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An analytic method for solving two-dimensional elasticity problems of orthotropic body
has been worked out. A solution for rectangular elements of the beam or disc type has
been developed. This solution satisfies the fundamental equations of the elasticity theory
of two-dimensional body exactly and the boundary conditions with large accuracy.
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1. FORMULATION OF THE PROBLEM

Beams and discs are widely used as structural members. Depending on the kind
of reinforcement they may divided into two groups: isotropic or orthotropic. The
former comprise all homogenous members like, for instance, steel elements. The
reinforced members may be treated as orthotropic with varying degree of
orthotropy. Typical examples are beams and discs made of wood, composite
fibres and concrete.
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Fig.1. A beam as a plate strip
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This work focuses on development of a method for solving of orthotropic
structural members: beams and discs. Beams are treated as strips cut out of a
thick orthotropic plate subject to cylindrical bending (fig. 1). Under axial stretch
we face the membrane state.

Equilibrium of such a strip, treated as a beam or a disc depending on the
way it is loaded, is governed by a system of two homogeneous differential equa-
tions [2,5]:

bsusyy + (byy +bys Juy 3y + bty 13 =0, ey

byyuyyy + (b13 + bss )”3,31 +bssuy 33 =0,

where: u; (j=13) are the components of the displacement vector and

by (k,1=1,3,5) correspond to the components of the stiffness tensor for an

orthotropic material. Specifically, in (1) the following convention has been
adopted: by =byyyy5 b3 = b33 =bsys bss =bys3, byy =bysss.

2. METHOD OF SOLUTION

Following the approach taken in [1,4], we assume the solution to a non-
symmetrical problems in the form:

Z{fz(m)(xl)cosw M)+ AL () sin(8 x,) +

m=1

3] (1] [3]
+ 81 Geycos(S x) + A2 () sin(Stl x),

Z {fi(l,]n) (x;)cos( [31]))53 )+ f3[(11]n) (x) Sin(é‘([i])% )+ 2)

m=1
+ 1100, () o881 0) + £13h () sin(SL ) .
where the functions: fp{m)(x ; ), p=14 are the unknowns and: 5,2{ I= (zn;—_l)f[
a .
J
the parameters.
Substituting (2) to (1), and separating the variables, we obtain a system of

ordinary differential equations for unknown functions f [(m)(x Bk
L] m< ’> 1 gl G0 L1 el G
2{4 r(m) 1(m) )+ Bkr(m) fZ(m) ( )+ Ckr(m) f3(m) ('xj )+

(3-r) P
+DU pli (xj)}zo, k=14 ,r=13. 3)
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The coefficients: A,Ej(]m),B,Ef(],n),C,Ejgnl),D,Er("l) in (3) can be expressed via the

components of the stiffness tensor for the orthotropic material and appropriate
parameters:

h b _ [3] 2
Af(m) =011s - Af3() = D550

(m) >
BQI]( )=b, € [1] :(b13+b55)5<[:3n])’ 393]( 5<[:3n]> ’
Cg](m)_bss’ 33[12 (b13+b55)5<[31]>’ C3[13](m =-b; 5([;])2’
Dé[lll](m)_bSS’ Az[;lz]m (b13+b55)5([31]>’ Dﬁ[tIS](m =—b, 5};31])2’ “4)
AE m) =bss, Dlé{m) =—(b3 +b55)5([1173)’ Al[;% = 5([’113)2’
BEl,) =bss: CBl) =B +b)30). BY,) =530,

2
C3[ll](m) = b33’ 33[2] (m) (b13 +b55)5([1173)’ Cz[lz]( __b 5([:;3) s

2
D4[131](m):b33’ A42(m):(b13+b55)5([;113)’ E]m =—b; 5([2) .

The remaining parameters have zero values.
We seek the following particular solution to (3):

fP[(J’ll)( ) p(m)exp[ (m) j] (5)

where RL/] are unknown parameters. The quantities 7\.(m) are the roots of the

p(m)
characteristic equation [4]:

(by1 sy = bis 0T Y bss 2oy = bisSLI0) + (b + bys)* S AT =0,

(m) (m) (m)
[3]2 [1]2 [3]2 [1]2 [112 90312 __
(bSS (m) 5(111) )(b33 (m) é‘(m) )+ (b13 + bSS) é‘(m) (m) — 0 (6)

Each of the above equations is a fourth-order equation (biharmonic equa-
tion) and, therefore, each has four roots (two positive and two negative):

Ay =~ M ==2, )
Numerical computations show that for orthotropic material the roots K[({j) are all

real.
General solution of the system takes the form:
Z R  exp AL/ . (8)

P(m) v(m) J
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Observe that within the set {R L) } only two groups of coefficients R1£,j(]m) and

Py(m)

RzLj(]m) are linearly independent. All the remaining coefficients are linearly re-

lated by the equations:

i1 _ plil [1 i1 _ plil [j1
RSV(m) - R2v(m)K2v(m) ’ R4v(m) - Rlv(m)Klv(m) . (9)
In the above:
e _ (31 11
m  _ bll;tv(m) b555(m) _ b117’£ _bss —_
v(m) — (1] 3] 11~ v
(bl3 +b55)/1v(m)5(m) (bl3 +b55)7£
n* _ 3 12
o _ biAo b0l Y Kl (10)
2o(m) = 1§61 1 e
(by3 +bss) Ay Oiom) (b3 +bs5)7,
31 _ 11 32
g1 _ DssAion =By by by KD
v(m) = 31 ol 31 7 v
(b13 +b55) '(m)é‘(m) (b13 + b55)7{f
[T {11 3P
Bl _ bssAon =budy by —by, _ gD
2v(m) — - 2v

(bl3 +b55 )X’D] é‘([rlrg) (bl3 +b55)7£3] -

v(m)

where: 7/£j = /1["(]m) / 5,&’1 .

14

Making use of (2) and (8) we can determine the components of the displacement
vector as:

o 4
U= Z Z {Rl[llfl(m) I:Ul[ll/](m) (xl) sin(5,£3]x3 )]+ Rglvl(m) [Uy\/](m) (xl) COS(@E])% )]+ (1 1)
m=1v=1
+ R 8L esin(l )]+ REL, [UB, (e costi ]

v(m

o 4
1 1 3 1 1 . 3
U3 = ZZ{R{V](m) I[V}m)(xl )cos(8l3)x; )]+ Rgv](m) [W2[V](m)(xl)sm(tsE,,]x3 )]+

3 3 1 3 3 . 1
SR W Ceycos(@llla [+ R WL (rnsingalih |

We introduced the following notation in (11):
sinh iL{ln)xj, v=12,

cosh/l{” v=34

v=2)m¥j

[ _
Upvom (X)) =
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coshal/l x. v=12,

v(m)*J’
[j] — gl 3
Wovim X)) =K pym) p=12. (12)
h L] _
s1nh7»(v_3)(m)xj,v =34,

The components of the strain tensor follow from the kinematic relations:
1
g,.j=5(u,.,j+uj,,.) (13)

Substituting (11) to the above, we derive the formulas for the components of the
strain tensor:

oo 4 ’

_ [1] [1] : [3] [3] 11y 7[31] [1]

&= ZZ{RIV(m)|:U1v(m) (x,)sin(0,, )@)} + Rlv(m) [5m Ulv(m) (x3)cos(3,, xl)]+
m=1v=1

’

[1] (1] (3] (3] [y 7(3] : (1]
+ R2V(m)|:U2V(m) (xl )003(5m x3)} + Rovim) [_ 0, U3y (X3)I0(3, xl)] } )

oo 4 ’
_ [1] 3y (1] : [3] [3] [3] (1]
€33 = Z Z {Rlv(m) [_ o, le(m) (x,)sin(J,, x3)]+ Rlv(m) |:VVIV(m) (x3) cos(J,, xl):| +

m=1 v=1

7
(1] [3yx7 1] (1] [3] [3] . (1]
+ Roy(m) [5m Wy (my (1) €0S(8,, xl)]+ R2V(m)|:W2v(m) (x;)sin(5,, xl):|} >

oo 4 ’
713 = Z Z {Rl[llf](m) |:(51[15]U1[l1/](m) ('xl) + VVI[Vl(]m) ('xl )) Cos(é‘/[r?])% ):| +
m=l v=1
. Rfszm)[(ufszm) ()= 30w, <x3>jsm<a,5:]xl>}+
, (14)
. Ral;(m)[(aﬁflvge(m) ()Wl <xl>jcos<a,£f]x3>}+

(31 [31 {yy 31 |
+ Ry (m)y KUzv(m) (%3) = G Wap ) (53 )) sin(&,, 'x; )}} .
Let us introduce the following notation:

[1] _ g7l [3] _ Sly7I3]
Gy (X)) =U iy (5)5 Gy (X3) = 5, U y(X%3),

v(m

’
[1] —rril [3] _ 11y 7(3]
GZV(m)(‘xl) = U2V(m) (x), GZV(m)(‘x3) ==0, Uy (X3),

v(m)

7
[3] — w31 [1] _ [3yx7 (1]
Hlv(m)('x3) = le(m) (x3), Hlv(m)('xl) =-0, le(m)(xl) >
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,
Hé?/](m) (x3) = W’z[s%m) (x3), Hélvj(m) (x)= 5£?JW2[11/J(m) (%), (15)
,
Tt (%)= SU L, ) + WL, (),
,
715/3(]m) (x3 ) = U1[32m> (x3)— 51[111]‘471[1/3(]111) (%)
,
Tz[y(n1) (xl ) = éﬁlljglv](m) (x)+ WZ[II/](M) (x),
,
TZ[IS/](m) (x3 ) = Ué?/](m) (x3)— 5r[nl]W2[32m) (x3).

Then the functions determining the components of the strain tensor take the
form:

€, =iz4:{R[” G Gysin(D x|+ R (G () cos(d )|+

1v(m) v(m
m=1 v=1

+ Rl () cos(8 e [+ R, (6121, () singst x| ],
(16)

e = 33 R [0, ysin@ ]+ R [HEL, () cos@t |+

v (m) v(m)
m=1 v=1

1 1 1 3 3 . 1
+ R [H L Gayeos(St [+ R B, (e sin(st x| ],

2v(m

w 4
N3 = ZZ{R“J [Tlggm)(xl)COS(5};?JX3)]+R1[32m) [715(]111) (x3) Sin(é‘/[n”xl)]-i-

v(m)
m=1 v=1

[1] [1] (3] [3] [3] : (1]
+ Ry m) [(TZV(ln) (xl))cos(é‘m x3)]+ R3yom) [TZV(m) (x3)sin(d, xl)] } )

The components of the stress tensor follow from the constitutive rela-

tions:
O, = bijklgkl (17)
Substituting the right-hand sides of (16) to (17), we obtain:
o 4
o= 2 D (R X, osinGa o [+ R, [0, (e ot |+
m=l v=1

[1] [1] (3] [3] [3] : (1]
+Royim) [sz(m) (xl )COS(5m X3 )]+ Ry [Ylv(m) (x;)sin(d,, ' x, )] }’
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o 4
o= SRV Gy sin(de) J+ REL, V) () cos(8tix,) J+ s
m=1v=1
+RU I () oos(3t ) |+ REL I (epsingoi) |,

v(m)

w 4
_ (1] [1] (3] [3] [3] : (1]
O3 = ZZ{Rlv(m) [Tiv(m)(‘xl)cos(é‘m x3)]+RlV(n1) [Tlv(m)(x3)sm(5m xl)]+

m=l v=1

+ Rl e)eos(8 ) |+ REL [EEL e sin(ax)] ).

In the above the following notation has been introduced:

[/]
+b3333H ()

(19)

(m) =011 1G£,]J(m) +byy33H L] Y[[,f;](m) = b3311G£,<,](

pv(m)’ m)

ZEJJJ(m) = b1313T,[,<;](m), p.Jj=13.

The unknown parameters R}ggm) should be determined from the boundary condi-

tions imposed on the surface of the structural member under consideration.

3. EXEMPLARY COMPUTATIONS
Example 1.

A beam with the span 2a, and height 2a; is fixed at the ends and loaded at the

upper face with a symmetrically distributed transverse force (rys.2). The load is
given by the function:

q(x,) = pcos(di'x)) (20)
———q(x;)
e e
—a V.
2a, i x=
=7 24, Ol
b v 3 "

Fig. 2. Loads applied to the beam
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With this load the axial displacement u, is antisymmetric and the deflection u,

is symmetric with respekt to x,. With respect to x, these displacements are

non-symmetric. To satisfy these conditions, we have to assume
RUJ :Rl3J

2v(m) 2v(m)
be satisfied at the ends surfaces of the beam:

=0 in (11). The following kinematic boundary conditions must

d
w . =0, =3 -0. Q1)
dlx =%a, axl x1:i_a1

Static boundary conditions at the upper and lower face of the beam take the fol-
lowing form:

G33|x3:_a3 =—q(x), 631|x3=a3 =0, 633|x3:a3 =0, (531|x}:—a3 =0. (22)

The following numerical values for the dimensions of the beam have been as-
sumed: @, =3m, a, =0,3m. The load is determined by p =1 Pa and the mate-

rial constants are: E, =5,7- 10'° Pa, E, =1,4-10"° Pa, G, = 0,57-10"° Pa,
V5 =0,068 .

Fig. 3 shows distribution of the stress component o©,, at the surfaces
& =x;/ay==%1. The curve 1 shows the stress distribution at the upper face of
the beam, the curve 2 at its middle surface (&, =0), and the curve 3 at the lower

face. To obtain sufficient accuracy, 15 approximations has been applied in the
process of the numerical computations.

033
05 L
3
0 SN —.7
\\\:~\.\ ~.- 2 - - ’.:///
05| o Sl i o
e //</1
qL S~ -7 -
15 | | |
-1 0.5 0 0.5 g

Fig.3. Stress distributions 045 at & =£1,0
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The graphs from fig.3 have been obtained by taking the mean value from
the results of computations. The standard deviation of the stress o5, arising

from the action of the load q(xl) on the upper face, does not exceed 10%. Lar-

ger peaks of o,; are located at the corners; they are caused by clamping of the
ends of the beam. The boundary conditions at the lower face are satisfied
strictly. So are the conditions for the stress components 3| at the surfaces

=1 of the beam. Their maximal value does not exceed 5-107"° Pa.
S

o1

10 L /l

_30 | | |
-1 0.5 0 0.5 &

Fig.4. Stress distribution oy, along the beam

Fig.4 shows stress distribution o;, along the beam. The curve 1 shows the dis-

tribution at the lower face of the beam. The maximal value of the stress is lo-
cated in the middle of the beam, whereas the maximal values with the opposite
sign at its ends, where it is fixed. Graph 2 pertains to the axis of the beam.

Example 2.

Consider a disc subject to stretch along the Ox; axis (fig.5). The load is given
by the function p(x3 ) = pcos 5{3],%3 .
p(x3

< 5

2a,

[
»

A

v
X3

Fig.5. Loads applied to the disc.
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The problem of the axial stretching of a rectangular orthotropic disc has been
discussed in [3].

The origin of the coordinate system is located in the center of the disc and its
axes coincide with the axes of symmetry of the disc. The boundary conditions
take the form:

611l =) o], =0,

=0. (23)

=0, G31|)c3:ia3 -

xy=ta
For the load given, the u; component of displacement is symmetric with respect
to x; and antisymmetric with respect to x;. The displacement u; is antisym-
metric with respect to x; and symmetric with respect to x;. These conditions
will be satisfied if in (11) we put: Rl[i](m) = Rfv](m) =0 and Rﬂm) =0 for v=1.2
and Rgl,](m) =0 for v=34.

To satisfy the boundary conditions at the surfaces of the disc Fourier series has

been applied.
Fig.6 shows the graph of the o), stress at the longitudinal cross-section

(&, =0). The o, stresses diminish quickly with the increase of distance from

the loaded surface and sufficiently far away assume constant values. The number
of approximations had little impact on the values of the stresses in the central
cross-section of the disc.

1.1
611(§.0)

1.0

0.9

0.8 /
m=10 /
=7

0.7
=
- = m=1 ¢
0.6 1
0.0 0.2 0.4 0.6 0.8 1.0

Fig.6. Stress distribution o 1(51 ,0) in the central cross-section (52 = O)Of the disc

Fig.7 shows the graphs of the stress distribution o,,(0,&,) in the central
cross-section (& =0) for different values of the parameter m . The stresses oy,
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in the center of the disc are constant and for m >5 their values do not depend on
the number of approximations. The stresses c,, have zero values at the edges of
the disc (boundary conditions) and assume relatively small values in the interior.
The tangent stresses on the surfaces of the disc diminish with the growing numer
of iterations.

0.80
611(0.€2)
0.75 P4
v
- ”
m=1 - - -
0.70 e
L _—---T 10
S e I W — /
0.65 i
5
0.6 Z
690 0.2 0.4 0.6 0.8 1.0

Fig.7. Stress distributions o7, (O, 52) in the main cross-section of the disc

4. CONCLUSION

The analytic method of solving two-dimensional problems of the elasticity the-
ory of an orthotropic body proposed in this paper is based on the three-
dimensional theory. The paper covers the structural members of the beam and
disc type. Beams are treated as strips cut out of a thick orthotropic plate subject
to cylindrical bending. When the strip is stretched we face the membrane state.
The solution obtained strictly satisfies the fundamental equations of the elasticity
theory of a two-dimensional body and also fulfills the boundary conditions with
high accuracy.
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METODA ROZWIAZYWANIA PROSTOKATNYCH
ORTOTROPOWYCH BELEK I TARCZ

Streszczenie

Opracowano metod¢ analityczng rozwigzywania dwuwymiarowych zagadnien
teorii sprezystosci ciata ortotropowego. Zaproponowano rozwiazanie dla elementéw
prostokatnych typu belka lub tarcza. Otrzymane rozwigzanie doktadnie spetnia wszyst-
kie podstawowe réwnania teorii spre¢zystosci ciata dwuwymiarowego i z duza doktadno-
Scia spetnia warunki brzegowe.



