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This paper is concerned with the frictional contact between beams. The purpose is to 
compare the results obtained by the penalty and Lagrange multiplier methods. The ad-
vantages and disadvantages of both methods are generally known and widely discussed 
but not in the quantitative manner and not specifically for the problem of beam-to-beam 
contact. The paper sketches briefly both formulations pointing out the main differences 
and features of both methods. The section with examples presents several cases of ana-
lysed beam-to-beam contact scenarios. The accuracy of results is taken into account, also 
the comparison to the full 3D analysis performed using the program ABAQUS is made. 
The computation times and the length of the codes for both methods are compared as 
well. These criteria allow one to conclude that for the beam-to-beam contact problem the 
Lagrange multiplier method is more attractive than the penalty method.  
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1. INTRODUCTION 
 

The paper presents a numerical comparison between two standard methods of 
contact analysis for a case of beam-to-beam contact. The penalty parameter 
method and the Lagrange multiplier method are successfully used in the nu-
merical modeling of contact problems by the FEM, also for the beam-to-beam 
case [1, 2, 5]. Accompanied by an active set strategy [3] the methods are used to 
solve the problem of constrained minimization of a functional, usually a strain 
energy for a system of several bodies. The constraints represent the impenetra-
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bility condition and the limitations resulting from a friction law in an interface. 
Merits and drawbacks of both methods are theoretically well known and dis-
cussed extensively, e.g. in [3]. This paper will present the quantitative analysis 
of the results obtained using both methods in the beam-to-beam contact prob-
lem. 

In Section 2 the basic assumptions are formulated. The normal part of 
contact that was discussed in more detail in [1] is briefly presented in Section 3. 
Section 4 contains a description of the model of Coulomb friction and a sum-
mary of sliding variables, which were given in more detail in [2]. In this Section 
also the way to incorporate the friction constraints into the strain energy using 
both methods is given. The consistent linearization of the residual and the FE 
treatment of the friction contributions are sketched briefly. The interested Re-
ader will find all the details in [2]. Several numerical examples are presented in 
Section 5. They are aimed at the comparison of results obtained with both con-
sidered formulations. The reference to the full 3D analysis performed with the 
program ABAQUS and the comparison of code length and computation times 
are also included. The last section gives the concluding remarks. 
 
 
2. MAIN ASSUMPTIONS 
 
A set of beams with rectangular cross-sections is considered. Large displace-
ments and small strains are assumed. The contact element is formulated on the 
base of a linear-elastic 3D 12-dof beam element [1, 2]. 

The point-wise contact between beams is considered. For the beams with 
rectangular cross-sections their edges are four possible lines of contact. When 
the large strains case is excluded it is only allowed that for a pair of beams no 
more than two edges per beam will be involved in contact. So there can be no 
more than four contact points for a pair of beams. The full description of the 
contact search and the penetration check routines was given in the paper [1]. 
There the orthogonality conditions are exploited (Fig. 1): 

( ) ( ) ( )[ ] 01122, =−⋅ rrriii xxx  (2.1)

were xi are the current position vectors of points on the edges and ( ) ( )
i

i
r∂

∂
=, . 

Eq.2.1 usually forms a set of non-linear equations which are solved by the 
Newton method to yield the current local co-ordinates of contact points: rc1 and 
rc2. 

The virtual work G for a pair of beams consisting of two contributions 
due to their deformation is in the case of contact between one pair of edges 



THE PENALTY AND LAGRANGE MULTIPLIER METHODS IN THE ... 191 
 

supplemented by one term due to the normal contact and two terms due to two 
independent friction forces acting along each of the contacting beam edges: 

( )∑ =++++=
4

1
2121 0TTN GGGGGG  (2.2)

Linearisation of this set of non-linear equations is necessary to solve it by 
the Newton-Raphson method: 

( )∑ =++∆+∆+∆=∆
4

1
2121 0TTN GGGGGG  (2.3)

 
 
3. NORMAL CONTACT 
  
The normal part of the contact contribution in the penalty method has the form: 
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 (3.1)

and in the Lagrange multiplier method: 
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 (3.2)

where gN is the normal gap (see Fig. 1), λN is the Lagrange multiplier for the 
normal contact, equivalent to the normal force in the contact point and gN is the 
penalty parameter, equivalent to a stiffness of a fictitious spring in the contact 
point. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A pair of contacting edges 
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Kinematic variables for the normal contact have the form: 
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(3.3)

where ui is the displacement vector of the contact point and n is a unit normal 
vector defined as: 
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One may encounter the problems with the former form of the normal 
vector in the Lagrange multiplier method. This method leads to the exact 
fulfilment of the constraints and the singularity occurs. The latter form of 
normal vector gives a stable numerical behaviour. In the penalty method either 
of these definitions can be used. The same applies to the last component of ∆δgN 
(Eq.3.3(3)), see [1], which is given here in the form which can be used in both 
methods. 

The finite element discretisation of contact contribution bases on two 
two-node 12-dof beam elements within which the contact points lie. Let us 
denote nodal displacements of both elements as uM1 and uM2 which together 
represent 24 degrees of freedom of the beam-to-beam contact element in the 
penalty formulation: 

[ ]TT

M

T

MM 12 ,uuu =  (3.5)

In the Lagrange formulation three extra unknowns must be included – the 
Lagrange multipliers: normal gN and two tangential ones gT1 and gT2 yielding the 
vector of unknowns: 

[ ]TTTN

T

M

T

MM 2112 ,,,, λλλ= uuu  (3.6)

corresponding to the 27-degrees-of-freedom contact element. 
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The discretisation of kinematic variables yields the normal contact 
contributions to the tangent stiffness matrix and to the residual vectors, see [1, 
2]. In the penalty method they can be expressed as follows: 

[ ]111 RRKu ⊗ε+εδ=∆ NNN

T

MN gG  (3.7)
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and in the Lagrange method: 
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where 0 is a 24-element zero vector. The explicit forms of the (24×24)-
submatrix K1 and 24-component vector R1 are given in [1]. 
 
 
4. FRICTION IN BEAM-TO-BEAM CONTACT 
 
Friction between beams is modelled by the Coulomb law with a constant friction 
coefficient µ. The analogy to the rigid plasticity [4] is employed with the stick 
(elastic) and slip (plastic) cases distinguished. If the tangential force FT has a 
value below its limit µFN then beams are in stick. When the limit value is ex-
ceeded than the sliding starts and the value of the tangential force must be pulled 
back to its maximum possible level. 

In the beam-to-beam contact the distinction between two independent 
friction forces for a pair of contacting edges must be considered. The two forces 
correspond to two possible relative movements along each of the edges and 
consequently two independent tangential gaps are introduced: gT1 and gT2. Each 
gap is a sum of elastic and plastic part. The elastic part is subject to constraint: 

0=e
Tig  (4.1)

while the plastic part must fulfil the non-associated flow rule: 
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The yield function for the Coulomb friction reads: 

0≤µ−= NTii FFf  (4.3)

In the penalty method the contact forces are: 
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where εT is the common penalty parameter for both friction forces. In the La-
grange multiplier method: 
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where λTi are two Lagrange multipliers for the friction part of contact. 
If the condition (4.3) is fulfilled than the contact is of the stick type and 

the elastic gap is zero (Lagrange) or close to zero (penalty). Otherwise the slip 
case occurs, the tangent force is at its maximum possible level: 

NTTi FFF µ== max  (4.6)

and the edge of one beam slides along the edge of the second beam. 
The tangential gap is updated [2] in the current configuration at every 

load, see Fig.2. In the Lagrange formulation it is exactly zero for the stick case 
and for the sliding its entire value represents the plastic gap. In the penalty 
method the elastic gap will never be zero, the bigger the penalty parameter εTi 
the closer to zero it is. 

In the following the subscript i denoting the number of the contacting 
beam (edge) is omitted to simplify the notation. The kinematic variables re-
quired to formulate the friction contributions to the virtual work may be written 
as:  
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The subscript p in Eq.4.7 corresponds to the values for the previous con-
tact point Ci(n-1)

f mapped onto the current beam configuration (see Fig. 2). The 
parameter s controls the sliding: 

( )Ts λ= sign    or   ( )prrs −= sign  (4.8)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A tangential gap increment 
 

When the Lagrange multiplier method is used the similar problem as with 
normal gap may occur here. Due to an exact fulfilment of the friction constraints 
it is necessary to use the alternative form for the variable ∆δgT  (Eq.4.7(3)) and 
the following definition of the tangent vector t: 
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Now the friction contributions to the virtual work and its linearization can 
be written for both formulations. For the stick case and the penalty method they 
read: 
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and for the Lagrange multiplier method: 
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while for the slip case and the penalty method: 
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and for the Lagrange multiplier method: 
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The FE discretization of kinematic variables for friction given by Eqs.4.7 
was presented in detail in [1] and [2] so just the general form of matrices and 
vectors to be added to the tangent stiffness matrix and the residual vector is 
given here for the consistence of the paper. 

Tangent stiffness matrices for the stick case and the penalty method are: 
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and for the Lagrange multiplier method: 
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Residual vectors for the stick case and the penalty method are: 
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and for the Lagrange multiplier method: 
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Tangent stiffness matrices for the slip case and the penalty method are: 
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and for the Lagrange multiplier method: 
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Residual vectors for the slip case and the penalty method are: 
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and for the Lagrange multiplier method: 
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The explicit forms of the (24×24)-submatrices K2 and K3 and 24-
component vectors R2 and R3 can be taken from [1]. 

Note that the stiffness matrices and the residual vectors for the slip case 
in Lagrange formulation contain the terms, which lead to the fulfilment of the 
condition given in Eq.4.6. 
 
 
5. NUMERICAL EXAMPLES 

 
The performance of the beam-to-beam contact elements formulated on the base 
of the penalty method and the Lagrange multipliers method is shown for three 
numerical examples. The two methods are compared with respect to the accuracy 
of results and computation time. The first example includes also the comparison 
to the 3D analysis results obtained using the program ABAQUS. All the exam-
ples show also the sensitivity of results to the values of penalty parameters. The 
results are obtained using the self-written programs in FORTRAN. The codes 
were compiled using the Compaq compiler. The exe-file for the penalty formula-
tion has 749 kB, the one for the Lagrange multiplier method – 777 kB. The dif-
ference results from the fact that the latter method requires more complicated 
treatment. More checks must be performed and more possible cases of values of 
normal and tangential gaps and their corresponding Lagrange multipliers must 
be considered. So the code is longer and one must expect longer computer times. 
 
5.1. Example 1 
 
Contact between two beams shown in Fig. 3 is analysed. This example was 
solved in [2] using the penalty method. 

Beam 1 is the cantilever beam and Beam 2 has the constrained rotation 
around axis Y at its ends and the constraints in the central node (point B) due to 
the symmetry with respect to XZ-plane. The following data are used: dimen-
sions of Beam 1: 10×10×100, dimensions of Beam 2: 5×5×100, Young's moduli 
for both beams: 30000, Poisson's ratios for both beams: 0.17, initial gap: 0.5, 
friction coefficient µ = 0.5. Both beams are divided into 10 finite elements, dis-
placements are applied using 50 increments, parameter 0.10.0 ≤≤ T  is used to 
control the level of load. 
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Selected stages of the deformation process for the are shown in Fig. 4. 
These are the results for the Lagrange multiplier method. Tables 1 and 2 show 
the comparison of displacements of points A and B (see Fig. 3) obtained by the 
penalty method with various values of penalty parameters, by the Lagrange mul-
tiplier method and from the full 3D analysis. The latter was performed using the 
program ABAQUS. Beam 1 (master) was modelled by 2×2×20 and Beam 2 
(slave) by 2×2×40 brick elements C3D8. 
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Fig. 3. Beams layout for the Example 1 
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Fig. 4. Example 1 – four stages of deformation process 

Table 1. Displacements of the point A 

fixed 

∆1 = 40 

3D view 
XY view ∆2 = 20 

∆1 = 40 

∆1 = 40 

Beam 2 

Beam 1 

B 
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XZ view 
YZ view 

∆2 = 20 

∆1 = 40 

∆2 = 20 ∆2 = 20 

T = 0.75 T = 1.00 

T = 0.25 T = 0.50 
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Formulation δX δZ 

penalty   
εN εT   

10000 400 .537 9.79 
10000 800 .538 9.79 
10000 1500 .539 9.80 
20000 400 .539 9.81 
20000 800 .539 9.82 
20000 1500 .540 9.82 
30000 400 .539 9.80 
30000 800 .540 9.81 
30000 1500 .541 9.82 

Lagrange .571 9.89 
3D (ABAQUS) .562 9.87 

 
Table 2. Displacements of the point B 

 
Formulation δX δZ 

penalty   
εN εT   

10000 400 8.02 35.6 
10000 800 8.02 35.5 
10000 1500 8.02 35.5 
20000 400 8.01 35.6 
20000 800 8.01 35.5 
20000 1500 8.01 35.5 
30000 400 8.00 35.6 
30000 800 8.00 35.5 
30000 1500 8.00 35.4 

Lagrange 8.08 36.2 
3D (ABAQUS) 8.27 37.2 

 
The comparison of displacements at the points A and B shows clearly the 

better accuracy of the Lagrange multiplier method. For the penalty method one 
observes relatively small influence of the value of penalty parameter (in the 
considered range) on the values of displacements. 

The computer time on PC, 900 MHz for the Lagrange method was 87 
seconds, for the penalty method – 37 seconds. This confirms the earlier com-
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ment that the former method requires more complicated code and longer compu-
tation times. 

 
5.2. Example 2 
 

Two cantilever beams shown in Fig. 5 are considered. 
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Fig. 5. Beams layout for the Example 2 
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Fig. 6. Example 2 – four stages of deformation process 

fixed 

∆ = 40 3D view XY view 
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The data used in the example are: dimensions of Beam 1: 10×10×100, dimen-
sions of Beam 2: 5×5×100, Young's moduli: Beam 1: 30000, Beam 2: 20000, 
Poisson's ratios: Beam 1: 0.17, Beam 2: 0.3, initial gap: 1.4, friction coefficient 
µ = 1.0. Both beams are divided into 10 finite elements, displacements are ap-
plied using 40 increments, parameter 0.10.0 ≤≤ T  is used to control the level 
of load. 

Fig. 6 presents some selected stages of the loading process obtained from 
the Lagrange formulation. 

Graphs in Figs. 7, 8 and 9 show the influence of the penalty parameters 
on the percentage differences in the values of displacement δX at the point A, 
normal contact force FN and tangential contact force FT1, respectively, obtained 
by both considered methods. 
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Fig. 7. Example 2 – displacements of the point A 
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Fig. 8. Example 2 – normal contact force 
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Fig. 9. Example 2 – tangential contact force 

 
The results in Fig. 7 indicate that for the considered case the tangential 

penalty parameter εT has the clear influence on the accuracy. On the other hand 
the results are almost insensitive to the normal penalty parameter εN. The verti-
cal lines in Fig. 7 point out the maximum values of εT for which the solution 
could still be achieved for a given normal penalty parameter εN. For the higher 
values the well known phenomenon occurred – the ill-conditioning of the equa-
tions and the convergence could not be achieved. It is also interesting to note 
that in this case the optimal value of the normal penalty parameter is not its hi-
ghest possible level but εN = 5e6. 

The normal contact force in this case can be calculated with a relatively 
high accuracy below 1% error even with low (not optimally chosen) penalty 
parameters. The friction force on the other hand is more sensitive to the choice 
of these parameters. 

The computer time on PC, 900 MHz for the Lagrange method was 36 se-
conds, for the penalty method – 24 seconds. 

 
5.3. Example 3 
 
Another scenario of two cantilever beams getting in contact is considered, see 
Fig. 10. 

The following data are used: dimensions of Beam 1: 10×10×100, dimensions 
of Beam 2: 5×5×100, Young's moduli: Beam 1: 30000, Beam 2: 20000, Poisson's 
ratios: Beam 1: 0.17, Beam 2: 0.3, Initial gap: 0.15, friction coefficient µ = 1.0. 
Both beams are divided into 10 finite elements, displacements are applied using 
40 increments, parameter 0.10.0 ≤≤ T  is used to control the level of load. 
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Fig. 11 presents some selected stages of the loading process for the La-
grange formulation. 
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Fig. 10. Beams layout for the Example 3 
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Fig. 11. Example 3 – four stages of deformation process 
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Graphs in Figs. 12, 13 and 14 show the influence of the penalty parame-
ters on the percentage differences in the values of displacement δX at the 
point A, normal contact force FN and tangential contact force FT1, respectively, 
obtained by both considered methods. 
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Fig. 12. Example 3 – displacements of the point A 
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Fig. 13. Example 3 – normal contact force 

 
In this case the results are more sensitive to the normal penalty parameter 

εN than to the tangential penalty parameter εT. This concerns equally displace-
ments and forces. It is also interesting to note that there is a limiting value of εT 
between 350 and 250 for which the friction behaviour changes from slip to 
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stick. Hence, the behaviour in the contact point may be modelled completely 
wrong if care is not taken when choosing the penalty parameters. 

The computer time on PC, 900 MHz for the Lagrange method was 50 se-
conds, for the penalty method – 35 seconds. 
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Fig. 14. Example 3 – tangential contact force 

 
 
6. CONCLUDING REMARKS 

 
In this paper results of the beam-to-beam contact analysis using the Lagrange 
multiplier and penalty methods are compared. It is well known that the Lagrange 
multiplier method introduces extra unknowns but for the case of beam-to-beam 
contact there are few of them. Although three multipliers per contact point are 
necessary but there are no more than four contact points for a pair of beams. So 
the increase of the problem dimension is not big. This method requires also 
some additional checks to be incorporated in the code. Some concern the fact 
that the limitations of the computer precision may result in the artificial very 
small separation of beams when the positive value of contacting force suggests 
that in fact there is still contact between beams. Generally one can say that the 
code in the Lagrange multiplier method is longer and more complicated. 
But the method gives two main benefits: the exact fulfilment of constraints and 
no problem with the choice of penalty parameters. Hence the results are clearly 
closer to the reality. And they do not depend on the parameters which must be 
chosen specifically for the problem in hand. This is usually done by the ‘trial-
and-error’ method and obliges to run the program several times unless some 
complicated and not fully reliable techniques are used to assess the penalty pa-
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rameters on the basis of the stiffness of the beams. So in the author’s opinion 
the Lagrange multiplier method is to be preferred in the case of the beam-to-
beam contact. 
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METODY WSPÓŁCZYNNIKA KARY I MNOŻNIKÓW LAGRANGE’A 
W ZAGADNIENIU KONTAKTU Z TARCIEM MIĘDZY BELKAMI  

 
S t r e s z c z e n i e 

 
 Artykuł dotyczy kontaktu z tarciem między belkami. Jego celem jest porównanie 
wyników obliczeń uzyskanych metodami współczynnika kary i mnożników Lagrange’a. 
Zalety i wady obu tych metod są ogólnie znane i dyskutowane w literaturze, brakuje 
jednak ich porównania ilościowego dla przypadku kontaktu między belkami. W artykule 
krótko przedstawiono oba sformułowania i wskazano na podstawowe różnice między 
nimi. Przedstawiono wyniki obliczeń dla kilku przykładów kontaktujących się belek. 
Wzięto pod uwagę dokładność obliczeń, wyniki porównano z pełną analizą trójwymia-
rową wykonaną za pomocą programu ABAQUS. Porównano także długość kodu i czas 
obliczeń. Te kryteria pozwoliły stwierdzić, że w przypadku kontaktu między belkami 
metoda mnożników Lagrange’a jest bardziej atrakcyjna niż metoda współczynnika kary.  
 
 


