,i)*mac1;
mac3=Zpom;
wierzcholek3=wierzcholek3+NullSpace(j,i)*mac3;

end
for j=nnZ+1:nnN
Npom=zeros(r,2*m);
Npom(NN==j)=1;
mac1=[zeros(n+m) zeros(n+m) -Cfal’*Npom’*B1’;...
zeros(n+m) zeros(n+m) -Cfal’*Npom’*B2’;...
-B1*Npom*Cfal -B2*Npom*Cfal zeros(n+m)];

wierzcholek1=wierzcholek1+NullSpace(j,i)*mac1;
end

for j=1:3*(n+m)
wiersz=wierzcholek1(j,:);
fprintf(fid,’%i ’,wiersz(1,1:3*(n+m)));
fprintf(fid,’\n’);

end
for j=1:(n+m)

wiersz=wierzcholek2(j,:);
fprintf(fid,’%i ’,wiersz(1,1:n+m));
fprintf(fid,’\n’);

end
for j=1:(n+m)

wiersz=wierzcholek3(j,:);
fprintf(fid,’%i ’,wiersz(1,1:n+m));
fprintf(fid,’\n’);

end
fprintf(fid,’0 \n \n’);

end

mac=-eye(3*(n+m));
for j=1:3*(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:3*(n+m)));
fprintf(fid,’\n’);

end
mac=-eye(n+m);
for jjj=1:2
for j=1:(n+m)

wiersz=mac(j,:);
fprintf(fid,’%i ’,wiersz(1,1:(n+m)));
fprintf(fid,’\n’);

end
end
fprintf(fid,’1 \n \n’);
fclose(fid);
ex1=getlmis;
toc

nazwa_mat=[’stabilizacja2D_out_bezX’ num2str(n) ’X’ num2str(r) ’X’ num2str(m)]
eval([’save ’ nazwa_mat])
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Streszczenie
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Przez wiele ostatnich lat zostało zdefiniowanych wiele problemów, które, pomimo tego, że
istniały warunki teoretyczne umożliwiające ich rozwiązanie, z praktycznej strony były nierozwią-
zywalne. Obecnie, pewna część tych problemów może być rozwiązywana dzięki możliwościom,
jakie dało opracowanie efektywnych algorytmów numerycznych oraz dostarczenie ogromnej mocy
obliczeniowej, jaką zapewniają nowoczesne komputery (wliczając do tej grupy klastry kompute-
rowe). Problemy analizy i syntezy skomplikowanych wielowymiarowych układów dynamicznych
zaliczają się do wspomnianej podklasy problemów praktycznie nierozwiązywalnych. Pomimo
tego, że istnieją wyniki teoretyczne, ze względu na brak efektywnych metod, wyniki te pozosta-
wały w sferze teorii. Problemy rozważane w niniejszej dysertacji odnoszą się do komputerowo
wspomaganego rozwiązywania zadań analizy i syntezy specjalnej podklasy układów wielowymia-
rowych, tj. Liniowych Procesów Powtarzalnych. W rozprawie przedstawiono wyniki odnoszące
się do tego w jaki sposób metody mające źródła w dziedzinie Informatyki można zastosować
w celu rozwiązania postawionych zadań. Do takich metod zalicza się wyniki przedstawione
w rozprawie, tj. opracowanie podejścia iteracyjnego przy rozwiązywaniu zadań syntezy oraz
opracowanie metodologii umożliwiającej wykorzystanie bardzo efektywnych numerycznie algo-
rytmów optymalizacji wypukłej do rozwiązywania postawionych problemów.
Układy wielowymiarowe (nD) stanowią uogólnioną formę klasycznych układów 1D. W ciągu

ostatnich lat są obiektem zainteresowania badaczy zarówno z teoretycznego, jak i praktycznego
punktu widzenia (np. [1, 2, 3, 4, 5, 6, 7]). Mogą one znajdować zastosowanie wszędzie tam,
gdzie klasyczne podejście bazujące na modelu jednowymiarowym nie daje satysfakcjonujących
rezultatów.
Ogólnie, układy nD w porównaniu z 1D charakteryzują się tym, że w opisie systemu wystę-

puje więcej niż jedna zmienna niezależna. W klasycznych układach 1D, zmienna niezależna na
ogół ma charakter czasowy. W układach 2D (lub ogólnie nD) możemy mówić o czasie w po-
staci wektora 2 (n)-elementowego, bądź jedna ze zmiennych ma charakter czasowy, a pozostałe
charakter przestrzenny. Najczęściej rozpatrywanymi układami 2D są systemy opisane dwuwy-
miarowym modelem Roessera (RM) [21] lub modelem Fornasiniego-Marchesiniego (FM) [22];
niemniej jednak zostały również zdefiniowane inne modele układów 2D (nD), pochodnych od
dwóch wymienionych powyżej.
Układy wielowymiarowe nie są jedynie modelami teoretycznymi. Znajdują one zastosowanie

przy modelowaniu procesów z dziedzin: Automatyki, Informatyki, Telekomunikacji, Akustyki,
Elektrotechniki, Elektroniki i innych dziedzin techniki. Jako kilka szczegółowych aplikacji można
przytoczyć: wielowymiarowe filtrowanie [8, 9], kodowanie/dekodowanie sygnałów z wykorzysta-
niem technik nD [10], przetwarzanie obrazów [11, 12], wielowymiarowe przetwarzanie sygnałów
[13, 14, 15, 16] i wiele innych.
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W niniejszej dysertacji rozpatrywana jest szczególna podklasa układów 2D. Układy te są
nazywane Liniowymi Procesami Powtarzalnymi (ang. Linear Repetitive Processes - LRP) [17,
18, 19, 20] i różnią się one tym od podstawowych układów 2D (RM lub FM), że jedna ze
zmiennych niezależnych odnosząca się do dynamiki jest ograniczona.
Procesy powtarzalne opisują ciąg wykonań pewnej czynności. Stąd, wspomniana zmienna

ograniczona stanowi znacznik czasu bądź pozycji w trakcie bieżącego wykonania systemu. Zmien-
na ta może mieć charakter dyskretny (mówimy wtedy o dyskretnych LRP) lub ciągły (róż-
niczkowe LRP). Druga ze zmiennych niezależnych pojawiających się w modelu stanowym LRP
oznacza numer bieżącego wykonania „całej” czynności, iteracji, bądź, jak to jest określane w kon-
tekście procesów powtarzalnych, pasa. Naturalne jest, że zmienna ta przyjmuje zawsze wartości
dyskretne. Zatem, aby uściślić, kiedy rozważamy procesy powtarzalne, mówimy o dynamice
wzdłuż pasa (zmienna ograniczona, ciągła lub dyskretna) i dynamice z pasa na pas (dyskretna
zmienna nieograniczona).
Procesy fizyczne, które mogą być z powodzeniem modelowane jako LRP zawiera poniższa

lista: walcowanie metalu [23, 17, 24, 25], wydobywanie węgla [17, 20], iteracyjne sterowanie
z uczeniem (ILC) [26, 27, 28, 29], rozwiązywanie problemów występujących przy rozwiązywa-
niu zadania optymalnego sterowania obiektami nieliniowymi [30, 31], przestrzennie połączone
podsystemy [32] i inne. Lista i opis wybranych aplikacji fizycznych znajduje się w Rozdziale 2
niniejszej rozprawy.
Należy tu zauważyć, że własności rozważanej klasy układów dynamicznych, tj. Liniowych

Procesów Powtarzalnych mają ścisłe powiązania z własnościami algorytmów iteracyjnych. Jedną
ze wspomnianych praktycznych aplikacji, które z powodzeniem mogą być modelowane jako LRP,
są zadania dotyczące iteracyjnego sterowania z uczeniem. Zatem zapewnienie stabilności procesu
powtarzalnego, odnosi się do zapewnienia zbieżności procesu iteracyjnego, który jest modelo-
wany jako LRP. Co więcej, przedstawione w pracy schematy syntezy, zapewniające dodatkowe,
oprócz stabilności, własności układu w zamkniętej pętli sprzężenia zwrotnego (takie jak margi-
nesy stabilności lub osiągnięcie żądanej postaci modelu), w odniesieniu do zadań iteracyjnego
sterowania z uczeniem (ang. Iterative Learning Control - ILC ), odnoszą się do „polepszenia”
zachowania procedury iteracyjnej (np. szybszej minimalizacji błędu śledzenia, braku oscylacji
błędu itp.). Stąd można stwierdzić, że istnieją silne związki pomiędzy własnościami systemu
dynamicznego (teoria systemów), a własnościami iteracyjnej procedury obliczeniowej (informa-
tyka).

Modele stanowe Liniowych Procesów Powtarzalnych

W trakcie ostatnich lat, w zależności od potrzeb, zostało zdefiniowanych wiele modeli proce-
sów powtarzalnych w literaturze. W niniejszej dysertacji rozpatrywane są następujące modele
Liniowych Procesów Powtarzalnych

• dyskretny model ”podstawowy”w postaci (2.9)-(2.10) z warunkami brzegowymi
(początkowymi) w postaci (2.11)

• różniczkowy model ”podstawowy”w postaci (2.14)-(2.15) z warunkami brzegowymi
(początkowymi) w postaci (2.16)
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• dyskretny model ”uogólniony”w postaci (2.19)-(2.20) z warunkami brzegowymi
(początkowymi) w postaci (2.11)

Do pozostałych modeli LRP zdefiniowanych w literaturze należą: modele osobliwych wzdłuż pasa
procesów powtarzalnych (dyskretne [57] lub różniczkowe [58]), dyskretny model rozszerzony [55]
oraz dyskretny model falowy [56].
Przy badaniu własności procesów powtarzalnych często korzysta się z tzw. równoważnego

modelu 1D, opisanego równaniami (2.24)-(2.25), z macierzami określonymi przez (2.26) – dla
modelu ”podstawowego”(2.9)-(2.10) oraz przez (2.27) – dla modelu ”uogólnionego”(2.19)-(2.20).
Należy tu zauważyć, że postać ta jest możliwa do otrzymania tylko dla dyskretnych LRP. Przed-
stawienie LRP w postaci modelu 1D jest możliwe dzięki temu, że zmienna odnosząca się do
dynamiki wzdłuż pasa jest ograniczona. Tworzy się go poprzez zastosowanie operacji przesu-
nięcia zmiennych, pogrupowania wszystkich wektorów stanu, wyjścia i wejścia funkcjonujących
na danym pasie w tzw. superwektory, a następnie określeniu równań 2D rozważanego LRP dla
wszystkich możliwych pkt. na pasie i zebraniu ich do razem tak, aby możliwe było zapisanie ich
wszystkich z wykorzystaniem otrzymanych wcześniej superwektorów. W związku z tym, równo-
ważny model 1D opisuje tylko dynamikę w kierunku z pasa na pas (po k), a dynamika wzdłuż
pasa (po p) jest niejako „ukryta” „wewnątrz” macierzy modelu. Ze względu na to, że równo-
ważny model 1D traktuje całe pasy wykonania danej czynności jako pojedyncze wektory, jego
rozmiary (rozmiary macierzy) są ściśle związane z długością pasa i zazwyczaj przyjmują bardzo
duże wartości. Operacje przekształcania macierzy o potencjalnie ogromnych rozmiarach mogą
powodować trudności z numerycznego pkt. widzenia. Ze względu na to, że równoważny model
1D jest modelem jednowymiarowym, większość metod analizy/syntezy opracowanych dla tej
klasy systemów dynamicznych, może być stosowana dla równoważnego modelu 1D. Niemniej
jednak, należy pamiętać, że ze względu na uproszczenie jakie wprowadza zastosowanie modelu
1D (brak uwzględnienia dynamiki wzdłuż pasa), model ten nadaje się do badania własności
procesów powtarzalnych jedynie w ograniczonym zakresie.
Jak przedstawiono, ze względu na ułatwienia jakie można uzyskać przy rozwiązywaniu zadań

analizy i syntezy dyskretnych (przy rozważanej własności stabilności asymptotycznej) procesów
powtarzalnych, stosowany jest równoważny model 1D procesu powtarzalnego w postaci (2.24)-
(2.25) z odpowiednio zdefiniowanymi macierzami modelu.

Istniejące warunki analizy i syntezy LRP i ograniczenia przy ich

stosowaniu

Podstawową własnością systemów dynamicznych jest stabilność. Dla całej klasy procesów po-
wtarzalnych można zdefiniować kilka jej rodzajów, z których najczęściej rozpatrywanymi są:
stabilność asymptotyczna (Definicja 2.1) oraz stabilność wzdłuż pasa (Definicja 2.2) przedsta-
wione w Podrozdziale 2.4 [17, 18].
Zapewnienie stabilności asymptotycznej dla procesu powtarzalnego gwarantuje, że po przej-

ściu odpowiednio dużej liczy pasów, profil pasa będzie zbliżony do pewnego profilu granicznego,
czyli proces nie będzie rozbieżny w kierunku z pasa na pas. Własność ta jednak nie gwarantuje,
że uzyskany profil graniczny będzie stabilny w sensie klasycznego układu 1D. Stabilność profilu
granicznego jest zagwarantowana przez „mocniejszą” własność, tj. stabilność wzdłuż pasa.

156



Streszczenie

Warunek służący do sprawdzania stabilności asymptotycznej dla LRP w postaci (2.9)-(2.10)
i (2.14)-(2.15) przedstawiono w Twierdzeniu 2.1. Niestety tego warunku nie da się zastosować
dla uogólnionych procesów powtarzalnych (2.19)-(2.20). W celu sprawdzenia stabilności dla tej
podklasy procesów powtarzalnych wykorzystuje się równoważny model 1D i warunek określający
stabilność asymptotyczną przedstawia Twierdzenie 2.2. Warunki te bazują na sprawdzeniu czy
wartość promienia spektralnego macierzy systemowej rozpatrywanego modelu jest mniejsza od
1. W tym miejscu pojawia się potencjalna trudność, tj. kiedy rozpatrywany jest równoważny
model 1D, to rozwiązanie problemu wymaga dokonywania obliczeń na macierzach o ogromnych
rozmiarach, co może być powodem błędów numerycznych, a nawet uniemożliwić wykonanie za-
dania analizy/syntezy. Należy tu nadmienić, że wymienione warunki są warunkami koniecznymi
i wystarczającymi.
Jak wspomniano, stabilność wzdłuż pasa jest własnością „mocniejszą” od stabilności asymp-

totycznej. Zapewnienie jej gwarantuje, że profil pasa granicznego traktowanego jako układ 1D,
jest stabilny. Można również zauważyć, że stabilność asymptotyczna jest jedną z własności ko-
niecznych, wymaganych do zapewnienia stabilności wzdłuż pasa. Warunki określające stabilność
wzdłuż pasa dla procesów (2.9)-(2.10) i (2.14)-(2.15) przedstawiono odpowiednio w Twierdze-
niach 2.4 i 2.5. Dla procesów uogólnionych ta własność nie była rozważana.
Należy tu zaznaczyć, że stabilność wzdłuż pasa jest odpowiednikiem stabilności asymptotycz-

nej ogólnego układu 2D, zapisanego w postaci modelu Roessera lub Fornasiniego-Marchesiniego.
Istnieje kilka warunków służących do sprawdzania stabilności wzdłuż pasa procesów powtarzal-
nych. Można tego dokonać korzystając z warunków bazujących na badaniu wielomianu charak-
terystycznego rozważanego systemu (Twierdzenia 2.3, 2.4 i 2.5). Wspomniane warunki analizy
są warunkami koniecznymi i wystarczającymi. Jednak w każdym z przypadków, praktyczne
zastosowanie tych testów jest bardzo utrudnione, nawet dla problemów o niezbyt dużych wy-
miarach, a w przypadkach „nieakademickich”, w większości przypadków niemożliwe. W pracy
[41] pokazano, że analiza i synteza układów 2D z wykorzystaniem warunków bazujących na funk-
cji transmitancji lub wielomianie charakterystycznym z algorytmicznego punktu widzenia mogą
być traktowane jako zadania należące do klasy problemów NP-trudnych. Wynika to z faktu, że
wymienione warunki wymagają sprawdzenia wartości numerycznej, jaką przyjmuje stosowany
warunek dla nieskończenie dużego zbioru możliwości. Uściślając, zgodnie z najprostszym nu-
merycznie istniejącym testem tego typu, opartym na Twierdzeniu 2.3, dla zbadania stabilności
wzdłuż pasa, niezbędne jest zbadanie stabilności (w sensie Schura) pewnej macierzy zespolo-
nej G(z), dla każdej zespolonej liczby z ∈ C, leżącej na okręgu jednostkowym. W związku z
tym, konieczne jest wykonanie nieskończenie wielu testów stabilności 1D, co jest zadaniem nie-
wykonalnym, niezależnie od wymiaru problemu. Oczywiście, możliwe jest „zdyskretyzowanie”
problemu, próbkując koło jednostkowe z pewną rozdzielczością. Podejście takie daje w efekcie
skończoną liczbę testów, ale „cenę”, jaką trzeba „zapłacić” jest to, że uzyskany test jest tylko
konieczny, a więc w zasadzie nie ma pewności czy pomiędzy rozważanymi punktami na okręgu
jednostkowym nie ma punktu, dla którego test nie jest spełniony. Rzecz jasna, że wykonanie
większej liczby testów („gęstsze” próbkowanie okręgu), daje większą pewność uzyskania prawi-
dłowego wyniku. Syntuacja jeszcze bardziej się komplikuje przy zagadnieniach syntezy.
Podsumowując, zarówno przy rozważaniu stabilności asymptotycznej, jak i stabilności wzdłuż

pasa, są dostępne warunki konieczne i wystarczające, mogące służyć do sprawdzania tych wła-
sności jednak, ich stosowalność jest ograniczona, z powodu:
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• dla stabilności asymptotycznej - ogromnych rozmiarów rozwiązywanych zadań,

• dla stabilności wzdłuż pasa - faktu, że w taki sposób sformułowane zadanie należy do klasy
problemów NP-trudnych.

Teza pracy

W związku z opisanymi problemami, występującymi przy rozwiązywaniu zadań analizy/syntezy
Liniowych Procesów Powtarzalnych, postawiono następującą tezę:

Możliwe jest opracowanie efektywnych numerycznie metod analizy i syntezy
złożonych procesów powtarzalnych (o wielkich wymiarach) przy zastoso-
waniu nowoczesnych pakietów numerycznych LMI, wzmocnionych użyciem
technik obliczeń równoległych.

Celem niniejszej rozprawy jest udowodnienie powyższej tezy.

Zastosowanie Liniowych Nierówności Macierzowych przy zada-

niach analizy i syntezy układów dynamicznych

Jako alternatywa dla istniejących warunków przedstawionych w poprzednim podrozdziale, poja-
wiła się możliwość zastosowania Liniowych Nierówności Macierzowych (zobacz np. [42, 44]) do
rozwiązywania problemów analizy i syntezy procesów powtarzalnych. W Rozdziale 3 zawarto
opis wszystkich aspektów związanych z LMI i zastosowaniem ich rozwiązywaniu zadań ana-
lizy/syntezy procesów dynamicznych. Wiadomości podstawowe jak stosować LMI przy badaniu
klasycznych układów 1D, zostały zawarte w następujących publikacjach [42, 43, 44, 45, 80, 81].
Większość rozważanych zadań analizy i syntezy układów dynamicznych nie jest zdefiniowane

w postaci Liniowych Nierówności Macierzowych. Niemniej jednak korzystając z przekształceń
pochodzących z dziedziny algebry liniowej i teorii nierówności, zadania te można przekształ-
cić do postaci LMI. Kluczowym przekształceniem stosowanym przy przeformułowaniu zadań
do poprawnej postaci LMI, przedstawionym w niniejszej rozprawie (Podrozdział 3.3) jest tzw.
uzupełnienie Schura [42, 87, 88]. Innymi wykorzystywanymi przekształceniami nierówności są
m. in. zamiana zmiennych lub operacja kongruencji.
Dodatkowo, w rozdziale 3 przedstawiono możliwość wykorzystania pakietów programowych

(ang. solver) do rozwiązywania zadań programowania Pół-Określonego (ang. SemiDefinite
Programming - SDP) [101]. Przedstawienie warunków LMI w postaci SDP umożliwia wykorzy-
stanie dowolnego z wielu dostępnych solverów SDP, wliczając w to pakiet obliczeń równoległych
Sdpara [98, 97], co znacząco rozszerza możliwości obliczeniowe. Należy zauważyć, że w przy-
padku, kiedy rozwiązanie postawionego zadania analizy/syntezy w postaci LMI wymaga zastoso-
wania pakietu numerycznego, służącego pierwotnie do rozwiązywania zadań SDP, konieczne jest
przeformułowanie postawionego zadania LMI do rozwiązywalnej formy SDP. A zatem pierwotny
warunek w postaci LMI, polegający na sprawdzeniu istnienia rozwiązania (ang. feasibility),
jest formułowany jako zadanie optymalizacji wypukłej i tak rozwiązywany. W Podrozdziale 3.5
przedstawiono procedurę, jaką należy przeprowadzić w celu przedstawienia warunku LMI w po-
staci ogólnej SDP.
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Podstawową zaletą zastosowania metod LMI przy komputerowo wspomaganym rozwiązywa-
niu zadań analizy i syntezy jest wysoka efektywność numeryczna tych algorytmów. Warunki
w postaci LMI charakteryzują się tym, że rozwiązanie zadanego problemu jest otrzymywane
w czasie wielomianowym w stosunku do rozmiaru rozważanego problemu. Tak wysoka efek-
tywność jest uzyskiwana dzięki zastosowaniu algorytmów punktu wewnętrznego (ang. Interior
Point Method - IPM) [100]. O ile idea algorytmu IPM bazuje na algorytmie nieliniowej opty-
malizacji Newtona, to w literaturze (zob. np. [99, 100, 115, 98, 97, 85]) można znaleźć wiele
wersji tej metody. Algorytmy IPM charakteryzują się tym, że podczas poszukiwania rozwiązania
możliwe wykonanie części operacji równolegle, dzięki czemu znacząco wzrasta prędkość obliczeń.
Ma to szczególne znaczenie w sytuacjach kiedy rozwiązywane zadania są wielkich rozmiarów.
W pracy (Podrozdział 3.7) szczegółowo opisano algorytm zaimplementowany w pakiecie Sdpa
[98, 97]. Jak wspomniano, możliwe jest źrównoleglenie”tego algorytmu. Obliczenie przybliżenia
odwrotności macierzy Hesjanu, która jest wykorzystywana przy określaniu kolejnego przybli-
żenia poszukiwanego rozwiązania jest operacją, która może być z powodzeniem wykonywana
równolegle. Uściślając, kolejne wiersze tej macierzy mogą być obliczane na różnych procesorach.
Szczegóły tego procesu można znaleźć w Podrozdziale 3.8.
Rozdział 3 zawiera listę dostępnych pakietów służących do rozwiązywania LMI/SDP oraz

opisy wybranych pakietów tj. Matlab LMI Control Toolbox [44], Scilab LMI Optimi-
zation Package [121], Sdpara.

Analiza i synteza LRP z zastosowaniem LMI

Rozdział 4 zawiera warunki w postaci LMI, umożliwiające badanie (analiza) obu rodzajów sta-
bilności i stabilizację (synteza) rozważanych modeli LRP. Oprócz podstawowych warunków od-
noszących się do analizy/syntezy, rozważany był szereg dodatkowych aspektów. Dotyczą one:
obliczania marginesów stabilności - Podrozdział 4.5, „dopasowania modelu” (zarówno w wersji
dla równoważnego modelu 1D - Podrozdział 4.10.1, jak i 2D - Podrozdział 4.10.2), „odseparo-
wanie” dynamiki - Podrozdział 4.7, zaproponowania algorytmu sukcesywnej stabilizacji - Pod-
rozdział 4.8 oraz zaproponowania warunków stabilizacji rozważanego systemu wykorzystując
jedynie informacje dostępne w wyjściu systemu (bez informacji z wektorów stanu) - Podroz-
dział 4.9.
Podstawowym powodem motywującym zastosowanie metod LMI przy rozwiązywaniu zadań

analizy i syntezy jest to, że wykorzystują one bardzo efektywny numerycznie algorytm, umożli-
wiający znajdowanie rozwiązania. A zatem, dzięki LMI możliwe jest określenie warunków, które
dają się efektywnie rozwiązywać. Jak wiadomo, algorytm IPM zaimplementowany w solverach
LMI, należy do klasy P. Przy badaniu stabilności asymptotycznej umożliwia to relatywnie
szybko otrzymać wynik. W przypadku stabilności wzdłuż pasa, dzięki zastosowaniu LMI, moż-
liwe jest przekształcenie zadań z klasy NP-trudnych, do rozwiązywalnych zadań z klasy P (przy
jednoczesnej redukcji z warunków koniecznych i wystarczających, na warunki wystarczające).
Wyniki zaprezentowane w Rozdziale 4 są w większości oryginalnymi osiągnięciami autora

i zostały (bądź wkrótce zostaną) opublikowane na forum krajowym i międzynarodowym.
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Stabilność asymptotyczna

Jak wspomniano, zapewnienie stabilności asymptotycznej gwarantuje istnienie tzw. pasa gra-
nicznego, tj. przebiegu wyjściowego, który przy kolejnych pasach ma taki sam kształt. W przy-
padku modeli „podstawowych” LRP (dyskretnego (2.9)-(2.10) i różniczkowego (2.14)-(2.15))
z najprostszymi warunkami brzegowymi, analiza jest stosunkowo prosta i nie generalnie nie
przysparza problemów numerycznych. Bazuje ona na badaniu spektrum macierzy D0. Zatem,
stosowanie metod LMI nie jest w tym przypadku analizy uzasadnione. Niemniej jednak, kiedy
rozważana jest synteza tych procesów, okazuje się, że metody LMI dostarczają naturalnego
sposobu w jaki, od analizy (badanie stabilności) przejść do zadania syntezy (stabilizacji).
Sytuacja diametralnie zmienia się kiedy pod badane są uogólnione dyskretne modele LRP

w postaci (2.19)-(2.20). Dla tej klasy układów własność stabilności asymptotycznej określono
wykorzystując postać równoważnego modelu 1D w postaci (2.24)-(2.25). Dla tej podklasy ukła-
dów istnieje również test spektralny, ale polega on na obliczeniu wartości promienia spektralnego
macierzy systemowej, występującej w równoważnym modelu 1D (Twierdzenie 2.2). Zauważyć
tu należy, że tak zdefiniowane zadanie analizy, ponownie można traktować jako trudne do prze-
kształcenia do zadania syntezy. Ponadto, zarówno w przypadku analizy, jak i syntezy, poja-
wiają się problemy związane z dużymi rozmiarami macierzy, które są przetwarzane. Dlatego
też, w tym przypadku metody LMI umożliwiają uzyskanie rozwiązania w czasie wielomianowym
do rozmiaru zadania, a dodatkowo dostarczają prostego sposobu przejścia od analizy do syntezy
(wyznaczenia parametrów pętli sprzężenia zwrotnego – stabilizacji układu niestabilnego).
W Podrozdziale 4.1 przedstawiono warunki w postaci LMI służące do badania stabilności

asymptotycznej. Twierdzenie 4.1 odnosi się do analizy „podstawowych” LRP, a Twierdzenie 4.2
– do analizy uogólnionych dyskretnych LRP (z wykorzystaniem równoważnego modelu 1D).
Podrozdział 4.2 zawiera warunki mogące służyć do rozwiązywania zadań syntezy (Twierdze-

nia 4.3 i 4.4).
Należy tutaj podkreślić, że zadania analizy/syntezy LRP z wykorzystaniem równoważnego

modelu 1D, wymagają przetwarzania macierzy o potencjalnie ogromnych rozmiarach. Tak duże
rozmiary wynikają z faktu, iż stosowany równoważny model 1D jest modelem dużego (ogrom-
nego) rzędu, a operacje z wykorzystaniem jego macierzy mogą się wiązać z ryzykiem powstawa-
nia błędów numerycznych. Dodatkową przeszkodą przy stosowania warunków wykorzystujących
równoważny model 1D jest to, że przechowywanie i obliczenia przeprowadzane na tak ogromnych
macierzach mogą być wykonywane bardzo powoli, bądź pojedynczy komputer może nie posiadać
wystarczająco dużo zasobów (pamięci operacyjnej, mocy obliczeniowej) do wykonania obliczeń.
Przeszkody te mogą być ominięte na kilka sposobów. Jednym z nich jest wyeksploatowanie
mocy obliczeniowej jaką dostarczają klastry. Innymi są: wykorzystanie możliwości uproszczenia
zadania syntezy poprzez uproszczenie spektrum macierzy systemowej równoważnego modelu 1D
lub zastosowanie procedury iteracyjnej do rozwiązania zadania syntezy.

Zastosowanie klastrów przy analizie i syntezie LRP

Dzięki zastosowaniu klastrów możliwe jest podjęcie prób rozwiązania zadań, które charakte-
ryzują się wielkimi wymiarami. Wykorzystanie dużej mocy obliczeniowej dostarczonej przez
klastry, wydaje się więc naturalnym sposobem na usprawnienie procesu obliczeniowego.
W celu rozwiązania zadania syntezy LRP przy wykorzystaniu klastrów obliczeniowych, ko-
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nieczne jest przekształcenie zadania w postaci LMI do odpowiedniego zadania w postaci SDP.
Wynika to z faktu, że nie ma dostępnych pakietów oprogramowania służących do rozwiązywania
zadań w postaci LMI. Dopiero takie zadanie może być rozwiązywane z wykorzystaniem pakietów
oprogramowania dostępnych dla klastrów. W celu przeformułowania zadania z LMI do SDP za-
implementowano odpowiednie funkcje pracujące w środowiskuMatlab (wybrane z nich zostały
przedstawione w Załączniku B.3). Wyniki numeryczne odnoszące się do wykorzystania klastrów,
przedstawione w poniższej pracy, uzyskane zostały dzięki zastosowaniu pakietu Sdpara [98, 97].
W przykładzie 4.2 rozważano rozwiązywanie zadań syntezy wielkowymiarowych procesów

powtarzalnych z wykorzystaniem klastrów. Pokazano, że wykorzystanie technik obliczeń równo-
ległych znacząco przyspiesza uzyskanie rozwiązania, a także umożliwia syntezę procesów o du-
żych rozmiarach. W tabeli 4.1 przedstawiono czasy potrzebne do rozwiązania procesu syntezy
przy wykorzystaniu różnych liczb węzłów w klastrze. Na komentarz zasługuje wynik, jaki został
otrzymany dla największego z rozważanych procesów (liczba zmiennych stanu n = 5, liczba
wyjść m = 3, liczba wejść r = 1, liczba pkt. na pasie α = 40), którego macierze równoważnego
modelu 1D: systemowa Φ i wejścia ∆ miały rozmiary, odpowiednio 120×120 i 120×40. Poprzez
tak określone zadanie, rozwiązanie było poszukiwane w przestrzeni R12060 i zostało wyznaczone
w czasie ok. 25 minut.
Dodatkowymi aspektem badanym przy tej okazji, było oszacowanie jaką złożonością oblicze-

niową charakteryzuje się stosowany algorytm IPM. Wiadomo, że zastosowanie metod LMI/SDP
dostarcza rozwiązania w czasie wielomianowym w stosunku do rozmiaru rozpatrywanego pro-
blemu. Dla wykonanych przykładów (rozmiary zadań od 126 do 12060 zmiennych) okazało się,
że złożoność obliczeniową najlepiej przybliża funkcja kwadratowa (Rysunek 4.1).
Ciekawym aspektem związanym z zastosowaniem klastrów jest przyspieszenie obliczeń w sto-

sunku do liczby węzłów używanych w klastrze. Uzyskane wyniki pokazują, że dla największego
z rozważanych zadań tj. dla 12060 zmiennych, zastosowanie 16 węzłów w klastrze spowodo-
wało przyspieszenie rzędu 3.5 raza w stosunku do rozwiązania uzyskanego z wykorzystaniem
1 węzła (Rysunek 4.3). Co ciekawe, w przypadku małych problemów (500 i mniej zmiennych
decyzyjnych) stosowanie klastrów nie jest uzasadnione - w takich sytuacjach szybciej działają
pojedyncze komputery (Rysunek 4.4 a)). Sytuacja ta wynika z faktu, że dla tak małych zadań
więcej czasu jest „tracone” na rzecz synchronizacji (rozdzielenie obliczeń, zebranie wyników)
obliczeń równoległych, niż „zyskiwane” dzięki zrównolegleniu obliczeń.
Podsumowując, przeprowadzone badania pokazują, że klastry obliczeniowe usuwają ograni-

czenia jakim poddane są pojedyncze komputery i doskonale mogą być stosowane przy analizie
i syntezie procesów powtarzalnych. Osiągnięte wyniki świadczą, że wybrane oprogramowanie
może być z sukcesem stosowane, a liczba zmiennych optymalizacyjnych/decyzyjnych, określająca
rozmiar przestrzeni poszukiwań rozwiązania, może swobodnie przekraczać 10000. Co więcej, jest
ona ograniczona głównie przez rozmiar pamięci RAM dostępnej na klastrze.

Odseparowanie dynamik jako analityczna metoda uproszczenia syntezy procesów

powtarzalnych

Innym sposobem „poradzenia sobie” z wielką wymiarowością zadań syntezy równoważnego mo-
delu 1D jest zastosowanie podejścia analitycznego. Podejście zostało przedstawione w Podroz-
dziale 4.7 i polega ono na wprowadzeniu etapu preprocessingu do zadania syntezy. Ten wstępny
etap ma za zadanie doprowadzić do znaczącego uproszczenia spektrum macierzy systemowej Φ
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równoważnego modelu 1D. Jego rezultatem jest otrzymanie Φ, której wartości własne wynoszą
m(α−1) zer i dodatkowe wartości własne są równe spektrum macierzy wyrażonej jako

∑α−1
j=1 Dj .

Dzięki takiemu przedstawieniu zadania możliwe jest przeprowadzenie syntezy dla znacznie zre-
dukowanego Φ, tj. zamiast obliczać parametry sprzężenia zwrotnego dla Φ ∈ Rmα×mα, oblicza
się je dla macierzy z przestrzeni Rm×m. Zamieszczone przykłady ilustrują działanie prezento-
wanego podejścia.

Wykorzystanie zalet podejścia iteracyjnego w rozwiązywaniu zadania syntezy LRP.

Algorytm sukcesywnej stabilizacji

Algorytm sukcesywnej stabilizacji jest kolejnym podejściem mającym na celu ominięcie prze-
szkód związanych z wielką wymiarowością zadań syntezy przy korzystaniu z opisu LRP w postaci
równoważnego modelu 1D. Opracowany algorytm został zaprezentowany w Podrozdziale 4.8.
Jego idea polega na wykorzystaniu zalet, jakimi charakteryzują się procedury iteracyjne, stoso-
wane przy rozwiązywaniu skomplikowanych numerycznie zadań.
W skrócie, zasadę działania algorytmu sukcesywnej stabilizacji można przedstawić w nastę-

pujących krokach:

Krok 1 Wyznaczenie parametrów sprzężenia zwrotnego dla procesu o mniejszej, niż ory-
ginalna, długości pasa. Sprawdzenie, czy taka postać sprzężenia zwrotnego za-
pewnia stabilność dla oryginalnej długości pasa.

Krok 2 Jeśli nie - wydłużenie pasa o założoną wartość interwału i wykonanie operacji
z Kroku 1.

Co więcej, przy wykorzystywaniu zaproponowanego schematu syntezy, możliwe jest spełnie-
nie dodatkowego założenia dotyczącego zachowania struktury macierzy procesu powtarzalnego
w zamkniętej pętli sprzężenia zwrotnego.
Zamieszczone przykłady ilustrują działanie zaproponowanego algorytmu.

Stabilność wzdłuż pasa

Drugim rodzajem badanej w rozprawie stabilności, była stabilność wzdłuż pasa. Jak wspo-
mniano, własność ta jest „mocniejsza” od stabilności asymptotycznej (w rzeczy samej, zapew-
nienie stabilności asymptotycznej stanowi jeden z warunków koniecznych wymaganych do za-
pewnienia stabilności wzdłuż pasa - Twierdzenia 2.4 i 2.5). Własność ta charakteryzuje się tym,
że jej zapewnienie powoduje, że istniejący profil pasa granicznego, traktowany jako klasyczny
układ jednowymiarowy (z dynamiką funkcjonującą w kierunku wzdłuż pasa), jest stabilny.
Jak to zostało przedstawione, istniejące wyniki teoretyczne odnoszące się do analizy przy

stabilności wzdłuż pasa, mogą być traktowane jako zadania NP-trudne. Dlatego też w praktyce,
ich stosowanie jest w zasadzie niemożliwe. Dodatkowym problemem, związanym z istniejącymi
warunkami jest fakt, że nie dostarczają one praktycznego podejścia, w jaki sposób, od analizy
(badanie stabilności) przejść do rozwiązywania zadania syntezy (stabilizacji).
W Rozdziale 3 pokazano, że dzięki zastosowaniu metod badania stabilności opartych na po-

dejściu Lyapunova, które mogą prowadzić do równoważnych warunków w postaci LMI, możliwe
jest zdefiniowanie warunków, mogących służyć do analizy i syntezy, procesów powtarzalnych.
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„Ceną” jaką trzeba „zapłacić” za stosowanie Liniowych Nierówności Macierzowych, w odnie-
sieniu do stabilności wzdłuż pasa, jest to, że uzyskane warunki są tylko wystarczające, co jest
charakterystyczne dla układów 2D.
Należy tu nadmienić, że w pracy [52], zaprezentowano sposób, w jaki można zmniejszyć

konserwatywność stosowanego warunku LMI odnoszącego się do analizy układów 2D i docelowo
„zbliżyć go” do warunku koniecznego i wystarczającego. Podejście to powoduje jednak znaczące
zwiększenie poziomu skomplikowania rozważanych nierówności macierzowych i ich rozmiarów, co
znacząco ogranicza sensowość ich użycia. W związku z tym, warunki LMI oparte o to podejście
nie są rozważane w niniejszej rozprawie.

Porównanie istniejących warunków LMI

Istnienie dwóch postaci warunków LMI służących do badania stabilności wzdłuż pasa (ana-
lizy) i stabilizacji (syntezy) dyskretnych LRP, jest związane z faktem, że rozważany proces
powtarzalny można przedstawić w postaci znanych modeli stanowych Roessera (RM) [21] lub
Fornasiniego-Marchesiniego (FM)[22]. Dlatego też, możliwe jest „przeniesienie” warunków LMI
określonych dla RM i FM, dla badanej klasy LRP. Twierdzenia 4.6 i 4.7 (Podrozdział 4.3)
przedstawiają warunki LMI stosowane przy rozwiązywaniu zadania analizy, Twierdzenia 4.9
i 4.10 (Podrozdział 4.4 ) stanowią ich wersję „zamkniętą” i odnoszą się do rozwiązywania zadań
syntezy.
Ze względu na istnienie dwóch podejść służących do analizy/syntezy, można pokusić się

o porównanie ich. Wyniki takiego porównania, wykonanego z wykorzystaniem klastra, zostały
przedstawione w pracy. Z numerycznego pkt. widzenia pierwsza różnica pomiędzy tymi warun-
kami, ujawnia się, kiedy sprawdzone jest jak wielu zmiennych decyzyjnych (rozmiar przestrzeni
rozwiązań) poszukuje się przy ich rozwiązywaniu. Tabela 4.2 pokazuje, że zastosowanie warunku
LMI z Twierdzenia 4.6 wymaga zaangażowanie prawie dwakroć więcej zmiennych niż warunek
LMI z Twierdzenia 4.7. Naturalnym wydaje się zatem założenie, że rozwiązanie zadania przy
stosowaniu Twierdzenia 4.6 będzie otrzymywane znacznie później niż przy zastosowaniu Twier-
dzenia 4.7. Przypuszczenia te potwierdza przykład 4.3.
Z drugiej strony, ze względu na to, że sprawdzane warunki są tylko wystarczające, porówny-

wano ich konserwatywność, czyli sprawdzano, jak często warunki LMI pozwalały na rozwiązanie
tego samego zadania. Okazało się, że przy zastosowaniu warunku z Twierdzenia 4.6, rozwiązanie
postawionego zadania syntezy znajdowano znacznie częściej niż przy Twierdzeniu 4.7. W przy-
kładzie 4.4 zaprezentowano model LRP, dla którego przy użyciu warunki z Twierdzenia 4.6 moż-
liwe było dokonanie procesu syntezy. W tym samym przypadku zastosowanie Twierdzenia 4.7
zawodziło. Co ciekawe, przykład przeciwny, tj. kiedy Twierdzenie 4.7 działa, a Twierdzenie 4.6
nie działa, nie został znaleziony. Istnienie tak znacznej różnicy w funkcjonowaniu tych warunków
może być wytłumaczone tym, że warunek z Twierdzenia 4.6 poszukuje rozwiązania w przestrzeni
o rozmiarze prawie dwa razy większym niż Twierdzenie 4.7. A zatem to, co było atutem (mniej-
sza liczba zmiennych decyzyjnych) i prowadziło do szybszego uzyskania rozwiązania, tutaj jest
przeszkodą.
W dalszej części prezentowane schematy syntezy, odnoszące się do stabilności wzdłuż pasa,

bazują na warunku LMI przedstawionym w Twierdzeniu 4.6.
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Badanie marginesów stabilności

Często rozwiązując zadania analizy/syntezy, oprócz stabilności wzdłuż pasa jako takiej, rozważa
się dodatkowe aspekty. Do takiej grupy należy wyznaczanie (jako zadanie dodatkowe rozpatry-
wane przy analizie) i zapewnienie (jako zadanie dodatkowe rozpatrywane przy syntezie) tzw.
marginesów stabilności. Dla rozważanej klasy procesów dynamicznych, marginesy stabilności
zdefiniowano w Podrozdziale 4.5. Tam również zaprezentowano metody LMI umożliwiające
obliczanie marginesów stabilności.
W Podrozdziale 4.6 przedstawiono schemat syntezy LRP z wykorzystaniem LMI zapewnia-

jącej fakt, że system w zamkniętej pętli sprzężenia charakteryzuje się założonymi marginesami
stabilności.

Synteza z wykorzystaniem informacji zawartych w wyjściu LRP

Osobną klasą problemów jest synteza LRP z zastosowaniem tylko informacji zawartych w wek-
torze wyjściowym układu. Takie postawienie zadania jest umotywowane tym, że w praktyce
często jedynymi informacjami dostępnymi pomiarowo są pochodzące z wyjścia układu. Z drugiej
strony, prezentowane podstawowe warunki syntezy bazują na wykorzystaniu informacji zarówno
z wyjścia jak i wektora stanu układu. Dlatego w sytuacji, kiedy wektor stanu układu nie jest
dostępny (sytuacja taka może mieć miejsce stosunkowo często), możliwe jest zastosowanie dwóch
podejść, tj. podjęcia próby estymacji wektora stanu (opracowanie obserwatora stanu) i wyko-
rzystania uzyskanych informacji w znanych schematach syntezy, bądź opracowanie metodologii
umożliwiającej zastosowanie metod LMI bezpośrednio (tzw. synteza „od wyjścia” układu).
W Podrozdziale 4.9 przedstawiono to ostatnie podejście zarówno dla procesów dyskretnych,

jak i różniczkowych. Należy tu zauważyć, że rozważane warunki LMI umożliwiające przeprowa-
dzenie syntezy „od wyjścia” procesu powtarzalnego charakteryzują się tym, że wprowadzają
dodatkowe ograniczenia do warunku LMI, co powoduje zwiększenie jego konserwatywności.
Jako remedium zaprezentowano możliwość rozszerzenia rozważanych schematów syntezy w celu
zmniejszenia konserwatywności - Podrozdziały 4.9.1 i 4.9.2.
Ze względu na to, że przy rozwiązywaniu zadania syntezy „od wyjścia” następuje zwiększenie

liczby zmiennych decyzyjnych, oraz, przy zastosowaniu jednego z podejść rozszerzonych, zaob-
serwować można drastyczne zwiększenie rozmiaru LMI, uzasadnione wydaje się użycie klastrów
do rozwiązywania zadań tej klasy. Niestety, poważną przeszkodą jest tutaj fakt, że dla potrzeb
założonego schematu syntezy, wymagane było wprowadzenie dodatkowego ograniczenia równo-
ściowego występującego przy warunku LMI. Konieczne jest zatem przeprowadzenie procedury
przekształcenia tego ograniczenia do postaci ograniczenia nierównościowego (metodę takiego
przeformułowania pokazano w Podrozdziale 3.6), a następnie rozwiązanie otrzymanego zada-
nia. Po otrzymaniu rozwiązania, konieczny jest powrót do oryginalnego zadania i ostatecznie
wyznaczenie parametrów pętli sprzężenia.
W załączniku B.3 dołączono funkcję Matlaba umożliwiającą przeformułowanie zadań syn-

tezy „od wyjścia” i zapisywanie ich do pliku, w postaci rozwiązywalnej przez pakiet Sdpara.

Dopasowanie modelu

Kolejnymi rozważanymi schematami syntezy, są schematy mające oprócz zapewnienia stabilności
(asymptotycznej bądź wzdłuż pasa), dodatkowo zapewnienie żądanej postaci układu w zamknię-
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tej pętli sprzężenia zwrotnego. Techniki te nazwane zostały metodami dopasowania modelu (ang.
model matching).
W kontekście wykorzystania równoważnego modelu 1D (Podrozdział 4.10.1), tak określone

schematy syntezy, przedstawiają wyniki i działają podobnie jak znane z teorii klasycznych syste-
mów 1D, techniki lokowania biegunów układu zamkniętego. Przy czym należy tutaj zauważyć,
że techniki lokowania biegunów nie odnosiły się do zapewnienia dokładnej struktury układu za-
mkniętego, tylko do umieszczenia spektrum macierzy systemowej wewnątrz założonego obszaru
płaszczyzny zespolonej. Zaproponowana metoda syntezy umożliwia „sprowadzenie” macierzy
systemowej Φ do z góry założonej struktury. Przykład 4.14 prezentuje przykład działania za-
proponowanej metody.
W przypadku systemów 2D, jak wiadomo nie ma opracowanych wyników odnoszących się do

lokowania biegunów. Jest to związane z faktem, że bieguny układu 2D nie są pkt. na płaszczyź-
nie zespolonej, ale są prezentowane jako krzywe (zob. np. [50]). Stąd brak odpowiednich metod,
odnoszących się do rozwiązania zadania lokowania biegunów zamkniętego układu 2D. W Pod-
rozdziale 4.10.2 zaprezentowano metodę syntezy, która umożliwia uzyskanie zadanego modelu
2D, który może być uzyskany np. drogą symulacji, w zamkniętej pętli sprzężenia zwrotnego.

Sterowanie LRP przy zadanym profilu granicznym i odsprzężeniu

zakłóceń

Ze względu na to, że procesy powtarzalne służą do modelowania procesów fizycznych, zapewnie-
nie stabilności często oznacza jedynie pierwszy krok. Naturalnym następstwem jest wymaganie,
aby rozważany system po odpowiedniej liczbie pasów osiągnął zadaną wartość wyjściową. Za-
tem w Rozdziale 5 założono opracowanie i przetestowanie metod sterowania umożliwiających
osiągnięcie następujących celów

• stabilność (asymptotyczna lub wzdłuż pasa, w zależności od rozważanego problemu),

• osiągniecie zadanej wartości na wyjściu,

• usunięcie wpływu zakłóceń zewnętrznych oddziaływujących na proces powtarzalny.

Metodologię umożliwiającą osiągnięcie pierwszego z powyższych celów zaproponowano w Roz-
dziale 4. Zależnie od rozważanego problemu, zastosowano podstawowe warunki LMI służące do
syntezy, dopasowania modelu i syntezy „od wyjścia” dla rozważanych procesów powtarzalnych.
Dwa pozostałe cele zostały osiągnięte przez zaadaptowanie znanych dla układów 1D technik
do wymagań układów 2D. Zostały tutaj przedstawione cztery podejścia służące osiągnięcia po-
stawionych celów, tj. sterowanie bezpośrednie - Podrozdział 5.1, pośrednie - Podrozdział 5.2,
zamknięto-otwarte (ang. feedforward- feedback) - Podrozdział 5.3 oraz proporcjonalno-całkowe
(ang. proportional integral) - Podrozdział 5.4.
Przeprowadzone badania pokazały, że każda z tych metod umożliwia uzyskanie zadanego

sygnału wyjściowego, jednak metody sterowania bezpośredniego i pośredniego nie zapewniają
usunięcia wpływu zakłóceń. W przypadku sterowania zamknięto-otwartego wszystkie trzy cele
są zapewnione, dodatkowo istnieje możliwość zastosowania metody stabilizacji opartej na dopa-
sowaniu modelu, jednak poważną wadą tego podejścia jest fakt, że wymaga ono wyznaczenia
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wektorów stanu i sterowania w stanie ustalonym. Może to negatywnie wpłynąć na działanie tej
metody. Najbardziej skuteczną (z pkt. widzenia spełnienia wymaganych celów) wydaje się me-
toda oparta na sterowaniu proporcjonalno-całkowym, w której nie można zaobserwować żadnej
wad poprzednich metod. Jako pewną niedogodność można tu jednak traktować fakt, iż przy tym
podejściu rozmiary warunków LMI stosowanych przy syntezie wzrastają 2-krotnie (co negatyw-
nie odbija się na szybkości obliczania macierzy sterowników). Oczywistym jest, że ten znaczenie
tego ograniczenia może być zmniejszone przez zastosowanie jednej z metod zaprezentowanych
w Rozdziale 4 niniejszej rozprawy.
Nadmienić tu należy, że wyniki zaprezentowane w Rozdziale 5 są oryginalnymi osiągnięciami

autora i zostały (bądź wkrótce zostaną) opublikowane na forum krajowym i międzynarodowym.

Podsumowanie

Tematyka niniejszej rozprawy odnosi się do opracowania i sprawdzenia numerycznie efektywnych
warunków analizy i syntezy Liniowych Procesów Powtarzalnych. Takie umotywowanie dziedziny
badań zostało podyktowane faktem, że istniejące techniki umożliwiające rozwiązywanie rozwa-
żanych zadań, z praktycznego pkt. widzenia, nie mogą być stosowane. Niska stosowalność
dostępnych warunków, w zależności od rozważanego zadania wynika z poniższych faktów:

• część rozważanych warunków analizy należy do klasy zadań NP-trudnych,

• wykorzystanie pozostałych rozważanych warunków wymaga przetwarzaniu macierzy o po-
tencjalnie ogromnych rozmiarach, co wpływa negatywnie na szybkość obliczeń i może po-
wodować powstawanie błędów numerycznych.

Dodatkowym ograniczeniem w stosowaniu istniejących warunków jest to, że przedstawiają one
jedynie rozwiązanie zadania analizy. Nie dostarczają one możliwości naturalnego przekształcenia
do warunków syntezy.
W celu wyeliminowania, bądź częściowego ograniczenia powyżej wymienionych problemów,

w pracy zaprezentowano szereg wyników, które, dzięki zastosowaniu Liniowych Nierówności
Macierzowych, okazały się skutecznym sposobem prowadzącym do:

• znacznego przyspieszenia otrzymywania rozwiązania (wynika to z faktu, że zadania LMI
są, w gruncie rzeczy, traktowane jako zadania klasy P i rozwiązywane jako zadania opty-
malizacji wypukłej; dla tak sformułowanych zadań rozwiązanie jest otrzymywane w czasie
wielomianowym),

• możliwości przedstawienia oryginalnych zadań NP-trudnych w postaci przybliżonych za-
dań z klasy P,

• ograniczenia możliwości wystąpienia błędów numerycznych, dzięki przetwarzaniu macierzy
symetrycznych, dodatnio określonych.

Pomimo zastosowania LMI do rozwiązywania zadań analizy i syntezy procesów powtarzal-
nych, w dalszym ciągu istnieją pewne ograniczenia dotyczące ich stosowania. Szczególnie odnosi
się to rozmiaru rozwiązywanego problemu. A zatem problem można teraz przedstawić na-
stępująco: dla otrzymanego warunku LMI, operującego na ogromnych macierzach, opracować
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efektywne sposoby, umożliwiające rozwiązanie postawionego zadania. W niniejszej rozprawie
przedstawiono trzy takie rozwiązania, tj.

• rozwiązanie „sprzętowe”, polegające na zapewnieniu dużej mocy obliczeniowej poprzez
wykorzystanie technik obliczeń równoległych (klastry),

• opracowanie podejścia iteracyjnego, umożliwiającego wykorzystanie zalet procedur itera-
cyjnych – stopniowe zbliżanie się do rozwiązania (algorytm sukcesywnej stabilizacji),

• zaproponowanie metody uproszczenia spektrum rozważanej macierzy o dużych rozmiarach,
poprzez wprowadzenia etapu wstępnej syntezy (preprocessing), a następnie rozwiązanie
przetworzonego zadania syntezy (odseparowanie dynamik).

Jak widać, zaprezentowane metody mają ścisłe związki z informatyką.
Jako ostatni, jednak o szczególnej wadze, aspekt informatyczny pracy może być traktowany

związek, jaki istnieje pomiędzy właściwościami dynamicznymi procesów powtarzalnych, a itera-
cyjnymi procedurami obliczeniowymi. We wstępie rozprawy opisano związki rozważanej klasy
zadań analizy i syntezy z własnościami algorytmów iteracyjnych. Jak wspomniano, jedną ze
wspomnianych praktycznych aplikacji, które z powodzeniem mogą być modelowane jako LRP, są
zadania dotyczące iteracyjnego sterowania z uczeniem (ILC), które łatwo mogą być rozszerzone
do modelowanie innych itereacyjnych procesów obliczeniowych, np. [30]. Zatem zapewnienie
stabilności procesu powtarzalnego, odnosi się do zapewnienia zbieżności procesu iteracyjnego.
Co więcej, przedstawione w rozprawie schematy syntezy zapewniające oprócz stabilności, dodat-
kowe własności układu w zamkniętej pętli sprzężenia zwrotnego (takie jak marginesy stabilności
lub osiągnięcie żądanej postaci modelu), w odniesieniu do ILC, odnoszą się do „polepszenia”
zachowania procedury iteracyjnej (np. przyspieszenia procedury minimalizacji błędu śledzenia).
Można więc zauważyć, że istnieją silne powiązania pomiędzy własnościami Liniowych Procesów
Powtarzalnych (teoria systemów), a własnościami procedury iteracyjnej (informatyka).
Reasumując, zagadnienia rozważane w poniższej rozprawie odnoszą się do komputerowo

wspomaganego rozwiązywania zadań analizy i syntezy Liniowych Procesów Powtarzalnych.
Otrzymane wyniki pokazują, że dzięki zastosowaniu podejść z szeroko pojętej dziedziny Informa-
tyki, możliwe jest efektywne rozwiązywanie postawionych problemów. Osiągnięcia zaprezento-
wane w niniejszej rozprawie obejmują zarówno aspekty teoretyczne jak i praktyczne/aplikacyjne.
Uzyskane wyniki udowadniają przyjętą tezę.
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