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The paper contains a consistent presentation o€ahstruction of a linear poroelastic
model and its applications in the theory of acaustaves. The main purpose of this
presentation is the discussion of material parammetiescribing the diffusion. This
concerns particularly the permeability and torttyosin Section 2 we mention a few
examples of porous systems in which diffusion psses play an important role. Section
3 contains a concise description of the two-compbrmedel describing saturated porous
materials with diffusion. We point out the maintig&s of such a system with the special
emphasis of relative motion of components and chsuod porosity. As a special case the
governing equations of Biot's model are presertie&ection 4 we discuss the notions of
permeability, hydraulic conductivity and tortuositin particular the notion of the
tortuosity tensor is introduced. Section 5 is thienpr of the nuclear magnetic resonance
method of experimental determination of permeabdihd tortuosity in various porous
materials. Finally, Section 6 contains some issuescerning the propagation of
monochromatic waves and, in particular, an infleeraf tortuosity on speeds and
attenuation.
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1. INTRODUCTION

The most important feature which distinguishes peramaterials from
composites is the possibility of diffusion. Obvigyssuch materials as closed
cell foams or perforated plates seem to belondpeoctass of porous materials.

1 A part of this Article was presented at the lll@onference:Mechanics of
Inhomogeneous Medid.agow, 4-6 June 2010 under the titlfoftuosity of porous
media and its influence on properties of acoustweg(in Polish).
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However, the way in which they are modeled as coltj i.e. smearing out
procedures is for such systems identical as thassthndard composites. This
is not the case when cavities are connected witlh egher as in open cell
foams. A fluid component or components filling teesavities may move
independently of the motion of the skeleton (i.é.tlee solid phase). Such
diffusion processes are always connected with ftissiphtion, i.e. they are
irreversible processes. Intensity of dissipatiopatwls on relative velocities of
components and on material properties of the poroadium. It was Henry
Philibert Gaspard Darcy (born 10 June 1803 in Digod died on 3 January
1858) who proposed a linear law relating the pnesgwadient (or hydraulic
gradient) with the filtration (i.e. relative) veltg or discharge of the fluid
through a unit surface. A coefficient in this lavthe permeability — is strongly
dependent on properties of both skeleton and al,flah the geometry of
channels and on the geometry of the flow (tortydsit

In this work, we present a motivation for theoraticontinuous modeling
of diffusion in porous materials. Some prominentaraples of practically
important processes are presented in the nextdBeatithe paper. We indicate
there some references where phenomenological sledaidl a microscopical
background can be found.

In Section 3 we present a continuous model of atgdrporous materials.
We limit the attention to processes with a smalbdweation of the skeleton and
of the fluid component. This yields the linearitiitbe model with respect to the
changes of geometry and, consequently, it is caemerto use the Eulerian
description of motion. However, we indicate certaionlinear contributions
connected with the diffusion. In the macroscopicsadigtion the fluid
component is inviscid. The real fluid is viscousldhis leads to the momentum
source in partial balance equations which is defing a convolution integral.
This type of relation was suggested by M. A. Bid®,[ 20] and it yields for
monochromatic acoustic waves a dependence of thmepbility on the
frequency. In Section 4 we elaborate the structfr¢he momentum source
which is the most essential part of the model tifidion.

Numerous material parameters appearing in the ¢tieat model can be
either estimated theoretically by means of aveagprocedures or by
measurements. We shall not present the former gmolaind refer to original
papers on the subject (e.g. [85]). However, we doirgo some details of
experimental techniques which deliver data chareitg diffusion. These are,
in particular, methods based on the nuclear magmesonance (NMR). In
Section 5, we present a primer of the physical gamind for these techniques,
demonstrate some measuring devices and some resaitperiments on porous
materials.
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Section 6 is devoted to some properties of monanhtic acoustic waves
in saturated porous materials. These results fdren foundation for some
nondestructive methods of observation of porouseri@s. We discuss in some
details the structure of governing equations foifayv within the model
presented in Section 3 and, in particular, an erfbe of the so-called added
mass effect. This has been related by J. G. Bemyhal.[17], D. L. Johnson
et al.[46] and some others to the tortuosity. We shaat this relation is a pure
artifact following from a mistake made in the papts].

2. DIFFUSION IN VARIOUS SYSTEMS

Diffusion may be a spontaneous process in naaystems such as soils or it
may be forced for some practical purposes suchilaatibn. Some most
prominent examples of systems in which the diffasie important are as
follows.

A: Fuel cells[37]. Fuel cells differ from usual electric bater in this
respect that they are open to the environment. tiypial fuel cell, a fuel is
continuously fed to the anode and an oxidant (exygen from air) is
continuously fed to the cathode. In principle, faells produce power as long as
a fuel is supplied. In Fig.1, a schematic of théyper electrolyte membrane
fuel cell (PEMFC [53]) is shown where the oxidatimihhydrogen produces the
electric current.
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Fig. 1. Schematic of PEM fuel cell
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The main problem in design and theoretical modebihguch systems is a
correct balance of transport processes. Thesepanprocesses enhance the
delivery of oxygen to the catalyst layer an appiatpr removal of water from
the electrode. It means that the water which isipced in the synthesis should
not be removed too rapidly as this would lead tgirdy of electrodes and it
would reduce the performance of the cell. Thisdatés that diffusion processes
in such systems must be very carefully calculateticntrolled.

B. Soils and rocksThese are two different types of materials: tenker
is made of loose or loosely connected mesopartgileb as grains or platelets
while the latter consists of a solid skeleton witlids and channels. In spite of
this fundamental difference both diffusion and heatduction processes can be
described for both types by a similar model. Obsipudiffusion processes play
a different role in those materials. In the secoaske, they are primarily related
to the transport of fluids and, in the case of Zneg of water in pores, may
influence rates and extent of damage processethelrfirst case, they may
directly yield substantial changes of mechanicabprties. For instance, when
dry, clays become firm and fired in kilns transfoton ceramics. Sands may
suffer structural instabilities due to the diffusisuch as liquefaction. Such a
process accompanying an earthquake is schematitadlyn in Fig. 2.
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Fig. 2. Diffusion in sand during the earthquakesiagi the liquefaction
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C. Tissues, in particular brairhll living tissues are porous and they
“live” due to diffusion processes. These may prooee a microscopic level and
then molecules diffuse through membranes or they appear on mesoscopic
level in which case the diffusion appears in ch&oé porous materials. Such
is the motion of air in bronchi and lungs and thation of fluids in the brain.

Mew
bane
growth

Stages 2 & 3
of typical
fracture
healing.
{4 {skin not shown)

Fig. 3. Healing of the fractured bone

In Fig. 3, we show a fractured bone which healptducing collagen
fibers in the processes of local diffusion. lterdepends on the level of stresses
in the vicinity of fracture and on permeability pesties of tissues involved in
the healing process. Such a problem of fracturdingeavas, for instance,
theoretically investigated in the paper [35].

Fig. 4 demonstrates a typical picture of the betincture obtained by the
method of diffusion nuclear magnetic imaging. Wedumne later to the
presentation of this nondestructive testing methbith plays a very important
role not only in medicine but also in chemistry,am&nics of porous materials,
geotechnics, etc. These pictures show an anisotbthe white matter tracts in
brain conducting fluids. This anisotropy resultenfr the fibrous structure of
neural axons. Water is transported easier in trextibn of these fibers and this
gives rise to the graphical representations ofathitee matter of the brain called
tractography. Results of such imaging yield impatrizonclusions on pathology
of the brain such as schizophrenia (e.g. [74]) amation of tumors. Similar
methods are applied in the diagnosis of patholégibanges of muscles, for
instance, in the heart. Based on a multicomponendeiof diffusion are
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attempts to describe the growth and spread of teinfeee [29] for further
references).

Fig. 4. Diffusion MRI pictures of brain demonstragian anisotropy of permeability.
The right figure prescribes colors to directionS][6

D. Filters and transport of pollutantfilters are porous materials in
which diffusion processes are coupled with proces$éedsorption (e.g. [1, 14,
15, 38, 83]), i.e. attraction of molecules (adhestww cohesion) from a fluid
mixture flowing through the material by surfacesbannels.

Fig. 5: Pollen car filter eliminating dust and atlparticles from incoming air

In Fig. 5, we show a typical pollen filter appearim all modern cars
which adsorbs dust from the inflowing air. Simil@gters are applied in air
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conditioners. Many types of porous microfilters applied in pharmacy,

biology and other branches where the separatigub$tances with molecules
of different size from a suspension is necessaautdl processes of filtration
and contaminant transport appear in soils and Bkeic.

E. Crystal growth by sublimatioiffusion processes play an important
role in all techniques of the growth of single ¢ays. In two most popular
methods of floating zone (FZ) and Czochralski (@¥se are surface processes.
In growth by sublimation the diffusion through awme of the porous material
(porous graphite and granular silicium) play an égmant role (compare: [27,
28, 60]).
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In Fig. 6, we show a schematic of a growth chanibeiSiC crystals in
which the porous zones are indicated.

3. THEORETICAL MODELSOF A SATURATED POROUS
MEDIUM

Theoretical macroscopic description of diffusiomgesses is often based on a
simplified model in which deformations of comporerdre neglected. This
means that the skeleton is assumed to be rigidtandluid is incompressible.
Then the mass conservation of the fluid componedtthe so-called Darcy law
yield a parabolic diffusion equation. Such a modelsufficient in many
practical problems of filtration or ground water too. However, many
diffusion processes are coupled with deformatidnthe skeleton (e.g. lungs),
deformations of the fluid (e.g. flow of gases ttgbuworous materials). In any
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case, these couplings are essential in the descript acoustic properties of
porous materials. We proceed to present a simpldemof such coupled
processes.

A saturated porous medium consists of two companensolid skeleton
and a fluid in the pores. If we neglect the massharge between these two
components such a system can be modeled as andimimigixture [76, 88].
Then we have to formulate field equations for thiofving quantities

{0, 0% nveVF e, (1)
where p®,pF are current mass densities of the skeleton antheffluid,
respectively, N denotes current porosity,v®=v°e, vf=v'e are
macroscopic (average) velocities of both componantse® = qjsei U e, is the

Almansi-Hamel measure of small deformations of #hkeleton. Obviously,
e, =123 e [& =7;, denote the base vectors of the Cartesian frame of

!

reference. Further, we use only such frames. Akave already mentioned, one
can construct a nonlinear model in which defornregtiare large and processes
are not isothermal. Then the set of fields (1) nugsitain the temperature and
the motion of the skeleton must be described byretion of motion in the
Lagarngian description. Such a model has been rumtsd (e.g. see [88]) but
we do not discuss it in this work.

The linearity of the model with respect to defonmas means that we
make the following assumption

<<t i<

ez, asizs [efematitl,
poPo =P
p;

where 1) are the eigenvalues of the deformation tensdr (principal

stretches),n("’) are eigenvectors (principal directions) of theodefation of the
skeleton ands denotes volume changes of the fluid for small daédions. In
this work, we denote by the index 0O the initial stamt value of the

corresponding quantity. In the above relatiqa§ is the initial value of the

partial mass density of the fluid. Certainly, volirmhanges of the skeleton in
the linear theory are given by the relation
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3
e=tres :Z/}("). (3)
=1

It should be kept in mind that all these fields aefined on a common
macroscopic domaifB and therefore they differ from real mesoscopicgjtias

such as real (true) mass density of the skeletameifluid, 0%, o™ or from

real (true) velocities of the skeleton and thedlui 5%, v® . We return later to

this problem.

Governing equations for the fields (1) follow fropartial balance
equations of mass and momentum. We use here, gsvze else in this paper
the Eulerian description. They have the form

s F
9%p + podivv® =0, 9p + pf divvF =0,
ot t
ov® _ . .
P Py =divT® +p° + p,b°, (4)
F
25 O =divT* +p + pb*,

while the balance equation of porosity has the f[32, 88]:

aAt” +<1>0div(vF —vs)=ﬁ, A, =n-n.. (5)

We neglect mass sources and nonlinear kinematictribotions.
T°=07e Oe,,T" =0 e Oe; denote partial stress tensors. As we assume
the fluid component to be inviscid on the macroscaldevel we have

TF=-p 1 ie. o} =-3p", (6)

where p© is the partial pressure in the fluip®,p" are momentum sources
and they satisfy the momentum conservation law

p°=-p~. )

b®,b" are the densities of partial body forces. They majude contributions

following from a noninertial frame of reference,chuas centrifugal, Coriolis
and Euler forces.
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The quantityng, appearing in the porosity balance equation issihe

called equilibrium porosity and is the source of porosity. We return later to
the discussion of these notions. The equation (&% wntroduced by K.
Wilmanski [82] and, in a simplified form - withogorosity source - it appears
also in the book of T. J. T. Spanos [71] (eqn.{P.&nd — without diffusion but
with the source — in the works of R. M. Bowen (¢28], egn. (5A.4.11)).

In the equation (5)®, is a material constant defining the flux of potpsi

for isotropic materials. In the case of anisotrapiterials, it would be a tensor
of the second rank@, =®;e Le;, but we shall not discuss this kind of

anisotropy in this work.

In addition to balance equations, the deformatemsor of the skeleton
must satisfy the usual integrability condition dietcontinuum which in the
linear theory has the following form

S
9e” _ symgradv® = ge_ divv®. (8)
ot ot

The second equation, according to the relation @&gcribes volume
changes of the skeleton.

For poroelastic materials the second law of thegmathics yields fairly
explicit constitutive relations which are neededtfe following quantities

{TS,pF,fJS,nE,ﬁ}. )
For isotropic materials they have the followingnfoj86, 87]
TS =T+ 1%l +21%° +Qel+ B(n-n.)1-N(n-n, )1,
p" =pj —Qe-pyke+B(n—n.)+N(n-n,), (10)
ps=-p" = ITD(VF —vs),
n. =n,(1+Je),
where the momentum source is given by the convaiutitegral

rvF -vs)=
= O ()-v(0)+ [ t-9)-v(-9)los

We discuss this relation further in some details.

(11)
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It should be mentioned that the influence of theawuilibrium deviation
of porosity described by the material paramg@é¢the underlined terms in (10))
is negligible in the wave analysis [3].

The source of porositp® may contain an additional term describing the

influence of the relative acceleration. Such a ibation was introduced by M.
A. Biot [20] and it was attributed to an influenaktortuosity [17, 25, 45, 46]. It
has been shown [86] that such a linear contributionot objective (frame-
dependent) but it can be corrected in a nonlineay 1@ be objective. Then it
has the form

_0
"ot

~(1-¢)((vF - v®)mradvF - ¢ ((v" -v®)@radve,

where ¢ is the material parameter. Obviously, in the linggproximation there

remains only the difference of time derivativese(imderlined term) and this
alone is not objective. If we include this deperaenon the relative
acceleration, the momentum source becomes

p° = 77D(vF —VS)—,olzar : (13)

a (vF —VS)+(VS lil]rad)(vF —VS)

(12)

where the material coefficienp,, is sometimes interpreted as an influence of

the so-called added mass effect. This effect agpearthe description of
resistance forces for flows of fluids around oblsc(e.g. [63]). We shall
discuss this issue in the Section on the waves.

In addition, a thermodynamic analysis shows thahsn extension of the
momentum source yields as well the correction afsttutive relations for
stresses [86, 89]

T =T° =T, +A%el+2u%° +Qel+ B(n-n. )1~
—N(n—no)l—c,olz(vF —vS)D (vF -v®),

pF = pf -Qe-pike+Bn-n)+ (14)

+ N(n—no)+§(1—c),012(vF —VS)[ﬁvF —vs).

Obviously, the double underlined terms are nonlinéwever, it should be
mentioned that, in contrast to the first term i8)(1the contribution of relative
accelerations does not yield an additional disgpaih the system (for details
see: [86]). For isothermal processes and withoubsity source,i=0, this is
defined by the relation




20 Krzysztof WILMANSKI

D= (vF —vs)[l]ﬂD(vF —vs)lz 0, (15)

which means that a selection of material parametgss¢ does not influence

the dissipation. Such an influence may be possibiteghly nonlinear models of
dissipation processes which goes beyond the comtemp nonequilibrium
thermodynamics and, most likely, has no practiealring.

The constitutive relations (10) specify the so@dliBiot model of
saturated porous materials, commonly used in aiosust such materials. Such
a model follows from the above relations if we leawt nonlinear contributions
(the double underlined terms in (14)) and assunagldition

f=0, N=0, A=0. (16)

Lack of sources of porosity allows to integrate baance equation of
porosity (5). We obtain

n= n0(1+ 5e+&(£—e)j, (17)
nO

where the following relations, resulting from pattimass balance equations,
have been used

a—e=d| vs, —==divvF,
ot
18

esPoP° PP (18)
- S 1 - F

o o

The quantity
Z=n,(e-¢), (19)

is called the fluid mass content and it is ofteedush Biot's model instead of
the fluid volume changess. It should be stressed that this variable yields
thermodynamical nonequilibrium processes. It besomero if the partial

velocities are equav® = v© , vis.
0¢ 0

— =n.—le—e)=di F_yS (20)
ot noat(e‘ e) dlv(v v )

and this corresponds to the lack of diffusion whiokans thermodynamical
equilibrium. This remark has the bearing in vaaasl formulation of field
equations for the Biot model. Clearly, such a fdatian based on a Lagrangian
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is not possible if¢ is chosen to be the variable as the equationsotibmfor
such a system are not stationary points of theomadtinctional (e.g. compare
[54)).

Summing up, the Biot model of the saturated poroaterial is described
by the following field equations, following fromehpartial momentum balance
equations

sov® ovF oav®
12 -

P ot P2 ot Tt
+Qgrad;£+77D(vF —VS)+ Psb®,

avF ovh ov®
ot + 12[ B j:pgkgrads—

j = ASgrade + 2u/°dive® +

(21)

F R
Po ot  at

—Qgrade—ﬂD(vF —VS)+ ps b,

and the kinematic compatibility equations (180bviously, unknown fields are
in this model

{VS,VF,eS,é’}, 22)

while the partial mass densitigs®, o© and the porosityn follow from the

relations (18, and (17), respectively.
Let us mention that in many works on Biot's mode¢ tdisplacement
vectors of both components are used as indepefidiist. Then
s_0u F

ou :
- L. S= d y -1, =d U)
oo € =symgradu, v ==, e =div (23)

where u is the displacement vector of the skeleton &hds the displacement
vector of the fluid. The relations (18)are then identities. We shall not use
these fields as the displacement field for thedfigirather artificial for diffusion
processes.

For the purpose of further analysis we rewrite gbeof equations of the
full model (without coupling 8 and porosity sourcesn!) in Cartesian

coordinates
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ov® av-  ov® de oe’
,0086—1':_ 12( a{ - atl jZASaXi +2,Usa—xlj+
+Q2E NIl o)+ ot
X 0X (24)
poFM"' 12(M_ﬁj= oFKE_
ot ot ot X,
de an F_\,S FIF
_Qa—Xi_Na—xi_”D(Vi —V; )+p0b| ,

and

e 1(6\4S GV,-S] de _ov'
= — + — =
ot 2{dx; 0x ot 90X
(25)
(DO
n=n,|1+Jde+—2(s-¢)|
n0
In the next Section, we investigate the structdrénear relations (10),
(11) and some extensions for anisotropic materials.

4. STRUCTURE OF MOMENTUM SOURCE IN THE LINEAR
MODEL

Inspection of the set of equations (24), (25) shtws we have to prescribe the
following material constants

{K=2%+24°% k,Q,N,8,0,}, 45 p,, (26)

and the hereditary function
= rt), (27)

in order to make the model applicable for the dpson of processes in a
particular saturated porous material. The set otmts in the curly brackets
can be determined by means of the microscopic oesspilities of

componentsK,,K;,K, (i.e. true compressibilities of the skeleton, a# fluid,

and the undrained compressibility modulus, respelgti and the initial
porosity, N, (see: [85]). There are attempts within “kineticodels of granular

materials to determine the shear modulgs from the analysis of the
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interactions of granulae. However, in general, itsmbe assumed that this
constant is obtained in some experiments (e.g. legsoring the speed of

propagation of transversal waves). The consfagtand the parameten are

the subject of discussion of this Section.

We begin with the permeability coefficientz. The classical linear
relation in which this parameter appears can bevetkrfrom the partial
momentum balance equation {4r (24) if we assume that an influence of
inertia is negligible and the coefficient is a constant. We obtain the following
relation

gradp” +77(vF —vs')—,ooFbF =0, (28)
This relation can be written in the form
F
j =—’0—7°T(gr<'std|oF - pEbF) j=pf (v -ve) (29)

where | is the mass discharge per unit cross-sectional iar¢he direction of

the relative flowv™ —v® [12, 13].
In the original Darcy formulation of the above te&da, the mass
discharge ] is replaced by the specific volume discharge @& fhid, q

[m*m?s]. Hence

4=ty
Py~ F

:‘vF —vs‘. (30)

_Vs‘

This quantity describes the volume of the fluidcisrge per unit surface

perpendicular to the vectar™ —v° and per unit time. In the particular case of
a homogeneous material with the z-axis orientedthia direction of the
gravitational force, we can integrate (28) and evfir the inclined column of a
porous medium of the length:
_ F F
¢1 ¢2, ¢1=hl+ pl ' ¢2:h2+ p2,
L Y, Yo
F
K="V =9
Vs N,

q=K
(31)

where g is the earth acceleratioz,=h, and z=h, are the isometric heads at
these levels of the columr{?l‘¢2% is called the hydraulic gradient (driving
force). The difference, — ¢, is called the driving head. The relation (31)s t
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classical form of Darcy’s law and the coefficiett, [m/s], is called the
hydraulic conductivity. It is sometimes relatedthe true dynamic viscosity of
the fluid in pores [12]

- - oK,
K==t = =20 (32)

where k, [m?, is the so-called intrinsic permeability, whilg, is the true

dynamic viscosity of the fluid. We use further tteefficient of permeabilityr,
[kg/ms] as it appears in the natural way in the momensource and,
consequently, in equations of motion.

In the Table 1 below we show a few examples of awliic conductivity,

K, intrinsic permeability,«,, and permeability coefficientsz, for water in
channels under normal conditions (pressurePH) temperature 2GC, dynamic
viscosity ¢, = 1002x10° Pas).

Table 1. Examples of hydraulic conductivity, ingiim permeability and permeability
coefficient for a porous material saturated withexgnormal conditions)

soil K [m/s] K, [darcy]=10"m’] 71 [kg/m’s]
well sorted gravel 1-10 10° - 10 100- 10
oil reservoir 10*- 10° 10 -10* 10 -10°
sandstone 10- 108 10%-10° 10— 10!
granite 101 - 10%2 10° - 107 104 -10°

A constant scalar quantity describing the permégbik in various
applications not sufficient to describe the difeusiin porous media. Three
important generalizations are particularly impottarhe first one is related to
different properties of channels in different direns. This yields the
anisotropy and the dependence on the curvaturehahrels, i.e. on the
tortuosity. The second one is related with nonlineffects. This may be, for
instance, a nonlinear dependence of the momentuncesocon the relative
velocity. It may appear in the case of flows withigh Reynolds number. In
porous materials, for values higher than app. @ gfpes this value is much
higher and may even reach 2000), there is an easkirfiuence of the curvature
of channels (tortuosity) and for values higher tHE0D the flow becomes
turbulent [44] and many structural effects sucHisefaction may appear [12,
81]. P. Forchheimer [36] (see [64] for details) hasoduced the simplest



PERMEABILITY, TORTUOSITY AND ATTENUATION IN POROUS MATERIALS 25

extension of Darcy’s relation by an additional e¢imittion quadratic in relative
velocity. This relation is still frequently usedrfeurbulent flows in porous
materials. The third generalization follows fronsadus properties of fluids in
channels. It has been investigated by M. A. Bi&] [ho has shown that, for
monochromatic waves, the coefficient must be frequency-dependent for high
frequencies (see Section 6). This yields a timesddpnce (hereditary effect) of
this coefficient in a general case and, consequethie convolution integral in
the momentum source. We shall not discuss any meanlieffects in this paper.
However, we return further to the problem of fremgiye dependence. In this
Section we discuss anisotropy and tortuosity effect

Anisotropy of the diffusion is a consequence of tlemplex
microstructure of porous materials. In particuggometry of channels induces
complicated shapes of true streamlines while, an rttacroscopic level, the
average flow may be even one-dimensional. Thisbe®s recognized early in
the description of diffusivity. J. Kozeny [47] proged the proportionality of the
inverse of hydraulic conductivitk to the so-called tortuosityr . It was
defined as the ratio of the true length, of the streamline between two points

to the distance between these two poirts,i.e. 7=L,/L (e.g. [61])

Obviously, this quantity is not smaller than unityz1. Consequently, in local

terms, its inverse is the average value of theneosi the angle between the
tangent to the macroscopic (average) streamlinethadtangent to the true
streamline. This relation, the so-called Blake-Kozequation, has been later on
corrected as the dependence on the tortuosity dhmellquadratic (see: [30,
34]). In our notation it has the following form [34

K = Dol (33)
bu,r

whereb is the so-called capillary shape factor (e.g.@2cfrcular pores and 48
for parallel slits) andD, denotes the hydraulic diameter.

For a packed bed of spheres of uniform diameiethe representative
elementary volumeREV (i.e. the domain of microstructure which is
macroscopically identified with a single materiaint) containdN such spheres.
Consequently, the volume occupied by the fluid gredwetted surface in such a
volume are
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Vf:%ndSN&, S,=md’N =

1-n, (34)
Y,

— D =4t=2g o
S. 3 1-n,

Then the hydraulic conductivity has the form

_ 4d> _9yby, H(1-n, ) (35)
- 2 2 m=— r J
9, 7% (1-n,) Ny

VR E

where the coefficienfb7? /4 is often assumed to be equal 180. Bor 333
it corresponds to the tortuosity= 156= 71/2. In the next Section we return to
experimental values of this quantity.

It is clear that values of tortuosity may depend on the direction of the
flow through the porous medium. Josef Kubik [48] ®@s most likely the first
who investigated such a model. A systematic dddwatof macroscopic
description of anisotropic diffusion based on theeraging procedures for
microstructures of porous materials was done byllaBear and Yehuda
Bachmat [12, 7, 13, 14, 15]. In the book [7] theysent the derivation of
transformation rules for various quantities of ragwopic equations of motion
under the action of the volume averaging procedwer the Representative
Elementary VolumeREV). One of the fundamental results are the rulesher
pressure gradient and for the interstitial veloewyich yield a modification of
Darcy’'s law. For instance, the averaging procediare a gradient of any
guantity on the level of microstructure yields taamntributions. The first one is
the macroscopic gradient of the average of thisntjiyatransformed by a

matrix, 'I'ij , related to the structure of channels and cahedtdrtuosity tensor
while the second one is a surface average of tloeostructural gradient (see
formula (2.348) in [13]). If we leave out variousrelation terms, we arrive at

the following generalization of Darcy’s formula

q :_h E-{-p':gﬂ
C Nl | 0X, ox; | (36)

whereq = €, is the vector of the specific discharge and @ssumed that the

z-axis is chosen in the direction of the earth ameion. The symmetric
permeability tensokij possesses the following structure

k; =BT,

ij?

(37)
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where the symmetric tortuosity tensdr, , is defined as the following surface

average (the static moment of tR&EVboundary intersected by streamlines with
respect to a chosen centeRE\V) [13]

1

T :Tijei Ele]. =
nyVv

In OrdS, V =volumgREV), (38)
s(r)
where S, is the part of the boundary of the representatieenentary volume,
OREV, intersecting pores,n is the unit normal to this surface and,
simultaneously, tangent to the streamline inteisgct, at the pointr'. The
unit base vectorg, are chosen to be the same for macroscopic andsoimpic

local coordinates

r=xe, r'=¢&e, (39)

while the unit vectorn tangent to the streamline is given by the standard
relation

=y _d¢
r'=r'(s) n= -

where s is the parameter along the streamline.

€, (40)

REV

streamiing

Fig. 7. Schematic of the Representative Elemenfaiyme with a streamline
intersecting th&RE\*boundary at a point of the surfa& . The latter is indicated by the

thick line. r is the position vector of tHeE\tcenter and' is the local position vector
within REV
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If we chooseREVto be a sphere of radilsthen the definition (38) has
the form

1
nyVv
which demonstrate the symmetry of the tortuosityste. If we solve the
eigenvalue problem for this tensor then

T=T,e Oe, = jRnDndS (41)
5

T= iT(")t @ Ol (42)

a=1

where T are eigenvalues of the tortuosity tensor 4l its eigenvectors. It
is easy to see from the definition (41) that thgemialues are positive and
smaller than one. In the case of isotropic mictadtre (random distribution of
grains or curvy channels) we have
TW =70 =76 =i (43)
Z.2

The last relation was proved by J. Bear [12].

In the isotropic case, we can immediately identtify conductanc& of
the relation (37). For instance, in terms of thdraylic diameterD, ,

D?2n
B:f or B=k,T° (44)
4
For the coefficient of permeability, we obtain
- nOluv

= ITOTZ, 7T, B (45)

Hence, as expected, the higher values of viscagjtyand of the tortuosityr
yield higher values of dissipation (15). On theesthand, the bigger values of
conductanceB (due to, for instance, bigger hydraulic diamel&r or bigger
porosity n,) yield smaller dissipation.

For anisotropic materials without hereditary prdigsrone can write now
a generalization of the constitutive law (13) foe tmomentum source. Bearing
the relations (13), (37) and (45) in mind we have

f)is = 7ToTij_l(VjF _Vjs)_ Poai, a =a;€, (46)
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where 'I'ij_1 is the inverse of the tortuosity tensor. In prpati base vectors
(eigenvectors) it has the following spectral repreation

R 31
T =T Oe; =) —5t@ 0t (47)
J J ;T a

It should be stressed that the above consideratiomserning anisotropic
properties of diffusion are based on many simpiifyassumptions concerning
laminar flows, and, consequently, linearity wittspect to the relative velocity
of components, small deformations of the skeletwh @f the fluid, very simple
statistical properties of the microstructure, éfimre sophisticated models are
missing as yet. In Section 6, we return to a coiwacof this model by
introducing hereditary properties.

We proceed to a few remarks on the added masg,efiescribed by the
coefficient p,,. The problem of added mass was discovered inioalad the

so-called d’Alembert paradox: for incompressiblal anviscid potential flow
the drag force on a body moving with constant vigjois zero in the infinite
medium. It has been shown (e.g. 811 in [52]) thatftuid is acting on the body
with a force which creates the inertial force pntjpmal to a mass bigger than
the mass of the body. D'Alembert paradox has begwamed within the
mechanics of viscous fluids. This has been the vattin for M. A. Biot to
introduce the coupling through the added mass.elfvuite the equation (21)
for the one-dimensional case in the following form

ove . F_ g 0 _0e
X + :0, e —_ —_
P12 ot Q Q =6 K_a x Q—a "

~luf v )+ b o

then the argument of M. A. Biot [18] is as follows:.the equation shows that
when the solid is accelerated a fo@¢ must be exerted on the fluid to prevent

an average displacement of the latter”. This isiamisly not necessary. First of
all, Biot did not have a contribution of relativelocity in his work [18] — it has
been introduced in his later works. This contribntresults, as we have already
described, from the viscosity of the fluid (seeoadsremark of J. Bear, p.104 in
[12]). Consequently, d’Alembert paradox does nopegp in these models.
Secondly, the lack of an inertial term in (48) does mean that a motion of the
skeleton does not influence the “displacement’haf fiuid, as the structure of

the force QXF clearly shows. In addition, the paradox appealg oncases of

ideal fluids in infinite domains without a boundasich is, of course, not the
case in porous materials.



30 Krzysztof WILMANSKI

However, the above argument does not mean thadtied mass cannot
appear in the model. As indicated by Coussy (p.iM(31]) and Bourbie,
Coussy, Zinsznel(p. 71 in [25]) it may be related to fluctuation$ the
interstitial velocity. In the books [25, 31] the thors refer top,, as related to

the tortuosity. This relation seems to be wrongt@suosity always yields
dissipation and the added mass effect is nondibaipaAs we have pointed out
in Section 3 (formula (14)) the added mass yieloslinear stress reactions of
components. Similarily tqo,,, this can hardly be measured. We return to this

issue in Section 6 on waves.

5. NMR PRIMER. DIFFUSION MRI METHODS FOR DETER-
MINATION OF DIFFUSION PARAMETERS, SOME RESULTS
OF GEOPHYSICAL EXPERIMENTS

Experimental assignment of material parametersrtmdel of porous materials
relies on two types of procedures. Either randomyracted samples are
investigated in a laboratory and then the expertrizeimvasive or the material is
checkedn situ which means that the experiment is nondistructRaticularly,
in medical applications and in experiments on gi@nmaterials the second
type of the procedure is preferable. Two such natlaye commonly used. The
first one uses the properties of mechanical waweparticular, their speeds of
propagation, attenuation und scattering. We retarthese acoustical methods
in the next Section. The second type relies on etagproperties of materials.
It is particularly useful in investigation of diffion. In this Section, we present
some basic features and results of this NMR method.

Nuclear magnetic resonance (NMR) is a property ggxsesd by nuclei in a
magnetic field and applied electromagnetic puls@siantum mechanical
subatomic particles, i.e. protons, neutrons andtmes possess the spin. In
some atoms liké’C, *°0, 3?S, these spins cancel out each other and the rsucleu
has the zero spin. In many other atoms suciaSC, 3'P, N, '°F, the nucleus
possesses a nonzero spin. In order to determinevirall spin one can use the
following rules (e.g. [32]): (1) If the number okutrons and the number of
protons are both even then the nucleus has no(®)iti.the number of neutrons
plus the number of protons is odd then the nuchassa half-integer spin, i.e.
1/2, 3/2, 5/2. (3) If the number of neutrons anel tlumber of protons are both
odd, then the nucleus has an integer spini.e.a, 2

Based on this observation quantum mechanics yieldtheoretical
description of interactions of spin nuclei with extal magnetic fields which
forms the foundation of NMR testing methods. Wesprd here only a few
remarks on this subject following the presentatiérCh. Epstein [33] and B.
Blumich [22].
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We begin with a model of a proton. The proton g&pin-1/2 particle. The
spin state of the proton is described by the wawetion (/. The intrinsic

magnetic moment of protoru ,, and its intrinsic angular momenturd,,, are

guantum mechanical observables. They are relatecgath other in the
following manner

My = pr p’ (49)
where ), is the gyromagnetic ratio. For hydrogen protonsater molecules
v, = 2mx 425764x10° 124 (50)

Tesle

The time evolution of the wave functiogy is described by Schrédinger
equation

n oY -

ot iB ey, (51)

where i =1.0545x107*" ergsec denotes Plank’s constant and

B, =‘%’1[on—x +B,0,+B,0,]

(o 1] (o —i] (1 o} (52)
g, = y O, =] . y O, = )
X 1 0 y i 0 z 0 -1

the g -matrices are called Pauli spin matrices.

The macroscopic behaviour of these quantities sriteed through the
so-called expectations of observables of a quamh@thanical model. For the
intrinsic magnetic moment and the intrinsic magnetomentum they have the
form of inner products

(30) =0
<”p> :<“p‘/l'w>'

Then Schrodinger equation implies the following aipn for the
expectation ofu,

(53)

d<l1P>
dt

= Ve(hs)xB. (54)
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The solution of this equation for a static magndtedd B =B, =b,e, is
particularly instructive. Equations (54) have imstbase the following form for

the component$p,,) = (1) €

d(u d{u
<dtP>1 = be0<'uP>2’ <d:>2 = _be0<:uP>1’ (59)
and (4, is a constant. Hence
d2
Ut i), =0
(56)
d2
—g}l i ), 20

Consequently, the solution for these two compondstsproportional to
exp—iwyt), @ = yob,. This type of motion is called the precession. The
frequencya, is called the Larmor frequency. These propertieiscate that the
proton reacts on the action of an external magnefield

B, =b,coswte, +b;sinwte, with an appropriate frequency different from
«, and a change oB, yields a corresponding change of both the ammitud
and frequency. It is important to notice that taeanance Larmor frequency is
in the order of 100 MHz for externdl -fields of the order of 1 Tesla (compare

(50)). For comparison, the magnetic field of eastapp.5%10™ Tesla.
Spin nuclei in substances such as water interdtt @dch other. Hence,
the simple equation (54) does not hold anymore wadhave to construct a

macroscopic model. If,o(r) denotes the density of a substance, say water,
which carries the spin nuclei then, placed in éicstaagnetic fieIdBO(r) the

spins become polarized and produce a net bulk nbzgtien Mo(r). The
strength of this field is determined by a macroscdpermodynamic relation

Mo(r)=2 plr)B(r). (57)

where T is the absolute temperature. Felix Bloch [21] adtrced a
phenomenological equation describing the bulk maggigon resulting from the
interaction of nuclear spins with each other anthwain external field. For an
external field
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B(r.t)=B,(r)+B(r.1) (58)

where the time dependent th(r,t) is much smaller than the static part, the
magnetizationM (r ,t) is assumed to satisfy the following Bloch equation

M= ym xB—iMD—i(M —MO),
dt T, T,

! (59)
M=M"+M",

with M/

perpendicular td3,. T, andT, are longitudinal relaxation time (recovery time)

and transverse relaxation time, respectively.

The gyromagnetic constant appearing in (59) anterdening the
resonance frequency is a material parameter. Som@mpes of its values for
various atoms are shown in Table 2. It is cleat fioa the same external

magnetic field B, =b,e, the resonance frequenay, will be different for

different substances. For examples listed in T&blevaries between app. 19
and 270 MHZ for the external field of 1 Tesla.

(longitudinal part) parallel toB, and M" (transversal part)

Table 2. Some values of the gyromagnenitc congtant

Nucleus H 2H *He Li 3¢ N

y (1P rad.s.TY | 267.513| 41.065 203.789 | 103.962 | 67.262 | 19.331
Nucleus \ 0 Na 31p 12%e
y AP rad.s8TY | 27.116 36.264 70.761 108.291 73.997

The equation (59) can be solved for various extefsecondary) fields

B . These secondary fields are called RF-fields -idREcequency fields — due
to the range of their frequency yielding the resmaa In basic measurements

the sample is polarized by the constant filg and then an RF-excitation is
turned on for a finite timé_,.. After that time the RF is turned off. The vector

field M(r,t) precesses abou, in phase with the angular velocity,. The
corresponding solution of (59) has the form
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—Cao_,? () [e‘” " codwt + g)e, +
y

+e " sin(et + ple, + (1— et/n ) e3],

M (r ,t) =
(60)

where ¢ is a constant phase. Hence, the transverse comisdde e,
andM e, decay exponentially with the transverse relaxatiioe T,. The
componentM ,e, reduces after the relaxation with the longitudireddixation

time T, to the form (57). Further analytical details canfbund in the work of
Ch. Epstein [33].

Both relaxation times follow from combinations oérious relaxation
processes. For instance, the transverse relaxttienis a weighted average of
the surface-liquid relaxation time and the relaxatiime of the bulk liquid [5].
This gives rise to NMR methods of investigationtud area of wetted surfaces,
degrees of saturation etc. As the model discuss#dd paper is two-component
we cannot describe the saturation problems. Hemeging problems (capillary-
bound water), degree of saturation etc. are nctgmted in this work. However,
it should be mentioned that NMR measurements detiaa on these quantities
[69, 70].

In practical applications to NMR imaging a multipel excitation by a
gradient magnetic field is applied and the orieatadf the z-axis is changed. In
this way one can obtain tomographic three-dimeraipictures of the system
(the principles of this testing are explained, ifstance in B. Blumich [22], p.
54).

Measurements of relaxation times yield estimatgsaodmeters of porous
materials through certain calibration procedureschvive shall not present in
this work (e.g. see [6)) For instance, transverse relaxation time measemesn
lead directly to the estimation of porosity. Traamhtally in geophysics, the total

2 Diffusion magnetic resonance methods have beecodised in 1990 by Michael
Moseley who pointed out that the water diffusiorwihite matter is anisotropic. Since
then the magnetic resonance imaging became onéeofrost important tests in
medicine. We quote here only a few representatapefs on this subject [9, 10, 11, 16,
42, 55, 57]. It is also indicated that the torttys$s coupled not only to geometrical
properties of the system but to the viscosity &f filaid as well [67]. This may have an
important concequences in medical diagnosis praesdu

On the other hand, diffusion magnetic resonancthogein geophysics is used
rather to measurements of various microstructueaiipeters. Most important are the
porosity and tortuosity. The method is used iningstocks [6, 8, 23, 79] but it becomes
important also in experiments on sands [24, 62].
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porosity is subdivided into three major componefitse-fluid porosity with
long T, (T, >33 ms), capillary-bound wate3(>T, >33 ms) and clay-bound

water (T, <3 ms). Porosity is determined by the normalizatiérthe signal

amplitude measured on water-saturated samplesebgrtiplitude measured on
pure water. Obviously, the latter corresponds @4 @orosity.

It should also be mentioned that it is rather rédenapply gas phase
NMR in nondestructive testing as the mass densitythe gas was long
considered to be too small. The advent of the sgairange optical pumping
technique for noble gases allows to use NMR methdds instance, in
investigation of lung space and many other poroedia[56].

The instrumentation for the NMR nondestructive itestdevelops very
rapidly. These are not only robust NMR tomograpirsniedical diagnosis but
also many field devices for applications in geomts/se.g. Halbach core-
scanner [6] or NMR-mouse [22]).

Results of NMR measurements, as all results oldaime ill-posed
inverse methods, yield nonuniqueness which mustelbeinated by some
additional measurements. In geophysics these aren ofgeoelectric
measurements (for theoretical foundations, seé [@8fadar measurement [90,
91].

The Bloch model has been extended after an obsemvait E. Hahn [41]
in 1950 that the diffusion influences the nucleagmetic resonance. In 1956 H.
C. Torrey [75] proposed the following extensione o-called Bloch - Torrey
equation

M yMxB-Lme —i(lvl —MO)+div(DgradM )
dt T, T
(61)
D=D,e Ue,,

where D is the diffusion tensor. Clearly, this extensioelgs the possibility of
the description of anisotropic tortuosity which wave presented earlier.
Equation (61) yields a modification of the claskibdRI (magnetic resonance
imaging) method called DWI — diffusion weighted MRUp to now it is
intensively developed in medical applications. pAital result of the application
of this method is shown in Fig. 8.

In Tables 3 and 4 we present some examples of iexpetal results
obtained by methods of the nuclear magnetic resmmahable 3 contains data
for some rocks on which the measurements were npeefd with the help of the
noble gas Xenon filling the pores.
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Table 3. Results of Xenon NMR measurements for sarties [77]

Rock Sample Permeabilitpr (mDY; Tortuosity Ef(f)ergtsi}{cf/ ékc)nsrglsljs
71 [kg/m’s] (pycnometer)
Fontainebleay | 55359211;31 ’ 3.45 0.113+ 0.007 0.125
Bentheimer 1012-364_.-92:2_;08 NA 0.112+ 0.012 NA
ikl B o 476 | 0151%0011 0.233
Austin Chalk | 431-3#3&31;010 5.58 0.184+ 0.9 0.297
Cutbank H . gé?f%&i)“ NA 0.0603+ 0.004 NA

Fig. 8. An example of diffusion MRI: tractographfyroajor brain white matter
tracts computed from the local diffusion tensoreeigectors (syngo.via, Siemens)




PERMEABILITY, TORTUOSITY AND ATTENUATION IN POROUS MATERIALS 37

Table 4. Some results for core plugs of Alermoer@stone from various depths [6]

Permeability (gas): ) Porosity
Sample K ,[mDJ; 72 kg/mis] Tortuosity (pycnometer)

3224.45 [m] 0.16:

6.25X 10 1.0 002
3235.34 [m] 11.6:

8.62X 10° 5.04 009
3236.79 [m] 3.59:

2.79%X 10 536 008
3240.69 [m] el 3.8 0.11
3241.44 [m] 3.13:

3.19% 10 6.12 009

Table 4 contains results qouted after [6] for thene rock — sandstone but
for samples extracted at the different depth. Theselts are shown to illustrate
the scattering of values of porosity and tortuo&tysimilar morphologies.

6. PROPAGATION OF BULK ACOUSTIC WAVESIN
SATURATED MATERIALS

We proceed now to the investigation of some progerdf acoustic waves in
two-component poroelastic materials described byaggns (24), (25). We
limit the attention to isotropic materials but wecaunt for the hereditary
properties which have been mentioned in SectiofihBs problem is placed in
Section on waves as the time dependence of theepdihty has been first
considered by M. A. Biot [19] for monochromatic veav
In order to find the time dependence of the perntigaboefficient M. A.

Biot considered two problems of viscous flow thrbuthannels: (1) between
parallel walls and (2) in a circular duct in whigil quantities are time-

dependent in a harmonic way through the facet (Biot denotes the
frequencya by @). Certainly, this may be considered as a Fouramnsform

of the problem. For those solutions he calculate@werage velocity through a
cross-section (discharge velocity) and the friciosiresses on the walls. The
fraction of these two quantities — a resistancdfmoent to the flow - defines a
dimensionless functionF(a)) which is supposed to describe frequency
dependence of the permeability. For the two casésedflow Biot obtained the
following results

1 \/i_q‘tanf(\/i_f) _ . |ap
(1) F ~ A ’ g_ E]
) 31—;“_ tant{\/i_f) aV U,

(62)
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4 olie)

@ F(w)=;111_‘r;—(‘z()g). T(‘z)z%ﬁf_iff’
E 0

where 2a is the distance of the walls in the first case #raldiameter of the
duct in the second casgL,, 0 denote the viscosity and the mass density of an

incompressible fluid in the channels], is the Bessel function. Biot

demonstrated the behaviour of the real and imagimearts of these two
functions and found out that their properties arebioth cases very similar (see:
Fig. 9). This indicates that for an arbitrary shayfethe cross-section of the
channel one can use one of those functions withpgmopriate choice of the
diametera.

Fig. 9. Real (upper curves) and imaginary (lowewes) parts of function$ (E)
where ¢ is given by (62). Solid lines correspond to theecaf parallel walls
and dotted lines to the circular duct

In the next step these functions were introducedhm macroscopic
equations of motion of components. The x-compowréthe momentum source
is written by Biot in the following bogus form (eqgi.2) in [19])

p: =bF(w) 2 (U, ~u,), (63

where b is a constant andJ,,u, are time dependent x-components of the
displacement of the fluid and of the skeleton, eesipely. This is, obviously, a
combination of the Fourier transformed functiEr(a)) with the time dependent
velocities. Properly, one should multiply in (6:B|)ettransformF(a)) with the
Fourier transform of the relative velocity and thesult would be the Fourier
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transform of the momentum source. One could, ofsmuinverse as well the
transformF (a))

1 e _
F(t)=—| Flw)e“dw, 64
(t)=>-]. Fle) (64)
and then the relation (63) would have the formha# tonvolution (faltung)
integral (11). In contrast toF(a)) the function F(t) would be real. For

isotropic materials one would have then
lt) = m,r2F(t), (65)

where 77, is given by (44), (45) and" denotes the tortuosity. The above

mistake has been repeated in numerous works orstic®of porous media (e.g.
[25, 46].

M. A. Biot argued as well that the frequency depamd of the
permeability can be neglected for low frequencidénz)F(w)=1). For

w-

geophysical applications such an assumption isifiptt as relevant
monochromatic wave frequencies lie below a fewHeltz.

Now we return to the issue of the constami presented already at the

end of Section 4. In the poroacoustics this paramet often considered,
similarly to the permeability, to be a function foéquency of monochromatic
waves. This has been proposed in 1987 by D. L.shohet al. [46]. In this

paper the flow of the fluid with the mass densilg, (=p™, i.e.
wo; =p", p= n,, in the notation of the present paper), the (mawis)

velocity v (=Vv"© in the notation of the present paper) is consitlete be
caused by the (macroscopic) pressure gradieﬁPé"‘. Then the following
argument is made:

“Under the stated assumptions is obviously linearly related to the
pressure gradient at any frequency

alw)p, 5% =-0p, qov:—@mp. (21ab), ©9

(7=ux, in the notation of the present paper). The frequetependent
tortuosity H(a)) is defined in (2.1a) by analogy with the respootan ideal
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(nonviscous) fluid. ... The frequency—dependent patility E(w) is defined
in (2.1b) by analogy with the steady-st£m= O) definition.”

Apart from the fallacy of the notation in (66) whi we have already
discussed earlier the argument made in the congpadsthe above relations is
wrong from the physical and from the mathematicgihpof view. Physically,
both equations (66) follow as special cases fromslime momentum balance
equation. The first one follows if the diffusiverée in the porous medium is
negligible but the inertia is not and the second fmllows when the inertia is
negligible and the diffusion force is not. It isvidius that one cannot made
conclusions on material parameters by comparingetiwo special limit cases.
It is an example of comparing apples and orangesthéfnatically, the first
equation yields a hyperbolic (wave) problem andgbeond one the parabolic
(diffusion) problem. Solutions of these two probtefrelong to two different
classes and cannot lead to anposterioriconclusions on material parameters
of both models.

Consequently, the relation (4.1b) of the paper [46]

"Po(w)=a(w) -, @10y (67)

(@=n, in the notation of the present paper) is wronweak. A common claim
that 0,, is measurable is based on this relation and atriglal conductivity

measurements d?(w) by the use of Archie’s formula. Hence, also thés is

wrong.

We proceed to the presentation of some propertiesianochromatic
waves in two-component porous materials. Therevsrg extensive literature
of this subject (e.qg. [2, 3, 4, 25, 49, 51, 68, 8@, 84, 87, 88]). Most of these
papers and books contain a spectral analysis &f dnd surface waves. These
problems can be considered to be a far-field appraton of the wave
problem. Not much has been done on sources of wavek near-field
approximations in porous materials. However, thisfield analysis is sufficient
for the formation of nondestructive acoustic methoof testing porous
materials. For this reason, we limit the attentiorthis work also to such an
analysis of plane monochromatic waves.

We shall use equations (24), (25) with the simplifyassumptions that
P, =0 (no added mass effectf =0 (no coupling through the porosity
gradient). The former assumption is justified bywamerical analysis which
yields the conclusion that Berryman'’s relation (giglds an unacceptable result
[87]. Namely, the growing “tortuosity@ yields, according to this relation, a
rapidly decaying attenuation of waves (Fig. 4 ir¥])8 This is, of course,



PERMEABILITY, TORTUOSITY AND ATTENUATION IN POROUS MATERIALS 41

unacceptable as the tortuosity must increase tmpdition and, consequently,
attenuation of waves. The latter assumption is vasy restrictive as in the
linear model this coupling can be included in treugling through volume
changes by an appropriate adjustment of the cayplimstantQ (see: [85] for

details). Changes of porosity described by the raequation (25) do not
influence the behaviour of waves because the cuperosity does not enter
momentum balance equations in the linear modelindestigate the following
monochromatic plane wave problem

VS =VSE, Vf =VE, e =E’E, £=E'E

| E=exr.{i(kj X, —cd)] (68)

The amplitudes/®,V,", EU.S, EF are assumed to be constant and the wave

vector k =kn, n =k /k, k=,kk;, specifies the direction of

propagation by the unit vecton.. The magnitudek (the wave number) is

complex for the attenuated waves. The wave funchortan be, of course,
written in the form

E=e (™I exdi((Rek)n x - wt)], (69)

which means thatmk determines the attenuation and- & /Rek is the so-
called phase speed of the monochromatic wave.
Substitution of the relations (68) in equationg)(and (25) and the

subsequent elimination d&,E" yield the following algebraic set for °,V,"

ij o i

S S
(172 2 o s
0 0

0

T .
_[%Kkiﬂ é-iijvj =0, (70)

S

(%Kkj WELF) jvﬁ{(af +i@FJ5ij +KK|(J1VJ-F -0
Lo Lo Lo

This is, certainly, the eigenvalue problem. For giwen frequencyw the
determinant of this set yields the complex eigemeslwhich determine phase
speeds of propagation =« /Rek and attenuationmk of monochromatic
waves. The corresponding eigenvectors determineemofl propagation. This
problem has been thoroughly investigated (e.g.)[8¥ present here only two
particular issues for shear waves.
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The set of relations (70) can be easily decompasedongitudinal and

transversal waves. If we multiply both equation hy unit vector n”
perpendicular to the direction of propagatiorthen we obtain

S

a,z_ﬂ_ﬂzd}vs_i@w:o,

[ o5 Pl T e

-iZ2VS {wz +i@F}VDF =% (71)

0 0

VeV, V=V

where VDS,VDF are amplitudes perpendicular to the direction kfppgation,

Hence relations (71) describe the transversal (shneave.

Scalar multiplication of (70) by the vecton vyields equations for
longitudinal waves. We shall not present this sethis work as it has been
already published in numerous papers. However, weeilld mention that the
longitudinal problem has two solutions, the soa@lP1- and P2-wave. The
second wave, sometimes called Biot's wave or sl@wvens strongly attenuated.

We present here a numerical example of the sheae walution. First,
we present the dependence of the phase speedtandadion on the frequency

accounting for the functiorF(a)) in the permeability. Then we show the same

guantities for low frequenciesF((a))zl but we account for the tortuosity. In

this analysis we use the following data (approx@hatiescribing Fontainebleau
sandstone)

F

o8 = 2500[kg/m3], r=FPo =01

25

S
0

S
s = '/;l_ =1500[m/d, 77, =10° [kg/m?s], (72)

a=10"°[m], x, = 1002x107[kg/m3|.

The quantityc> is the speed of the front of the shear wave (im c(a)),

W— 0
where C(a)) is the phase speed of the monochromatic shear )wdie

dispersion relation, i.e. the determinant of (7L} pqual to zero yields the
following relation for the wave number
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k? =

_ a){cf i LF (a))(1+1ﬂ / {COSZ[CJ il F(w)lﬂ.

Po r o r

(73)

We present first the numerical results fEl(a)) given by the relation
(62), and 7 =1. For the phase speed of the shear wave we olftaicurves
presented in Fig. 10. The dotted line is the cdoreF (a))=1. In the range of

low frequencies, the speed corrected for the frequelependent permeability
is first slightly decaying and then, for high fremeies, growing. The minimum
is app. 0.7% smaller than the initial low frequerspeed (app. 1430 m/s).

Clearly, the asymptot&s =1500m/s is overrun by the curve corrected with

the factor F(a)). It means that, according to M. A. Biot, this @mtion is

essential for relatively high frequencies but, olongly, they cannot be to high.
In Fig. 11 we present the attenuation. The dotted torresponds to

F(a))=1. This curve has a finite asymptote for the in@rfitequency and this

property follows from the finite dissipation in theystem determined by the
diffusion (i.e. by the permeability coefficient).

This is not the case any more for the frequencyeddent permeability.
The attenuation grows to infinity and this meanat tthe system dissipates
without an upper bound. This is, of course, phyligmpossible for hyperbolic
systems in which the speeds of wave fronts aréefi@onsequently, it must be
considered to be an artifact of the Biot model efnpeability. Again it indicates
that the Biot correction is valid only for high butt too high frequencies.

1500 oo¢o¢<‘°¢°°° GEGE e h e e TP IPL L BN L LT LO0E
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Fig.10. Phase spedd [m/s] of the shear wave in function of frequency
G [1/s] for the data (72) and the tortuoditys 1
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Fig. 11. Attenuatiodm Kk [1/m] of the shear wave in function of frequency
G [1/s] for the data (72) and the tortuosity=1

Now we leave out the influence of frequency on pleemeability and
consider only the dependence on the tortuosity.oAting to the Table 3, the
average value of tortuosity for Fontainebleau samdsis 7 = 345. However,
as we see in Table 4, it may considerably varyeal systems: the data in this
Table indicate the range 1.06 to 6.12. Thereforepedorm the numerical
analysis for two values of tortuosity=1 and 7 =6. Results are presented in

Fig. 12 and 13.
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Fig. 12. Speed o of propagation of the shear wgwe's] in function of frequency
G [1/s] for the data (72) for two value of tortugsit =1 (dotted line) andr = 6
(solid line)
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Fig. 13 Attenuation of the shear wali@ kK [1/m] in function of frequencye
[1/s] for the data (72) for two value of tortuosify=1 (dotted line)
and 7 =6 (solid line)

The dependence on the tortuosity changes consigerdatith the
distribution of the phase velocity as well as thierauation of monochromatic
waves. However, in contrast to the Biot correctiith the frequency
dependence, the limike —» o remains physically sound: the limit of the phase
speed is identical with the speed of the front tiedattenuation remains finite.

7. CONCLUDING REMARKS

The problem of description of diffusion in satudhtporous material
which we presented in this work seems to be sbillfolly solved. This results
from both a weakness of the theoretical models el a new experimental
results obtained by advanced techniques which atrget fully incorporated in
the models. In particular the relatively new MRpermental methods deliver a
lot of data on microstructure which were not auagawhen the models were
constructed. This concerns, in particular, measargsnof the tortuosity tensor,
wettability and a dependence of macroscopic effextthe surface of channels,
saturation in three-component systems, etc. Nunsdroportant applications, as
indicated in Section 3 require that these theagittivodels must be considered
anew and some additional parameters must be intesdurhese are the degree
of saturation, a fraction surface/volume, evolutifnthose parameters during
deformation processes.
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DYFUZYJNOSC, KRETNOSC | TLUMIENIE FAL W MATERIALACH
POROWATYCH

Streszczenie

Praca zawiera zwita prezentae konstrukcji liniowego modelu porospystego i jego
zastosowania w teorii fal akustycznych. Gldwnymeaeltej prezentacji jest dyskusja
parametréw materiatowych opigoych dyfuzg. Dotyczy to w szczegolgoi
dyfuzyjnasci i kretnosci. W Rozdziale 2 przytaczamy kilka przyktadévéradkéw
porowatych, w ktérych dyfuzja odgrywa wa role. Rozdziat 3 zawiera zwily opis
modelu dwusktadnikowego dla nasyconychérodkéw porowatych z dyfuzj
Uwypuklamy gtéwne cechy takiego ukladu ze szczegblruwzgkdnieniem ruchu
wzglednego skfadnikéw i zmian porowadt. Jako przypadek szczeg6lny przedstwiane
sa réwnania modelu Biota. W rozdziale 4 dyskutujemypjepia dyfuzyjngci,
przewodnictwa hydraulicznego i dtnosci. W szczegélnéci wprowadzamy pegie
tensora ketnosci. Rozdziat 5 zawiera elementarne wiaddéoiodotycace metody
nuklearnego rezonansu magnetycznego w zastosowargksperymentow okskajacych
dyfuzyjnas¢ i kretmos¢ w réznych materiatach porowatych. Wreszcie rozdziat\Giee
pewne zagadnienia zagane z propagagjfal monochromatycznych, a w szczegdkio
wplywu kretnosci na pedkosci propagaciji i ttumienie.





