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INTRODUCTION 

 
 
 
 
 
 
 
The method of Socratic proofs is a formal explication of the idea of 

solving problems by pure questioning. The method, invented by A. Wiśniewski, 
has been first described in [Wiśniewski:2004] for the case of Classical 
Propositional Calculus. Roughly speaking, a Socratic proof is a finite sequence of 
questions with the following properties: 

(1) the questions – expressions of a certain formal language – represent 
simple yes-no questions of a natural language; 

(2) the first question of the sequence concerns a certain logical problem, �
.� ., whether a formula is a thesis of a given logic or not; 

(3) each consecutive question results from the previous one by a certain rule 
of inference; 

(4) the last question of this sequence concerns another problem of a similar 
nature, it is, however, evident that the answer to this question is 
affirmative; 

(5) the structure of the rules that allow to infer a question from a question 
guarantee that if the answer to the last question is affirmative, then so is 
the answer to the first question. 

It may be argued that a sequence of questions of this kind represents a 
complex reasoning in which a problem (expressed by the first question) is solved 
by reformulating and simplifying the consecutive questions. No declarative 
premise is used in such a reasoning. What is more, the inferential relations 
between questions occurring in this process may be analysed within the 
framework of IEL – 

� � � � � � � � � � � � � 	 � � � � � � 	 � � �
.1 

At the same time the method of Socratic proofs may be viewed as a 
general methodology of formalizing logics in a sequent calculus style. Socratic 
proofs are constructed in guidance with the rules of the so-called erotetic calculi.2 
An erotetic calculus for a given logic constitutes a proof-method for this logic. 

                                                 
1 A formal account of inferential relations between questions is the main topic of the book: 
[Wiśniewski:1995]. A concise account of the fundamental notions of IEL may be found in 
[Wiśniewski:2001]. 
2 The term ‘erotetic’ comes from gr. ‘� � � � � � 	 ’ – question. 
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More specifically, an erotetic calculus may be viewed as a calculus for deriving 
sequents with rules of a Gentzen-style sequent calculus “turned upside-down” to 
the effect that a process of constructing a Socratic proof reflects the “root-first” 
proof-search procedure known from the Gentzen-style sequent calculi. In other 
words, all the rules of erotetic calculi are of eliminative character (there are no 
introduction rules) – in this sense an application of a rule of an erotetic calculus to 
a question results in a simplification of the question. What is more, the rules of an 
erotetic calculus are 

� � � � � � � � � �
, which means, 

�
.

�
., that their “inverses” may be 

used as rules of a Gentzen-style sequent calculus. In terms of questions, this 
means that the answer to a question to which an erotetic rule is applied is 
affirmative 

� � � � � 	 � � � � �
 the answer to a question obtained under such a 

transformation is affirmative. 
Except for the Classical Propositional Calculus, the method has been 

adjusted to classical first-order logic and to some paraconsistent propositional 
logics.3 Erotetic calculus for a logic characterizes the logic in terms of a calculus 
of sequents with invertible elimination rules. Since there are no introduction rules, 
the process of constructing a Socratic transformation (a sequence of questions 
obtained by successive applications of the rules of an erotetic calculus) may be 
quite easily converted into an algorithmic procedure, thus constituting, in the case 
of decidable logics, a decision procedure.4 Moreover, since the rules are 
invertible, Socratic proofs obtained by applications of the rules of an erotetic 
calculus may be transformed into proofs in a certain corresponding Genzten-style 
sequent calculus.5 

However, the peculiarity of the method lies in its connection with the logic 
IEL. An erotetic calculus may be viewed as a variant of a sequent calculus but it 
is still a calculus of � � � � � � 	 � �

 – questions are the “premises” and “conclusions” of 
erotetic rules. Hence the rules of erotetic calculi describe certain classes of 
inferences of questions from questions, and these inferences may be further 
analysed within the framework of IEL. In particular, the logic IEL develops 
certain notions to describe conditions of validity of such erotetic inferences. It 
may be shown that the syntactical relation of derivability of a question from a 
question encoded in the rules of erotetic calculi has a semantical counterpart in the 
relation of 


 � � � � � 	 � � � � � � � 
 � � � � � � 	 �
.6 Thus the inferential steps of a Socratic proof 

are valid in the sense of IEL. 

                                                 
3 See: [Wiśniewski, Shangin:2006] and [Wiśniewski, Vanackere, Leszczyńska:2005]. 
4 See: [Wiśniewski:2004] and [Wiśniewski, Vanackere, Leszczyńska:2005] where such procedures 
are sketched. The procedures are not given in exact terms in the papers, but they may be quite 
easily extracted from what is presented there. A theorem-prover for classical propositional logic 
and for paraconsistent propositional logic CLuN, based on these articles, is available on: 
http://logica.ugent.be/albrecht/socratic.html  The program has been written in Prolog language by 
Albrecht Heeffer. 
5 More details may be found in [Wiśniewski:2004, pp. 313-316] and in [Wiśniewski, 
Shangin:2006]. 
6 In each of the papers: [Wiśniewski:2004, pp. 318-321], [Wiśniewski, Shangin:2006] and 
[Wiśniewski, Vanackere, Leszczyńska:2005, pp. 460-463] the reader may find a detailed account 
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The aim of this dissertation is to present the most familiar of normal modal 
propositional logics in the framework of erotetic calculi. The proof method we 
shall present is based on the analysis of the so-called “possible worlds” semantics. 
There is a wide family of semantically motivated proof-methods for modal logics. 
The family contains semantic tableaux of Kripke, semantic diagrams of Hughes 
and Cresswell, different variants of tableau methods (like Fitting’s prefixed 
tableaux and Priest’s Smullyan-type analytic tableaux) and, finally, the 
descriptions of modal logics in more general frameworks (like that of Labelled 
Deductive Systems).7 What we mean by a “semantical motivation” of a proof 
method for modal logics is that the structure of a Kripke model is “mirrored” in 
the syntax of the proof method apparatus. This is obtained by using certain 
additional parameters that refer to possible worlds – usually these are single 
numerals and / or their sequences. The parameters may be operated on by the 
rules of a system, so the semantical information concerning the accessibility 
relation is available at the same level as the information concerning logical 
connectives. The same happens in the case of the method of Socratic proofs for 
modal logics, which is a semantically motivated method as well.8 

Most of the semantically motivated proof methods for modal logics have a 
common feature. Namely, constructing a tableau (a tree, a diagram, 

� � �
.) for a 

formula to be proved consists in analysing the formula into its subformulas. 
Deductive systems having this property are called “analytic systems” (or systems 
with the “subformula property”). The derivation process in an analytic system 
may be viewed as a formalization of the procedure of a countermodel 
construction. The interpretation of a derivation process as an “indirect” reasoning 
is self-apparent when various tableaux methods are concerned – a proof of a 
formula �  in a tableaux calculus is nothing but a permanently unsuccessful 
attempt to find a model satisfying ‘¬� ’. Erotetic calculi for modal logics are also 
analytic systems. A Socratic proof in such a calculus may be interpreted as a 
systematic though unsuccessful countermodel construction. However, in 
contradistinction to the tableaux methods, an interpretation of the derivation 
process in an erotetic calculus as representing a 

� � � � � �
 reasoning is still more 

natural than as representing an indirect one. 
Analytic, semantically motivated proof systems for modal logics have a 

common drawback as well. Namely, when transitive modal logics are concerned, 
infinite tableaux (trees, diagrams, 

� � �
.) occur to be possible, although the logics in 

question (like S4) have the finite model property. It is easy to observe that the 
infinity may be actually “reduced” to the so-called “loops”. Usually, it is also 

                                                                                                                                      
of the erotetic calculus presented in the paper on the grounds of the logic IEL. The notion of 
erotetic implication is one of the central notions of IEL. 
7 Appropriate references may be found in Chapter IV where we have more to say about various 
proof-methods for modal logics. 
8 In [Goré:1999] the term “explicit system” is used for what we mean by a “semantically 
motivated system” (the point is that the accessibility relation is represented � � � � � � � � � �  by some 
device). 



 

 

 

7

quite easy to formulate very intuitive prescriptions of how to avoid loops and how 
to “interpret” loops in a derivation when the construction of a countermodel is 
concerned. Nevertheless, these observations and prescriptions are usually very 
difficult to formulate in a manner precise enough to receive a terminating decision 
procedure that could be implemented. One of our aims in the future is to 
formulate a solution to this problem within the framework of erotetic calculi. 

The content of this work is the following. In Chapter I we present 
Wiśniewski’s method of Socratic proofs for classical propositional logic in more 
detail. Two erotetic calculi are presented there: calculus E* described in 
[Wiśniewski:2004] and calculus E** which is a right-sided variant of E*. We 
focus on the main ideas and omit most of the details (

�
.� . the proofs), since these 

may be found elsewhere. In Chapter II we present erotetic calculi for seven 
normal modal propositional logics (these are: K, D, T, KB, K4, S4 and S5) which 
are, in a sense, built upon E**. We present the proof of soundness of the calculi. 
In the last section of Chapter II we briefly analyse the calculi on the grounds of 
IEL. The analysis is sketchy, since the focus of this work is on the proof method, 
not on the logic of questions. In Chapter III a non-constructive proof of 
completeness is presented. The proof is based on the idea used in [Priest:2001]. 
We define a certain class of complete Socratic transformations and show how to 
construct a countermodel from a complete Socratic transformation which is not a 
Socratic proof. However, since Socratic transformations are not defined as trees, 
in order to adjust Priest’s solution to our purposes we need some additional 
concepts and techniques. These we have found in [Wiśniewski, Shangin:2006] 
where the method of Socratic proofs for classical first-order logic is described. In 
the last chapter we briefly discuss the basic developments concerning proof 
methods for modal logics that may be compared with the method of Socratic 
proofs. 
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CHAPTER I: The Method of Socratic Proofs for Classical 

Propositional Calculus 

 
 
 
 
 
 
 

We start with general remarks concerning notation used throughout this 
work. 
 
I.1 Notation 

 
We use the following set-theoretical notation: 

∈ and ∉  for membership and non-membership, respectively 

∅   the empty set 

⊆   the inclusion of sets �     the proper inclusion of sets 

∪   the union of sets 

∩   the intersection of sets �
1 × … × 

� �
   the Cartesian product of sets 

�
1, …, 

� �
  

A set of sets will be called a 
� � � � � � 	 � � � � �

, or simply a 
� � � � � �

. 
� � � � � � 	 � �

 
are defined as subsets of Cartesian products. If 

�
 ⊆ 

�
 × � , �  ∈ �

 and 
�
 ∈ � , then 

we use the expression: <� , �
> ∈ 

�
 (<� , �

> ∉ 
�
) to indicate that �  stands (does not 

stand) in relation 
�
 to 

�
. 

By 
�
: 

�
 a �  we mean a � � � � � � 	 � � � � � � � � 	 �

 
�
 

� � � � � � � � � � � �
 � . If function �

 is defined on � , function �  is defined on �  such that �  ⊆ � , and � (� ) = � (� ) for all �  ∈ � , then we call �  an � � � � � � � 	 � 	 � �  	 � � � �  and we call �  a � � � � � � � � � 	 � 	 � �
 

� 	
 

�
. 

An 
� � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � 	 � � � � �

 Σ is a function defined on the 
set of all positive integers with values in Σ. Infinite sequences will be represented 
by: 

�
 = <

�
1, 

�
2, …>, where 

� �
 (1 ≤ 

�
) is the value of 

�
 at 

�
. A function defined on a 

(finite) set of positive integers {1, …, 
�
} with values in Σ will be called an 

�
-

� � � �� � � � � � � � 	 � � � � � � � � � � � � 	 �
 Σ. For technical reasons, we introduce the concept of 

empty sequence. By 
� � � � � � � � � � � � � � �

 we mean the empty sequence and 
�
-term 

sequences, where 
�
 is a positive integer. 

�
-term sequences will be represented by: 
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�
 = <

�
1, …, 

� �
>, where 

� �
 (1 ≤ 

�
 ≤ 

�
) is the value of 

�
 at 

�
. 

� �
 will be called the 

�
-

� �� � � � 	 � � � � � � � � �
 

�
. 

If 
�
 and 

�
 are finite sequences, then by 

�
 ' 

�
 we refer to the concatenation of �

and 
�
. More precisely: 

 
DEFINITION 1.1: By a 

� 	 � � � � � � � � � 	 � 	 � � � � � � � � � � � � � � � � � �
: {1, …, 

�
} a Σ � � � � � � � � � � � � � � � � � � � �

: {1, …, 
�
} a Σ* we mean a function �

 ' 
�
: {1, …, 

�
 + 

�
} a Σ ∪ Σ*  

set by: 

  | 
�
(

�
)  if 

�
 ≤ 

�
 

    
�
 ' 

�
(

�
) = | 

  | 
�
(

�
-

�
) if 

�
 > 

�
  

By a concatenation of an 
�
-term sequence 

�
 and the empty sequence we mean the 

sequence 
�
. Similarly, by a concatenation of the empty sequence and an 

�
-term 

sequence 
�
 we mean the sequence 

�
.  

 
Thus the concatenation of an 

�
-term sequence 

�
 = <

�
1, …, 

� �
> and an 

�
-

term sequence 
�
 = <

�
1, …, 

� � > is an (�
+

�
)-term sequence 

�
 ' 

�
 = <

�
1, …, 

� �
, 

�
1, …, � � >. 

We use CPC for “Classical Propositional Calculus”. The language of CPC 
will be designated by L. The vocabulary of L contains propositional variables: 



1, 


2, …; logical constants: ¬, ∧, ∨, →; and parentheses: (, ). We use 
� � �

 for the set 
of propositional variables. � � � � � � � �

L is the smallest set satisfying the following conditions: � � � � � �
 ⊆ L; � � � �

if �  ∈ L, then ‘¬� ’ ∈ L; � � � � �
if � , �  ∈ L, then ‘(�  ∧ � )’, ‘(�  ∨ � )’, ‘(�  → � )’ ∈ L. 

If �  is an element of L, then �  is called a � 	 � � � � � 	 �
L. 

By a 
� � � � � � �

 we mean a propositional variable, 

 �
, or a negation of a 

propositional variable, ¬

 �
. For convenience, propositional variables will be 

referred to as 


, � , �

, …. When writing the formulas of L, we adopt the usual 
conventions concerning omitting parentheses. The abbreviation 

� � �
 stands for “if 

and only if”. 
By a CPC-

� � � � � � � � � �
 we mean any function defined over 

� � �
 with 

values in {0, 1}. We introduce the following: 
 
DEFINITION 1.2: If 

�
# is a CPC-assignment, then an extension 

�
 of 

�
# over L 

satisfying the following conditions: 

1) 
�
(¬� ) = 1 iff �

(� ) = 0; 
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2) 
�
(�  ∧ � ) = 1 iff �

(� ) = 1 and �
(� ) = 1; 

3) 
�
(�  ∨ � ) = 1 iff �

(� ) = 1 or �
(� ) = 1; 

4) 
�
(�  → � ) = 1 iff �

(� ) = 0, or �
(� ) = 1; 

is a CPC-
� � � � � � � 	 �

. 
 
We say that a formula, � , of L is CPC-� � � � �

 iff for each CPC-valuation 
�
, �

(� ) = 1. A set of formulas, Σ, CPC� � � � � � � �
 a formula �  iff �  is true under any 

CPC-valuation under which all the elements of Σ are true. 
In general, sequents will be represented by ‘�  ├ � ’. Depending on the 

calculus, �  may be restricted to be a one-term sequence or �  may be supposed to 
be empty (

� �
. Section I.2.1, Section I.3.1 and Section II.1 of Chapter II). For 

convenience, we will write: � 1, …, � �
 ├ � 1, …, � �  instead of: <� 1, …, � �

> ├ 
<� 1, …, � � >. 

We will be using the turnstile sign ‘├’ as a symbol of 
	 � � � � � � � � � � �� � � � � � � � �

, in a way the sequent arrow ‘⇒’ is commonly used. This does not lead 
to any confusion as we do not use the turnstile sign as a meta-level expression. 

 
I.2 Erotetic Calculus E* 

 
We begin with a presentation of erotetic calculus E* for CPC. We 

summarize the description contained in [Wiśniewski:2004]. 
Till the end of this chapter letters � , � , � , … will stand for formulas of L, 

and letters � , � , �  will represent finite (possibly empty) sequences of formulas of 
L. 

 
I.2.1 Language L* 

 
Erotetic calculus E* pertaining to CPC is worded in language L*. This 

language is built upon language L, with certain expressions that belong to the 
metalanguage of L incorporated into L*. The vocabulary of L* comprises the 
vocabulary of L and the signs: ?, ├, &, ng. 

The well-formed formulas (wffs for short) of language L* belong to one of 
the two disjoint categories: declarative well-formed formulas (d-wffs) and erotetic 
well-formed formulas (questions). The wffs of L* are defined as follows. 

An 
� � 	 � � � � � � � � 	 �

 L* is an expression of the form: 

(1.1)  �  ├ �   
where �  is a finite (possibly empty) sequence of formulas of L and �  is a single 
formula of L. Hence atomic d-wffs of L* are single-conclusioned sequents. The 
notion of a d-wff of L* is defined by: 
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DEFINITION 1.3: � � �
each atomic d-wff of L* is a d-wff of L*; � � � �
if 

�
 is a d-wff of L*, then ng(

�
) is a d-wff of L*; � � � � �

if 
�
 and �  are d-wffs of L*, then (�

) & ( � ) is a d-wff of L*; � � � �
nothing else is a d-wff of L*. � � � � � � 	 � � 	 �

 L* are expressions of the form: 

(1.2)  ? (Φ) 

where Φ is a finite and non-empty sequence of atomic d-wffs (sequents) of L*. If 
Φ = <ϕ1, …, ϕ

�
>, then we will write: 

(1.3)  ? (ϕ1, …, ϕ
�
) 

instead of ? (<ϕ1, …, ϕ
�
>). Sequents ϕ1, …, ϕ

�
 will be called 

� 	 � � � � � � � � � � 	 �� � � � � � 	 �
(1.3). A general reading of question (1.3) is the following: 

(1.4) Is it the case that: ϕ1 and … and ϕ
�
? 

Questions of language L* are simple yes-no questions. The answers to question 
(1.3) are d-wffs of language L*. Namely, the 

� � � � � � � � � � � � � � � � � � 	 � � � � � � 	 �
 (1.3) 

is a d-wff of the form: 

(1.5)  (…((ϕ1) & (ϕ2)) & … ) & (ϕ
�
) 

and the 
� � � � � � � � � � � � � � � 	 � � � � � � 	 �

(1.3) is a d-wff of the form: 

(1.6)  ng((…((ϕ1) & (ϕ2)) & … ) & (ϕ
�
)) 

The wffs of language L* may be said to represent certain expressions that 
normally belong to the metalanguage of L. Thus, 

�
.� ., an atomic d-wff ‘�  ├ � ’ of 

L* may be interpreted as representing an assertion: “formula �  is CPC-derivable 
from the set of terms of � ”. Thus the sequents of language L* are given 	 
 � � � � � 	 � � �

 interpretation.9 Consequently, questions of L* represent natural-
language questions concerning CPC-derivability. This intuitive interpretation of 
the wffs of L* may be also formulated in terms of CPC-entailment. 

Let us emphasize that language L* is still an 
	 � � � � � � � � � � �

 language. 
Languages of other erotetic calculi developed so far have the same construction – 
meta-level expressions pertaining to the underlying logic are incorporated into the 
language of an erotetic calculus. We follow the same pattern in Section II.1, 
where we describe language M*. 

                                                 
9 That is, an interpretation in terms of derivability. This is opposed to � � � � � 	 � � � � 	 �  interpretation of 
multi-conclusioned sequents, that is, interpretation in terms of entailment. � � . [Negri, von 
Plato:2001, p.47]. 
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In what follows we will use Greek lower-case letters ϕ, ψ as metalinguistic 
variables for sequents (atomic d-wffs) of L*. Greek upper-case letters Φ, Ψ will 
represent sequences of sequents of L*. For questions of L* we use: 

�
, 

�
1, 

�
*. 

 
I.2.2 The Rules of E* 

 
Throughout this work we use two concatenation-signs. The symbol: ' is 

used for the concatenation of sequences of formulas of L, whereas the semicolon 
‘;’ is used for the concatenation of sequences of sequents of L*. Thus we refer to 
the concatenation of �  and �  as ‘�  ' � ’, but the concatenation of sequences Φ and 
Ψ, where Φ and Ψ are sequences of sequents of L*, is referred to as ‘Φ; Ψ’. The 
distinction allows for a clear and precise presentation of the rules. Moreover, as 
we shall see in Section I.3.2, it may be argued that the two concatenation-signs 
correspond to different connectives on the meta-level. 

We shall write �  ' �  ' �  for the concatenation of sequences �  ' �  and � . By �  ' �  we denote the concatenation of sequence �  and a one-term sequence <� >. An 
analogous convention pertains to: �  ' �  or �  ' �  ' � . The concatenation-sign ; will 
be used in a similar manner. 

The rules of E* are rules which transform questions into questions. A 
transformation starts with a question asking whether the logical relation of CPC-
derivability holds in a particular case and it proceeds by simplifying the initial 
question. For example, a question whether a conjunction �  ∧ �  is CPC-derivable 
from a set of formulas Σ is expressed by: ? (�  ├ �  ∧ � ), where �  is a sequence 
whose terms are all the elements of Σ. This may be simplified by asking whether �  is CPC-derivable from this set and whether �  is CPC-derivable from the same 
set. Hence question ? (�  ├ �  ∧ � ) may be transformed into question ? (�  ├ � ; �  ├ � ). A rule guiding this transition has the following form: 
 
R∧:   ? (Φ; �  �  �  ∧ � ; Ψ) 
 

? (Φ; �  �  � ; �  �  � ; Ψ) 
 
Let us also observe that the answer to the question expressed by ? (�  ├ �  ∧ � ) is 
affirmative 

� � �
 both: the answer to the question expressed by ? (�  ├ � ) is 

affirmative and the answer to the question expressed by ? (�  ├ � ) is affirmative. 
Similarly, if we ask whether �  is derivable from the set: {�  ∧ � }, we may 

ask as well whether �  is derivable from the set: {� , � }. This transition is justified 
by the rule: 

 
L∧: ? (Φ; �  ' �  ∧ �  ' �  �  � ; Ψ) 
 

 ? (Φ; �  ' �  ' �  ' �  �  � ; Ψ) 
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The rules of erotetic calculi are all of eliminative character. An application 
of such a rule results in, by and large, an elimination of a connective occurring in 
a formula of the antecedent or of the consequent of a sequent. However, since in 
the formulation of the erotetic rules the α-, β-notation is used, we may say that 
these rules rather simplify formulas of conjunctive (α-formulas) and disjunctive 
(β-formulas) type into their, appropriately defined, components.10 The definition 
of components α1, α2 and β1, β2 of α- and β-formulas is given by the table 
below.11 
 

α α1 α2  β β1 β2 β1* �  ∧ �  � �  ¬(�  ∧ � ) ¬�  ¬�  �
¬(�  ∨ � ) ¬�  ¬�   �  ∨ �  � � ¬�  
¬(�  → � ) � ¬�   �  → �  ¬�  � �� � � � �

 1 
 

β1* is called the 
� 	 � 
 � � � � � �

of β1. This additional assignment is due to the fact 
that sequents of L* are single-conclusioned. When a β-formula is decomposed 
right of the turnstile, one of its components must be transferred from the right to 
the left side of the turnstile and, simultaneously, it must be changed into its 
complement. 

�
.� . the schema of the rule of elimination of formula of the form �  ∨ �  from the right side of the turnstile is the following: 

 
R∨:  ? (Φ; � �  �  ∨ � ; Ψ) 
 

? (Φ;  �  ' ¬�  ├ � ; Ψ) 
 
If this is necessary, formulas of the form ¬¬�  may be treated as α-

formulas, as β-formulas or as formulas of both types. For our purposes, it is more 
convenient not to apply the distinction to formulas of such a form. However, we 
may extend the notion of a component of a formula in the following way: if �  is a 
formula of the form ¬¬� , then �  is the � 	 � 
 	 � � � � 	 � � . 

We present the rules of calculus E* in the α-, β-notation. The rules in the 
standard notation are presented in Appendix 1. 

 

                                                 
10 In [Konikowska:2002], a paper presenting a Rasiowa-Sikorski style system, the rules of the 
system are called by the author “decomposition” rules. We find this term more accurate than the 
one “elimination rules”, since when the α-, β-notation is used, an application of a rule � � � � � � �  
amount, strictly speaking, to an elimination of a single connective. Actually, the term comes from 
[Rasiowa, Sikorski:1963], where a method of diagrams of formulas is presented. “This method 
consists in the decomposition of formulas into parts of which it is built.” ([Rasiowa, 
Sikorski:1963, p. 264]). 
11 The notation comes from [Smullyan:1968] and has been extensively used by many authors (for 
example by Fitting in [Fitting:1983]). 
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Lα:   ? (Φ; �  ' α ' �  ├ � ; Ψ)  Rα:      ? (Φ; �  ├ α; Ψ) 
? (Φ; �  ' α1 ' α2 ' �  ├ � ; Ψ)   ? (Φ; �  ├ α1; �  ├ α2; Ψ) 

 
Lβ:         ? (Φ; �  ' β ' �  ├ � ; Ψ)  Rβ:    ? (Φ; �  ├ β; Ψ) 
 ? (Φ; �  ' β1 ' �  ├ � ; � ' β2 ' �  ├ � ; Ψ) ? (Φ; �  ' β1*├ β2; Ψ) 

 
L¬¬¬¬¬¬¬¬: ? (Φ; �  ' ¬¬�  ' �  ├ � ; Ψ)  R¬¬¬¬¬¬¬¬: ? (Φ; �  ├ ¬¬� ; Ψ) 

  ? (Φ; � '�  ' �  ├ � ; Ψ)     ? (Φ; � ├ � ; Ψ) 
 

The set of the rules of E* will be denoted by R(E*). 
The rules of calculus E* transform questions into questions. When a rule is 

applied to a question, one of its constituents is simplified by decomposing a 
formula that occurs in this constituent. What we mean by “decomposition” here is 
that the formula in the constituent is replaced by its component(s). This may be 
accompanied with transferring one of the components from the right to the left 
side of the turnstile, or by adding another sequent to the constituent(s) of the 
question. The notion of a 

� 	 � 
 	 � � � �
 is given by Table 1 and the convention 

concerning formulas of the form ‘¬¬� ’ according to which �  is a component of 
‘¬¬� ’. 

Though the rules of E* operate on � � � � � � 	 � �
, E* is still a calculus for 

proving 
� � � � � � � �

. A sequent is proved, if under the “decomposition process” one 
reaches only sequents of some basic form or forms.  More formally: 
 
DEFINITION 1.4: A finite sequence <

�
1, …, 

� �
> of questions of L* is a � 	 � � � � � �
 � 	 	 �

 
	 � � � � � � � �

 �  ├ �  in calculus E* iff the following conditions hold: 
(i) 

�
1 = ? (�  ├ � ); 

(ii) 
� �
, where 

�
 = 2, …, 

�
, results from 

� �
-1 by applying a rule r ∈ R(E*); 

(iii) for each constituent ϕ of 
� �
: 

(a) ϕ is of the form �  ' �  ' �  �  � , or 
(b) ϕ is of the form �  ' �  ' �  ' ¬�  ' � �  � , or 
(c) ϕ is of the form �  ' ¬� ' �  ' �  ' �

 �  � .12 
 
Below we present an example of a Socratic proof in E*. On the margin we 
indicate the rule applied to the question that occurs in the same line. (Let us 
observe that there is no need to number the lines, since each question results from 
the previous one.) We refer to the rules in the standard notation. 
 
 

                                                 
12 � � .: [Wiśniewski:2004, p. 305]. 
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EXAMPLE 1.1: A Socratic proof of sequent ├ ((


 → � ) ∧ (�  → �

)) → (


 → 

�
) in 

calculus E*: 

? (├ ((


 → � ) ∧ (�  → �

)) → (


 → 

�
) )  R→→→→  

? ( (


 → � ) ∧ (�  → �

) ├  


 → 

�
 )   L∧∧∧∧  

? ( 


 → � , �  → �

 ├  


 → 

�
 )    R→→→→  

? ( 


 → � , �  → �

, 


 ├  

�
 )    L→→→→  

? ( ¬


, �  → �

, 


 ├  

�
 ;  � , �  → �

, 


 ├  

�
 )  L→→→→  

? ( ¬


, �  → �

, 


 ├  

�
 ;  � , ¬� , 
  ├  �

 ;  � , �
, 



 ├  

�
 ) 

 
The constituents of the last question of the above Socratic proof are of the forms 
(respectively): (c), (b) and (a) specified in Definition 1.4. If we recall the 
interpretation of sequents of L* as expressions concerning the relation of CPC-
derivability, we may say that sequents of any of the specified forms express 
certain basic properties of this relation. 

�
.� ., the first constituent: ‘¬


, �  → �
, 



 ├  �

’ expresses the fact that from ¬


 and 



 anything, 

�
 in particular, is CPC-

derivable, whereas the third constituent: ‘� , �
, 



 ├  

�
’ expresses the fact that a 

formula, 
�
, is derivable from itself. The last question of the above Socratic proof 

may be read as follows: “is it the case that: ¬


, �  → �

, 


 ├  

�
 and � , ¬� , 
  ├  �

 and � , �
, 



 ├  

�
 ?”. The answer to this question must be affirmative. Invertibility of the 

rules of E*, a property which we shall discuss in the next section, warrants that 
the answer to the initial question of the above Socratic proof is also affirmative. 
 
I.2.3 Semantical Invertibility of Rules 
 

Let us define the following auxiliary notion: a sequent of L*, �  ├ � , is 
CPC-

� � � � �
 iff �  is CPC-entailed by the set of terms of � .13 Every sequent which 

is of one of the forms (a), (b) or (c) of Definition 1.4 is easily seen to be CPC-
valid. It is also easy to check that: 

 
THEOREM 1.1: If question 

�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by a rule 

of E*, then 
� � � �

 term of Φ is CPC-valid iff 
� � � �

 term of Φ1 is CPC-valid.14 
 
That is, the rules of E* preserve 

� 	 � � �
 CPC-validity of the constituents of 

questions in both directions: from top to bottom and from bottom to top. From this 

                                                 
13 In [Wiśniewski:2004] the notion of an 	 � � � � � � � � � � � � L* � � � � � � � � � � � � � � � � � � � �  CPC-� � � 	 � � � � � �  is introduced in this context. However, an analogous semantical property of sequents 
has been defined in [Wiśniewski, Shangin:2006] and in [Wiśniewski, Vanackere, 
Leszczyńska:2005] as “validity”. We apply the latter convention. 
14 � � .: [Wiśniewski:2004, p. 306 and p. 311]. 
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result soundness of the calculus E* with respect to CPC-entailment (and hence 
also to CPC-derivability) follows by induction. 

The property attributed to the rules of E* in Theorem 1.1 is called their � � � � � � � � � � � � � � � � � � � � � � �
, as it is defined in semantical terms.15 Proving 

completeness of a calculus with semantically invertible rules occurs to be a 
(relatively) simple task, provided a decidable logic is concerned. In the paper 
[Wiśniewski:2004] a decision procedure is sketched and then it is shown how to 
obtain a “countermodel” (a falsifying CPC-valuation) if a Socratic proof has not 
been found. The same line of reasoning has been used in the completeness proof 
of erotetic calculi for paraconsistent logics CLuN and CLuNs.16 

Semantical invertibility of the rules of E* warrants that if a Socratic proof 
of a sequent of the form ‘�  ├ � ’ is obtained, it may be viewed as a positive 
solution to the problem: “is formula �  CPC-derivable from the set of terms of � ?”. If an attempt to find a Socratic proof starts with a question of the form ? (�  ├ � ) and ends with a question which has at least one constituent that is � 	 �

 of the 
required form ((a), (b) or (c)) and, moreover, no rule of E* may be applied to this 
question, then it may be easily shown that �  is not CPC-derivable from the set of 
terms of � . Hence calculus E* constitutes a method of solving logical problems 
expressed by the questions of language L*. Each such problem may be solved by 
a finite number of applications of the rules of E*. 

Invertible sequent calculi are perfect tools for proof-searching, as the 
“root-first” procedure, transforming a sequent to be derived into “axioms” (valid 
sequents) and / or unanalysable invalid sequents may be used almost 
mechanically. In [Wiśniewski:2004] it is shown how a Socratic proof in E* may 
be converted into a proof in a (Gentzen-style) sequent calculus G*. The axioms of 
calculus G* are of the form: 

(Ax1): �  ' �  ' �  �  �  
(Ax2): �  ' �  ' �  ' ¬�  ' � �  �  
(Ax3): �  ' ¬� ' �  ' �  ' �

 �  �  17 
The calculus G* is single-conclusioned, invertible and has no primary structural 
rules.18 

                                                 
15 Invertibility of rules may be defined purely syntactically as well. � .� . in [Negri, von Plato: 2001, 
p.19] by � � � � � � � � � � � � � � � 	 � � � � � � � � 	 � � � � � � the following is meant: “From the derivability of a 
sequent of any of the forms given in the conclusions of the logical rules, the derivability of its 
premisses follows.” Invertible rules may be also called “equivalent” rules (� .� . in 
[Konikowska:2002]) or symmetric rules (� � . for example [Sundholm:2001], where Kleene’s 
sequent calculus for classical first-order logic with invertible rules is called a “symmetric 
calculus”). 
16 For the details of the proofs we refer to [Wiśniewski:2004] and [Wiśniewski, Vanackere, 
Leszczyńska:2005]. 
17 � � . [Wiśniewski:2004, pp. 313-316]. It is also shown how the axiomatic basis of G* may be 
simplified. 
18 In [Negri, von Plato: 2001, pp. 48-60, 114-121] an invertible sequent calculus for CPC (called 
G3cp) as well as single-conclusioned sequent calculus for CPC (G3ip+Gem-at) may be found but 
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I.3 A Right-Sided Approach: Calculus E**
 

 
We present the right-sided version of erotetic calculus for CPC which we 

call calculus E**.19 The rules of E** are discussed in Section I.3.1, together with 
the soundness and completeness results. We omit all the proofs in this section, for 
these are either a reformulation of what has been presented in [Wiśniewski:2004] 
or a particular case of what is proved for the more general case of modal logics in 
the later parts of this work. Section I.3.2 is devoted to a certain consequence of the 
invertibility of the rules of E**. 
 
I.3.1 Language L** and the Rules of E** 

 
The calculus is worded in language L** which has the same vocabulary as 

language L*. By a 
� � � � � � � 	 �

L** we mean an expression of the form: 

(1.7) ├ �  
where �  is a finite and non-empty sequence of formulas of L. The sequents of L** 
are 

� � � � � � � � � � �
 only. We may also think of the sequents of L** as of both-sided 

sequents with the empty sequence left of the turnstile. Right-sided sequents are 
intuitively interpreted in terms of entailment, but since the left side of (1.7) is 
empty, the interpretation “narrows down” to CPC-validity.20 Hence what is 
expressed by a sequent of the form (1.7) is that under each CPC-valuation one of 
the terms of �  is true. This amounts to CPC-validity of the disjunction of the 
terms of � . If a sequent, ├ � , has this property, that is, if for each CPC-valuation �
 at least one term of �  is true under �

, then we will say that sequent ├ �  is CPC�� � � � �
. If a sequent is not CPC-valid, then we will say that it is CPC

� � � � � � � �
. 

As in the case of L*, wffs of L** are: declarative wffs and questions. � � 	 � � � � � � � � � 	 �
L** are sequents of L**, 

� 	 � 
 	 � � � � � � � � � 	 �
L** are built from 

atomic d-wffs by means of & and / or ng in the same way the compound d-wffs of 
L* are built (

� �
. Definition 1.3). Questions of L** are expressions of the form: 

(1.3)  ? (ϕ1, …, ϕ
�
) 

                                                                                                                                      
none of the calculi has both these features. G3cp is a multi-conclusioned – or “multisuccedent” in 
the authors terminology – sequent calculus (more than one formula is allowed in a succedent of a 
sequent). Thus sequents of G3cp are given denotational interpretation. Calculus G3ip+Gem-at is 
built upon intuitionistic sequent calculus G3ip by the addition of an invertible rule corresponding 
to the law of excluded middle. Sequents are single-conclusioned (“singlesuccedent”) but the rules 
for ∨-introduction on the right side and →-introduction on the left side are not invertible. 
19 The idea to present erotetic calculi in a right-sided format comes from Andrzej Wiśniewski. The 
very construction of the calculus E** has been also discussed during seminars with Andrzej 
Wiśniewski. 
20 In the general case, a sequent of the form: �  ├ �  is interpreted in the following way: the 
conjunction of the terms of �  entails the disjunction of the terms of � . (This is the � � � � � 	 � � � � 	 �
interpretation of sequents. � � . footnote 9.) 
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where ϕ1, …, ϕ
�
 are sequents of language L**. We apply all the notational 

conventions introduced in Sections I.2.1 and I.2.2 (including the convention 
concerning the concatenation-signs ‘'’ and ‘;’ ). 

We present the rules of E** in the α-, β-notation again. The rules in the 
standard notation are presented in Appendix 2. 

 
Rαααα:           ? (Φ; ├ �  ' α ' � ; Ψ)       Rββββ:     ? (Φ; ├ �  ' β ' � ; Ψ) 
  

? (Φ; ├ �  ' α1 ' � ; ├ �  ' α2 ' � ; Ψ)  ? (Φ; ├ �  ' β1 ' β2 ' � ; Ψ) 
 
R¬¬¬¬¬¬¬¬:  ? (Φ; ├ �  ' ¬¬�  ' � ; Ψ) 
 

   ? (Φ; ├ �  ' �  ' � ; Ψ) 
 
As in the case of calculus E*, rules of E** transform questions into  

questions. A rule is always applied with respect to one constituent of a question 
and an application of the rule results in decomposing a formula occurring in this 
constituent into its component(s). What we now mean by “decomposition” is that 
the relevant formula of the constituent of the “question-premise” is replaced by its 
component(s); this may be accompanied with an introduction of another 
constituent to the “question-conclusion”. 

For convenience, we introduce the notion of a Socratic transformation.21 
 

DEFINITION 1.5: A finite sequence <
�
1, …, 

� �
> of questions of L** is a � 	 � � � � � � � � � � � � 	 � � � � � 	 � 	 � � � � � � � � 	 � �

 
� � � � � � � � � � � 	 �

E** iff 
�
1 = 

�
, and 

� �
+1 

results from 
� �
 (1 ≤ 

�
 < 

�
) by an application of a rule of E**. 

 
The notion of a Socratic proof may now be defined as follows: 
 

DEFINITION 1.6: Let ├ �  be a sequent of L**. A � 	 � � � � � � 
 � 	 	 � 	 �
├ �  in E** is 

a finite Socratic transformation 
�
 of the question ? (├ � ) via the rules of E** such 

that for each constituent ϕ of the last question of 
�
: 

(a) ϕ is of the form ├ �  ' �  ' �  ' ¬�  ' �
, or 

(b) ϕ is of the form ├ �  ' ¬� ' �  ' �  ' �
. 

 
We present two examples of Socratic transformations via the rules of E**. 

 
 
 
 

                                                 
21 The notion has been introduced in [Wiśniewski, Vanackere, Leszczyńska:2005] and has been 
used also in [Wiśniewski, Shangin:2006] and [Leszczyńska:2004]. 
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EXAMPLE 1.2: A Socratic transformation of question 
? (├ (



 → � ) → ((
  ∧ ¬� ) → �

) ) 
 

? (├ (


 → � ) → ((
  ∧ ¬� ) → �

) )   R→→→→ 

? (├ ¬(


 → � ), (
  ∧ ¬� ) → �

 )   R→→→→  

? (├ ¬(


 → � ), ¬(
  ∧ ¬� ), �

 )   R¬¬¬¬∧∧∧∧  

? (├ ¬(


 → � ), ¬


, ¬¬� , �
 )    R¬¬¬¬¬¬¬¬  

? (├ ¬(


 → � ), ¬


, � , �
 )    R¬¬¬¬→→→→  

? (├ 


, ¬



, � , �

 ; ├ ¬� , ¬

, � , �

 ) 

 
EXAMPLE 1.3: A Socratic transformation of question 
? (├ (¬



 → (



 ∧ � )) → (
  ∧ � ) ) 

 
? (├ (¬



 → (



 ∧ � )) → (
  ∧ � ) )   R→→→→ 

? (├ ¬(¬


 → (



 ∧ � )), 
  ∧ �  )   R¬¬¬¬→→→→ 

? (├ ¬


, 



 ∧ �  ; ├ ¬(
  ∧ � ), 
  ∧ �  )   R∧∧∧∧  

? (├ ¬


, 



 ; ├ ¬



, �  ; ├ ¬(
  ∧ � ), 
  ∧ �  ) 

 
The first Socratic transformation is a Socratic proof of the sequent ├ (



 → � ) → 

((


 ∧ ¬� ) → �

) in calculus E**. The second Socratic transformation is not a 
Socratic proof of the corresponding sequent, as the second constituent of the last 
question of this transformation does not have a required form. What is more, since 
only literals occur in this sequent, it is easy to find a CPC-valuation that 
“invalidates” the sequent. This observation may be generalized: 
 
COROLLARY 1.1: Let ϕ = ├ �  be a sequent of L**. 

(i) If ϕ is of the form (a) ├ �  ' �  ' �  ' ¬�  ' �
, or of the form (b) ├ �  ' ¬�  ' �  ' �  ' �

, then ϕ is CPC-valid. 
(ii) If ϕ is of neither of the forms: (a), (b), and each term of �  is a literal, 

then ϕ is CPC-invalid. 
 

The following lemma is also easily seen to be true. 
 
LEMMA 1.1 (

� � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 �
E**): If question 

�
1 = ? (Φ1) 

results from question 
�
 = ? (Φ) by a rule of E**, then each term of Φ is CPC-

valid iff each term of Φ1 is CPC-valid. 
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The proof is by cases, analogously to the proof of Theorem 1.1.22 From 
Corollary 1.1 (i) and Lemma 1.1, soundness of calculus E** follows by induction. 

For the completeness result it suffices to observe that the process of 
constructing a Socratic transformation 

� � �
 the rules of E** must be finite. We 

sketch the reasons for this claim. Successive applications of the rules of E** result 
in the decomposition of the formulas occurring in the constituents of questions. 
This means, by and large, that after each application of a rule an occurrence of a 
binary connective or an occurrence of the double negation is eliminated. 
Therefore after each application of a rule the degree of complexity of a formula in 
some constituent decreases.23 However, the number of occurrences of logical 
connectives in formulas of a constituent of a question is finite and so is the 
number of possible applications of rules of E** in a Socratic transformation. 
Completeness follows from this result, Corollary 1.1 (ii) and Lemma 1.1. 
 
I.3.2 Semantical Invertibility – Semantical Duality 
 

As we have noted above, the interpretation of sequents of L** is 
denotational – a general reading of a right-sided sequent, ├ � , is that each CPC-
valuation makes true at least one of the terms of � . The rules of E** may be also 
interpreted in such semantical terms. Let us consider rule R∧∧∧∧ as an example. The 
rule has the following form: 
 
R∧∧∧∧:      ? (Φ; ├ �  ' �  ∧ � ' � ; Ψ) 
 

? (Φ; ├ �  ' � ' � ; ├ �  ' �  ' � ; Ψ) 
 
Let 

�
 stand for an arbitrary CPC-valuation. We may observe that if there is a 

formula in sequence �  ' �  ∧ �  ' �  that is true under �
, then in sequence �  ' �  ' �  

there is a formula true under 
�
 and in sequence �  ' �  ' �  there is a formula true 

under 
�
. On the other hand, if in both sequences �  ' �  ' �  and �  ' �  ' � , there is a 

formula true under 
�
, then there is a term of �  ' �  ∧ �  ' �  true under �

. In other 
words, rule R∧∧∧∧ expresses the necessary 

� � �
 sufficient conditions for a sequent of 

the form ├ �  ' �  ∧ � ' �  to be CPC-valid. Under this reading of the rule the 
comma separating formulas in sequents corresponds to meta-disjunction. The 
concatenation-sign: ' for sequences of formulas has a disjunctive reading as well, 
whereas the second concatenation-sign ‘;’ corresponds to meta-conjunction. 

This, however, is not the only way in which we can interpret rule R∧∧∧∧. If 
one thinks of formula �  ∧ �  as false under a certain CPC-valuation, one may 
observe the following: all the formulas occurring in sequence �  ' �  ∧ � ' �  are 
                                                 
22 � � . [Wiśniewski:2004]. 
23 In Section III.4 of Chapter III we introduce the notion of degree of complexity of a formula 
which we find most adequate in a context like the one above. We have omitted the details here, 
since they will be repeated for the more general case of modal logics in Chapter III. 
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false under a certain CPC-valuation 
� � �
 each term of sequence �  ' �  ' �  is false 

under this CPC-valuation 
	 �
 each term of sequence �  ' �  ' �  is false under this 

CPC-valuation. Obviously, under this reading of rule R∧∧∧∧ the interpretation of the 
concatenation-signs switches: the sign ‘'’ (as well as the comma) corresponds to 
meta-conjunction, whereas the semicolon ‘;’ corresponds to meta-disjunction. 

The duality of the interpretation of the rules of E** is due to their 
invertibility. To sum up, invertible rules may be interpreted: 

A  as stating the 
� � � � � � � � � � � � � � � � � � � � � �

 conditions for a sequent to be 
CPC

� � � � � �
; 

or 

B  as stating the 
� � � � � � � � � � � � � � � � � � � � � �

 conditions for a sequent to be 
CPC

� � � � � � � �
. 

A and B may be called, respectively, the 
� � � � � �

 and the 
� � � � � � � �

 reading of the 
method of Socratic proofs. The observations presented here pertain to calculus E* 
as well. However, certain consequences of this duality of interpretation, such as 
the disjunctive nature of ‘'’ under interpretation A, are blurred by the fact that 
sequents of L* are single-conclusioned. 

Rules of erotetic calculi for logics richer than CPC are also semantically 
invertible. Let us present the following rules of the right-sided calculus ERPQ 
pertaining to classical first-order logic:24 
 
R∀∀∀∀:  ? (Φ; ├ �  ' ∀� �

 �  ' � ; Ψ)  where � �
 is free in �  and τ is an 

      individual parameter that does not 
? (Φ; ├ �  ' � (� �  / τ) ' � ; Ψ)  occur in the terms of �  ' ∀� �

 �  ' �   
 
R∃∃∃∃:        ? (Φ; ├ �  ' ∃� �

 �  ' � ; Ψ)  where � �
 is free in �  and τ is an 

      arbitrary individual parameter 
? (Φ; ├ �  ' ∃� �

 �  ' � (� �  / τ) ' � ; Ψ) 
 
Again, it is easy to observe that the rules R∀∀∀∀ and R∃∃∃∃ may be viewed as stating the 
necessary and sufficient conditions for a relevant sequent to be valid, or as stating 
the necessary and sufficient conditions for a relevant sequent to be invalid. (Of 
course, the notion of validity of a sequent must be now relativized to the 
semantics of first-order logic.) In the case of rule R∃∃∃∃, formula ‘∃� �

 � ’ must be 
rewritten in the relevant constituent of the “question-conclusion” in order to 
warrant invertibility of the rule. As we shall see in Section II.2 of Chapter II, the 
situation is similar in the case of erotetic rules for modal operators. 

Let us go back to calculus E**. If we think of interpretation A, the method 
of Socratic proofs for CPC in the right-sided version may be quite naturally 
                                                 
24 � � .: [Wiśniewski:2005]. Calculus ERPQ is a right-sided version of calculus EPQ presented in 
[Wiśniewski, Shangin:2006]. The rules R∀∀∀∀ and R∃∃∃∃ of calculus E

PQ are also semantically invertible. 
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viewed as a formalization of the procedure of deriving a conjunctive normal form 
of a given formula.25 For example, the last term of the Socratic transformation of 
question: 

(1.8)  ? (├ (


 → � ) → ((
  ∧ ¬� ) → �

) ) 

which we presented above (Example 1.2) had the form: 

(1.9)  ? (├ 


, ¬



, � , �

 ; ├ ¬� , ¬

, � , �

 ) 

Reading the comma as the disjunction and the semicolon as the conjunction we 
obtain: 

(1.10)  (((


 ∨ ¬



) ∨ � ) ∨ �

) ∧ (((¬�  ∨ ¬

) ∨ � ) ∨ �

) 

that is, a conjunctive normal form of the formula concerned in question (1.8). 
However, following interpretation B it is also possible, though less natural, 

to read a Socratic transformation of a question ? (├ � ) as a derivation of a 
disjunctive normal form of formula ‘¬� ’. What is needed in order to make this 
reading sensible is to make the following change in the last question of such a 
transformation: the propositional variables must be changed into their negations 
and the negations of propositional variables must be changed into their arguments. �
.� . the formula: 

(1.11)  (((¬


 ∧ 



) ∧ ¬� ) ∧ ¬�

) ∨ (((�  ∧ 
 ) ∧ ¬� ) ∧ ¬�
) 

is a disjunctive normal form of the formula: ¬((


 → � ) → ((
  ∧ ¬� ) → �

)). As a 
matter of fact, the duality of the interpretations of the method of Socratic proofs 
may now be seen to be a consequence of the dual nature of the conjunction and 
the disjunction connectives. 
 
I.4 The Method of Socratic Proofs and Inferential Erotetic Logic 

 
The rules of erotetic calculi formalize certain inferential relations between 

questions. These relations may be analysed further on the grounds of the logic 
IEL. In particular, it may be shown that the inference that takes place when a rule 
of an erotetic calculus is applied to a question is, in a sense, a valid erotetic 
inference. Below we discuss very briefly the main results of such an analysis of 
calculus E* on the grounds of IEL. Basically, we summarize, as before, the 
developments that may be found in [Wiśniewski:2004]. Again, our aim is to 
present the main idea and thus we do not go into details. 

The analysis proceeds by developing a semantics for the declarative part of 
L*, which is then used to define some semantical concepts pertaining to questions 
of L*. The semantics for language L* is based on the notion of an 

� � � � � � � � � �
                                                 
25 From this point of view calculus E** is an “erotetic formulation” of the method of diagrams of 
formulas presented in [Rasiowa, Sikorski: 1963, pp. 264-269]. 
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 � � � � � � 	 � 	 � � � � � � � � � �
.26 This is defined as follows. Let DL* be the set of all d-

wffs of L*. A 

 � � � � � � 	 �

P
	 �
DL* is an ordered pair <TP, UP> such that: (a) TP ∩ 

UP = ∅; and (b) TP ∪ UP = DL*. Intuitively, the set TP consists of “truths” and the 
set UP – of “untruths” of partition P. A partition is 

� � � � � � � � � �
 provided it satisfies 

certain conditions which are relativized to the semantics of the underlying 
language L. Now the following notion may be defined: a d-wff 

�
 of L* 

� � � � � � �
 a 

d-wff �  of L* iff for each admissible partition P = <TP, UP> of language L*, if �
 

∈ TP, then �  ∈ TP. 
The central notion pertaining to the erotetic part of L* is that of positive 

equipollence of questions. A question, 
�
, is 


 	 � � � � � � � � � � � � 
 	 � � � � � � 	
 a question, �

1, iff the affirmative answers to 
�
 and 

�
1 entail each other and the negative 

answers to 
�
 and 

�
1 entail each other. It may be proved that if question 

�
1 results 

from question 
�
 by a rule of E*, then question 

�
1 is positively equipollent to 

question 
�
. Moreover, the relation of positive equipollence of questions is a 

special case of the relation of pure erotetic implication of a question by a question. 
Hence if question 

�
1 results from question 

�
 by a rule of E*, then question 

�
1 is 

erotetically implied by question 
�
 on the basis of the empty set of declarative 

premises. 
This “erotetic” analysis of the inferential rules of E* may be extended so 

that it will cover calculus E** as well. We will not do it here, however. In Section 
II.4 of Chapter II, we present the basic definitions needed for such an analysis of 
erotetic calculi for modal logics. Since these are based on the calculus E**, 
suitable definitions pertaining to E** may be extracted from what is presented 
there. 

Finally, let us emphasize that the very construction of the rules of an 
erotetic calculus is significant from the point of view of IEL, since the 
construction must warrant that the inferential relation between a “question-
premise” and a “question-conclusion” satisfies the conditions of its validity as 
defined on the grounds of IEL. Semantical invertibility of the rules seems to be 
essential for these conditions to hold. 
 

                                                 
26 � � . [Wiśniewski:2004, p. 319]. Further references may be found in this paper. 
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CHAPTER II: Erotetic Calculi for Normal Modal Propositional 

Logics
27
 

 
 
 
 
 
 
 
In this chapter we adjust the method of Socratic proofs to modal logics: K, 

D, T, KB, K4, S4 and S5. Logic K is the weakest normal modal logic 
semantically characterized by the class of all Kripke frames. For the sake of 
brevity, we have chosen only six of the well known proper extensions of K. The 
method, however, may be easily adjusted to any of the so-called basic normal 
modal logics.28 

Before we continue, let us recall some widely known facts concerning 
modal logics. In each normal modal logic 



 ╞ □



 holds, where the sign ‘╞’ refers 

to derivability or global entailment,29 although in most of them it is not the case 
that ╞ 



 → □



.30 It is easy to observe that if we allowed the rules of a modal 

erotetic calculus to “switch” formulas from the right to the left of the turnstile (as 
it happens in the case of calculus E*), it would be difficult to maintain the 
interpretation of ‘├’ as representing derivability, or otherwise the rules would not 
be invertible. Hence we allow the rules of the calculi to analyse formulas on the 
right of the turnstile only, that is, we choose the right-sided calculus E** as a 
“basis” for a modal erotetic calculus. Consequently, the turnstile symbol will be 
given the denotational interpretation. The symbol may be taken to express 

�
-

                                                 
27 An early version of this chapter has been published as [Leszczyńska:2004]. There is, however, 
an essential difference between the two versions, which concerns the account of transitive logics: 
K4, S4 and S5. 
28 By basic normal modal logics we mean K and all of its proper extensions characterized by any 
combination of the following properties imposed on the accessibility relation: extendability, 
reflexivity, transitivity, symmetry and euclideaness. There are exactly fifteen different basic modal 
logics: K, D, T, KB, DB, B, K4, D4, S4, KB4, S5, K5, D5, K45, D45. (The notation we have 
used here comes from: [Goré:1999].) 
29 The notions of local and global entailment are defined for K as follows: a formula �  is � � � 	 � � �� � � 	 � � � �  by a set of formulas �  iff for each Kripke model < � , � , � > and for every �  ∈ � , if every 
element of �  is true in � , then �  is true in � . A formula �  is � � � � 	 � � � � � � 	 � � � �  by a set of formulas �  iff for each Kripke model, if every element of �  is true in a model, then �  is true in the model. 
Both notions are relativized to a logic �  by imposing suitable conditions on � . The syntactical 
relation of derivability of a formula �  from axioms of a modal logic �  and a set of formulas �  is 
complete with respect to the relation of global � -entailment of �  from � . 
30 This simple example illustrates the fact that the Deduction Theorem for modal logics does not 
usually hold in the standard form. See, � .� ., [Fitting:1983, pp. 77-81] or [Perzanowski:1973]. 
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validity of a formula (where 
�
 stands for a modal logic), that is � � 	 � � �

 
�
-

entailment of a formula from the empty set. Such a construction of an erotetic 
calculus may be extended further in order to include global 

�
-entailment from 

non-empty sets, and this is what we partially aim at. We will not do it here, 
however.31 

Our plan is the following. In Section II.1 we characterize language M* of 
modal erotetic calculi. The calculi are presented in Section II.2, and in Section II.3 
we address the problem of their soundness. We prove completeness of the calculi 
in Chapter III. 
 
II.1 Language M* 

 
The vocabulary of the language of modal propositional logics contains: the 

elements of 
� � �

; logical constants: ¬, ∧, ∨, →, □ (necessity operator), ◊ 
(possibility operator); and parentheses: (, ). The language will be designated by 
M. More precisely, 

� � � � � � � �
M is the smallest set satisfying the following 

conditions: � � � � � �
 ⊆ M; � � � �

if �  ∈ M, then ‘¬� ’, ‘□� ’, ‘◊� ’ ∈ M; � � � � �
if � , �  ∈ M, then ‘(�  ∧ � )’, ‘(�  ∨ � )’, ‘(�  → � )’ ∈ M. 

The elements of M are called 
� 	 � � � � � � 	 �

M. 
Similarly as before, we use 



, � , �

, … for propositional variables, and � , � ,� , … as metavariables for formulas of M. When writing the formulas of M, we 
apply the usual conventions concerning omitting parentheses. 

Following Fitting ([Fitting:1983]), we extend the α-, β-notation with the 
assignments presented in Table 2: 

 
ν ν0 π π0 
□� � ◊� �
¬◊� ¬�  ¬□� ¬�� � � � � �

 
Formula ν0 (π0) is called the 

� 	 � 
 	 � � � � 	 �
a ν-formula (π-formula). 

                                                 
31 Of course, another solution is possible here: the turnstile symbol could be taken to represent the 
relation of local entailment, another sign would be needed then to represent the relation of global 
entailment, were the construction extended. (Tableau system with such a construction may be 
found in [Fitting: 1983, pp. 70-74].) We do not follow this line. However, modal erotetic calculi 
with both-sided sequents, based on the construction of erotetic calculus EPQ pertaining to first-
order logic, may be quite easily obtained from what is presented in [Wiśniewski, Shangin:2006] 
and here. 
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As previously, language M will be extended to a language of modal 
erotetic calculi. 

 
II.1.1 Syntax of M* 
 

The vocabulary of M* includes the vocabulary of M, the signs: ├, ?, &, 
ng, and the numerals 1, 2, … . Sequences of numerals will be called 

� � � � � � �
. 

The role of the indices is twofold. First, we use numerals as “indicators” of 
possible worlds of a Kripke frame. Second, the order in which the numerals occur 
in an index gives us a partial description of the accessibility relation in the frame. 
Indices will be subscribed to formulas of M and they will carry semantical 
information concerning the particular formulas. Thus we will use indexed 
formulas as expressions of M*. More specifically, if �  is a formula of M and <�

1, 
…, 

� �
> is a finite, non-empty sequence of numerals (that is, an index), then an 

expression of the form: 

(2.1) (� )�
1, …, 

� �
 

is an 
� � � � � � � � 	 � � � � �

 of M*. According to the above definition, indices do not 
occur inside indexed formulas of M*. Moreover, indexed formulas do not occur 
within the scopes of propositional connectives and modalities. 

Till the end of this chapter we use � , � , … for finite sequences of indexed 
formulas. For convenience, we adopt the following convention. In a 
metalinguistic expression of the form: 

(2.2) (� )φ(� �
) 

symbol φ(
� �
) represents a finite sequence of numerals which has numeral 

� �
 as its 

last term. Thus the expression (� )φ(� �
) represents any indexed formula of the form: 

(� )�
1, …, 

� �
, where 

�
 ≥ 1. For example, indexed formulas: (



)3, (



 → � )1,2,3 and 

(□


)1,3 are represented by the expression: (� )φ(3). When referring to possibly 

different sequences ending with the same numeral we use two expressions with 
different Greek letters: φ(

�
) (or φ(

� �
)) and γ(

�
) (γ(

� �
)). 

Language M* has declarative and erotetic well-formed formulas. � � 	 � � �� � � � � � 	 �
 M* are right-sided sequents, that is, expressions of the form: 

(2.3) ├ �  
where �  is a finite and non-empty sequence of indexed formulas. As before, we 
will write: 

(2.4)  ├ (� 1)φ(
�
1), …, (� �

)φ(
� �
)  

instead of: ├ <(� 1)φ(
�
1), …, (� �

)φ(
� �
)>. Among sequents of M* we distinguish the 

class of 
� � 	 � � �

 
� � � � � � � �

 which are of the form: 

(2.5) ├ (� )1 
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� 	 � 
 	 � � � � � � � � � 	 �
M* are built up from atomic d-wffs of M* by means of & 

and / or ng in a way described previously (
� �
. Definition 1.3, Section I.2.1). 

Erotetic wff-s, that is, � � � � � � 	 � � 	 �
 M*, are of the form: 

(2.6) ? (Φ) 

where Φ stands for a finite and non-empty sequence of sequents of M*. We write: 

(2.7)  ? (ϕ1, …, ϕ
�
) 

instead of ? (<ϕ1, …, ϕ
�
>). Sequents ϕ1, …, ϕ

�
 are called the

� 	 � � � � � � � � � � 	 �� � � � � � 	 �
 (2.7). For simplicity, we use notions of a one-sequent question and a 

many-sequent question. A 
	 � � � � � � � � � � � � � � � � 	 � 	 �

M* is a question that has 
exactly one constituent, and a 

� � � � � � � � � � � � � � � � � � 	 � 	 �
M* is a question that has 

more than one constituent. 
Following the conventions introduced previously (Section I.2.1), we use 

Greek lower-case letters ϕ, ψ as metalinguistic variables for sequents of M*, 
Greek upper-case letters Φ, Ψ for finite (possibly empty) sequences of sequents of 
M*, and 

�
, 

�
*, 

�
1 for questions of M*. 

 
II.1.2 A Bit of Semantics 

 
The intended reading of the turnstile symbol ‘├’ as a sign of the object-

level language M* is more complex than in the case of languages L* and L**. 
Consequently, we will interpret sequents of M* in a way which requires some 
explanation. Hence we shall explicate below our understanding of the turnstile ‘├’ 
by defining the notion of an interpretation of a sequent in a frame. Then we will 
introduce the notion of validity of a sequent of M*, which we are going to use 
when we proceed to semantical invertibility of the rules and to the proof of 
soundness. 

In the case of language M we make use of standard notions of Kripke’s 
semantics. By a 

� � � � �
 we mean an ordered pair <

�
, 

�
>, where 

�
 is a non-empty 

set and 
�
 is a binary relation in 

�
. The elements of 

�
 are called 


 	 � � � � � � � 	 � � � �
 

and relation 
�
 is called 

� � � � � � � � � � � � � � � � � � � 	 �
. If <

�
, 

�
> is a frame, then by a <

�
, �

>-
� � � � � � � � � �

 we mean a function defined over 
� � �

 × 
�
 with values in {0, 1}. 

We define the following: 
 
DEFINITION 2.1: If 

�
# is a <

�
, 

�
>-assignment, then an extension of 

�
# over 

M × 
�
 that satisfies, for every 

�
 ∈ 

�
, the following conditions: 

1) 
�
(¬� , �

) = 1 iff 
�
(� , �

) = 0; 

2) 
�
(α, 

�
) = 1 iff 

�
(α1, 

�
) = 1 and 

�
(α2, 

�
) = 1; 

3) 
�
(β, 

�
) = 1 iff 

�
(β1, 

�
) = 1 or 

�
(β2, 

�
) = 1; 

4) 
�
(ν, 

�
) = 1 iff for each 

�
* ∈ 

�
 such that <

�
, 

�
*> ∈ 

�
, 

�
(ν0, 

�
) = 1; 
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5) 
�
(π, 

�
) = 1 iff there is 

�
* ∈ 

�
 such that <

�
, 

�
*> ∈ 

�
 and 

�
(π0, 

�
) =1 

is a 
� � � � � � � 	 � 	 � � � � � � �

 <
�
, 

�
>. � � 	 � � �

 <
�
, 

�
, 

�
> is a frame <

�
, 

�
> together 

with a valuation 
�
 on it. 

 
The letter 

�
 will stay for any of: K, D, T, KB, K4, S4, S5. By ‘

�
-

properties’ we mean the properties of the accessibility relation that are 
characteristic to a given logic 

�
. These are listed below. 

 
Logic 

�
:  

�
-properties: 

 
K   no properties 
D   extendability 
T   reflexivity 
KB   symmetry 
K4   transitivity 
S4   transitivity and reflexivity 
S5   transitivity, reflexivity and symmetry 
 
In what follows we may sometimes use the expression 

� � � � � � � � � � � � � � �
(

� � � � � � � � � � � � � � �
, 

� � � � � � � � � � � � � �
, 

� � � � � � � � �
 

� � � � �
) in order to refer to a frame 

<
�
, 

�
> with 

�
 extendable (transitive, reflexive, symmetric). 

We shall say that a formula � is 
� � � � � � � � 	 � � � � 	 � � � 	 � � �

<
�
, 

�
, 

�
> 

(or that it 
� 	 � � � � � �

) iff 
�
(� , �

) = 1. A formula �  is � � � � � � � � � 	 � � �
<

�
, 

�
, 

�
> 

iff for every 
�
 ∈ 

�
, 

�
(� , �

) = 1. A formula �  is K� � � � � �
 iff �  is valid in every 

model. The notions of D-, T-, KB-, K4-, S4-, S5-validity of a formula of M are 
defined as usual. Generally, a formula �  of M is �

-
� � � � �

iff �  is valid in every 
model <

�
, 

�
, 

�
> in which 

�
 has the 

�
-properties. 

Let ϕ be a sequent of M* of the form: ├ (� 1)φ(
�
1), …, (� �

)φ(
� �
). The sets 

IW{ϕ} and IR[ϕ] are defined as follows: 

� IW{ϕ} = {
�
: 

�
 is a term of some φ(

� �
), where 1 ≤ 



 ≤ 

�
} 

� IR[ϕ] = {<
�
, 

�
’>: 

�
 immediately precedes 

�
’ in some φ(

� �
), where 1 ≤ 



 ≤ 

�
} 

 
Thus, if ϕ = ├ �  is a sequent of M*, then IW{ϕ} is the set of all the numerals that 
occur in indices of terms of � , and IR[ϕ] is the set of all the ordered pairs <�

, 
�
’> 

such that 
�
 immediately precedes 

�
’ in an index of a term of � . The idea is simple. 

For a sequent ϕ and a frame <
�
, 

�
> we are going to map the set IW{ϕ} into 

�
, 

and, analogously, the set IR[ϕ] – into 
�
. We shall call such a mapping an 

interpretation of sequent ϕ in frame <
�
, 

�
>. More formally: 

 
DEFINITION 2.2: Let ϕ be a sequent of M*. By an 

� � � � � 
 � � � � � � 	 � 	 �
 sequent ϕ 

� �
 

a frame <
�
, 

�
> we mean a function 

�
: IW{ϕ} a 

�
 satisfying the following 

condition: 
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(*) if <
�
, 

�
> ∈ IR[ϕ], then <

�
(

�
), 

�
(

�
)> ∈ 

�
 

We say that a sequent ϕ is 
� � � � � 
 � � � � � � � � �

a frame <
�
, 

�
> iff there exists an 

interpretation of ϕ in <
�
, 

�
>. 

 
For clarity, let us note the following propositions about sequents and their 

interpretations. 
 
PROPOSITION 2.1: It may happen that a sequent is not interpretable in a frame. �
.� ., if a sequent ϕ is such that the set IR[ϕ] is non-empty and a frame < �

, 
�
> is 

such that 
�
 is empty, then, in view of condition (*) of Definition 2.2, there is no 

interpretation function of ϕ in <
�
, 

�
>. 

 
PROPOSITION 2.2: For every sequent ϕ there exists a frame <

�
, 

�
> such that ϕ 

is interpretable in <
�
, 

�
>. 

As an illustration we give a “recipe” for constructing, for a given sequent 
ϕ: (

�
) a certain frame <

�
, 

�
>, and (

� �
) an interpretation of ϕ in <

�
, 

�
>. Namely, 

we put: (
�
) 

�
 = IW{ϕ} and 

�
 = IR[ϕ], and (

� �
) the identity function 

�
: IW{ϕ} a 

�
 

as the interpretation of ϕ in <
�
, 

�
>. 

A frame constructed for a sequent ϕ according to (
�
) will be called a � � � 	 � � � � � � � � � � � 	 �

ϕ, and an interpretation of ϕ in its canonical frame, 
constructed according to (

� �
), will be called the 

� � � 	 � � � � � � � � � � 
 � � � � � � 	 � 	 �
ϕ 

� � � � �� � � 	 � � � � � � � � � �
. 

 
PROPOSITION 2.3: Every sequent ϕ such that IR[ϕ] is empty is interpretable in 
every frame <

�
, 

�
>, as condition (*) of Definition 2.2 is vacuously satisfied. 

Indeed, in such a case 
� � �

 function 
�
: IW{ϕ} a 

�
 is an interpretation of ϕ in <

�
, �

>. 
 
The notion of validity of a sequent is relativized both to a frame and to an 

interpretation of the sequent in this frame. We shall start with a more elementary 
notion of satisfaction of a sequent in a model, which is also relativized to an 
interpretation of a sequent. Namely: 
 
DEFINITION 2.3: Let <

�
, 

�
> be a frame and let 

�
 be a valuation on <

�
, 

�
>. A 

sequent ϕ = ├ (� 1)φ(
�
1), …, (� �

)φ(
� �
) is 

� � � � � � � � � � � � � 	 � � �
 <

�
, 

�
, 

�
> 

� � � � � � �� � � � � 
 � � � � � � 	 �
 

�
 

	 �
ϕ

� � � � � � �
<

�
, 

�
> iff for some 



 (1 ≤ 



 ≤ 

�
): 

�
(� �
, 

�
(

� �
)) = 1. 

 
Now we may say that a sequent, ϕ, is 

� � � � � � � � � � � � �
 <

�
, 

�
> 

� � � � � � �� � � � � 
 � � � � � � 	 �
 

� 	 �
ϕ

� �
<

�
, 

�
> iff for every valuation 

�
 on frame <

�
, 

�
>, the 

sequent ϕ is satisfied in a model <
�
, 

�
, 

�
> under interpretation 

�
 of ϕ in frame 

<
�
, 

�
>. And we will say that a sequent, ϕ, is 

� � � � � � � � � � � � �
 <

�
, 

�
> iff ϕ is 

valid in <
�
, 

�
> under every interpretation 

�
 of ϕ in <

�
, 

�
>. 
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Let us observe that, according to the above definitions, sequent ϕ is not 
valid in a frame <

�
, 

�
> iff there exists an interpretation 

�
 of ϕ in <

�
, 

�
> such 

that ϕ is not valid in <
�
, 

�
> under 

�
. Therefore we have: 

 
COROLLARY 2.1: If a sequent ϕ is not interpretable in a frame <

�
, 

�
>, then ϕ is 

valid in <
�
, 

�
>. 

 
We will also say that a sequent, ϕ, is K

� � � � � �
 iff ϕ is valid in every frame. 

The notion of K-validity of a sequent of M* may be easily adjusted to any 
�
. 

Namely, we say that a sequent ϕ is 
� � � � � � �

 iff ϕ is valid in every frame <
�
, 

�
> 

such that 
�
 has the 

�
-properties. 

The following corollary immediately follows from the above definitions: 
 

COROLLARY 2.2: A sequent ϕ is not 
�
-valid iff for some model <

�
, 

�
, 

�
>, 

where 
�
 has the 

�
-properties, and for some interpretation 

�
 of ϕ in frame <

�
, 

�
>, 

the sequent ϕ is not satisfied in the model <
�
, 

�
, 

�
> under 

�
. 

 
The notion of validity defined for sequents of M* generalizes the notion of 

validity of formulas of the underlying modal language M. In the sequel we will be 
using the two notions of 

�
-validity (

� � � �
 

�
-validity of a formula of M and 

�
-

validity of a d-wff of M*), but context should prevent any ambiguities. Now we 
shall prove: 
 
THEOREM 2.1: An atomic sequent ├ (� )1 is �

-valid iff the formula �  of 
language M is 

�
-valid. 

 
PROOF: Let us observe, first, that the set IR[(� )1] is empty, and thus the sequent 
├ (� )1 is interpretable in every frame (� �

. Proposition 2.3). We show that the lack 
of 

�
-validity of sequent ├ (� )1 is tantamount to the lack of �

-validity of formula � . 
If �  (� )1 is not �

-valid, then, by Corollary 2.2, for some frame <
�
, 

�
> 

(with 
�
 having the 

�
-properties) and for some interpretation 

�
 of sequent ├ (� )1 in 

<
�
, 

�
>, there is a valuation 

�
 on <

�
, 

�
> such that sequent ├ (� )1 is not satisfied 

in model <
�
, 

�
, 

�
> under 

�
. But then 

�
(� , �

(1)) = 0, and therefore �  is not �
-

valid. 
On the other hand, if �  is not �

-valid, then for some frame <
�
, 

�
> (with 

the 
�
-properties imposed on 

�
) and some valuation 

�
 on it there is 

�
 ∈ 

�
 such 

that 
�
(� , �

) = 0. Observe that the function 
�
: IW{├ (� )1} a �

 set by: 
�
(1) = 

�
 is 

an interpretation of ├ (� )1 in < �
, 

�
> (

� �
. Proposition 2.3) and thus, obviously, 

sequent ├ (� )1 is not valid in < �
, 

�
> under 

�
, hence it is not 

�
-valid. �
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II.1.3 Questions of M*: An Intuitive Account of Socratic Transformations 
 

Theorem 2.1 justifies us in interpreting one-sequent questions of the form 
? (├ (� )1 ) as questions about �

-validity of the formula � .32 Therefore, for 
example, the following natural-language question: 

(1) Is it the case that axiom K: □(


 → � ) → (□


 → □� ) is valid in 
every Kripke model? 

may be expressed in language M* by: 

(2) ? ( �  (□(
  → � ) → (□

 → □� ))1 ) 

Numeral 1 in the upper index of the formula may be regarded as representing an 
arbitrary world of an arbitrary Kripke model. Question (2) asks whether axiom K 
is true in the world represented by 1. Our aim is to find an answer to this question 
by transforming (2) and to find rules governing such transformations. If we 
consider classical connectives, suitably modified rules of E** should be at place. 
This suggests that we may transform question (2) into: 

(3) ? (├ (¬□(


 → � ))1, (¬□


)1, (□� )1 ) 
Just as in the case of the right-sided sequents of E**, the comma separating the 
wffs in the constituent of question (3) may be interpreted as a meta-level 
disjunction of these wffs.33 

Let us emphasize that the questions are now interpreted in view of the 
direct reading A (

� �
. Section I.3.2). Interpretation A may be also called the � � � � � � � � � � � �  interpretation of the method of Socratic proofs, since under this 

interpretation numeral 1 occurring in questions (2) and (3) is thought of as 
representing an 

� � � � � � � � �
 world of an 

� � � � � � � � �
 Kripke model. 

Let us also observe that if we assume that the formula □�  is true in a world 
(an arbitrary one) represented by 1, then the propositional variable �  is true in any 
world accessible from the world denoted by 1, 

� � � � � � � � � � � � � � � � � 	 � � �
. This 

suggest the following tentative rule: an indexed ν-formula, (ν)φ(
�
), may be replaced 

by the component, ν0, of the formula ν with an index extended with a 
� � �

 
numeral, so that this new numeral represents an arbitrary accessible world. Under 
this generalized understanding of numerals we may transform question (3) into: 

(4) ? ( �  (¬□(
  → � ))1, (¬□

)1, (� )1,2 ) 

                                                 
32 Obviously, if a formula is � -valid, then it is � -entailed by the empty set in both, local and global, 
meanings. This is still coherent with our intended interpretation of the turnstile symbol. 
33 This should not be confused with a disjunction of formulas of language M. In contradistinction 
to what we may say about the sequents of language L**, � -validity of a sequent of the form: 
├ (� 1)

φ(
�
1), …, (� � )φ(� � ) � � � � � � �  amount to � -validity of the disjunction: � 1 ∨ … ∨ � � . For example, 

sequent ├ (◊� )1, (¬� )1,2 is K-valid but formula ‘◊�  ∨ ¬� ’ is not. On the other hand, the formula 
‘�  ∨ ¬ � ’ of language M is obviously � -valid, but the sequent ├ (� )φ(�

), (¬� )φ(� ) is � -valid iff �  = � . 
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The constituents of questions (3) and (4) differ with respect to frames in which 
they are interpretable. This is a consequence of adding a new numeral to an index 
of formula ‘� ’ – the constituent of question (3) is interpretable in every frame (� �

. 
Proposition 2.3), but the constituent of question (4) is not (

� �
. Proposition 2.1). 

However, if we consider an arbitrary frame <
�
, 

�
> such that the constituent of 

question (3) is valid in <
�
, 

�
>, then either the constituent of question (4) is not 

interpretable in <
�
, 

�
>, and hence it is valid in <

�
, 

�
> by Corollary 2.1, or an 

arbitrary interpretation of this sequent in this frame assigns to numeral 2 a world 
accessible from a world assigned to numeral 1, and this fact guarantees that �  is 
true in the former, whenever □�  is true in the latter. On the other hand, if the 
constituent of question (4) is K-valid, then for each frame such that 

� � � � � � �
 a 

world accessible from a world assigned to 1, if �  is true in an � � � � � � � � �
 such world 

(represented by 2), then □�  must be true in a world assigned to 1. Moreover, if in 
a frame there is no world accessible from 

� � � � � � � � � � � � 	 � � �
 that may be assigned 

to 1 (that is, if the constituent of question (4) is not interpretable in this frame), 
then the formula □�  is, trivially, true in every model based on such a frame. 

More problematic are the π-formulas, as under the generalized meaning of 
numerals (interpretation A) we may not eliminate a π-formula leaving its 
component π0 in 

� 	 � �
 world. For this reason, as could actually be expected, wffs 

of the form (π)φ(
�
) are not eliminated in the course of a transformation, but their 

components may be, roughly speaking, introduced to any world which is 
accessible form the one assigned to numeral 

�
. Hence question (4) may be 

transformed into: 

(5) ? (├ (¬□(


 → � ))1, (¬(
  → � ))2, (¬□


)1, (� )1,2 ) 
K-validity of the constituent of question (4) guarantees, quite trivially, K-validity 
of the constituent of question (5). The reason why the relation between K-validity 
of the constituents is preserved in the other direction is the following: if we 
consider an arbitrary model <

�
, 

�
, 

�
>, where 

�
(¬(



 → � ), �

(2)) = 1 for some 
interpretation 

�
, then by the definition of an interpretation of a sequent in a frame, 

world 
�
(2) is accessible from 

�
(1), hence 

�
(¬□(



 → � ), � (1)) = 1, which suffices to 

guarantee that if the constituent of question (5) is K-valid, then the constituent of 
question (4) is K-valid as well. It should be emphasized here that the preservation 
of K-validity is guaranteed by the accessibility of 

�
(2) from 

�
(1), which suggests 

that replacing a wff (π)φ(
�
) by a pair: (π)φ(

�
) and (π0)

�
 is “safe” as long as the 

numerals: 
�
, 

�
 occur one after another in an index of some formula of a considered 

sequent. 
When we repeat the same step with respect to the wff (¬□



)1, we get: 

(6) ? (├ (¬□(


 → � ))1, (¬(
  → � ))2, (¬□


)1, (¬


)2, (� )1,2 ) 

and an application of a rule analogous to R¬¬¬¬→→→→ of E** results in: 

(7) ? (├ (¬□(


 → � ))1, (
 )2, (¬□


)1, (¬


)2, (� )1,2;  

├ (¬□(


 → � ))1, (¬� )2, (¬□


)1, (¬


)2, (� )1,2 ) 
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Obviously, for each frame and for an arbitrary interpretation 
�
 of the constituents 

of question (7) in this frame, it must be the case that one of: 


 and ¬



 (�  and ¬� ) 

is true in 
�
(2). Hence the answer to the question expressed by (7) is affirmative. It 

is clear that the transitions from a question to a question described so far were 
invertible. Therefore we may say that the answer to question (2) is affirmative. 

As we have pointed out in Section I.3.2, a Socratic transformation 
performed within the framework of an erotetic calculus may be interpreted as 
representing both a direct and an indirect reasoning. The indirect reading 
(interpretation B) of the transformation of question (2) may seem more intuitive. 
In this case question (2) is assumed to represent the following natural-language 
question: 

(8) Is it the case that axiom K is false in some world of a Kripke 
model? 

Consequently, the interpretation of numeral 1 changes into an “individualized” 
one. (For this reason we may call interpretation B the 

� � � � � � � � � � � � � � �  
interpretation of the method of Socratic proofs.) By interpreting comma 
separating wffs in a sequent as representing conjunction of (false) wffs we arrive 
at question (3). Numeral 2 in question (4) does not represent an 

� � � � � � � � �
 world 

accessible from the one assigned to 1, but a 

 � � � � � � � � �

 accessible world in which 
the argument of the necessity operator is false. As to the wffs of the form (π)φ(

�
), 

the component π0 of π must be false in each world accessible from the one 
assigned to 

�
, which justifies the transformation of question (4) into question (5). 

The constituents of question (7) express, in a sense, the 
� � � � � � � �

 we arrive at 
when assuming that axiom K is not K-valid. 

What we have established so far for the case of logic K may be quite 
easily extended to any 

�
 other than K. For example, question about K4-validity of 

axiom 4: □


 → □□



 may be represented in M* by: 

(9) ? (├ (□


 → □□



)1 ) 

And in a few steps this may be transformed into: 

(10) ? (├ (¬□


)1, (



)1,2,3 ) 

Numeral 2 represents here an arbitrary world accessible from a world assigned to 
numeral 1, and numeral 3 represents an arbitrary world accessible from a world 
represented by 2. If we assume that the frames we consider are transitive, any 
world represented by 3 is accessible from a world assigned to 1, hence question 
(10) may be transformed into: 

(11) ? (├ (¬□


)1, (¬



)3, (



)1,2,3 ) 

Let us also observe that if the initial question concerned K-validity of 
axiom 4, the transformation would stop at: 

(12) ? (├ (◊¬


)1, (¬



)2, (



)1,2,3 ) 
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without success but with enough information to construct a countermodel. 
Actually, in this case it suffices to consider the canonical frame for the constituent 
of question (12), namely, the frame with 

�
 = {1, 2, 3} and 

�
 = {<1, 2>, <2, 3>}.34 

Obviously, we switch to the individualized understanding (interpretation B) of the 
numerals again. A valuation on our frame falsifying the formula assigns 0 to 



 in 

world 3 and 0 to ¬


 in world 2. It follows that 

�
(□



 → □□



, 1) = 0. 

Before we present the rules of the modal calculi of questions, let us 
summarize the results of this section. Theorem 2.1, as we have observed, shows 
that a question of the form ? (├ (� )1 ) may be interpreted as a question about �

-
validity of the formula � . The choice of �

 determines, to some extent, the moves 
that are permitted in a transformation of such a question. During a transformation 
one arrives at questions with non-atomic sequents as constituents. Actually, there 
is no straightforward correspondence between 

�
-validity of a non-atomic sequent 

and 
�
-validity of formulas of M that occur in the sequent (

� �
. examples in footnote 

33). However, we may say that a non-atomic, one-sequent question asks about 
�
-

validity of its constituent, and that a many-sequent question asks about 
� 	 � � �

 
�
-

validity of all of its constituents. 
 
II.2 The Rules of Calculi E

L
. Socratic Transformations via the Rules of E

L 

 
II.2.1 Calculus E

K
 

 
We present the rules of calculus EK pertaining to logic K. As the 

construction is based on E**, the rules Rαααα, Rββββ, R¬¬¬¬¬¬¬¬ of E
K differ from those of 

E** only in that 
� � � � � � �

 formulas are subjects of the decomposition procedure. 
Let us recall that Φ and Ψ stand for finite (possibly empty) sequences of 

sequents, and letters �  and �  represent finite (possibly empty) sequences of 
indexed formulas. As previously, we use two concatenation-signs: the sign ' is 
used as the concatenation-sign for sequences of indexed formulas, and the 
semicolon ‘;’ is used as the concatenation-sign for sequences of sequents. Here 
are the rules of EK in the α-, β-notation: 
 
Rαααα:   ? (Φ; ├ �  ' (α)φ( � ) ' � ; Ψ)          Rββββ:      ? (Φ; ├ �  ' (β)φ( � ) ' � ; Ψ) 
  

? (Φ; ├ �  ' (α1)φ( � ) ' � ; ├ �  ' (α2)φ( � ) ' � ; Ψ)   ? (Φ; ├ �  ' (β1)φ( � ) ' (β2)φ( � ) ' � ; Ψ) 
 

R¬¬¬¬¬¬¬¬:  ? (Φ; ├ �  ' (¬¬�
)φ( � ) ' � ; Ψ) 

 
   ? (Φ; ├ �  ' (�

)φ( � ) ' � ; Ψ) 
 

                                                 
34 The canonical interpretation of the constituent in this frame is set by � (� ) = � , where �  = 1, 2, 3. 
(� � . Proposition 3.2.) 
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Just as in the case of E**, an application of any of the rules: Rαααα, Rββββ or 
R¬¬¬¬¬¬¬¬, results in the decomposition of a formula. Indices of formulas are 

� 	 �	 
 � � � � � � 	 �
 in case of these rules. Any modification of indices during the 

transformation is due to an application of rule Rνννν or of rule Rππππ. The schemas of 
these rules are the following: 
 
Rνννν:  ? (Φ; ├ �  ' (ν)φ(�

) ' � ; Ψ)  Rππππ:       ? (Φ; ├ �  ' (π)φ(�
) ' � ; Ψ) 

 
? (Φ; ├ �  ' (ν0)φ(�

), 
�
 ' � ; Ψ)   ? (Φ; ├ �  ' (π)φ(�

) ' (π0)
�
 ' � ; Ψ) 

 
Rules Rνννν and Rππππ may be applied provided that the numerals 

�
, 

�
 satisfy certain 

conditions, which have been already discussed in the previous section. Namely, 
rule Rνννν may be applied provided that numeral 

�
 is new with respect to sequent 

├ �  ' (ν)φ(�
) ' � . That is: 
• The proviso of applicability of rule Rνννν: 

�
 ∉ IW{├ �  ' (ν)φ(�

) ' � } 
For convenience, we assume that 

�
 = max(IW{├ �  ' (ν)φ(�

) ' � }) + 1. 
Rule Rππππ may be applied provided that pair <

�
, 

�
> already occurs in an 

index of a wff in sequent ├ �  ' (π)φ(�
) ' � . That is: 

• The proviso of applicability of rule Rππππ: <
�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] 
In Appendix 3 we present the modal rules Rνννν and Rππππ without the ν-, π-

notation. 
We repeat the transformation of question ? (├ (□(



 → � ) → (□


 → □� ))1 ). 
Every question (except for the first one) of the sequence of questions presented 
below has been obtained from the previous one by an application of a rule of EK; 
on the margin we indicate which rule has been applied to a question. For 
transparency, we highlight the indexed formula acted upon. 

 
 1.  ? (├ (□(



 → � ) → (□


 → □� ))1 )    Rββββ 

 2.  ? (├ (¬□(


 → � ))1, (□


 → □� )1 )    Rββββ 

 3.  ? (├ (¬□(


 → � ))1, (¬□


)1, (□� )1 )    Rνννν 

 4.  ? (├ (¬□(


 → � ))1, (¬□


)1, (� )1,2 )    Rππππ 

 5.  ? (├ (¬□(


 → � ))1, (¬(
  → � ))2, (¬□


)1, (� )1,2 )  Rππππ 

 6.  ? (├ (¬□(


 → � ))1, (¬(
  → � ))2, (¬□


)1, (¬


)2, (� )1,2 ) Rαααα 

 7.  ? (├ (¬□(


 → � ))1, (
 )2, (¬□


)1, (¬


)2, (� )1,2; 

├ (¬□(


 → � ))1, (¬� )2, (¬□


)1, (¬


)2, (� )1,2) 

 
We introduce the key notions of this section: 
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DEFINITION 2.4: A � 	 � � � � � � � � � � � � 	 � � � � � 	 � 	 � � � � � � � � 	 � �
 

� � � � � � � � � � � 	 �
 EK 

is a sequence 
�
 = 

�
1, 

� �
, … of questions such that: 

�
1 = 

�
, and for each 

�
 > 1, 

question 
� �
 results from question 

� � � 1 by an application of one of the rules of EK. 
 
DEFINITION 2.5. Let ├ (� )1 be an atomic sequent of M*. A � 	 � � � � � � 
 � 	 	 � 	 �
├ (� )1 in EK is a finite Socratic transformation �

 of the question ?(├ (� )1) via the 
rules of EK such that for each constituent ϕ of the last question of 

�
 the following 

holds: 
(a) ϕ is of the form ├ �  ' (� )φ(�

) ' �  ' (¬� )γ(�
) ' � , or  

(b) ϕ is of the form ├ �  ' (¬� )γ(�
) ' �  ' (� )φ(�

) ' � . 
 

Let us remind that the symbols φ(
�
) and γ(

�
) in (a) or (b) may not stand for 

occurrences of 
� � � � � � �

index. However, sequences φ(
�
) and γ(

�
) end with the 

same numeral, and this is the crucial point as far as validity of a sequent is 
concerned, because for an indexed formula (� )�

1, …, 
� �
 it is only the numeral 

� �
 that 

“indicates” the world in which the value of �  is relevant. The following lemma 
holds: 
 
LEMMA 2.1: If ϕ is a sequent of the form: ├ �  ' (� )φ(�

) ' �  ' (¬� )γ(�
) ' � , or of the 

form: ├ �  ' (¬� )φ(�
) ' �  ' (� )γ(�

) ' � , then ϕ is � -valid. 
 
PROOF: Let <

�
, 

�
> stand for an arbitrary frame. Suppose that ϕ is of one of the 

forms specified above. If ϕ is not interpretable in frame <
�
, 

�
> then, by 

Corollary 2.1, ϕ is valid in <
�
, 

�
>. Suppose that there exists an interpretation 

�
 of 

ϕ in <
�
, 

�
>, and let 

�
 be a valuation on <

�
, 

�
>. Obviously, either 

�
(� , � (�

)) = 1 
or 

�
(¬� , � (�

)) = 1. Hence sequent ϕ is valid in every frame, independently of the 
properties of 

�
. �

 
 

Thus a Socratic proof is a Socratic transformation ending with a question 
whose constituents are 

�
-valid. According to Definition 2.5, each Socratic proof 

has as its first term a one-sequent question whose only constituent is an atomic 
sequent, that is the first question of a Socratic proof is a question about 

�
-validity 

of a formula of language M. As we will show in Section II.3, the existence of such 
a Socratic proof amounts to the affirmative answer to the question. 

It is worth emphasizing that a “Socratic proof procedure” remains a direct 
procedure. It 

� 	 � � � 	 �
 start with the negation of an initial assumption and, hence, 

it is not an indirect proof method. However, according to the discussion in 
Sections I.3.2 and II.1.3., a Socratic proof may still be interpreted as an 
unsuccessful attempt to find a countermodel. On the other hand, if a Socratic 
transformation stops without a success, then any of the constituents of its last 
question that is not of one of the forms (a), (b), specified in Definition 2.5, may be 
used to construct a countermodel. It is probably more convenient, when using the 
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method, to keep in mind its indirect reading. This reading has even some more 
merits, as it simplifies somewhat discussion 

� � 	 � �
 the method. Actually, in the 

proofs of semantical invertibility of rules (Section II.3) we implicitly refer to the 
indirect interpretation. 
 
II.2.2 Calculi E

L 

 
In this section 

�
 will vary through the following proper extensions of K: 

D, T, KB, K4, S4, S5. The rules of a calculus EL are rules Rαααα, Rββββ, R¬¬¬¬¬¬¬¬, Rνννν of E
K 

and rule Rππππ with a proviso of its applicability varying from a calculus to a 
calculus. The form of the proviso reflects the properties of the accessibility 
relation specific to 

�
. 

For each 
�
 we give the proviso on rule Rππππ and an example of a Socratic 

proof in EL. We use ‘PL’ for proviso of applicability of rule Rππππ in calculus E
L. We 

shall start with logic T and will return to the somewhat peculiar case of the 
extendable logic D at the end of this section. We repeat the schema of rule Rππππ: 
 
      ? (Φ; ├ �  ' (π)φ(�

) ' � ; Ψ) 
 

? (Φ; ├ �  ' (π)φ(�
) ' (π0)

�
 ' � ; Ψ) 

 
and we add the relevant proviso for calculus ET, which is: 

P
T: <

�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] or �
 = 

�
 

In the case of calculus ET rule Rππππ may be applied provided that numeral 
�
 

immediately precedes numeral 
�
 in an index of some formula in the relevant 

sequent or numeral 
�
 is 

�
. Obviously, in the case of a single application of rule Rππππ 

one part of the proviso is required to hold. The second part of the proviso 
corresponds to reflexivity of the accessibility relation. Sequent ├ (□



 → 



)1 is 

provable in ET: 
 
   (

�
.) ? (├ (□



 → 



)1)   Rββββ 

   (
�
.) ? (├ (¬□



)1, (



)1)   Rππππ 

  (
�
.) ? (├ (¬□



)1, (¬



)1, (



)1) 

 
Question (

�
.) has been obtained from the previous one by Rππππ on the second part of 

P
T. 
 
P
KB: <

�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] or 
<

�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] 
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where the second part of PKB corresponds to symmetry. Here is a Socratic proof 
of sequent ├ (



 → □◊



)1 in EKB: 

 
   (

�
.) ? (├ (



 → □◊



)1)   Rββββ 

   (
�
.) ? (├ (¬



)1, (□◊



)1)   Rνννν 

   (
�
.) ? (├ (¬



)1, (◊



)1,2)   Rππππ 

  (
�
.) ? (├ (¬



)1, (◊



)1,2, (



)1) 

 
The last question results from the previous one on the second part of the proviso. 

In the case of transitive logics we make use of the following notions: 
 
DEFINITION 2.6: Let 

�
 be a binary relation in a set 

�
.35 

(1) By an 
�
-

� � � � �
 we mean a finite, at least two-term sequence <

�
1, …, 

� �
> 

of elements of 
�
 such that for each 



 (1 ≤ 



 < 

�
): either <

� �
, 

� �
+1> ∈ 

�
 or 

<
� �

+1, 
� �
> ∈ 

�
. 

(2) By a 
� � � � � � � �

 
�
-

� � � � �
 we mean an 

�
-

� � � � �
 <

�
1, …, 

� �
> such that <

� �
, � �

+1> ∈ 
�
 for each 



 (1 ≤ 



 < 

�
). 

 
P
K4: there is a directed IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose 

last term is 
�
  

The proviso corresponds to transitivity of the accessibility relation. Let us observe 
that if <

�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ], then sequence <�
, 

�
> is a directed IR[├ �  ' (π)φ(�

) ' � ]-chain. Therefore PK4 includes the proviso specific to K. 
Formula ‘□



 → □□



’ has been discussed above. A Socratic proof of 

sequent ├ (□


 → □□



)1 in calculus EK4 is the following: 

 
(

�
.) ? (├ (□



 → □□



)1)   Rββββ 

(
�
.) ? (├ (¬□



)1, (□□



)1)   Rνννν 

(
�
.) ? (├ (¬□



)1, (□



)1,2 )   Rνννν 

(
�
.) ? (├ (¬□



)1, (



)1,2,3 )   Rππππ 

(
�
.) ? (├ (¬□



)1, (¬



)3, (



)1,2,3 ) 

 
Question (

�
.) results from question (

�
.) by Rππππ (sequence <1, 2, 3> is the required 

directed chain). 
 

                                                 
35 Let us emphasize, for clarity, that the metavariables �  and �  used in Definition 2.6 refer to an 
arbitrary set and an arbitrary binary relation in this set, respectively. �  and �  may, but � � � � � � 	 � �� �  refer to the elements of a frame < � , � >. 
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P
S4: there is a directed IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose 

last term is 
�
 or �

 = 
�
 

Socratic proofs of sequents ├ (□


 → □□



)1 and ├ (□



 → 



)1 presented above are 

available in ES4 as well. We present another example. Formula ‘□◊◊


 → ◊



’ is a 

thesis of S4. 
 
   (

�
.) ? (├ (□◊◊



 → ◊



)1)    Rββββ 

   (
�
.) ? (├ (¬□◊◊



)1, (◊



)1)    Rππππ 

   (
�
.) ? (├ (¬□◊◊



)1, (¬◊◊



)1, (◊



)1)  Rνννν 

   (
�
.) ? (├ (¬□◊◊



)1, (¬◊



)1,2, (◊



)1)  Rνννν 

   (
�
.) ? (├ (¬□◊◊



)1, (¬



)1,2,3, (◊



)1)  Rππππ 

  ( � .) ? (├ (¬□◊◊


)1, (¬



)1,2,3, (◊



)1, (



)3) 

 
Question (

�
.) results from the previous one on the second part of the proviso, and 

question ( � .) results from question (�
.) on the first part of the proviso. 

Let us observe that question (
�
.) of the above example may be also 

transformed into question: 

( � ’.) ? (├ (¬□◊◊


)1, (¬◊◊



)3, (¬



)1,2,3, (◊



)1) 

by the same rule applied with respect to the wff (¬□◊◊


)1. An application of rule 

Rνννν will lead us to: 

( � .) ? (├ (¬□◊◊


)1, (¬◊



)3,4, (¬



)1,2,3, (◊



)1) 

and another application of rule Rππππ results in: 

(
�
.) ? (├ (¬□◊◊



)1, (¬◊◊



)4, (¬◊



)3,4, (¬



)1,2,3, (◊



)1) 

It is easy to observe that the transformation may be continued 
� � � � � � � � � � �

. (This 
is not surprising, as we deal with a transitive logic.) 

 
P
S5: there is an IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose last 

term is 
�
 or �

 = 
�
  

Let us observe that if <
�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] or <�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ], 
then <

�
, 

�
> is an IR[├ �  ' (π)φ(�

) ' � ]-chain, therefore PS5 includes both parts of the 
proviso PKB. Moreover, since a directed IR[├ �  ' (π)φ(�

) ' � ]-chain is an IR[├ �  ' 
(π)φ(

�
) ' � ]-chain, PS5 includes PK4 as a special case. Therefore the first part of PS5 

combines conditions corresponding to transitivity and symmetry. The second part 
of the proviso corresponds to reflexivity. 
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Sequents ├ (□


 → □□



)1, ├ (□



 → 



)1 and ├ (



 → □◊



)1 are provable in 

E
S5. Another example is a Socratic proof of sequent ├ (



 → □□◊



)1: 

 
   (

�
.) ? (├ (



 → □□◊



)1 )   Rββββ 

   (
�
.) ? (├ (¬



)1, (□□◊



)1 )   Rνννν 

   (
�
.) ? (├ (¬



)1, (□◊



)1,2 )   Rνννν 

   (
�
.) ? (├ (¬



)1, (◊



)1,2,3 )   Rππππ 

  (
�
.) ? (├ (¬



)1, (◊



)1,2,3, (



)1 ) 

 
Question (

�
.) results from the previous one by Rππππ, on the first part of P

S5. The 
proviso is satisfied as the sequence <3, 2, 1> is an IR[├ (¬



)1, (◊



)1,2,3]-chain. 

Now we turn to logic D. The peculiarity of this logic is due to the fact that 
the property of extendability of the accessibility relation requires another rule; the 
rule will be called RππππD. Rule Rππππ is also present in E

D, and it may be applied in a 
Socratic transformation via the rules of ED provided that <

�
, 

�
> ∈ IR[├ �  ' (π)φ(�

) ' � ] (that is, just as in the case of EK). Moreover, the rule: 
 
RππππD:      ? (Φ; ├ �  ' (π)φ(�

) ' � ; Ψ) 
 

? (Φ; ├ �  ' (π)φ(�
) ' (π0)

�
,

�
 ' � ; Ψ) 

 
may be applied provided that 

�
 ∉ IW{├ �  ' (π)φ(�

) ' � }. The difference between the 
rules Rππππ and RππππD is subtle. In the case of rule Rππππ, the component π0 of a π-formula 
occurs in the conclusion with a one-term index <

�
>. In the case of rule RππππD, the 

component π0 must be introduced with a two-term index <
�
, 

�
>. Extending the 

index is necessary in order to keep the information concerning accessibility 
relation “up to date”. 

In the case of RππππD, just as in the case of rule Rνννν, we assume that 
�
 = 

max(IW{├ �  ' (π)φ(�
) ' � }) + 1. We present a Socratic proof of sequent ├ (□


 → 
◊



)1 in calculus ED: 

 
(

�
.)  ? (├ (□



 → ◊



)1)   Rββββ 

(
�
.) ? (├ (¬□



)1, (◊



)1)   RππππD 

(
�
.) ? (├ (¬□



)1, (¬



)1,2, (◊



)1)  Rππππ 

(
�
.) ? (├ (¬□



)1, (¬



)1,2, (◊



)1, (



)2) 

 
Let us observe that the seven modal logics discussed above are 

characterized by the corresponding erotetic calculi in a modular way. The 
characteristics of each of these logics is given by the proviso PL of applicability of 
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rule Rππππ and by rule RππππD – if this rule is present in a calculus. There is a clear 
correspondence between the rules Rππππ and RππππD and the provisos of their 
applicability on the one hand, and the semantical properties characterizing the 
modal logics on the other. Our erotetic modular account of modal logics may be 
also extended in order to cover all of the 15 basic modal logics (cf. footnote 28). 
All the details may be found in Appendix 3. 

Finally, let us present the following definitions of the generalized notions 
of a Socratic transformation of a question and of a Socratic proof of a sequent: 
 
DEFINITION 2.7: A � 	 � � � � � � � � � � � � 	 � � � � � 	 � 	 � � � � � � � � 	 � �

 
� � � � � � � � � � � 	 �

 EL 
is a sequence 

�
 = 

�
1, 

� �
, … of questions such that 

�
1 = 

�
 and for each 

�
 > 1, 

question 
� �
 results from question 

� � � 1 by an application of one of the rules of EL. 
 
DEFINITION 2.8: Let ├ (� )1 be an atomic sequent of M*. A � 	 � � � � � � 
 � 	 	 � 	 �
├ (� )1 in EL is a finite Socratic transformation �

 of the question ?(├ (� )1) via the 
rules of EL such that for each constituent ϕ of the last question of 

�
 the following 

holds: 
(a) ϕ is of the form ├ �  ' (� )φ(�

) ' �  ' (¬� )γ(�
) ' � , or  

(b) ϕ is of the form ├ �  ' (¬� )γ(�
) ' �  ' (� )φ(�

) ' � . 
 

II.3 Semantical Invertibility of the Rules of E
L
. Soundness 

 
In this section 

�
 stands, again, for any of: K, D, T, KB, K4, S4, S5. First, 

we prove that the rules of EL are semantically invertible. 
 
LEMMA 2.2: If question 

�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by one of the 

rules: Rαααα, Rββββ, R¬¬¬¬¬¬¬¬ of E
L, then each term of Φ is 

�
-valid iff each term of Φ1 is 

�
-

valid. 
 
PROOF: We consider rule Rαααα only, since the reasoning is similar in the case of 
the remaining rules. 

If question 
�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by rule Rαααα, then the 

sequences Φ and Φ1 are of the forms: Ψ; ϕ; Ψ1 and Ψ; ψ; ψ1; Ψ1, where: 

ϕ = ├ �  ' (α)φ(�
) ' �  

ψ = ├ �  ' (α1)φ(�
) ' �   

ψ1 = ├ �  ' (α2)φ(�
) ' �   

The terms of Ψ and Ψ1 (if there are any) remain unchanged, therefore it suffices 
to show that the lack of 

�
-validity of sequent ϕ is tantamount to the lack of 

�
-

validity of at least one of the sequents: ψ, ψ1. 
Observe that when rule Rαααα is applied, no operation is performed on the 

indices of formulas of sequent ϕ, which means that the sets IW{ϕ}, IW{ψ} and 
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IW{ψ1} are equal, and the same holds with respect to the sets IR[ϕ], IR[ψ] and 
IR[ψ1]. Thus an interpretation of any of the sequents: ϕ, ψ or ψ1 in a frame <

�
, �

> is also an interpretation of any of the other two sequents in the same frame. 
Hence, in what follows, we are allowed to consider 

	 � �
 interpretation of sequents 

ϕ, ψ and ψ1 in a specified frame. 
Suppose that sequent ϕ = ├ �  ' (α)φ(�

) ' �  is not � -valid. Then, by Corollary 
2.2, for some frame <

�
, 

�
> (with 

�
 having the 

�
-properties), for an interpretation �

 of sequent ϕ in frame <
�
, 

�
>, and for some valuation 

�
 on <

�
, 

�
>, the sequent 

ϕ is not satisfied in model <
�
, 

�
, 

�
> under 

�
. Hence 

�
(� , � (� )) = 0 for each term 

(� )φ(� ) of �  and � , and also �
(α, 

�
(

�
)) = 0. Therefore 

�
(α1, 

�
(

�
)) = 0 or 

�
(α2, 

�
(

�
)) = 

0. If the first possibility holds, then sequent ψ is not satisfied in model <
�
, 

�
, 

�
> 

under interpretation 
�
 of ψ in <

�
, 

�
>. But then, by Corollary 2.2 again, ψ is not 

�
-

valid. If the second possibility holds then, by the same reasoning, ψ1 is not 
�
-

valid. Hence, if sequent ϕ is not 
�
-valid, then at least one of the sequents: ψ or ψ1, 

is not 
�
-valid. 
Similar argument establishes that if one of the sequents ψ or ψ1 is not 

�
-

valid, then the sequent ϕ is not 
�
-valid. 

For the other rules the reasoning goes analogously (the details of the proof 
concerning interpretation functions remain unchanged). �

 
 

Now we shall prove that the modal rules of EL warrant transmission of 
joint 

�
-validity of sequents in both directions. 

 
LEMMA 2.3: If question 

�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by rule Rνννν of 

E
L, then each term of Φ is 

�
-valid iff each term of Φ1 is 

�
-valid. 

 
PROOF: If question 

�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by rule Rνννν of E

L, 
then the sequences Φ and Φ1 are of the forms, respectively: Ψ; ϕ; Ψ1 and 
Ψ; ψ; Ψ1, where: 

ϕ = ├ �  ' (ν)φ(�
) ' �   

ψ = ├ �  ' (ν0)φ(�
), 

�
 ' �   

We show that non-
�
-validity of sequent ψ entails non-

�
-validity of sequent ϕ and � � � � � � � � �

. From the proviso on rule Rνννν we have: 
�
 ∉ IW{ϕ}. 

If sequent ψ is not 
�
-valid, then, by Corollary 2.2, there are: a frame <

�
, �

>, where 
�
 has the 

�
-properties, an interpretation 

�
 of sequent ψ in <

�
, 

�
>, and 

a valuation 
�
 on <

�
, 

�
> such that ψ is not satisfied under the interpretation 

�
 in 

the model <
�
, 

�
, 

�
>. In particular, 

�
(ν0, 

�
(

�
)) = 0. We shall construct an 

interpretation �  of sequent ϕ in < �
, 

�
> such that ϕ is not satisfied in model <

�
, �

, 
�
> under � . 
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First, observe that the set of numerals IW{ϕ} is a (proper) subset of the set 
IW{ψ}, and the same holds with respect to sets IR[ϕ] and IR[ψ]. Let �  be a 
restriction of 

�
 to IW{ϕ}. It follows easily that �  is an interpretation of ϕ in < �

, �
>. Indeed, if the set IR[ϕ] is empty, then, trivially, �  is an interpretation of ϕ in 
<

�
, 

�
> (

� �
. Proposition 2.3). Otherwise, the following holds. If <



, 


 �
> ∈ IR[ϕ], 

then <


, 


 �
> ∈ IR[ψ], and � (


) = 
�
(



) as well as � (
 �

) = 
�
(


 �
). Since 

�
 is an 

interpretation of ψ in <
�
, 

�
>, it must be the case that <

�
(



), 

�
(


 �
)> ∈ 

�
, and thus 

<� (

), � (
 �

)> ∈ 
�
, which establishes that if <



, 


 �
> ∈ IR[ϕ], then <� (


), � (
 �
)> ∈ �

. 
Second, since numeral 

�
 immediately precedes numeral 

�
 in the index of 

the wff (ν0)φ(
�
), 

�
, the ordered pair <

�
, 

�
> is an element of the set IR[ψ] (that is, of 

the set IR[├ �  ' (ν0)φ(�
), 

�
 ' � ]). As �  is an interpretation of sequent ψ in < �

, 
�
>, the 

world 
�
(

�
) must be accessible from world 

�
(

�
). Hence, in view of 

�
(ν0, 

�
(

�
)) = 0, it 

follows that 
�
(ν, 

�
(

�
)) = 0. Since 

�
 ∈ IW{ϕ} (that is, 

�
 belongs to the domain of � ), � (�

) = 
�
(

�
) and hence 

�
(ν, � (�

)) = 0. Moreover, for every term (� )φ(�
) of �  and � : �

(� , � (

)) = 

�
(� , � (


)) = 0. Therefore sequent ϕ = ├ �  ' (ν)φ(�
) ' �  is not satisfied in 

model <
�
, 

�
, 

�
> under � . 

For the other direction we consider, as above, a frame <
�
, 

�
>, an 

interpretation 
�
 of sequent ϕ = ├ �  ' (ν)φ(�

) ' �  in < �
, 

�
>, and a valuation 

�
 on <

�
, �

> such that ϕ is not satisfied in the model <
�
, 

�
, 

�
>. Since 

�
(ν, 

�
(

�
)) = 0, there 

must be a world 
�
 in 

�
 accessible from 

�
(

�
) and such that 

�
(ν0, 

�
) = 0. 

Let �  be an extension of �  over IW{ψ} such that � (� ) = �
 (recall that 

�
 is not 

an element of IW{ϕ}). In order to establish that �  is an interpretation of ψ in < �
, �

> it is sufficient to observe that for <
�
, 

�
> ∈ IR[ψ] we have <

�
(

�
), 

�
> ∈ 

�
 and 

�
(

�
) 

= � (�
). For every term (� )φ(�

) of �  and � : �
(� , � (


)) = 
�
(� , � (


)) = 0. Since also �
(ν0, � (� )) = 0, sequent ψ = ├ �  ' (ν0)φ(�

), 
�
 ' �  is not valid in < �

, 
�
> under � . �

 
 
LEMMA 2.4: If question 

�
1 = ?(Φ1) results from question 

�
 = ?(Φ) by rule Rππππ or 

by rule RππππD of E
L, then each term of Φ is 

�
-valid iff each term of Φ1 is 

�
-valid. 

 
PROOF: We consider rule Rππππ first. If question 

�
1 = ?(Φ1) results from question 

�
 

= ?(Φ) by rule Rππππ of E
L, then Φ = Ψ; ϕ; Ψ1, and Φ1 = Ψ; ψ; Ψ1, where: 

ϕ = ├ �  ' (π)φ(�
) ' �   

ψ = ├ �  ' (π)φ(�
) ' (π0)

�
 ' �   

Again, we make use of Corollary 2.2 and prove that there is a model in which 
sequent ϕ is not satisfied (under some interpretation) iff there is a model in which 
sequent ψ is not satisfied (under some interpretation). Let us observe that, as in 
the case of rules Rαααα, Rββββ, R¬¬¬¬¬¬¬¬, IW{ϕ} = IW{ψ} and IR[ϕ] = IR[ψ], hence each 
interpretation of one of the sequents in an arbitrary frame is also an interpretation 
of the other sequent in the same frame. 
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The reasoning depends on the proviso of applicability of the rule satisfied 
in a particular case. Suppose that: 

(i) <
�
, 

�
> ∈ IR[ϕ] 

Assume that for sequent ψ = ├ �  ' (π)φ(�
) ' (π0)

�
 ' �  there exist: a frame < �

, 
�
>, an 

interpretation 
�
 of sequent ψ in this frame, and a valuation 

�
 on <

�
, 

�
> such that: 

first, for each term (� )φ(�
) of �  or � , �

(� , � (�
)) = 0, and, second, 

�
(π, 

�
(

�
)) = 0. It 

follows that the sequent ϕ = ├ �  ' (π)φ(�
) ' �  is not satisfied in the model < �

, 
�
, 

�
> 

under 
�
. 
Suppose that sequent ϕ = ├ �  ' (π)φ(�

) ' �  is not satisfied in a model < �
, 

�
, �

> under a certain interpretation 
�
 of ϕ in <

�
, 

�
>. Then for each term (� )φ(�

) of �  
or � : �

(� , �
(

�
)) = 0, and also 

�
(π, 

�
(

�
)) = 0. By assumption, <

�
, 

�
> ∈ IR[ϕ] and 

hence <
�
(

�
), 

�
(

�
)> ∈ 

�
. Thus 

�
(π0, 

�
(

�
)) = 0. Hence sequent ψ is not satisfied in the 

considered model under 
�
. 

(ii) 
�
 = 

�
  

Hence 
�
 must be one of: T, S4, S5. For the first implication we apply the 

argument presented in (i) (although 
�
 is reflexive, but this part of the reasoning 

does not depend on the properties of 
�
). For the second one let us assume that for 

sequent ϕ = ├ �  ' (π)φ(�
) ' �  there are: a reflexive frame < �

, 
�
>, an interpretation 

�
 

of ϕ in <
�
, 

�
>, and a valuation 

�
 on <

�
, 

�
> such that sequent ϕ is not satisfied 

in <
�
, 

�
, 

�
> under 

�
. Thus, in particular, 

�
(π, 

�
(

�
)) = 0. Since 

�
 is reflexive and 

�
 

= 
�
, <

�
(

�
), 

�
(

�
)> ∈ 

�
, hence 

�
(π0, 

�
(

�
)) = 0. Therefore sequent ψ is not satisfied in 

<
�
, 

�
, 

�
> under 

�
. 

(iii) <
�
, 

�
> ∈ IR[ϕ] 

In this case 
�
 = KB or 

�
 = S5. For the first implication the reasoning goes on as 

previously. For the other direction suppose that there are: a symmetric frame <
�
, �

>, an interpretation 
�
 of sequent ϕ in <

�
, 

�
>, and a valuation 

�
 on <

�
, 

�
> such 

that, first, 
�
(� , � (�

)) = 0 for each term (� )φ(�
) of �  and � , and second, �

(π, 
�
(

�
)) = 0. 

By assumption, <
�
, 

�
> ∈ IR[ϕ]. Hence, and by symmetry of 

�
, <

�
(

�
), 

�
(

�
)> ∈ 

�
. 

Therefore formula π0 is false in 
�
(

�
) and sequent ψ is not satisfied in <

�
, 

�
, 

�
> 

under 
�
. 

(iv) there is a directed IR[ϕ]-chain <
�
1, …, 

� �
> where 

�
1 = 

�
 and 

� �
 = 

�
  

Rule Rππππ may be applied on this proviso only if 
�
 is one of: K4, S4, S5. For the 

first implication the reasoning is as previously. For the second one let us assume 
that sequent ϕ is not satisfied in a transitive model <

�
, 

�
, 

�
> under a certain 

interpretation 
�
 of ϕ in <

�
, 

�
>. Thus, in particular, 

�
(π, 

�
(

�
)) = 0. By assumption, 

for each 


 (1 ≤ 



 < 

�
): <

� �
, 

� �
+1> ∈ IR[ϕ], hence also <

�
(

� �
), 

�
(

� �
+1)> ∈ 

�
. Since 

�
 is 

transitive, <
�
(

�
), 

�
(

�
)> ∈ 

�
. Thus 

�
(π0, 

�
(

�
)) = 0 and therefore sequent ψ is not 

satisfied in <
�
, 

�
, 

�
> under 

�
. 

(v) there is an IR[ϕ]-chain <
�
1, …, 

� �
> where 

�
1 = 

�
 and 

� �
 = 

�
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�
 is S5. We consider the second implication only. Let 

�
 stand for an interpretation 

of sequent ϕ in a frame <
�
, 

�
>, where 

�
 is both symmetric and transitive 

(reflexivity will play no part in this reasoning). We need to establish, first, that 
<

�
(

�
), 

�
(

�
)> ∈ 

�
. For this reason we prove by induction that <

�
(

�
1), 

�
(

� �
)> ∈ 

�
 for 

each 


: 1 < 



 ≤ 

�
. 

By the definition of a chain, either <
�
1, 

�
2> ∈ IR[ϕ] or <

�
2, 

�
1> ∈ IR[ϕ]. In 

the first case <
�
(

�
1), 

�
(

�
2)> ∈ 

�
 by assumption (

�
 is an interpretation of ϕ in <

�
, �

>). In the second case <
�
(

�
1), 

�
(

�
2)> ∈ 

�
 by symmetry of 

�
. This finishes the 

initial step. Suppose that the thesis holds for 


 (1 < 



 < 

�
), that is, <

�
(

�
1), 

�
(

� �
)> ∈ 

�
. 

We also have <
� �
, 

� �
+1> ∈ IR[ϕ] or <

� �
+1, 

� �
> ∈ IR[ϕ]. In the first case <

�
(

� �
), 

�
(

� �
+1)> 

∈ 
�
 and thus <

�
(

�
1), 

�
(

� �
+1)> ∈ 

�
 by transitivity of 

�
. In the second case <

�
(

� �
+1), �

(
� �
)> ∈ 

�
. Hence <

�
(

� �
), 

�
(

� �
+1)> ∈ 

�
 by symmetry of 

�
 and <

�
(

�
1), 

�
(

� �
+1)> ∈ 

�
 by 

its transitivity. It follows that <
�
(

�
1), 

�
(

� �
)> ∈ 

�
, that is, <

�
(

�
), 

�
(

�
)> ∈ 

�
. 

Now, suppose that ϕ is not satisfied in a model <
�
, 

�
, 

�
> (where 

�
 is 

symmetric and transitive) under a certain interpretation 
�
. Then 

�
(π, 

�
(

�
)) = 0. But, 

as we have established, <
�
(

�
), 

�
(

�
)> ∈ 

�
. Therefore 

�
(π0, 

�
(

�
)) = 0, that is, sequent ψ 

is not satisfied in this model under 
�
. 

This finishes the part of the proof concerning rule Rππππ. If question 
�
1 = 

? (Φ; ψ; Ψ) results from question 
�
 = ? (Φ; ϕ; Ψ) by rule RππππD, then sequents ϕ 

and ψ are of the forms: 

ϕ = ├ �  ' (π)φ(�
) ' �   

ψ = ├ �  ' (π)φ(�
) ' (π0)

�
, 

�
 ' �   

and 
�
 ∉ IW{ϕ}. Assume that sequent ψ is not satisfied in a model <

�
, 

�
, 

�
> under 

some interpretation 
�
 of ψ in <

�
, 

�
>. Let �  stand for a restriction of �  to IW{ϕ}. 

The function �  is an interpretation of ϕ in < �
, 

�
> (by an argument analogous to 

that presented in the case of Rνννν). For each term (� )φ(�
) of �  or �  we have �

(� , � (

)) 

= 
�
(� , � (


)) = 0, and also we have 
�
(π, � (� )) = �

(π, 
�
(

�
)) = 0. Hence sequent ϕ = 

├ �  ' (π)φ(�
) ' �  is not satisfied in < �

, 
�
, 

�
> under � . 

Suppose that sequent ϕ = ├ �  ' (π)φ(�
) ' �  is not D-valid. Again, for a certain 

frame <
�
, 

�
>, where 

�
 is extendable, for some interpretation 

�
 of ϕ in <

�
, 

�
>, 

and for some 
�
 on <

�
, 

�
>, the sequent ϕ is not satisfied in <

�
, 

�
, 

�
> under 

�
. In 

particular, 
�
(π, 

�
(

�
)) = 0. As 

�
 is extendable, there must be 

�
 ∈ 

�
 such that <

�
(

�
), �

> ∈ 
�
. Since 

�
 is accessible from 

�
(

�
), 

�
(π0, 

�
) = 0. Let �  be an extension of �  

over IW{ψ} such that � (� ) = �
. It follows that sequent ψ is not satisfied in <

�
, 

�
, �

> under � . �
 

 
From Lemmas 2.2, 2.3 and 2.4 we get: 
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THEOREM 2.2 (
� � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 �

E
L): If question 

�
1 = ?(Φ1) 

results from question 
�
 = ?(Φ) by a rule of EL, then each term of Φ is 

�
-valid iff 

each term of Φ1 is 
�
-valid. 

 
And finally: 

 
THEOREM 2.3 (

� 	 � � � � � � �
): If there exists a Socratic proof of a sequent ├ (� )1 in 

E
L, then the formula �  is � -valid. 
 
PROOF: Let 

�
 = <

�
1, …, 

� �
> be a Socratic proof of sequent ├ (� )1 in calculus 

E
L. By Lemma 2.1, each constituent of the last question 

� �
 of 

�
 is 

�
-valid. By 

Theorem 2.2, if question 
� �
+1 = ? (Φ

�
+1) results from question 

� �
 = ? (Φ

�
) (where 1 

≤ 
�
 < 

�
) and each term of Φ

�
+1 is 

�
-valid, then each term of Φ

�
 is 

�
-valid. Hence 

(by induction), sequent ├ (� )1 is �
-valid. Furthermore, by Theorem 2.1, the 

formula �  of language M is � -valid. �
 

In view of Theorem 2.3 the existence of a Socratic proof of a sequent 
├ (� )1 in EL amounts to the affirmative answer to a question about �

-validity of 
the formula � . 
 
II.4 Modal Erotetic Calculi and Inferential Erotetic Logic 

 
Language M* is another example of a formalized language enriched with 

questions. In this section we analyse the erotetic part of M* and supply it with a 
semantics. Similarly as in the case of language L*, the aim of the semantical 
analysis presented in this section is an explication of the relation between 
questions that result one from another in a Socratic transformation. The analysis is 
performed within the framework of IEL. 

Let us recall that the declarative part of M* comprises sequents (atomic d-
wffs) and compound d-wffs built up from sequents by means of & and / or ng. 
Within the class of sequents of M* we have distinguished the class of atomic 
sequents of this language, that is, expressions of the form ├ (� )1. By Theorem 2.1 
(Section II.1.2), a d-wff of M* of such a form may be interpreted as an expression 
representing statement: “The formula �  of language M is �

-valid.” Hence a one-
sequent question of the form: 

(2.8)  ? (├ (� )1 ) 
is a question about 

�
-validity of the formula � . Let us emphasize that the 

statements concerning 
�
-validity are made in an object-level language and the 

questions, as well, are posed at an object-level. 
As to non-atomic sequents, a one-sequent question whose constituent is a 

non-atomic sequent may be interpreted, as we have established, as a question 
about 

�
-validity of this sequent. The general reading of a question of the form: 
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(2.7)  ? (ϕ1, …,  ϕ
�
) 

is the following: “Is it the case that: ϕ1 and … and ϕ
�
?” Hence a many-sequent 

question of M* asks about joint 
�
-validity of its constituents. 

We define the notions of an affirmative and a negative answer to a 
question similarly as in the case of language L*. Namely, if 

�
 is a question of M* 

of the form (2.7), then the following d-wff: 

(1.5)  (…((ϕ1) & (ϕ2)) & … ) & (ϕ
�
) 

is the 
� � � � � � � � � � � � � � � � �

 to 
�
, and a d-wff of the form: 

(1.6)  ng((…((ϕ1) & (ϕ2)) & … ) & (ϕ
�
)) 

is the 
� � � � � � � � � � � � � �

 to 
�
. Hence questions of M* are simple yes-no questions. 

We use letters 
�
, �  for d-wffs of M*. Let us denote by DM* the set of all 

the d-wffs of M*. The notion of a 

 � � � � � � 	 �

 
	 �
 DM* (


 � � � � � � 	 � 	 � � � � � � � � �
M*) is 

defined as previously (
� �
. Section I.4 of Chapter I). The notion of an admissible 

partition of M* must be adjusted to the underlying semantics of M. Since we deal 
with more than one logic expressed in one language M, the notion must be 
relativized to 

�
. 

�
.� ., a K-admissible partition is defined by the following: 

 
DEFINITION 2.9: A partition P = <TP, UP> of language M* is K-

� � � � � � � � � �
 iff 

the following conditions are satisfied: 

(i) ‘├ �  ' (β)φ(�
) ' � ’ ∈ TP iff ‘├ �  ' (β1)φ(�

) ' (β2)φ(
�
) ' � ’ ∈ TP; 

(ii) ‘├ �  ' (α)φ(�
) ' � ’ ∈ TP iff ‘├ �  ' (α1)φ(�

) ' � ’ ∈ TP and ‘├ �  ' (α2)φ(�
) ' � ’ ∈ TP; 

(iii) ‘├ �  ' (¬¬� )φ(�
) ' � ’ ∈ TP iff ‘├ �  ' (� )φ(�

) ' � ’ ∈ TP; 
(iv) ‘├ �  ' (ν)φ(�

) ' � ’ ∈ TP iff for �
 = max(IW{├ �  ' (ν)φ(�

) ' � }) + 1, 
‘├ �  ' (ν0)φ(�

), 
�
 ' � ’ ∈ TP; 

(v.i) If ‘├ �  ' (π)φ(�
) ' � ’ ∈ TP, then for each numeral �  such that <�

, 
�
> ∈ 

I� [├ �  ' (π)φ(�
) ' � ]: ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP; 

(v.ii) If there is a numeral 
�
 such that <

�
, 

�
> ∈ I� [├ �  ' (π)φ(�

) ' � ] and such 
that ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP, then ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP; 
(vi) 

�
 ∈ TP iff ‘ng(

�
)’ ∉ TP; 

(vii) ‘(
�
) & ( � )’ ∈ TP iff �  ∈ TP and �  ∈ TP. 

 
For simplicity, we have assumed that when rule Rνννν is applied, then the 

new numeral 
�
 introduced into the resulting sequent is obtained by adding 1 to the 

greatest numeral occurring in the “old” sequent. Hence the form of clause (iv) of 
the above definition. 
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In the definitions of 
�
-admissible partitions for the extensions of K, we 

will make use of the clauses listed below. 

(D) ‘├ �  ' (π)φ(�
) ' � ’ ∈ TP iff for �

 = max(IW{├ �  ' (π)φ(�
) ' � }) + 1, 

‘├ �  ' (π)φ(�
) ' (π0)

�
, 

�
 ' � ’ ∈ TP  

(T)  ‘├ �  ' (π)φ(�
) ' � ’ ∈ TP iff ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP  

(KB.1) If ‘├ �  ' (π)φ(�
) ' � ’ ∈ TP, then for each numeral �  such that <�

, 
�
> ∈ 

I� [├ �  ' (π)φ(�
) ' � ]: ‘├ �  ' (π)φ(�

) ' (π)
�
 ' � ’ ∈ TP. 

(KB.2) If there is a numeral 
�
 such that <

�
, 

�
> ∈ I� [├ �  ' (π)φ(�

) ' � ] and such 
that ‘├ �  ' (π)φ(�

) ' (π)
�
 ' � ’ ∈ TP, then ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP. 
(K4.1) If ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP, then for each numeral �  such that there is a 
directed IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose 

last term is 
�
: ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP. 

(K4.2) If there is a numeral 
�
 such that there is a directed IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose last term is 

�
 and such that 

‘├ �  ' (π)φ(�
) ' (π0)

�
 ' � ’ ∈ TP, then ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP. 
(KB4.1) If ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP, then for each numeral �  such that there is 
an IR[├ �  ' (π)φ(�

) ' � ]-chain whose first term is �
 and whose last term 

is 
�
: ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP. 

(KB4.2) If there is a numeral 
�
 such that there is an IR[├ �  ' (π)φ(�

) ' � ]-chain 
whose first term is 

�
 and whose last term is 

�
 and such that 

‘├ �  ' (π)φ(�
) ' (π0)

�
 ' � ’ ∈ TP, then ‘├ �  ' (π)φ(�

) ' � ’ ∈ TP. 
 
DEFINITION 2.10: Let P = <TP, UP> stand for a partition of language M*. We 
say that P is 

� � � � � � � � � � � �
 iff P is K-admissible and the following holds: 

• if 
�
 = D (T), then P satisfies also clause (D) (clause (T)); 

• if 
�
 = KB (K4), then P satisfies also clauses (KB.1) and (KB.2) 

(clauses (K4.1) and (K4.2)); 

• if 
�
 = S4, then P satisfies clauses (T), (K4.1) and (K4.2); 

• if 
�
 = S5, then P satisfies clauses (T), (KB4.1) and (KB4.2). 

 
By means of the notion of an 

�
-admissible partition we may define the 

notion of entailment in M*. Again, the notion must be relativized to 
�
. Namely, 

we say that a d-wff 
�
 of M* 

� � � � � � � � �
a d-wff �  of M* iff for each �

-admissible 
partition P = <TP, UP> of language M*, if 

�
 ∈ TP, then �  ∈ TP. 

As in the case of L*, the central notion pertaining to questions is that of 
positive equipollence of questions. This must be relativized to 

�
. Namely, we will 

say that question 
�
 is 


 	 � � � � � � � � � � � � 
 	 � � � � � � 	
question 

�
* 

� � � � � � � �
 

�
-

� � � � � � � � � �
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 � � � � � � 	 � � 	 �
 M* iff the affirmative answers to 

�
 and 

�
* 

�
-entail each other and 

the negative answers to 
�
 and 

�
* 

�
-entail each other. The following theorem 

holds: 
 
THEOREM 2.4: If question 

�
* results from question 

�
 by a rule of calculus EL, 

then 
�
* is positively equipollent to 

�
 under 

�
-admissible partitions of M*. 

 
PROOF: The proof is by cases. As an example we analyse the cases of the modal 
rules Rνννν and Rππππ. 

If question 
�
* results from question 

�
 by rule Rνννν of E

L, then 
�
 is of the 

form: 

(a) ? (ϕ1; …; ϕ
�
-1; ϕ; ϕ

�
+1; …; ϕ

�
+� ) 

where ϕ is a sequent of the form ├ �  ' (ν)φ(�
) ' � ; whereas �

* is of the form: 

(b) ? (ϕ1; …; ϕ
�
-1; ψ; ϕ

�
+1; …; ϕ

�
+� ) 

where sequent ψ has the form ├ �  ' (ν0)φ(�
), 

�
 ' � . The affirmative answer to 

question 
�
 is of the following form (for transparency, we omit the parentheses 

around sequents): 

(c) (…((((…(ϕ1 & ϕ2) & …) & ϕ
�
-1) & ϕ) & ϕ

�
+1) & …) & ϕ

�
+�   

and the affirmative answer to question 
�
* is of the form: 

(d) (…((((…(ϕ1 & ϕ2) & …) & ϕ
�
-1) & ψ) & ϕ

�
+1) & …) & ϕ

�
+�   

Let P = <TP, UP> stand for an arbitrary 
�
-admissible partition of language M* and 

suppose that d-wff (c) is an element of TP. By Definition 2.10, P is a K-
admissible partition. Hence, and by clause (vii) of Definition 2.9, each of the 
sequents: ϕ1, …, ϕ

�
-1, ϕ, ϕ

�
+1, …, ϕ

�
+�  is an element of TP, in particular, ϕ ∈ TP. 

By the proviso of applicability of rule Rνννν, 
�
 = max(IW{├ �  ' (ν)φ(�

) ' � }) + 1. Thus, 
by clause (iv) of Definition 2.9, also ψ ∈ TP. Since each of the sequents: ϕ1, …, 
ϕ

�
-1, ψ, ϕ

�
+1, …, ϕ

�
+�  is an element of TP, the d-wff (d) belongs to TP by clause 

(vii) of Definition 2.9. 
For the converse direction suppose that ψ ∈ TP. Since 

�
 = max(IW{├ �  ' 

(ν)φ(
�
) ' � }) + 1, sequent ϕ belongs to TP by clause (iv) of Definition 2.9. Hence it 

follows easily that if d-wff (d) is an element of TP, then d-wff (c) is an element of 
TP. Therefore the affirmative answers to 

�
 and 

�
* 

�
-entail each other. 

As to the negative answers we make use of clause (vi) of Definition 2.9. 
Namely, if the negative answer to question 

�
 is an element of TP, where <TP, UP> 

is an arbitrary 
�
-admissible partition of M*, then, by clause (vi) of Definition 2.9, 

the d-wff (c) is not an element of TP. Hence, by clause (vii) of Definition 2.9, at 
least one of the sequents: ϕ1, …, ϕ

�
-1, ϕ, ϕ

�
+1, …, ϕ

�
+�  does not belong to TP. If 

this pertains to one of the sequents: ϕ1, …, ϕ
�
-1, ϕ

�
+1, …, ϕ

�
+� , then, by clauses 

(vii) and (vi) of Definition 2.9, the negative answer to question 
�
* belongs to TP. 
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If ϕ ∉ TP, then, by clause (iv) of Definition 2.9, ψ ∉ TP. Thus in this case the 
negative answer to 

�
* is an element of TP by clauses (vii) and (vi) of Definition 

2.9. For the converse direction the reasoning is analogous. 
Suppose that question 

�
* results from question 

�
 by rule Rππππ of E

L. In this 
case questions 

�
 and 

�
* are of the forms (a) and (b) indicated above, but ϕ is a 

sequent of the form: ├ �  ' (π)φ(�
) ' � , and ψ is a sequent of the form: ├ �  ' (π)φ(�

) ' 
(π0)

�
 ' � . The affirmative answers to questions �

 and 
�
* are of the forms (c) and 

(d), respectively. Obviously, the reasoning depends on the logic 
�
. We analyse the 

case of logic K only, since the reasoning is similar in the remaining cases. 
Let P = <TP, UP> stand for an arbitrary K-admissible partition of language 

M* and suppose that d-wff (c) is an element of TP. As in the case of rule Rνννν, we 
arrive at the conclusion that ϕ ∈ TP. By the proviso PK of applicability of rule Rππππ 
in EK, <

�
, 

�
> ∈ I� [ϕ]. Thus, by clause (v.i) of Definition 2.9, also ψ ∈ TP. By 

clause (vii) of Definition 2.9, the d-wff (d) belongs to TP (as previously). 
Suppose that ψ ∈ TP. Again, by the proviso of applicability of Rππππ in E

K, 
<

�
, 

�
> ∈ I� [ϕ]. Now we make use of clause (v.ii) of Definition 2.9. Since there is a 

numeral 
�
 such that <

�
, 

�
> ∈ I� [ϕ] and such that ‘├ �  ' (π)φ(�

) ' (π0)
�
 ' � ’ ∈ TP, it 

follows, by clause (v.ii), that ϕ ∈ TP. Therefore the affirmative answers to 
questions 

�
 and 

�
* K-entail each other, as required. We proceed to the negative 

answers. 
As above, we assume that the negative answer to question 

�
 is an element 

of TP (where <TP, UP> is a K-admissible partition of M*), we make use of clauses 
(vi) and (vii) of Definition 2.9, and we consider the case when ϕ ∉ TP. Again, by 
the proviso of applicability of rule Rππππ in E

K, <
�
, 

�
> ∈ I� [ϕ]. Now we make use of 

the transposition of clause (v.ii) of Definition 2.9. Since <
�
, 

�
> ∈ I� [ϕ], it follows 

that ψ ∉ TP. For the converse direction the reasoning is analogous, but we make 
use of the transposition of clause (v.i) of Definition 2.9. The negative answers to 
questions 

�
 and 

�
* also K-entail each other, as required. 

Finally, since the affirmative answers to questions 
�
 and 

�
* K-entail each 

other, and the negative answers to questions 
�
 and 

�
* K-entail each other, 

question 
�
* is positively equipollent to question 

�
 under K-admissible partitions 

of M*. �
 

 
Each step of a Socratic transformation via the rules of EL may be 

considered as an example of an erotetic inference, that is, an inference with 
questions playing the roles of a premise and a conclusion. It follows from 
Theorem 2.4 that such questions are positively equipollent under 

�
-admissible 

partitions of M*. Since positive equipollence of questions is a special case of pure 
erotetic implication, we may say that the relation of pure erotetic implication 
holds between questions 

�
 and 

�
* whenever 

�
* results from 

�
 by a rule of EL. 

Therefore each transition from a question to a question governed by a rule of EL is 
a valid erotetic inference in the sense of IEL. 
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CHAPTER III: Completeness of Modal Erotetic Calculi 

 
 
 
 
 
 
 

In this chapter we prove completeness of the modal erotetic calculi 
presented in the previous part of this work. We follow Priest’s idea of proving 
completeness by constructing a countermodel from a complete branch of an 
“unsuccessful” tableau (

�
.

�
., tableau which is not a proof of a relevant formula). 

We proceed as follows. We assume that there is no Socratic proof of a 
sequent ├ (� )1 in EL. We consider a certain Socratic transformation of question 
? (├ (� )1) via the rules of EL, which we call complete, and we prove that there is a 
path of this transformation (a path of a Socratic transformation is, in a sense, a 
counterpart of a branch of a tableau) that may be used in the construction of a 
countermodel for formula � . 

However, since Socratic transformations are not defined as trees, we apply 
here certain non-standard methods. First of all, we follow the idea of 
“permanently unsuccessful sequent” that has been developed by Wiśniewski and 
Shangin, and used in the completeness proof of the erotetic calculus EPQ 
pertaining to classical first-order logic. 

We apply all the notational conventions introduced in Chapter I and 
Chapter II concerning the use of various types of metavariables. 

 
III.1 Paths of Socratic Transformations 

 
Let 

�
 = ? (Φ) be a question of M*. By a 



-

� � � 	 � � � � � � � � �
 

	 �
 question 

�
 we 

mean the 


-th term of sequence Φ. We introduce the notion of a path of a Socratic 

transformation.36 
 
DEFINITION 3.1: Let 

�
 be a Socratic transformation of a question of the form 

? (├ (� )1) via the rules of EL. By a 
 � � � 	 � � 	 � � � � � � � � � � � � 	 � � � � � 	 � �
 we mean any 

sequence of sequents p = <p1, p2, …> such that: 

(1)  p1 = ├ (� )1; 
                                                 
36 The notion of a path of a Socratic transformation has been introduced in [Wiśniewski, 
Shangin:2006]. 
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(2)  if question 
� �
+1 results from question 

� �
 (

�
 ≥ 1) by one of the rules: Rββββ, 

R¬¬¬¬¬¬¬¬, Rνννν, Rππππ, RππππD, and 
�
-th term p

�
 of path p is 



-th constituent of question � �

, then (
�
+1)-st term p

�
+1 of p is 



-th constituent of question 

� �
+1; 

(3)  if question 
� �
+1 results from question 

� �
 (

�
 ≥ 1) by rule Rαααα, that is, the 

questions 
� �
, 

� �
+1 are of the forms: � �

 = ? (Φ; ϕ; Ψ) � �
+1 = ? (Φ; ψ; ψ*; Ψ) 

then: 

(3.1)  if 
�
-th term p

�
 of path p is ϕ, then either p

�
+1 is ψ or p

�
+1 is ψ*; 

(3.2)  if 
�
-th term p

�
 of path p is 



-th term of sequence Φ (of sequence Ψ), 

then (
�
+1)-st term p

�
+1 of path p is 



-th term of sequence Φ (of 

sequence Ψ). 
 

Let us now present an example. 
 

EXAMPLE 3.1: The following is a Socratic transformation of question 
? (├ (□



 → (�  ∧ (□


 ∧ � )))1 ) via the rules of EK: 
 

1. ? (├ (□


 → (�  ∧ (□


 ∧ � )))1 )     Rββββ 
2. ? (├ (¬□



)1, (�  ∧ (□


 ∧ � ))1 )     Rαααα 
3. ? (├ (¬□



)1, (� )1 ; ├ (¬□


)1, (□


 ∧ � ))1 )    Rαααα 

4. ? (├ (¬□


)1, (� )1 ; ├ (¬□


)1, (□


)1 ; ├ (¬□



)1, (� )1 )  Rνννν 

5. ? (├ (¬□


)1, (� )1 ; ├ (¬□


)1, (


)1,2 ; ├ (¬□



)1, (� )1 )  Rππππ 

6. ? (├ (¬□


)1, (� )1 ; ├ (¬□


)1, (¬


)2, (



)1,2 ; ├ (¬□



)1, (� )1 ) 

 
The transformation has three paths. For transparency, we write their terms 
vertically: 
 

Path 1    Path 2    Path 3 
├ (□



 → (�  ∧ (□


 ∧ � )))1  ├ (□


 → (�  ∧ (□


 ∧ � )))1  ├(□


→(�  ∧ (□


 ∧ � )))1 
├ (¬□



)1, (�  ∧ (□


 ∧ � ))1  ├ (¬□


)1, (�  ∧ (□


 ∧ � ))1  ├(¬□


)1,(� ∧(□


 ∧ � ))1 
├ (¬□



)1, (� )1   ├ (¬□



)1, (□



 ∧ � ))1   ├ (¬□



)1, (□



 ∧ � ))1 

├ (¬□


)1, (� )1   ├ (¬□



)1, (□



)1   ├ (¬□



)1, (� )1  

├ (¬□


)1, (� )1    ├ (¬□



)1, (



)1,2    ├ (¬□



)1, (� )1  

├ (¬□


)1, (� )1    ├ (¬□



)1, (¬



)2, (



)1,2   ├ (¬□



)1, (� )1  

 
Let us observe that we have defined the notion of a path only for Socratic 

transformations of one-sequent questions of the form ? (├ (� )1). Let �
 = <

�
1, 

�
2, 
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…> be a Socratic transformation of a question of such a form. Let 
� �
 be 

�
-th (1 ≤ �

) question of this transformation and let ϕ
�
 be 



-th (1 ≤ 



) constituent of question � �

 (both 
�
 and 



 are arbitrary). It is clear that the following two propositions are 

true: 
 

PROPOSITION 3.1: There is a path of 
�
 whose 

�
-th term is the 



-th constituent ϕ

�
 

of question 
� �
. 

 
PROPOSITION 3.2: If p and p* are paths of 

�
 such that the 

�
-th term of p is the 


-th constituent ϕ
�
 of 

� �
, and the 

�
-th term of p* is the 



-th constituent ϕ

�
 of 

� �
, 

then the paths p and p* do not differ with respect to the terms preceding ϕ
�
. 

 

Both propositions may be easily proved by induction with respect to 
�
. 

Proposition 3.1 states that each sequent that occurs in a Socratic transformation of 
a question of the required form is a term of at least one path of this 
transformation. Hence sequents of a Socratic transformation may be ordered in 
two ways: an occurrence of a sequent is, both, a term of a path and a constituent 
of a question. We may also observe that 



-th term of a path of a Socratic 

transformation must be a constituent of the 


-th question of this transformation. 

Let 
�
 and 

�
* represent questions of the forms, respectively, ? (Φ; ϕ; Ψ) 

and ? (Φ; Φ*; Ψ), where Φ* is a one-term or a two-term sequence of sequents. If 
question 

�
* results from question 

�
 by a rule r of EL, then we say that rule r has 

been applied to question 
�
 

� � � � � � � 
 � � � � 	 � � � � � � �
ϕ. Let ϕ* be a term of 

sequence Φ*. If sequent ϕ is of the form ├ �  ' (� )φ(�
) ' �  and sequent ϕ* is of the 

form ├ �  ' �  ' �  (where �  is a one-term or a two-term sequence of indexed 
formulas), then we say that rule r has been applied to question 

�
 with respect to 

sequent ϕ and 
� � � � � � � � � � � 	 � � � � � � � � 	 � � � � �

(� )φ(�
). If r is Rππππ, (� )φ(�

) is an 
indexed π-formula and �  is of the form: (� )φ(�

) ' (π0)
�
 (where π0 is the component 

of � ), then we will be more specific and we will say that rule Rππππ has been applied 
to question 

�
 with respect to sequent ϕ and with regard to indexed formula (� )φ(�

) � � � � � � 
 � � �
 <

�
, 

�
>. We will use the notion of 

� 
 
 � � � � � � � � � �
of a rule with respect to 

a sequent and with regard to a wff (and a pair) in a similar way. 
To be honest, what we have said in the previous paragraph is not 

sufficiently precise. What we really mean by saying that a rule has been applied 
with respect to a 

� � � � � � �
 is that the rule has been applied with respect to a 

particular 
	 � � � � � � � � � 	 � � � � � � � � � � � �

. Similarly, when we say that a rule has been 
applied with respect to a sequent and with regard to a 

� � �
, then we have in mind a 

particular 
	 � � � � � � � � � 	 � � � � � � � �

. However, it is more convenient to speak about 
sequents or wffs instead of their occurrences, and in most contexts the risk of a 
misunderstanding is quite unlikely. If such a misunderstanding is possible, we 
carefully distinguish between a sequent (wff) and its occurrence. 
 



 

 

 

54

III.2 Permanently Unsuccessful Sequents 

 
If there is a Socratic proof of a sequent in EL, then we will say that this 

sequent is 

 � 	 � � � � �

 in EL. Let us introduce the following notions: 
 
DEFINITION 3.2: A sequent ϕ is 

� � � � � � � � � �
 iff ϕ is of one of the forms specified 

in Definition 2.10 of a Socratic proof: 

(a) ├ �  ' (� )φ(�
) ' �  ' (¬� )γ(�

) ' � , or  
(b) ├ �  ' (¬� )γ(�

) ' �  ' (� )φ(�
) ' �   

A sequent is 
� � � � � � � � � � � �

iff it is not successful.37 
 
DEFINITION 3.3: Let 

�
 = <

�
1, …, 

� �
> (where 

�
 ≥ 1) be a finite Socratic 

transformation of a question 
�
 via the rules of EL. By an 

� � � � � � � 	 � 	 �
 

�
 we mean 

any finite Socratic transformation 
�
* = <

�
*1, …, 

�
*� > of question �

* via the 
rules of EL such that 

�
 > 

�
, and 

� �
 = 

�
*

�
 for 



 = 1, …, 

�
. 

 
Obviously, if 

�
* is an extension of a Socratic transformation 

�
 of a question �

 via the rules of EL, then 
�
* is also a Socratic transformation of question 

�
 via 

the rules of EL. 
We introduce the notion of a permanently unsuccessful sequent.38 Roughly 

speaking, a constituent of a question of a Socratic transformation is permanently 
unsuccessful in this question if it is unsuccessful and, moreover, one can not 
obtain a Socratic transformation in which this sequent is “replaced” by a sequence 
of successful sequents. More formally: 

 
DEFINITION 3.4: Let 

�
 be a Socratic transformation of a question 

�
 via the rules 

of EL. Let 
� �
 = ? (Φ; ϕ; Ψ), where Φ and Ψ may be empty, be 

�
-th (1 ≤ 

�
) 

question of 
�
 (

�
 is arbitrary). Let 

�
# stand for the Socratic transformation <

�
1, …, � �

>. We say that sequent ϕ is 

 � � � � � � � � � � � � � � � � � � � � � �

 
� � � � 	 � �

 iff ϕ is 
unsuccessful and there is no extension 

�
* = <

�
1, …, 

� � > of �
# such that 

� �  is of 
the form: ? (Φ; Γ; Ψ) where Γ is a sequence of successful sequents. 
 

The following lemma states that if sequent ├ (� )1 is not provable in EL, 
then each Socratic transformation (either finite or infinite) of question ? (├ (� )1) 
via the rules of EL contains a path whose each term is a sequent permanently 
unsuccessful in a relevant question of the transformation. (Let us remind that 

�
-th 

term of a path of a Socratic transformation is a constituent of the 
�
-th question of 

this transformation.) 
 

                                                 
37 The notion of a successful / unsuccessful sequent comes from [Wiśniewski, Shangin:2006]. 
38 We have borrowed this idea from [Wiśniewski, Shangin:2006]. 
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LEMMA 3.1: Let 
�
 be a Socratic transformation of question ? (├ (� )1) via the 

rules of EL. If the sequent ├ (� )1 is not provable in EL, then there is a path p of �
 

such that for each term ϕ of p: if ϕ is 
�
-th term of path p, then ϕ is a sequent 

permanently unsuccessful in the 
�
-th question of 

�
. 

 
PROOF: Let 

�
 be an arbitrary Socratic transformation of question ? (├ (� )1) via 

the rules of EL. We indicate the first term of a path with the desired property, and 
show how to determine (



+1)-st term of the path if the 



-th term is already 

determined. We do it, however, in a non-effective way. 
Let us start with the following observation. If sequent ├ (� )1 is not 

provable in EL, then this sequent is permanently unsuccessful in the first question 
? (├ (� )1) of transformation �

. For suppose it is not permanently unsuccessful in 
this question. Obviously, sequent ├ (� )1 is not successful, so by the definition of a 
permanently unsuccessful sequent, there is an extension 

�
* = <

�
, …, ? (Γ)> of the 

one-term Socratic transformation <? (├ (� )1)> such that each term of Γ is a 
successful sequent. But 

�
* is a Socratic proof of sequent ├ (� )1, contrary to 

assumption. Therefore the first term of each path of 
�
 is a sequent permanently 

unsuccessful in the first question of 
�
. If 

�
 is a one-term sequence <? (├ (� )1)>, 

then the only path of 
�
 has the desired property. 

Suppose that 
�
 has more than one question. The second question of 

�
 is 

either of the form ? (ϕ) or of the form ? (ϕ; ϕ*). If the second question of 
�
 is of 

the form ? (ϕ), then the sequent ϕ is permanently unsuccessful in the second 
question of 

�
, for if it was not, then the sequent ├ (� )1 would not have been 

permanently unsuccessful in the first question of 
�
. Similarly, if the second 

question of 
�
 is of the form ? (ϕ; ϕ*), then at least one of the sequents: ϕ and ϕ* is 

permanently unsuccessful in this question. For suppose that it is not the case. Let �
# stand for the two-term Socratic transformation: <? (├ (� )1), ? (ϕ; ϕ*)>. By the 
definition of a permanently unsuccessful sequent, the following holds: 

(1) if ϕ is not permanently unsuccessful in the second question of 
�
, then there 

is an extension 
�
* = <

�
1, 

�
2, …, 

� �
> of 

�
# such that 

� �
 is of the form: 

? (Γ; ϕ*), where Γ is a sequence of successful sequents; and 

(2) if ϕ* is not permanently unsuccessful in the second question of 
�
, then 

there is an extension 
�
** = <

�
1, 

�
2, …, 

� � > of �
# such that 

� �  is of the 
form: ? (ϕ; Γ*), where Γ* is a sequence of successful sequents. 

Now we may “glue” the two transformations 
�
* and 

�
** together in order to 

obtain a Socratic proof of sequent ├ (� )1. We take the Socratic transformation �
* 

= <
�
1, 

�
2, …, 

� �
> as the starting point. Question 

� �
 is of the form: ? (Γ; ϕ*), 

where Γ is a sequence of successful sequents. Let us observe that the questions �
3, …, 

� �  of Socratic transformation �
** are of the forms: ? (ϕ; Φ1), …, ? (ϕ; 

Φ � -2), where Φ � -2 is Γ*. Now we extend Socratic transformation �
* in the 

following way. We take ? (Γ; Φ1) as the (
�
+1)-st question of the extension of 

�
*. 

Obviously, if question ? (ϕ; Φ1) results from question ? (ϕ; ϕ*) by a rule of EL, 
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then question ? (Γ; Φ1) results from question ? (Γ; ϕ*) by the same rule of EL. We 
take question ? (Γ; Φ2) as the (

�
+2)-nd question of the extension of 

�
*, then 

? (Γ; Φ3) as the (
�
+3)-rd question, 

� � �
.; we proceed until we arrive at the (

�
+

�
-2)-

nd question, which will be of the form ? (Γ; Φ � -2), where Φ � -2 is Γ*. Each term of 
this sequence results from the previous one by a rule of EL. Observe that each 
constituent of question ? (Γ; Γ*) is a successful sequent. It follows, by Definition 
3.4, that sequent ├ (� )1 is not permanently unsuccessful in question ? (├ (� )1) of �
#. (Moreover, it follows that this sequent is provable in EL.) We arrive at a 
contradiction. Hence at least one of the sequents: ϕ and ϕ* is permanently 
unsuccessful in the second question of Socratic transformation 

�
. 

We go back to the path p with permanently unsuccessful sequents. If the 
second question of Socratic transformation 

�
 is of the form ? (ϕ), then sequent ϕ is 

the second term of path p. If the second question of this transformation is of the 
form ? (ϕ; ϕ*), then the second term of path p is a sequent which is permanently 
unsuccessful in this question. We do not know which of the sequents satisfies this 
condition but we know that at least one does. If both sequents are permanently 
unsuccessful in this question, then we choose the leftmost one, that is, sequent ϕ. 

We proceed in the way described above. Generally, if 


-th term (for an 

arbitrary 


 ≥ 1) of path p is determined, then the (



+1)-st term of p is determined 

in the following way (let us remind once again that 


-th term of a path is a 

constituent of the 


-th question): 

Given that question 
� �
 is of the form: ? (Φ; ϕ; Ψ), where ϕ is the 



-th term 

of path p (sequences Φ and Ψ may be empty), we have the following possibilities: 

(1) question 
� �

+1 is of the form ? (Φ*; ϕ; Ψ), that is, 
� �

+1 results from 
� �
 

by a rule of EL applied with respect to a term of sequence Φ; 

(2) question 
� �

+1 is of the form ? (Φ; ϕ; Ψ*), that is, 
� �

+1 results from 
� �
 

by a rule of EL applied with respect to a term of sequence Ψ; 

(3) question 
� �

+1 is of the form ? (Φ; ψ; Ψ), that is, 
� �

+1 results from 
� �
 

by a rule of EL other than Rαααα applied with respect to sequent ϕ; 

(4) question 
� �

+1 is of the form ? (Φ; ψ; ψ*; Ψ), that is, 
� �

+1 results from � �
 by rule Rαααα of E

L applied with respect to sequent ϕ. 

If (1) or (2) holds, then the (


+1)-st term of path p is sequent ϕ. This 

sequent is permanently unsuccessful in question 
� �

+1 of 
�
, for if it was not, then 

the sequent ϕ would not have been permanently unsuccessful in question 
� �
. 

If (3) holds, then sequent ψ is the (


+1)-st term of path p. Again, and for 

similar reasons as above, sequent ψ is permanently unsuccessful in question 
� �

+1. 
If (4) holds, then at least one of the sequents: ψ and ψ* is permanently 

unsuccessful in question 
� �

+1. This may be established by a reasoning analogous 
to the one already presented above. (The only difference lies in the fact that 
sequences Φ and / or Ψ can be non-empty; their terms are not acted upon, 
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however.) If sequent ψ is permanently unsuccessful in question 
� �

+1, then it is the 
(



+1)-st term of path p. Otherwise sequent ψ* is the (



+1)-st term of path p. 

This finishes the proof. �
 

 
III.3 Complete Socratic Transformations 

 
We present a certain procedure of constructing a Socratic transformation 

of a question of the form ? (├ (� )1) via the rules of EL. The term “procedure” is 
slightly misleading here since it does not have to terminate. Our aim, however, is 
to produce a Socratic transformation in which, roughly speaking, every rule that 
may be applied with regard to some wff is sooner or later applied with regard to 
this wff. Such transformations need not be finite. A Socratic transformation 
constructed according to this procedure will be called 

� 	 � 
 � � � �
. We present the 

procedure and then we prove that each complete (
�
.

�
., constructed according to 

this procedure) Socratic transformation has the desired property. 
We explain the general idea first. At any stage, if there is no rule 

applicable to the last question of what we have constructed, then we have a 
complete Socratic transformation of the initial question. At the beginning, we 
apply a rule to question ? (├ (� )1), if any rule is applicable. Then we act upon the 
leftmost occurrence of a wff such that a rule of EL is applicable with regard to this 
wff. We apply the rule and we proceed with the wff which occurred next to the 
occurrence we have acted upon. Again, we apply a rule, if any is applicable with 
regard to a given wff, and proceed with the next wff. We do so until there is no 
“next” occurrence of a wff (that is, we have just acted upon the rightmost 
occurrence of a wff in the last question). Then we go back to the leftmost 
occurrence of a wff in the last question obtained so far. 

Obviously, our explanation is very rough. Let us observe that some of the 
occurrences of wffs are simply rewritten from a question to a question, but some 
of them disappear under the decomposition process and some may be “doubled” 
by an application of rule Rαααα. In order to keep track of what occurrence of a wff 
has been already used and which occurrence is “the next one” to act upon, we 
mark the occurrences (

�
.� . by underlining it or by using *, � � �

.) in a way described 
below. 
 
PROCEDURE: a complete Socratic transformation of a question ? (├ (� )1) via the 
rules of EL  
 
We start with the question ? (├ (� )1). If there is no rule of EL applicable to this 
question, then the complete Socratic transformation is ready. Otherwise we apply 
the rule applicable to this question (the rule is uniquely determined by the shape 
of formula � ) and we mark each occurrence of a wff in the resulting question. 
Then we proceed according to the following principles: 
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(1) At any stage of the procedure, if each occurrence of a wff in the last question 
of the Socratic transformation obtained so far is marked, then unmark each of 
them. 

(2) At any stage of the procedure, if no occurrence of a wff in the last question of 
the Socratic transformation obtained so far is marked, and no rule of EL is 
applicable to this question, then stop. The transformation is finished. 

(3) If neither of (1) and (2) applies, then choose the leftmost unmarked occurrence 
of a wff in the last question of the Socratic transformation obtained so far and: 

(3.1) if there is no rule applicable with regard to this wff, then mark the wff. 

(3.2) if there is a rule r applicable with regard to this wff, then this rule is 
uniquely determined by the shape of the wff and, possibly, by indices of 
the wffs that occur in the same constituent; in this case there are three 
possibilities: 

(3.2.1) r is neither RππππD nor Rππππ. Apply the rule. In the resulting question there 
exist(s) one or two “new” constituents. The decomposed indexed formula 
from the “old” constituent has been replaced by its indexed component(s) 
in the “new” constituent(s). Mark this (these) indexed component(s). Mark 
also each wff that has been marked in the previous question. (If rule Rαααα 
was applied, then each wff that has been marked in the “old” constituent 
should be marked in the two “new” constituents.) 

(3.2.2) r is RππππD. Apply the rule. The rule has been applied with regard to an 
indexed π-formula, which has been “rewritten” in the “new” constituent of 
the resulting question. Mark this indexed π-formula, mark also its indexed 
component π0 introduced by this application of the rule. Mark each wff 
that has been marked in the previous question. 

(3.2.3) r is Rππππ. This is the most complex case. Since the rule is applicable with 
regard to the chosen wff, this wff is of the form (π)φ(

�
) and, moreover, there 

is a numeral that satisfies the relevant proviso of applicability of this rule 
in EL. It may happen that there is more than one such numeral. Let 

�
1, …, � �

 be all the numerals that satisfy the proviso of applicability of Rππππ in E
L 

(these numerals must occur in the sequent in which (π)φ(
�
) occurs, hence 

their number is finite). Apply rule Rππππ with regard to wff (π)
φ(

�
) and the pair 

<
�
, 

�
1>. The wff (π)φ(

�
) has been “rewritten” in the “new” constituent of the 

resulting question, together with its indexed component (π0)
�
1. Obviously, 

rule Rππππ is still applicable with respect to this new constituent and with 
regard to wff (π)φ(

�
) and each of the pairs: <

�
, 

�
2>, …, <

�
, 

� �
>. Apply the rule 

again, this time with regard to pair <
�
, 

�
2>. Repeat this step another (



-2) 

times. Mark the wff (π)φ(
�
) in the “new” constituent of the last question 

obtained so far, mark also each of: (π0)
�
1, (π0)

�
2, …, (π0)

� �
 in this 
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constituent. Finally, mark each wff that has been marked in the question 
that we had started with. 

 
The following corollary states that complete Socratic transformations have 

the desired properties (that is, that complete Socratic transformations are complete 
in the intuitive sense of the word). Actually, Corollary 3.1 follows immediately 
from the description of the procedure. Let us remind once again that 

�
-th term of a 

path of a Socratic transformation is a constituent of the 
�
-th question of this 

transformation. 
 
COROLLARY 3.1: Let 

�
 = <

�
1, 

�
2, …> be a complete Socratic transformation of 

a question of the form ? (├ (� )1) via the rules of EL. Let p be a path of �
 and let ϕ 

be 
�
-th (1 ≤ 

�
) term of path p. The following holds: 

(a) If a rule r of EL, other than Rππππ, is applicable to question 
� �
 with respect to 

its constituent ϕ and with regard to a wff (� )φ(�
), then there is a question 

� �
 

(
�
 < 

�
) of 

�
 such that 

� �
 results from 

� �
-1 by rule r applied with respect to 

the constituent of 
� �
-1 which is a term of p and with regard to wff (� )φ(�

). 

(b) If rule Rππππ of E
L is applicable to question 

� �
 with respect to its constituent 

ϕ and with regard to a wff (π)φ(
�
) and a pair <

�
, 

�
>, then there is a question � �

 (
�
 < 

�
) of 

�
 such that 

� �
 results from 

� �
-1 by rule Rππππ applied with respect 

to the constituent of 
� �
-1 which is a term of p and with regard to wff (π)φ(

�
) 

and the pair <
�
, 

�
>. 

 
PROOF: Before we start, let us introduce, for convenience, the following notion. 
We say that a wff occurring in a constituent of a question of a Socratic 
transformation via the rules of EL is 

� � � � � �
 iff there is a rule of EL which is 

applicable to this question with respect to this constituent and with regard to this 
wff. 

Let us start with the first part, (a), of Corollary 3.1. Suppose that 
� �
 = 

? (ψ1; …; ψ
�
-1; ϕ; ψ

�
+1; …; ψ� ) is �

-th question of a complete Socratic 
transformation, where ϕ is the 

�
-th term of path p of this transformation. Suppose 

that a rule r of EL (other than Rππππ) is applicable to this question with respect to its 
constituent ϕ and with regard to a wff (� )φ(�

). Question 
� �
 has been obtained on a 

certain stage of the procedure described above. Let us consider the next stage of 
this procedure. By assumption, there is a rule r applicable to question 

� �
, hence 

we have the following possibilities: 

(1) Each wff that occurs in the constituents of question 
� �
 is already marked. 

In this situation all the wffs become unmarked (principle (1)), and then we 
proceed to the leftmost wff that occurs in 

� �
 (principle (3)). 

(2) There are unmarked occurrences of wffs in 
� �
 but no such wff is active in 

a constituent of 
� �
. In this case all these occurrences will be marked at the 
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next stage of the procedure (
� �
. (3.1)) and we will go back to the situation 

described in (1). 

(3) There is an unmarked occurrence of a wff and this wff is active in a certain 
constituent of 

� �
. 

So we have to consider cases (1) and (3). In any of these cases we start with the 
leftmost unmarked wff in 

� �
 (

� �
. principle (3) of the procedure), we mark the 

consecutive wffs that are not active (if there are any) and we reach the leftmost 
unmarked occurrence of an active wff. Now we act upon this wff (since all the 
wffs that occur on the left from this wff are marked). We have the following 
possibilities: 

(4) The wff we act upon on the current stage occurs in one of the constituents: 
ψ1, …, ψ

�
-1 of question 

� �
, or it occurs in constituent ϕ on the left of wff 

(� )φ(�
). 

(5) The wff we act upon on the current stage is (� )φ(�
) in constituent ϕ of 

� �
. 

(6) The wff we act upon on the current stage occurs in constituent ϕ on the 
right of wff (� )φ(�

) or it occurs in one of the constituents: ψ
�
+1, …, ψ�  of 

question 
� �
. 

If (5) holds, then, simply, we apply rule r and we obtain the required question 
� �
. 

Moreover, it is easy to observe that if (4) or (6) holds, then, in a finite number of 
steps, the procedure will “reach” wff (� )φ(�

) in sequent ϕ. 
For suppose that (4) holds. Let ψ be the constituent in which the active wff 

occurs. We proceed according to principle (3.2). We apply an appropriate rule and 
we obtain question 

� �
+1 in which all wffs in the constituents that occur left from ψ 

are marked (for they were marked in 
� �
), and, in the constituent that “replaced” 

constituent ψ, the wff that has been active is replaced by its indexed 
component(s). These indexed component(s) are marked, however, and also each 
wff that occurs in this “new” constituent left of the indexed component(s) is 
marked (for it was marked in 

� �
). So in the “new” constituent there is less 

unmarked wffs than there were in constituent ψ. If rule Rαααα has been applied, then 
we have two “new” constituents, but in both of them there are less unmarked wffs 
than there were in ψ. Let us also note that if rule Rππππ has been applied (that is, we 
have proceeded according to (3.2.3)), then we must repeat this step an appropriate 
number of times, until we make use of each pair of numerals that may be used. 
Nevertheless, also in this case we arrive at a question that has a “new” constituent 
with less unmarked wffs than there were in sequent ψ. We proceed to another 
stage of the procedure, apply a rule, and we continue until the leftmost unmarked 
occurrence of an active wff occurs in sequent ϕ. (Obviously, this sequent is a term 
of path p.) If the active wff is (� )φ(�

), then we apply rule r. In this case we have 
obtained the required question 

� �
. If this wff is not (� )φ(�

), then it is a wff 
occurring left of (� )φ(�

) in sequent ϕ. In this case we apply a suitable rule and 
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obtain a question in which sequent ϕ is “replaced” by a “new” constituent (or by 
two “new” constituents). This “new” constituent, however, is a term of path p, 
and wff (� )φ(�

) occurs in this constituent (if there are two “new” constituents, then 
only one of them is a term of p, but wff (� )φ(�

) occurs in both of them). Moreover, 
the “new” constituent(s) has (have) less unmarked wffs than ϕ have had. Again, 
we continue by applying the rules, until the leftmost unmarked occurrence of an 
active wff is the wff (� )φ(�

) in a term of path p. We apply rule r and we obtain the 
required question 

� �
. 

If (6) holds, then we first apply the rules with regard to active wffs that 
occur in constituents: ψ

�
+1, …, ψ�  of question � �

, until each wff in the last 
question obtained thus far is marked. Then we proceed according to principle (1) 
and then we use principle (3) again. The situation we now have is analogous to 
that described in (4). 

As to the second part, (b), of Corollary 3.1, the reasoning is similar with 
the following two exceptions. First, when we finally “reach” the active occurrence 
of wff (π)φ(

�
) in a term of path p, then it can happen that we have to apply rule Rππππ 

more than once, thus producing questions 
�
*1, 

�
*2, …, 

�
*� . Each of these 

questions results from the previous question of 
�
 by rule Rππππ applied with respect 

to a term of path p and with regard to wff (π)φ(
�
) and a pair of numerals. The 

number of such pairs is, however, finite, and the pair <
�
, 

�
> is, by assumption, one 

of them. Therefore one of the questions 
�
*1, 

�
*2, …, 

�
*�  is the question � �

 of 
�
, 

the existence of which we were to prove. 
When applicability of rule Rππππ is concerned, there is still one more situation 

that we have not described yet (this is the second exception). Namely, it may 
happen that question 

� �
 results from the previous question by rule Rππππ applied with 

respect to a term of path p and with regard to wff (π)φ(
�
) and pair <

�
, 

�
>.39 In this 

case the rule is still applicable to question 
� �
 with respect to its constituent ϕ and 

with regard to (π)φ(
�
) and <

�
, 

�
>,40 but on the next stage of the procedure rule Rππππ is 

applied with regard to wff (π)φ(
�
) and another pair of numerals that satisfies the 

relevant proviso (if there is any such pair). Obviously, after finite number of steps 
we will proceed to the next active wff, and thus we will have a situation analogous 
to that described in (6). �

 
 
 

                                                 
39 The situation will be similar if question � � -1 has been obtained from the previous one by rule Rππππ 
applied with respect to a term of path p and with regard to wff (π)φ(

�
) and pair <� , � >; also the 

situation will be similar if question � � -2 has been obtained in the same way; � � � . The point is that 
the pair <� , � > may be omitted on the current stage of the procedure, because it has already been 
used in the current application of principle (3.2.3). 
40 This is the reason why complete Socratic transformations via the rules of EL may be infinite, 
even if �  = K. 
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III.4 Countermodels 

 
In the proof of the completeness theorem we will make use of the 

following notion of 
� � � � � � 	 � � 	 � 
 � � � � � � 	 � � � 	 � � � � �

 �  (in symbols: � � � (� )):
 

DEFINITION 3.5: Let �  be a formula of M, 
(i) if �  is a literal, then � � � (� ) = 0; 
(ii) if �  is of the form ¬¬� , then � � � (� ) = � � � (� ) + 1; 
(iii) if �  is a β-formula, then � � � (� ) = � � � (β1) + � � � (β2) + 1; 
(iv) if �  is an α-formula, then � � � (� ) = � � � (α1) + � � � (α2) + 1; 
(v) if �  is a ν-formula, then � � � (� ) = � � � (ν0) + 1; 
(vi) if �  is a π-formula, then � � � (� ) = � � � (π0) + 1. 

 
The degree of complexity of a formula is usually defined as a number of 
occurrences of the logical constants in this formula. However, when the α, β, ¬¬, 
ν, π-notation is used, it is more convenient to define the degree of complexity of a 
formula as we did it above.41 The notion reflects the structure of the rules of EL 
and it may be viewed as a measure of the number of possible applications of the 
rules with regard to a formula � , its components, their components, � � �

. (This is 
not strictly correct due to clause (vi) concerning π-formulas.) 

Let us finally prove: 
 
THEOREM 3.1 (completeness): If �  is an �

-valid formula of M, then sequent 
├ (� )1 is provable in EL. 
 
PROOF: We proceed by contraposition. We assume that a sequent ├ (� )1 is not 
provable in EL and we construct a countermodel for the formula � . 

Suppose that there is no Socratic proof of sequent ├ (� )1. Let us consider 
the complete Socratic transformation 

�
 of question ? (├ (� )1) via the rules of EL. 

By Lemma 3.1, there is a path p of 
�
 whose each term is a sequent permanently 

unsuccessful in the relevant question. By Definition 3.4 of a permanently 
unsuccessful sequent, each term of p is an unsuccessful sequent. Therefore, in 
particular, the following holds: 
                                                 
41 What a definition of degree of complexity should warrant is that degree of a formula is higher 
than degree of its component(s). The standard definition of degree of complexity of a formula does 
not warrant that � � � (β) > � � � (β1). If a β-formula is of the form �  → �  and �  is a propositional 
variable, then, under the standard definition, � � � (β) = � � � (�  → � ) = � � � (� ) + 0 + 1 = � � � (¬� ) = � � � (β1). This exception unnecessarily complicates proofs by induction. Another possibility is to 
define the notion of degree of complexity of a formula as a measure of the number of occurrences 
of the 	 � � � � � � � � of logical constants in this formula. As a matter of fact, this idea, adjusted to our 
notation, is expressed in Definition 3.5. 
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(a) No term of p contains occurrences of both: (

 �
)φ(

�
) and (¬


 �
)γ(

�
), where 


 �
 is 

an arbitrary propositional variable and 
�
 is an arbitrary numeral. 

We define a frame <
�
, 

�
> as follows. 

�
 is the set of all the numerals that occur 

in indices of wffs of the terms of p. Let 
�
0 be the set of all the ordered pairs <

�
, 

�
> 

such that 
�
 immediately precedes 

�
 in an index of a wff occurring in a term of p. 

(In other words, <
�
, 

�
> ∈ 

�
0 iff there is a term ϕ of p such that <

�
, 

�
> ∈ IR[ϕ].) The 

definition of 
�
 depends on 

�
: 

- if 
�
 = K, then 

�
 = 

�
0; 

- if 
�
 = D, then <

�
, 

�
> ∈ 

�
 iff (1) <

�
, 

�
> ∈ 

�
0, or (2) 

�
 = 

�
 provided that there 

is no numeral 


 such that <

�
, 



> ∈ 

�
0; 

- if 
�
 = T, then <

�
, 

�
> ∈ 

�
 iff (1) <

�
, 

�
> ∈ 

�
0, or (2) 

�
 = 

�
; 

- if 
�
 = KB, then <

�
, 

�
> ∈ 

�
 iff (1) <

�
, 

�
> ∈ 

�
0, or (2) <

�
, 

�
> ∈ 

�
0; 

- if 
�
 = K4, then <

�
, 

�
> ∈ 

�
 iff there is a directed 

�
0-chain whose first term 

is 
�
 and whose last term is 

�
; 

- if 
�
 = S4, then <

�
, 

�
> ∈ 

�
 iff (1) there is a directed 

�
0-chain whose first 

term is 
�
 and whose last term is 

�
, or (2) 

�
 = 

�
; 

- if 
�
 = S5, then <

�
, 

�
> ∈ 

�
 iff (1) there is an 

�
0-chain whose first term is 

�
 

and whose last term is 
�
, or (2) 

�
 = 

�
. 

Let us observe that: 

(b) For each 
�
, if <

�
, 

�
> ∈ 

�
0, then <

�
, 

�
> ∈ 

�
. 

In the case of 
�
 = K, D, T, KB this is obvious. For the other logics it is 

sufficient to observe that if <
�
, 

�
> ∈ 

�
0, then <

�
, 

�
> is a directed 

�
0-chain (and 

hence also an 
�
0-chain, 

� �
. Definition 2.6 from Chapter II). 

Now we prove that: 

(c) 
�
 has the 

�
-properties. 

Let 
�
 = D and let 

�
 be an arbitrary element of 

�
. We show that there is a 

numeral “
�
-accessible” from 

�
. There are two possibilities. Either there is a 

numeral 


 such that <

�
, 



> ∈ 

�
0 or there is no such numeral. If the first possibility 

holds, then, by condition (1) imposed on 
�
, <

�
, 



> ∈ 

�
. If the second possibility 

takes place, then, by condition (2) imposed on 
�
, <

�
, 

�
> ∈ 

�
. In both cases there is 

a numeral “
�
-accessible” from 

�
, hence 

�
 is extendable. 

Let 
�
 = T and let 

�
 be an arbitrary element of 

�
. By condition (2) imposed 

on 
�
, <

�
, 

�
> ∈ 

�
, which proves that 

�
 is reflexive. 

Let 
�
 = KB and let <

�
, 

�
> be an arbitrary element of 

�
. There are two 

possibilities: either <
�
, 

�
> ∈ 

�
0 or <

�
, 

�
> ∈ 

�
0. In the first case <

�
, 

�
> ∈ 

�
 by 

condition (2) imposed on 
�
. If the second possibility holds, then <

�
, 

�
> ∈ 

�
 by 

condition (1). It follows that 
�
 is symmetric. 



 

 

 

64

Let 
�
 = K4 and suppose that <

�
, 

�
> ∈ 

�
 and <

�
, 



> ∈ 

�
. By the definition 

of 
�
 for K4, if <

�
, 

�
> ∈ 

�
, then there is a directed 

�
0-chain <

�
1, …, 

� �
>, where 

�
1 = 

�
 

and 
� �
 = 

�
. Since <

�
, 



> ∈ 

�
, there is also a directed 

�
0-chain <

�
1, …, 

� � > such that �
1 = 

�
 and 

� �  = 

. Let us observe that 

� �
 = 

�
1, and for this reason <

� �
, 

�
2> ∈ 

�
0. But if 

this is the case, then the sequence <
�
1, …, 

� �
, 

�
2, …, 

� � > is also a directed �
0-chain. 

Since the first term of this directed 
�
0-chain is 

�
 and the last one is 



, <

�
, 



> ∈ 

�
 by 

our definition of 
�
. It follows that 

�
 is transitive. 

Let 
�
 = S4. Condition (1) imposed on 

�
 guarantees that 

�
 is transitive (the 

reasoning is exactly as for K4), and condition (2) guarantees that it is reflexive 
(the reasoning is as for T). 

Let 
�
 = S5. Condition (2) guarantees that 

�
 is reflexive (as above), 

whereas condition (1) warrants both transitivity and symmetry. We start with 
transitivity (the reasoning is a slight modification of that for K4). Suppose that 
<

�
, 

�
> ∈ 

�
 and <

�
, 



> ∈ 

�
. Then, by condition (1) imposed on 

�
, there is an 

�
0-

chain <
�
1, …, 

� �
>, where 

�
1 = 

�
 and 

� �
 = 

�
, and there is also an 

�
0-chain <

�
1, …, 

� � > 
such that 

�
1 = 

�
 and 

� �  = 

 (these chains need not be directed). Again, 

� �
 = 

�
1, and 

for this reason either <
� �
, 

�
2> ∈ 

�
0 or <

�
2, 

� �
> ∈ 

�
0 (by the definition of a chain). In 

both cases the sequence: <
�
1, …, 

� �
, 

�
2, …, 

� � > is also an �
0-chain. Since 

�
1 = 

�
 and � �  = 


, <
�
, 



> ∈ 

�
 by condition (1). Therefore 

�
 is transitive. We proceed to 

symmetry. Suppose that <
�
, 

�
> ∈ 

�
. Then, by condition (1) again, there is an 

�
0-

chain <
�
1, …, 

� �
>, with 

�
1 = 

�
 and 

� �
 = 

�
. Let us observe that, by the definition of a 

chain, each pair <
� �
, 

� �
+1> (for 



 ≥ 1) satisfies at least one of the conditions: <

� �
, � �

+1> ∈ 
�
0 or <

� �
+1, 

� �
> ∈ 

�
0. It makes no difference which of them is satisfied (that 

is, so to say, the “direction” makes no difference). For example, it may be easily 
checked that if <

�
, 

�
, 



> is an 

�
0-chain, then <



, 

�
, 

�
> is an 

�
0-chain as well. For 

this reason the sequence <
� �
, …, 

�
1> which has as its 

�
-th term the 

�
(

�
-

�
)+1 term of 

sequence <
�
1, …, 

� �
>, is also an 

�
0-chain. This proves that 

�
 is symmetric. 

Next, we define the following <
�
, 

�
>-assignment 

�
#: 

� � �
 × 

�
 a {0, 1} 

(d) 
�
#(


 �
, 

�
) = 0 iff wff (


 �
)φ(

�
) occurs in a term of path p  

We extend assignment 
�
# to a valuation 

�
 on frame <

�
, 

�
>, and we prove the 

following: 

(e) For each wff (� )φ(�
) that occurs in a term of path p, 

�
(� , �

) = 0. 

The proof is by induction on the degree of � . 
Suppose that wff (� )φ(�

) occurs in a term ϕ of path p and that 
� � � (� ) = 0. 

Then �  is a literal. If �  is a propositional variable, then �  is assigned value 0 (by 
(d)). Hence in this case 

�
(� , �

) = 0. Suppose that �  is a negation of a propositional 
variable, ¬


 �
. Then, by (a), (


 �
)γ(

�
) does not occur in term ϕ of p. What is more, it 

follows that (

 �
)γ(

�
) does not occur in 

� � �
 term of path p. For suppose that it does 

occur in a term of path p that precedes term ϕ. Then, since indexed literals are not 
eliminated in the course of a Socratic transformation, (


 �
)γ(

�
) occurs in term ϕ as 

well, which contradicts (a). And if (

 �
)γ(

�
) occurs in a term of p that succeeds ϕ, 
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then, for the same reason, (¬

 �
)φ(

�
) also occurs in this term, contrary to (a). Since 

wff (

 �
)γ(

�
) does not occur in any term of p, we have, by (d), 

�
#(


 �
, 

�
) = 1. 

Therefore 
�
(¬


 �
, 

�
) = 0. This finishes the initial step. 

Suppose that (e) holds for each formula of degree lower than 


 (



 > 0), and 

let 
� � � (� ) = 


. The reasoning depends on the shape of formula � . 
Suppose that �  is a β-formula and that wff (� )φ(�

) occurs in some term of 
path p. Let ϕ be such a term of p and suppose that ϕ is 

�
-th (

�
 ≥ 1) term of p. 

Sequent ϕ is a constituent of the 
�
-th question of 

�
. Let us observe that rule Rββββ is 

applicable to the 
�
-th question of 

�
 with respect to sequent ϕ and with regard to 

wff (� )φ(�
). By Corollary 3.1, there is a question 

� �
 (

�
 < 

�
) of 

�
 such that 

� �
 results 

from 
� �
-1 by rule Rββββ applied with respect to the constituent of 

� �
-1 which is a term 

of p and with regard to wff (� )φ(�
). Therefore question 

� �
 is of the form: � �

 = ? (Φ; ├ �  ' (β1)φ(�
) ' (β2)φ(

�
) ' � ; Ψ) 

where sequent ├ �  ' (β1)φ(�
) ' (β2)φ(

�
) ' �  is a term of path p, and β1 and β2 are the 

components of formula � . It follows that wffs (β1)φ(�
) and (β2)φ(

�
) occur in a term of 

path p. Moreover, 
� � � (β1) < 


 and 
� � � (β2) < 


. Therefore, by assumption, 
�
(β1, 

�
) 

= 0 and 
�
(β2, 

�
) = 0. Hence also 

�
(β, 

�
) = 0. 

Suppose that �  is an α-formula and that (� )φ(�
) occurs in a term of path p. 

Let ϕ be such a term of p and suppose that ϕ is 
�
-th (

�
 ≥ 1) term of p. Sequent ϕ 

is a constituent of the 
�
-th question of 

�
. Again, rule Rαααα is applicable to the 

�
-th 

question of 
�
 with respect to its constituent ϕ and with regard to wff (� )φ(�

). By 
Corollary 3.1, there is a question 

� �
 (

�
 < 

�
) of 

�
 such that 

� �
 results from 

� �
-1 by 

rule Rαααα applied with respect to the constituent of 
� �
-1 which is a term of p and 

with regard to wff (� )φ(�
). Therefore question 

� �
 is of the form: � �

 = ? (Φ; ├ �  ' (α1)φ(�
) ' � ; ├ �  ' (α2)φ(�

) ' � ; Ψ) 
where α1 and α2 are the components of formula � . What is more, one of the 
sequents: ├ �  ' (α1)φ(�

) ' �  and ├ �  ' (α2)φ(�
) ' �  is a term of path p. Therefore wff 

(α1)φ(
�
) or wff (α2)φ(

�
) occurs in a term of path p. If (α1)φ(

�
) occurs in a term of path 

p, then, since 
� � � (α1) < 


, 
�
(α1, 

�
) = 0 by assumption, and hence also 

�
(α, 

�
) = 0. 

Similarly, in the second case we also have 
�
(α, 

�
) = 0. 

Suppose that �  is of the form ¬¬ �  and that (� )φ(�
) occurs in a term ϕ of 

path p. The reasoning is analogous to these already presented. Let ϕ be 
�
-th (

�
 ≥ 

1) term of p. Rule R¬¬¬¬¬¬¬¬ is applicable to the 
�
-th question of 

�
 with respect to ϕ and 

with regard to (� )φ(�
), therefore, by Corollary 3.1, there is a question 

� �
 (

�
 < 

�
) of 

�
 

such that 
� �
 is of the form: � �

 = ? (Φ; ├ �  ' ( � )φ(�
) ' � ; Ψ) 

where sequent ├ �  ' ( � )φ(�
) ' �  is a term of path p, and �  is the component of 

formula � . Since ( � )φ(�
) occurs in a term of path p and 

� � � ( � ) < 

, 

�
( � , �

) = 0, and 
therefore 

�
(� , �

) = 0. 
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Suppose that �  is ν-formula. If (� )φ(�
) occurs in 

�
-th (

�
 ≥ 1) term ϕ of path 

p, then rule Rνννν is applicable to the 
�
-th question of 

�
 with respect to ϕ and with 

regard to (� )φ(�
). By Corollary 3.1, there is a question 

� �
 (

�
 < 

�
) of 

�
 such that 

� �
 is 

of the form: � �
 = ? (Φ; ├ �  ' (ν0)φ(�

), 
�
 ' � ; Ψ) 

where sequent ├ �  ' (ν0)φ(�
), 

�
 ' �  is a term of path p, and ν0 is the component of 

formula � . Therefore wff (ν0)φ(�
), 

�
 occurs in a term of path p. Let us observe that 

<
�
, 

�
> ∈ IR[├ �  ' (ν0)φ(�

), 
�
 ' � ], and for this reason <�

, 
�
> ∈ 

�
0 (by the definition of �

0). But, by (b), <
�
, 

�
> ∈ 

�
. Since (ν0)φ(

�
), 

�
 occurs in a term of path p and 

� � � (ν0) < 

, 

�
(ν0, 

�
) = 0. Hence, and by the fact that <

�
, 

�
> ∈ 

�
, also 

�
(� , �

) = 0. 
Suppose that �  is a π-formula and that (� )φ(�

) occurs in a term ϕ of path p. 
Let π0 be the component of � . We need to prove that �

(π0, 
�
) = 0 for each 

�
 such 

that <
�
, 

�
> ∈ 

�
. The reasoning depends on the relation 

�
, so we will have to 

consider each 
�
 separately. 

Let 
�
 = K. It may happen that there is no 

�
 such that <

�
, 

�
> ∈ 

�
. In this 

case, trivially, 
�
(π, 

�
) = 0, that is, 

�
(� , �

) = 0. Suppose that there is at least one 
such numeral, and let 

�
 be an arbitrary numeral for which <

�
, 

�
> ∈ 

�
  holds. Let us 

remind that for 
�
 = K, 

�
 = 

�
0, therefore if <

�
, 

�
> ∈ 

�
, then <

�
, 

�
> ∈ 

�
0. By the 

definition of 
�
0, there is a term ψ of path p such that <

�
, 

�
> ∈ IR[ψ]. By 

assumption, wff (� )φ(�
) occurs in a term ϕ of path p. Let us observe that indexed π-

formulas are never eliminated in the course of a Socratic transformation, and, 
similarly, numerals do not disappear from indices of wffs. Therefore there is a 
term χ of p such that (� )φ(�

) occurs in this term and the pair <
�
, 

�
> occurs in an 

index of a wff in this term. (More specifically, if term ψ precedes term ϕ on path 
p, then χ is ϕ, and if term ϕ precedes term ψ on path p, then χ is ψ. If it happens 
that ψ = ϕ, then this is χ.) Sequent χ is a constituent of some question 

�
 of 

�
. 

Moreover, rule Rππππ is applicable to question 
�
 with respect to sequent χ and with 

regard to wff (� )φ(�
) and pair <

�
, 

�
>. Therefore, by Corollary 3.1, there is a question �

* such that: 
�
* succeeds question 

�
 in 

�
, and question 

�
* results from the 

previous question of 
�
 by rule Rππππ applied with respect to a constituent which is a 

term of p and with regard to (� )φ(�
) and pair <

�
, 

�
>. Therefore question 

�
* is of the 

form: �
* = ? (Φ; ├ �  ' (� )φ(�

) ' (π0)
�
 ' � ; Ψ) 

where sequent ├ �  ' (� )φ(�
) ' (π0)

�
 ' �  is a term of path p, and π0 is the component of 

formula � . Hence it follows that wff (π0)�  occurs in a term of path p. Since � � � (π0) 
< 



, 

�
(π0, 

�
) = 0 by assumption. But 

�
 was an arbitrary numeral such that <

�
, 

�
> ∈ �

. Therefore 
�
(π, 

�
) = 0. 

Suppose that 
�
 = D. Let 

�
 be an arbitrary numeral such that <

�
, 

�
> ∈ 

�
. (By 

(c), 
�
 is extendable, hence such a numeral exists.) By the conditions imposed on �

, either <
�
, 

�
> ∈ 

�
0, or there is no numeral 



 such that <

�
, 



> ∈ 

�
0 and thus 

�
 = 

�
. 
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We prove that in our case the second possibility can not take place, that is, <
�
, 

�
> 

must be in 
�
0. Then the reasoning is exactly as for K. 

Let us observe that since wff (� )φ(�
) occurs in a term of path p, rule RππππD is 

applicable with respect to this term, in a certain question 
�
 of 

�
, and with regard 

to wff (� )φ(�
). Therefore, by Corollary 3.1, there is a question 

�
*, that succeeds 

question 
�
 in 

�
, and such that question 

�
* results from the previous question of 

�
 

by rule RππππD applied with respect to a constituent which is a term of p and with 
regard to wff (� )φ(�

). Therefore question 
�
* is of the form: �

* = ? (Φ; ├ �  ' (� )φ(�
) ' (π0)

�
,

�
 ' � ; Ψ) 

where sequent ├ �  ' (� )φ(�
) ' (π0)

�
,

�
 ' �  is a term of path p, �

 is the “new” numeral 
introduced by RππππD, and π0 is the component of formula � . Observe that <�

, 
�
> ∈ 

IR[├ �  ' (� )φ(�
) ' (π0)

�
,

�
 ' � ], and hence <�

, 
�
> ∈ 

�
0, as required. 

For the other logics, we reason as follows. If it happens that there is no 
�
 

such that <
�
, 

�
> ∈ 

�
 (this is possible, if 

�
 is KB or K4), then, trivially, 

�
(� , �

) = 0 
(as in the case of K). So we assume that there is such a numeral. Let 

�
 be an 

arbitrary numeral such that <
�
, 

�
> ∈ 

�
. We need to prove that there is a term of 

path p such that rule Rππππ is applicable with respect to this term (in a relevant 
question) and with regard to wff (� )φ(�

) and pair <
�
, 

�
>. If this is the case, then we 

use Corollary 3.1 and we reason exactly as in the case of K. 
Let 

�
 = T. In this case <

�
, 

�
> ∈ 

�
 iff <

�
, 

�
> ∈ 

�
0, or 

�
 = 

�
. Suppose that 

�
 = 

�
. 

Wff (� )φ(�
) occurs in a term ϕ of path p. Since 

�
 = 

�
, pair <

�
, 

�
> satisfies the proviso 

P
T of applicability of rule Rππππ in E

T. Therefore, in this case, rule Rππππ is applicable 
with respect to sequent ϕ (in a relevant question) and with regard to wff (� )φ(�

) and 
pair <

�
, 

�
>. If <

�
, 

�
> ∈ 

�
0, then the reasoning is as for K. 

Let 
�
 = KB. In this case <

�
, 

�
> ∈ 

�
 iff <

�
, 

�
> ∈ 

�
0, or <

�
, 

�
> ∈ 

�
0. Suppose 

that <
�
, 

�
> ∈ 

�
0. As in the case of K, we arrive at a conclusion that there is a term 

χ of path p such that wff (� )φ(�
) occurs in χ and <

�
, 

�
> ∈ IR[χ]. Sequent χ is a 

constituent of some question 
�
 of 

�
. Since <

�
, 

�
> ∈ IR[χ], the pair <

�
, 

�
> satisfies 

the proviso PKB of applicability of rule Rππππ in E
KB. Therefore rule Rππππ is applicable 

to question 
�
 with respect to sequent χ and with regard to wff (� )φ(�

) and pair 
<

�
, 

�
> (as required). If <

�
, 

�
> ∈ 

�
0, then the reasoning is exactly as for K. 

Let 
�
 = K4. In this case <

�
, 

�
> ∈ 

�
 iff there is a directed 

�
0-chain <

�
1, …, � �

> such that 
�
1 = 

�
 and 

� �
 = 

�
. By the definition of a directed chain, <

� �
, 

� �
+1> ∈ 

�
0 

for each 
�
 ≥ 1. By the definition of 

�
0, each such pair <

� �
, 

� �
+1> occurs in some term 

of path p. Let us observe, once again, that pairs of numerals do not disappear from 
a path in the course of a Socratic transformation. Since the number of pairs <

� �
, � �

+1> in the directed 
�
0-chain is finite, there is a term ϕ of path p such that <

� �
, 

� �
+1> 

∈ IR[ϕ] for each 
�
 ≥ 1. Wff (� )φ(�

) occurs in a term ψ of path p. As in the previous 
cases, we arrive at a conclusion that there is a term χ such that (� )φ(�

) occurs in χ 
and <

� �
, 

� �
+1> ∈ IR[χ] for each 

�
 ≥ 1. Observe that the pairs <

� �
, 

� �
+1> form a directed 
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IR[χ]-chain, and therefore the pair of numerals <
�
, 

�
> satisfies the proviso PK4 of 

applicability of rule Rππππ in E
K4 (as required). 

Let 
�
 = S4. In this case <

�
, 

�
> ∈ 

�
 iff (1) there is a directed 

�
0-chain whose 

first term is 
�
 and whose last term is 

�
, or (2) 

�
 = 

�
. If (1) holds, then the reasoning 

is as for K4. If (2) holds, then the reasoning is as for T. 
Let 

�
 = S5. In this case <

�
, 

�
> ∈ 

�
 iff (1) there is an 

�
0-chain whose first 

term is 
�
 and whose last term is 

�
, or (2) 

�
 = 

�
. In the second case the reasoning is as 

for T, and if (1) holds, then we reason as in the case of K4 (the chain need not be 
directed, but this has no effect on the reasoning). 

We have proved that (e) is true. Let us remind that sequent ├ (� )1 is the 
first term of each path of 

�
. In particular, ├ (� )1 is the first term of path p. 

Therefore, by (e), 
�
(� , 1) = 0. By (c), �

 has the 
�
-properties, thus �  is not � -valid. 

This finishes the proof. �
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CHAPTER IV: Related Work 

 
 
 
 
 
 
 

In this chapter we present a brief overview of the basic developments in 
the field of deductive systems for modal logics. We pay more attention to proof-
theoretical traditions that are close to our approach and we make some 
comparisons. In our overview we will use the turnstile symbol ‘├’ in the standard 
manner. We end this chapter with a summary of the work that we plan in the 
future. 

 
IV.1 Sequent Calculi 

 
Sequent calculi were proposed by Gentzen (

� �
. [Gentzen:1935]) and they 

constitute one of the most important frameworks to study logics. The first 
Gentzen-style sequent systems for modal logics (S4 and S5) appeared in the fifties 
of the previous century (

� �
. [Onishi, Matsumoto:1957], [Onishi, 

Matsumoto:1959]). Recently, there are many formulations of modal logics as 
sequent systems.42 For instance, logic K may be formalized as such a system by 
adding the following rule to a sequent system for CPC: 43 

(→□)1     ∆ ├ �    
 

□∆ ├ □�   
where ∆ is a finite (possibly empty) set of formulas of the language of modal 
logic, �  is a single formula of this language and □∆ = {□� : �  ∈ ∆}. (For 
simplicity, only the necessity operator is considered as primitive in this account.) 
Logic K4 may be presented by adding the following rule: 

(→□)2   ∆, □∆ ├ �    
 

  □∆ ├ □�   
to a sequent system for CPC. 

                                                 
42 An overview of standard and non-standard sequent systems for modal logics may be found in 
[Wansing:2002]. 
43 We follow [Wansing:2002] in this presentation. (The names of the rules come from this paper; 
we modify the way of presenting rules, however.) 
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The basic problem with sequent systems for modal logics is that they are 
neither uniform nor modular. For instance, in an axiomatic account each of the 
basic modal logics is formalized by extending the axiomatic system for K with 
axioms (axiom schemas) that correspond to the properties characterizing a given 
logic. In the case of sequent systems, even if a good formalization of a modal 
logic is known, one usually has to start from “scratch” when formalizing another 
modal logic. The problem is that the rules of an ordinary sequent system fail to 
capture single properties of the accessibility relation in a way that the axioms do. 
For instance, rule (→□)2 displayed above corresponds not just to the transitivity 
axiom, but also to the normality axiom, which is captured by rule (→□)1 as well. 
Modularity is a common requirement nowadays (especially when automated 
deduction is concerned, since modularity supports implementation), thus a good 
deductive system should have the nice “combinational” properties that the 
axiomatic systems for modal logics have, and which the Gentzen systems for 
these logics lack. 

This is probably one of the reasons why no unifying framework for modal 
logics in the style of standard sequent calculus is known.44 An interesting proposal 
of a solution to this problem may be found in the paper by Avron: [Avron:1996]. 
In Avron’s account the differences between modal logics are reflected on the level 
of structural rules acting on hypersequents. This approach, however, considerably 
differs from ours. 

There are also approaches that combine sequent calculi for modal logics 
with the framework of Labelled Deductive Systems (

� �
. [Basin, Matthews, 

Viganò:1997b], [Mateus, Sernadas, Sernadas, Viganò:2004], [Mateus, Rasga, 
Sernadas:2005], [Governatori, Rotolo:2001]), and thus obtain uniform and 
modular account of many modal propositional logics. We will refer to these 
developments in Section IV.5. 

 
IV.2 Tableau Systems 

 
The breakthrough in the proof-theory of modal logics comes with the 

possible worlds semantics. The intuitions behind Kripke semantics are 
exceptionally clear and simple, and so the tradition of constructing proof methods 
for modal logics through an analysis of this semantics is already quite long. The 
very semantical approach to proof-theoretical issues has been initiated by Beth (

� �
. 

[Beth:1955]). Beth’s tableau method is essentially a method of a countermodel 
construction. The idea of relational semantics derives from works of Kanger, 
Hintikka and, finally, Kripke ([Kripke:1959]), who presented Beth-style tableaux 
for modal logics together with their semantical characteristics in [Kripke:1963]. 

Kripke follows Beth’s idea of dividing a tableau into the left and the right 
column for formulas that are assumed to be true or false, respectively. However, 
Kripke uses a “web” of tableaux rather than one tableau – an auxiliary tableau is 
                                                 
44 For this opinion � � . [Wansing:2002] and [Avron:1996]. 
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added for each possible world and the tableaux are interrelated by an auxiliary 
accessibility relation. The method of semantic diagrams of Hughes and Cresswell 
([Hughes, Cresswell:1968]) is a reformulation of Kripke’s method, with the 
difference that Hughes and Cresswell use 1 and 0 to distinguish between formulas 
that are true or false in a given world. 

In the previous parts of this work we have already pointed to the 
connection between modal erotetic calculi and tableau systems. As we have 
observed in Section II.1.3 of Chapter II, a Socratic transformation may be viewed 
as a systematic countermodel construction (when the indirect interpretation B is 
concerned), just as it happens in the case of tableaux. Let us also observe that the 
operations performed on formulas of right-sided sequents correspond to 
operations performed on formulas occurring in the right column of a Beth’s 
(Kripke’s) tableau. However, in the case of right-sided sequents of language M* 
indices are used to control the information flow between possible worlds, hence 
there is no need for Kripke’s auxiliary tableaux. 

The connections between sequent-type formalizations of logics and 
tableau-type formalizations of logics are, obviously, very close anyway. If a 
sequent system and a tableau system are two notational variants of the same proof 
procedure, then the method of Socratic proofs may be viewed as a “compromise 
between them”. It is, in a sense, a sequent-type formalization of the tableau 
method. 

Today, tableaux are usually defined as trees, with formulas occurring in 
their nodes. Up to now, many variants of modal tableau systems have been 
formulated. We will make two useful distinctions here. First, there are � � � � � � � � �� � 
 �

 formulations of tableau systems, where single formulas occur in the nodes of 
a tableau; and there are � � � � � 
 
 � � � � 
 �

 formulations of tableau systems, where 
finite sets of formulas occur in the nodes of a tableau. The first type of 
formulation of tableaux comes from Smullyan ([Smullyan:1968]),45 and is 
probably more popular than the second one (it may seem more intuitive, and thus 
more often used in teaching). Modal tableaux of this type were presented by 
Fitting ([Fitting:1983]) and Priest ([Priest:2001]). Tableau systems of the second 
type had been proposed by Hintikka ([Hintikka:1955]), and were presented for 
modal logics by Rautenberg ([Rautenberg:1983]). The correspondence between 
sequent systems and tableau systems is more transparent when the second 
formulation is used. 

The second distinction is that between 
� � 
 � � � � �

 and 
� � 
 � � � � �

 tableau systems 
for modal logics (

� � �
 [Goré:1999]). In the case of explicit tableau systems, the 

accessibility relation is represented in the deductive mechanism explicitly by 
some device (

� � � �
 by the structure of labels or as it is done in Kripke’s 

                                                 
45 Actually, similar results had been achieved by Zbigniew Lis ([Lis:1960]), who presented an 
elegant variant of analytic tableaux with symbols ‘+’ and ‘-’ playing the roles analogous to that of 
truth-signs used by Smullyan. Unfortunately, the paper by Lis appeared in Polish only and has not 
become widely known. However, in a historical introduction to tableau methods in [Fitting:1999] 
a summary of the paper of Lis is contained. 
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formulation). The implicit tableau systems are based on “pure” modal language. 
Since there is no device to represent the accessibility relation, its properties must 
be built into the rules. We will not discuss the implicit formulations of modal 
tableaux, since these are distinct from our work.46 We now refer to explicit 
systems of Fitting and Priest. 

The work of Fitting and Priest belongs, actually, to the tradition of 
“labelled deductive systems”, as they are called nowadays. Prefixed tableau 
systems were presented in [Fitting:1983, Chapter VIII]. In Fitting’s approach each 
formula occurs with a prefix (a finite sequence of positive integers). The prefix is 
thought of as a name of a possible world, and the accessibility relation is encoded 
in the structure of the prefixes. 

� � � �
, the rules handling with the modal operators 

are of the forms: 
 
ν-rule  σ  ν   π-rule   σ  π 
 

 σ’ ν     σ’ π 
 
where σ and σ’ are prefixes, and, in the case of the ν-rule, σ’ is a prefix that has 
been used on the branch and that is accessible from prefix σ, whereas in the case 
of the π-rule, prefix σ’ is new to the branch. The relation of accessibility between 
prefixes is defined separately for each modal logic and it reflects the semantic 
properties of the accessibility relation in Kripke models. (For some modal logics 
considered by Fitting, certain additional side conditions for the rules must be 
added, but we omit these details in order to simplify this presentation.) Fitting’s 
account of modal logics is modular, in that the differences between various logics 
are reflected only in the side conditions for the modal rules, and the 
correspondence between the side conditions and the semantical properties is very 
clear. 

Interestingly, Fitting’s prefixed tableaux may be reformulated to the effect 
that the side conditions are simplified. In [Goré:1999] the author presents labelled 
tableau calculi for a wide class of modal logics, that are based on Fitting’s work. 
In a labelled tableau calculus a modal logic is characterized by a set of rules 
manipulating both formulas and prefixes (now called labels), without the side 
conditions concerning accessibility relation between prefixes. The price is that 
more rules are needed. For example, logic S4 requires the following modal rules: 
 
(

� �
)  σ :: □

�
  (

� � )  σ :: □
�
  (

�
4)   σ :: □

�
  (

�
π)     σ :: ¬□

�
  

 
 σ.

�
 :: 

�
    σ :: 

�
    σ.

�
 :: □

�
             σ.

�
 :: ¬

�
 

 

                                                 
46 Implicit Smullyan-type tableau systems are presented in [Fitting:1983]. In [Goré:1999] the 
author presents a multitude of Hintikka-type implicit tableau systems for modal and temporal 
logics. 
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where σ and σ.
�
 are prefixes, that is, finite sequences of positive integers (as 

previously), 
�
 is a positive integer, and σ.

�
 is the concatenation of prefix σ and 

the one-term prefix <
�
>. In the case of rules (

� �
) and (

�
4), prefix σ.

�
 must already 

exist on the branch. In the case of rule (
�
π), prefix σ.

�
 must be new to the branch. 

Fitting’s formulation of modal tableaux, with only one schema rule for ν-
formulas and the side conditions for its application varying for each modal logic, 
may seem more intuitive and is more convenient if the method is actually used by 
a human. The second formulation, however, is obviously better for computer 
applications. 

The way Fitting’s rules handle with prefixed modal formulas is analogous 
to our treatment of indexed formulas. (With the obvious exception that the ν-
formulas and the π-formulas switch their roles in our calculi. However, if we 
think of the formulas occurring in the constituents of questions of a Socratic 
transformation as of formulas occurring in the right column of Beth’s tableau, 
then the duality disappears.) This analogy becomes even more transparent when 
we come to Priest’s tableaux. As a matter of fact, the inspiration to use indices in 
the way we did had came from Priest’s work. 

In Priest’s account, in a node of a tableau there is either an expression of 
the form: � , �

, where �  is a formula and �
 is a natural number (the name of a 

possible world in which �  is true), or an expression of the form � � �
 (such 

expressions define the accessibility relation in a Kripke model). There are rules 
for dealing with the modalities and separate rules, corresponding to the properties 
of the accessibility relation, for introducing expressions of the form 

� � �
. The rule 

for the necessity operator allows to introduce an expression of the form � , �  on a 
branch, if expressions: □� , �

 and 
� � �

 already occur on the branch. In the case of 
the possibility operator, if an expression ◊� , �

 occurs on a branch, then one is 
allowed to extend the branch with two nodes: the first is 

� � �
, where 

�
 is new on 

the branch, and the second is � , � . The rule corresponding to, � � � �
, the property of 

transitivity allows to introduce an expression 
�
 

� �
 on a branch if for some natural 

number 


, the expressions 

� � 

 and 


 � �
 occur on the branch. No side conditions 

are needed, since the properties of the accessibility relation are encoded in the 
rules for introducing expressions of the form 

� � �
. The tableau systems for 

consecutive modal logics differ only with respect to these “accessibility rules”. 
Again, the account is modular. 

In our approach we have brought the expressions 
� � �

 into indices of 
indexed formulas of language M*, and we have used side conditions, as in 
Fitting’s formulation. However, it is clear that the way modalities are dealt with in 
the three systems is analogous. For example, in a modal erotetic calculus, if we 
have a π-formula in a world named 

�
 (and a π-formula behaves like the ν-formulas 

do in Fitting’s and Priest’s calculi), then its component π0 may be introduced into 
a world named 

�
, provided that 

�
 is accessible from 

�
. Whether the last proviso 

holds depends on the structure of the indices, just as in Fitting’s case it depends on 
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the structure of prefixes, and in Priest’s case on the presence of the expression 
� � �

 
on a branch. 

However, there is also an obvious difference between the two mentioned 
explicit tableau formulations of modal logics and modal erotetic calculi. The rules 
of our calculi do not operate on single indexed formulas, but on constituents of 
questions. Therefore, as far as modal erotetic calculi may be viewed as a sequent-
style formulation of the tableau method, it is a Hintikka-type formulation. We 
suppose that this is an advantage of erotetic modal calculi over tableau systems, 
when the issues of automated deduction and implementation are concerned. When 
building a tableau, the whole tree must be searched for decomposable formulas 
which may occur high above the leaves of the tree constructed so far. In a Socratic 
transformation the rules always act upon the last question obtained so far, thus 
only the last question must be searched for the necessary information.

Let us observe that the tableau systems that we have briefly discussed 
above (that of Kripke, Hughes and Cresswell, Fitting, Priest) belong to the family 
of analytic, semantically motivated proof methods for modal logics, as we called 
them in the introduction to this work. We also mentioned there that such systems 
have a common drawback. The problem is that when transitive modal logics are 
concerned, the procedures of applying rules of these systems may fail to give a 
solution in a finite number of steps. In [Hughes, Cresswell:1968] the method of 
semantic diagrams is claimed to constitute a decision procedure for the modal 
logics considered there, though the solution of the problem of “loops” is described 
only in an intuitive manner. A systematic proof procedure in a prefixed tableau 
system is given in [Fitting:1983, Chapter VIII], but the procedure also permits 
infinite tableaux (obviously, formulating a terminating decision procedure for 
transitive modal propositional logics was not the aim of Fitting’s book). The 
problem of loops is described there quite precisely, this is not, however, what we 
could call an algorithmic terminating procedure.47 Such a procedure is available in 
the framework of erotetic modal calculi, but we leave its presentation for future 
work. 

 
 

                                                 
47 A very elegant solution of this problem may be found in [Rautenberg:1983]. (As we have 
already mentioned, Rautenberg presents implicit Hintikka-type tableau systems for modal logics.) 
A tableau is defined as a finite tree constructed by the rules of a system and “such that if a node �  
bears a set �  and �  appeared already on the branch to �  then �  is an end node” of the tableau. (� � . 
[Rautenberg:1983, p. 407].) This warrants that when a loop occurs on a branch, the branch is not 
extended any more. 

An interesting example of a terminating and � � � � � � � � �  procedure for logic S4 may be 
found in the paper [Matsumoto:2003], where the author presents a Hintikka-type tableau system. 
Actually, the system does not fit the distinction explicit / implicit systems, since there is no device 
to represent the accessibility relation, but there is a device, called “history”, to keep track of the 
operations performed so far in a tableau. The rules manipulate both: a set of formulas and a 
history. No loops occur at all in this system. 
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IV.3 Rasiowa-Sikorski Deduction Systems 

 
So far we have focussed on the well-known tableau systems for modal 

logics, a method which is dual with respect to our erotetic modal calculi, in that a 
tableau starts with formula ‘¬� ’ and proceeds by constructing a model for this 
formula, whereas the first question of a Socratic transformation concerns validity 
of formula �  simply.48 Now we are going to present a deductive system which is 
also dual with respect to tableau systems, in the way erotetic modal calculi are. 
Moreover, the construction of this system is guided by a general methodology 
which resembles the “Socratic paradigm” in many respects. It is a Rasiowa-
Sikorski style deduction system developed by Konikowska. Our presentation is 
based on [Konikowska:2002] (

� �
. also [Konikowska:1999]). 

A Rasiowa-Sikorski system (R-S system for short) is a sequence-type 
formalization of logics, developed for CPC and for first-order logic by Rasiowa 
and Sikorski (

� �
. [Rasiowa, Sikorski:1963, pp. 264-269, 299-306]). An R-S 

deduction system consists of 
� � � 	 � 
 	 � � � � 	 � � � � � �

 and 
� � � � � � � � � � � � � � � � � � � �

. 
The decomposition rules act upon finite sequences of formulas in quite the same 
way as the erotetic rules act upon sequents, that is, they break down a complex 
formula that occurs in a sequence into its component parts. The rules are used to 
construct a 

� � � 	 � 
 	 � � � � 	 � � � � �
 of a formula (or of a sequence of formulas), which 

is a tree with finite sequences of formulas in its nodes. 
Semantically, the comma separating formulas in a sequence corresponds to 

meta-disjunction, and the branching in a decomposition tree corresponds to meta-
conjunction. Again, the situation is analogous in the case of erotetic calculi with 
right-sided sequents. Moreover, the decomposition rules are semantically 
invertible. A formula is provable in an R-S system if it has a finite decomposition 
tree with a fundamental sequence in each of its leaves.49 

The fundamental sequences (also called the “axioms” of the R-S system) 
play the same role that we have prescribed to sequents of the “basic” forms 
specified in the definitions of Socratic proof – fundamental sequences are 
sequences whose validity is warranted by some simple semantical facts. 

In the paper [Konikowska:2002] the author shows examples of 
applications of R-S methodology to various brands of computer science logics. 
There is no separate presentation of modal logics, but the author investigates, � � �
 

� �
, three-valued temporal logic, and a suitable “subsystem” for modal logic S4 

may be easily extracted from this presentation. This is what we shall do. We 

                                                 
48 But let us remind again that if we concern the indirect interpretation B of our method and keep 
in mind the “left column – right column” division, then the duality disappears, since we perform 
the operations on formula �  (and its components, their components, � � � � ) 	 � � � � � � 	 � � 	 � � � , that is, 
as if ‘¬� ’ was true. 
49 Strictly speaking, the decomposition rules are defined in a way which warrants that the 
decomposition tree of a given formula is � � � � � � . For simplicity, we have omitted this aspect of the 
R-S systems. 
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simplify Konikowska’s presentation and we show the “purely modal” part of her 
system. 

First, Konikowska uses truth-signs (in order to deal with three logical 
values): t (the “truth operator”) and n (the “non-truth operator”).50 Second, in 
order to capture modal operators Konikowska introduces 

� � � � � � � � � � � � � �
 

representing possible worlds and the constant �  representing the accessibility 
relation. Formulas of the deduction language are: 

� � � � � � 	 � � � � � �
 of the form � .α, 

where �  is a state variable and α is a formula of the modal language; and � � � � � � � � � � � � � � 	 � � � � � �
 of the form � � �

, where �  and �
 are state variables. � � � � � �� 	 � � � � � �

 are of one of the forms: 

• t(� .α) (intuitively, such a formula claims that α holds in � ) 
• n(� .α) (α does not hold in � ) 
• t(� � �

) (the accessibility relation holds between �  and � ) 
• n(� � �

) (the accessibility relation does not hold between �  and � ) 
The deduction system developed by Konikowska for the three-valued 

temporal logic LT is called DRT. The rules of DRT operate on sequences of signed 
formulas. There are eight specific modal rules in this system. Below we present 
two of them (these two are representative for the remaining six)51: 
 
rule (t□):   rule (t◊): 
 
      Ω’, t(� .□α), Ω’’         Ω’, t(� .◊α), Ω’’ 
 
Ω’, n(� � �

), t(
�
.α), Ω’’    Ω’, t(� � �

), Ω’’, t(� .◊α)  |  Ω’, t(�
.α), Ω’’, t(� .◊α) 

 
The following side conditions are imposed on the state variables 

�
 and 

�
: 

�
 (rule 

(t□)) must not occur in sequence Ω’, t(� .□α), Ω’’ above the inference line; 
whereas 

�
 (rule (t¬□)) is arbitrary. The line | in rule (t◊) indicates branching. 

The rules are invertible (
� �
. [Konikowska:2002, pp. 355-357]) and they 

considerably resemble the modal rules of erotetic calculi EL, with the following 
two exceptions. First, the information “�  sees �

” (“�  does not see �
”) is 

represented separately by use of the accessibility formulas, which causes 
branching in rule (t◊) (and in the three analogous rules). Second, after the (t◊) rule 
is applied, the active formula t(� .◊α) is rewritten as the last term of the resulting 
                                                 
50 In Konikowska’s paper there are upper-case letters T and N used as the truth-signs. We have 
switched them to lower-case letters, since we use T for the reflexive modal logic. The truth-sign t 
corresponds to the designated value in the three-valued temporal logic investigated by 
Konikowska, whereas the truth-sign n corresponds to the other two values. However, in order to 
obtain an R-S system for a two-valued logic, it is sufficient to interpret “non-truth” n as “false”. 
51 The remaining six rules are: (t¬◊), (n¬□), (n◊) – they are analogous to rule (t□), and (t¬□), 
(n□), (n¬◊) – analogous to rule (t◊). 
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sequences. This is a part of the “control mechanism” in R-S systems, due to which 
the simple “take the leftmost” procedure may be applied without causing trivial 
loops. 

Interestingly, the properties of reflexivity and transitivity are dealt with by 
different means in this system. As to reflexivity, the side condition on state 
variables for rule (t◊) permits the situation when �  = �

. Moreover, a sequence of 
signed formulas that has as its term an expression of the form t(�  �  � ) is defined 
as fundamental, and the decomposition rules are not applied to fundamental 
sequences in R-S systems. Therefore the reflexivity property is actually built into 
the rules of this system and into the “terminating conditions”. Transitivity is 
encoded in a separate rule, which is: 
 
rule (

� � � ): 
 
      Ω’, n(� � �

), n(
� � �

), Ω’’ 
 
Ω’, n(� � �

), n(
� � �

), n(� � �
), Ω’’ 

 
Here the notation is somewhat simplified, since the formulas in sequence 
Ω’, n(� � �

), n(
� � �

), Ω’’ are allowed to appear in any order and can be 
separated by arbitrary sequences of formulas. Rule (

� �
 � ) is also invertible. 

The advantage of this account over ours is that except from the 
information “�  sees � ”, also the information “� � 	 � � � 	 �

 see 
�
” may be represented 

in the deductive language, and thus it is possible to encode properties such as 
weak antisymmetry or irreflexivity in the rules. (We think that this is not possible 
in our approach. If this is true, then the erotetic framework which we have 
presented in Chapter II is probably not capable of capturing temporal logics, 
unless modified in some way – 

� � � �
 by extending the syntax of M* to the effect 

that the information “
�
does not see 

�
” may be represented by some of its 

expressions. Using additional terminating conditions also seems to be an 
interesting idea in this context.) 

The disadvantage of this system, when compared with ours, is that adding 
separate accessibility formulas causes branching in rule (t◊), which potentially 
increases complexity of decomposition trees. On the other hand, one of the main 
aims of the author is to show the merits of the R-S methodology in the field of 
automated deduction. Our another hypothesis is that, as far as purely modal logics 
are concerned, the method is more efficient if the information concerning 
accessibility is treated in a manner analogous to the way we deal with indices. 
 
IV.4 Natural Deduction 

 
There are also examples of semantically motivated proof methods for 

modal logics in natural deduction (ND) style. The main reference here is 
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[Fitting:1983] again. Fitting follows the idea of Fitch and introduces “strict 
subordinate derivations” which are displayed in a “main” derivation in “strict 
boxes”. A strict box represents a possible world and the rule of creation of a strict 
box guides us from a world to an accessible world. Fitting presents two basic 
types of modal ND systems: A-style ND systems and I-style ND systems. The 
difference between them lies in the way the strict boxes are interpreted. A strict 
box may be thought of as representing an 

� � � � � � � � �
 possible world – in this case 

we have the A-style ND system – or as representing a 

 � � � � � � � � �

 possible world – 
in this case we have the I-style ND system. Formally, the ND systems of the two 
types differ with respect to the rules of creating and closing a strict box. 

Fitting’s ND systems have been reformulated in the framework of 
Labelled Deductive Systems (LDS) by Russo ([Russo:1995]). We will refer to the 
paper by Russo after we sketch the main ideas of LDS. 
 
IV.5 Labelled Deductive Systems 

 
Before we proceed, let us observe that all the systems considered so far in 

this chapter have the following common features. There is a clear semantical 
motivation behind the construction of the rules (and, possibly, behind the 
terminating conditions), and in most cases some form of “labelling” is used in 
order to refer to possible worlds. 

Labelling (also called prefixing or annotating) is well-known in proof 
theory for modal logics. Modal labelled deduction traces back at least to Fitting 
(also Kanger and Prior are sometimes mentioned in this context). Today, however, 
the paradigmatic approach is that of Dov Gabbay ([Gabbay:1996]), who has first 
proposed labelling as a 

� � � � � � � � � �
 approach to deduction. This approach is very 

wide-spread today, so we will now focus on the basic developments in this field. 
However, before we start, let us make one observation. There are deductive 
systems with labels in which labelling is used in a simple and modest way – such 
as the explicit tableau systems – and there are labelled deductive systems in which 
the labelling mechanism is very rich and / or combined with other frameworks. 
Our work belongs to the first type of labelled systems and, in many respects, it is 
not comparable with the systems of the second type. 

Gabbay’s aim is to provide a general unifying framework in which many 
of the new logics found in various fields of computer science can be presented and 
investigated. Such a framework must be capable of formalizing the more 
traditional logics as well. What is needed for an investigation of various logics in 
one paradigm is a good presentation of differences between logics within this 
paradigm. The differences are, however, described on the meta-level, therefore the 
new unifying framework must be able to combine the meta-level features of logics 
with their object-level properties. 

This is exactly the basic idea of LDS methodology. Generally, an LDS is a 
triple <A, L, R>, where L is a logical language (

� � � �
 that of modal logics), A is 

the so-called algebra of labels (syntactically, this is usually a logical language 
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simply) and R – in the simplest case – is the set of rules of an LDS. The rules 
operate on declarative units, or complex structures composed of declarative units, 
where a declarative unit is a pair <

�
: � >. Here �  is a formula of L and �

 is a term 
of A (a label). Intuitively, the label 

�
 represents some additional information 

concerning formula � , that is usually represented on the meta-level. Thus the 
meta-level features are reflected in the algebra of labels and the object-level 
features are reflected in the logic of formulas. In the LDS framework the 
traditional notion of consequence relation between formulas: � 1, …, � �

 ├ �  is 
replaced by the notion of consequence between labelled formulas: 

�
1: � 1, …, 

� �
: � �

 
├ 

�
: � . 

As we have mentioned, the idea of using labels in a deductive system is 
old. What is new in Gabbay’s approach is that Gabbay uses an algebra of labels 
and considers the labelling as part of the logic. Gabbay’s standpoint is, in a sense, 
very strong, since he claims that “the notion of a logic is an LDS. This is not the 
same as the occasional use of labelling with some specific purpose in mind.”52 
The motivations behind Gabbay’s work are application-oriented. He wants to 
have a notion of a logical system in which the computational aspects of a logic 
play an important role. For instance, when it comes to define an LDS in the 
context of Practical Reasoning Systems, the third element R of an LDS is 
equipped with: the deductive mechanism (rules, as above), the notion of a 
database, and algorithms for performing operations like abduction, explanation, 
updating, 

� � �
. That is, the notion of a logical system understood as an LDS 

becomes the notion of an 
� � � � �

in the AI sense. Moreover, in the LDS account a 
labelled system for a logic is usually a basis for its implementation. ( � �

. for 
example [Basin, Matthews, Viganò:1997a] and [Basin, Matthews, Viganò:1998].) 

Gabbay puts some effort to show that the framework of LDS is rich and 
flexible enough to formalize “traditional” classical and non-classical logics, and 
presents ND formulations of many such logics in the framework of LDS. In 
particular, this is successfully done for modal logics. The general LDS approach 
proposed by Gabbay is developed further and with more details by Russo (in the 
paper we have already mentioned), who presents Modal Labelled Deductive 
Systems (MLDS) for logics K, T, K4, KB, S4, S5, D, D4 and DB. We now 
present some details of this approach. 

As in Gabbay’s account, the basic unit of information in an MLDS is a � � � � � � � � � � � � � � �
 of the form 

�
 : � . A modal labelled deductive language contains 

also 
�
-literals of the forms: 

�
(

�
1, 

�
2) and ¬

�
(

�
1, 

�
2). The inference rules of an 

MLDS operate on 
� 	 � � � � � � � � � 	 � �

. Roughly speaking, a configuration is a structure 
that contains a set of 

�
-literals (the information about the accessibility relation) 

and a set of labelled formulas (the information about the truth-values of formulas 
in possible worlds). An MLDS consists of a modal labelled deductive language, a 
labelling algebra A and a set R of inference rules which generate one 
configuration from another. For example, the rule for □-Elimination allows to 

                                                 
52 See [Gabbay:1996, footnote 5 on page 12]. 
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“infer” from a configuration containing both 
�
1 : □�  and �

(
�
1, 

�
2) a configuration 

that, 
� � � � � � � � 	 �

, contains 
�
2 : � . Thus the consequence relation in an MLDS is 

defined between configurations. 
The algebra A consists of “axioms” – first-order formulas expressing 

semantical properties defining a given modal logic. The axioms may be used to 
“infer” new 

�
-literals from the 

�
-literals already present in a configuration. The 

representation of different modal logics affects only the labelling algebra, leaving 
the proof system unchanged. In order to obtain an MLDS for, 

� � � �
, logic S4, one 

adds to the labelling algebra A the first-order formulas expressing reflexivity and 
transitivity of 

�
. The resulting deductive framework is general, modular and 

uniform, at least for modal logics that are first-order definable. 
The power of the labelling mechanism lies in the control over the 

information flow between possible worlds. The notion of a “strict subordinate 
derivation” is not needed any more in this ND-style formulation of modal logics. 
Moreover, in an MLDS the distinction between an arbitrary accessible world and 
a particular accessible world is introduced in the language of the labelling algebra � � �
 special unary symbols. Hence Fitting’s distinction between an A-style and an 

I-style ND systems is not necessary here. 
Russo’s work is, in a way, representative for the LDS framework in the 

paradigmatic Gabbay style. There are, however, many other developments in this 
field. We briefly sketch some of them. 

First, there is interesting work of Basin, Matthews and Viganò (
� �
. [Basin, 

Matthews, Viganò:1997a]). The authors present ND systems for modal 
propositional logics in the LDS style, but they combine the LDS framework with 
a logical framework (what the authors mean by a logical framework is a formal 
notation providing support for the uniform implementation of different logics). 
The implementation of their systems in such a framework is also studied in this 
paper. An interesting point is that the labelling algebras used by these authors are 
relational theories comprised of Horn clause axioms (which formalize the 
properties of the accessibility relation). Thus they obtain a modular account of all 
the modal logics that fall under the generalized Geach axiom schema. Their 
approach has been later generalized for other non-classical logics whose 
semantics may be presented in Kripke-style fashion, like relevance or 
intuitionistic logic (

� �
. [Basin, Matthews, Viganò:1998]). In the paper [Basin, 

Matthews, Viganò:1997b] the authors also present cut-free labelled sequent 
systems for modal logics that have been obtained by translation of their ND 
systems. 

Second, there is also an approach in which labels are used not as “names 
of possible worlds”, but as referring to truth-values. Such an account of modal 
logics may be found in [Mateus, Sernadas, Sernadas, Viganò:2004] (

� �
. also 

[Mateus, Rasga, Sernadas:2005]). The authors introduce algebras of truth values 
as labelling algebras (in the context of modal logics a truth-value is simply a set of 
possible worlds), and they present labelled deductive systems for modal logics in 
a sequent-calculus setting. The calculi have structural rules, order rules which 
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express basic properties of the ordering imposed on truth-values, and specific 
rules for the logical connectives. Even the very “specific rules” have to deal with 
both logical connectives and the ordering relation imposed on truth-values. The 
resulting approach is very complex, but, on the other hand, it is also very general, 
as the “truth-values labelling” approach may be extended, in a uniform way, to 
other types of logics, like intuitionistic, relevance or many-valued logics. ( � �

. also 
the paper [Rasga, Sernadas, Sernadas, Viganò:2002] where the approach of using 
algebras of truth-values as labelling algebras is investigated for many different 
classes of logics in an ND setting.) 

Third, there is the “internalized labelled deduction” approach, represented 
by Blackburn (

� �
. [Blackburn:2000]). Blackburn uses the 

� � � � � � � � � � � � � � � � � � �
, 

that is, language in which labels (called 
� 	 � � � � � �

 in his paper) are treated as 
atomic symbols, just like propositional variables.53 Syntactically, it means that 
labels may be the arguments of logical connectives. The basic hybrid language is 
also equipped with a binary operator : which forms expressions of the form 

�
 : ϕ 

(here 
�
 is a label and ϕ is a formula of the basic hybrid language). Such 

expressions are called the 
� � � � � � � � � � 	 � � � � � � � � � � �

, their intuitive interpretation is 
that formula ϕ is true in the unique world labelled by 

�
. This intuition is expressed 

in the extended Kripke semantics in a very elegant way. What is striking in this 
approach, when compared to Gabbay-style paradigm of labelled deduction, is that 
the basic hybrid language 

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
. No separate algebra 

of labels is needed, since the behaviour of labels is determined by the elegant 
extended Kripke semantics. The resulting labelled systems are simpler than those 
of Gabbay and the other authors which we have mentioned above, but, probably, 
they are not so general. 

Let us conclude this subject. The framework of LDS certainly goes much 
further than “the occasional use of labelling with some specific purpose in mind.” 
The advantage of this approach lies in the power of the separate labelling 
mechanism. The terms of a labelling algebra are used as labels, its predicates may 
be used to define properties of labels, the consequence relation 

� � � � � � � � � � � � �
 

may be imposed on the algebra and used in the proof theory of a given logical 
system. The separation of the labelling mechanism from a language of a logic 
allows for a uniform account of many different logics in one framework. Even if 
we consider modal logics only, the clear advantage of LDSs over the more 
moderate formulations using labels (like ours) is the expressive power of the 
labelling language. It is usually a first-order language, whose well formed 
expression are, 

� � � � �
, ¬

�
(

�
1, 

�
2), like in Russo’s systems. This is something our 

language M* lacks. (Interesting notes on the expressive power of languages with 
labels may be found in the paper [Blackburn:2002].) 

The obvious disadvantage of the LDS approach is its complexity. This is 
not a human-oriented framework. On the other hand, LDS is an approach suitable 

                                                 
53 � � . also [Blackburn, Seligman:1998] and [Blackburn, Seligman:1995]. 
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for practically-oriented research, and this is not applications by a human, but 
computer applications the framework aims at. 
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FINAL REMARKS 

 
 
 
 
 
 
 

Modal erotetic calculi presented in this dissertation constitute a proof 
method for normal modal logics which is grounded in the logic of questions IEL. 
The rules of modal erotetic calculi describe inferences whose premises and 
conclusions are questions of formal language M*. These inferences may be 
further analysed within the framework of IEL. In Section II.4 we showed that the 
relation of positive equipollence of questions, and hence also that of pure erotetic 
implication of a question by a question, holds between a “premise” and a 
“conclusion” of such an erotetic inference. Thus the inferences are 

� � � � �
, in a well 

defined sense of the word. 
At the same time, the method of Socratic proofs characterizes the modal 

logics considered in this work in terms of “inverted” sequent calculi with 
semantically invertible elimination rules. The construction of a Socratic 
transformation reflects the “root-first” proof procedure known from Gentzen-style 
sequent calculi, thus erotetic calculi may be used as convenient tools for proof-
searching. Another interesting feature of invertible sequent calculi is their duality 
(

� �
. Section II.3). The method of Socratic proofs is a direct proof method, since it 

does not start with the negation of a formula to be proved. On the other hand, in 
the course of a Socratic transformation the operations are performed on formulas 
as if they were false, therefore the method may be also viewed as a method of a 
countermodel construction. 

Moreover, the method is clearly motivated by the possible-worlds 
semantics for modal logics. As we observed in Chapter IV, the idea of relating the 
deductive apparatus of a proof method for a modal logic to its Kripke semantics 
has about 50 years, and is still vital. It is a powerful tool which makes the 
deductive steps intuitive, and clearly reflects the differences between various 
modal logics in the deductive apparatus, thus allowing for modularity. In Chapter 
II we presented such a modular account of modal propositional logics K, D, T, 
KB, K4, S4 and S5, and we proved its completeness with respect to the 
underlying Kripke semantics in Chapter III. In Appendix 3 we also showed how 
our approach may be extended to other basic modal logics (that is, B, KB4, K5, 
K45, DB, D4, D5, D45). 

Our method may be also adjusted to many interesting extensions of logic 
S4 which we have not concerned in this work. Moreover, we think that the “modal 
Socratic paradigm” is fruitful enough to capture logics as rich as temporal ones 
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(probably, Gabbay’s message to treat the labelling language “more seriously” is a 
good advice here). We leave it, however, for future work. We have also postponed 
for the future a formulation of a loop-free terminating decision procedure for 
transitive modal logics that may serve as a basis for implementation of modal 
erotetic calculi. Another aims for future research which we find interesting is 
extending modal erotetic calculi in order to capture the relation of global 
entailment, and converting modal erotetic calculi into Gentzen-style sequent 
calculi. 
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APPENDIX 1 

 
The rules of calculus E* in the standard notation: 

 
L∧: ? (Φ; �  ' �  ∧ �  ' �  �  � ; Ψ)  R∧:   ? (Φ; �  �  �  ∧ � ; Ψ) 
 

 ? (Φ; �  ' �  ' �  ' �  �  � ; Ψ)                ? (Φ; �  �  � ;  �  �  � ; Ψ) 
 
L¬∧:      ? (Φ; �  ' ¬(�

 ∧ 
�
) ' �  �  � ; Ψ) R¬∧: ? (Φ; �  �  ¬(�

 ∧ 
�
); Ψ) 

 
? (Φ; �  ' ¬�

 ' �  �  � ;  � ' ¬�
 ' �  �  � ; Ψ)    ? (Φ; � ' �  �  ¬�

; Ψ) 
 
L∨:       ? (Φ; �  ' �  ∨ �  ' �  �  � ; Ψ)  R∨:  ? (Φ; � �  �  ∨ � ; Ψ) 
 

? (Φ; �  ' �  ' � �  � ;  � ' �  ' �  �  � ; Ψ)  ? (Φ;  �  ' ¬�
 ├ 

�
; Ψ) 

 
L¬∨: ? (Φ;  �  ' ¬(�

 ∨ 
�
) ' �  �  � ; Ψ)  R¬∨:  ? (Φ; �  �  ¬(�

 ∨ 
�
); Ψ) 

 
 ? (Φ;  �  ' ¬�

 ' ¬
�
 ' �  �  � ; Ψ)   ? (Φ; �  �  ¬�

;  �  �  ¬�
; Ψ) 

 
L→:      ? (Φ; �  ' �  → �  ' �  �  � ; Ψ)      R→: ? (Φ; �  �   �  → � ;  Ψ) 
 

? (Φ; � ' ¬�
 ' �  �  � ;  �  ' �  ' �  �  � ; Ψ)    ? (Φ; �  ' �  �   � ; Ψ) 

L¬→: ? (Φ;  �  ' ¬(�
 → 

�
) ' �  �  � ; Ψ)  R¬→: ? (Φ; �  �  ¬(�

 → 
�
); Ψ) 

 
  ? (Φ;  � ' �  ' ¬�

 ' �  �  � ; Ψ)   ? (Φ; � �  � ;  � �  ¬�
; Ψ) 

 
L¬¬¬¬¬¬¬¬: ? (Φ; � ' ¬¬�

 ' �  �  � ; Ψ)  R¬¬¬¬¬¬¬¬: ? (Φ; � �  ¬¬�
; Ψ) 

   ? (Φ; �  ' �  ' �  �  � ; Ψ)      ? (Φ; �  �  � ; Ψ) 
 
 

APPENDIX 2 

 
The rules of calculus E** in the standard notation: 

 
R∧∧∧∧:       ? (Φ; ├ �  ' �  ∧ �  ' � ; Ψ)  R¬¬¬¬∧∧∧∧:   ? (Φ; ├ �  ' ¬(�

 ∧ 
�
) ' � ; Ψ) 

 
? (Φ; ├ �  ' �  ' � ; ├ �  ' �  ' � ; Ψ)   ? (Φ; ├ �  ' ¬�

 ' ¬
�
 ' � ; Ψ) 

 
R¬¬¬¬∨∨∨∨:     ? (Φ; ├ �  ' ¬(�

 ∨ 
�
) ' � ; Ψ)  R∨∨∨∨: ? (Φ; ├ �  ' �  ∨ �  ' � ; Ψ) 

 
? (Φ; ├ �  ' ¬�

 ' � ; ├ �  ' ¬�
 ' � ; Ψ)  ? (Φ; ├ �  ' �  ' �  ' � ; Ψ) 
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R¬¬¬¬→→→→:    ? (Φ; ├ �  ' ¬(�
 → 

�
) ' � ; Ψ)  R→→→→: ? (Φ; ├ �  ' �  → �  ' � ; Ψ) 

 
? (Φ; ├ �  ' �  ' � ; ├ �  ' ¬�

 ' � ; Ψ)  ? (Φ; ├ �  ' ¬�
 ' 

�
 ' � ; Ψ) 

 
R¬¬¬¬¬¬¬¬: ? (Φ; ├ �  ' ¬¬�

 ' � ; Ψ) 
 

   ? (Φ; ├ �  ' �  ' � ; Ψ) 
 
 

APPENDIX 3 

 
The rules Rνννν and Rππππ in the standard notation: 
 

R□: ? (Φ; ├ �  ' (□�
)φ( � ) ' � ; Ψ) R¬¬¬¬□:        ? (Φ; ├ �  ' (¬□�

)φ( � ) ' � ; Ψ) 
  

? (Φ; ├ �  ' (�
)φ( � ), �  ' � ; Ψ)  ? (Φ; ├ �  ' (¬□�

)φ( � ) ' (¬�
)�  ' � ; Ψ) 

 
R¬¬¬¬◊: ? (Φ; ├ �  ' (¬◊�

)φ( � ) ' � ; Ψ) R◊:     ? (Φ; ├ �  ' (◊�
)φ( � ) ' � ; Ψ) 

  
? (Φ; ├ �  ' (¬�

)φ( � ), �  ' � ; Ψ)  ? (Φ; ├ �  ' (◊�
)φ( � ) ' (�

)�  ' � ; Ψ) 
 
proviso of applicability of rule Rνννν (rule R□ and R¬¬¬¬◊) in each E

L: �  ∉ IW{├ �  ' (ν)φ( � ) ' � } 
 

The inferential rules of EL for �  = K, T, KB, B, K4, S4, KB4, S5, K5, K45 are 
the following: Rββββ, Rαααα, R¬¬¬¬¬¬¬¬, Rνννν, Rππππ. For extendable non-reflexive logics: D, DB, D4, D5, 
D45 the rules of the corresponding calculus are: Rββββ, Rαααα, R¬¬¬¬¬¬¬¬, Rνννν, Rππππ and the following 
rule: 
 
RππππD:      ? (Φ; ├ �  ' (π)φ( � ) ' � ; Ψ) 
 

? (Φ; ├ �  ' (π)φ( � ) ' (π0) � ,�  ' � ; Ψ) 
 
The proviso of applicability of rule RππππD is the same for each E

L that has this rule: �  ∉ IW{├ �  ' (π)φ( � ) ' � }. 
Here is the list of the provisos of applicability of rule Rππππ (R¬¬¬¬□ and R◊) for the 15 

basic modal propositional logics. 
 

Calculus: proviso: 
E
K, ED < � , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] 
E
T < � , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] or �  = �    
E
KB, EDB < � , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] or  

<� , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] 
E
B < � , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] or  

<� , � > ∈ IR[├ �  ' (π)φ( � ) ' � ] or �  = �    
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E
K4, ED4 there is a directed IR[├ �  ' (π)φ( � ) ' � ]-chain < � 1, …, � � > such that � 1 = �  and � �  = �  
E
S4 there is a directed IR[├ �  ' (π)φ( � ) ' � ]-chain < � 1, …, � � > such that � 1 = �  and � �  = �  or  �  = �   
E
KB4 there is an IR[├ �  ' (π)φ( � ) ' � ]-chain < � 1, …, � � > such that � 1 = �  and � �  = �  
E
S5 there is an IR[├ �  ' (π)φ( � ) ' � ]-chain < � 1, …, � � > such that � 1 = �  and � �  = �  or �  = �    
E
K5, ED5 there is 

�
 such that <

�
, � >, <�

, � > ∈ IR[├ �  ' (π)φ( � ) ' � ] 
E
K45,ED45 for certain 

�
: there is a directed IR[├ �  ' (π)φ( � ) ' � ]-chain < � 1, …, � � > such 

that � 1 = �
 and � �  = �  and there is a directed IR[├ �  ' (π)φ( � ) ' � ]-chain <� 1, …, � � > such that � 1 = �  and � �  = �   
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