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A heat transfer problem for the road pavement sysiayered plate — embankment —
soil base” is formulated. There are suggested madtieal models and their realization
with the use of finite element analysis and desigftware program by solving the
layered plate on the ground foundation. Transiketrhal state for this road structure is
defined by discretization of the system describgdlifferent material properties. The
theoretical results are compared with the experirdata for the real road pavement of
Lubuski province road No 297 on the route Zagand¢tww in Poland. Finally, two
inverse problems are formulated, to identify resipety the boundary conditions and
heat material parameters of road structure by sm@etst squares) and nonsmooth
(minimax) optimization. It was shown that the aiit@ of least squares does not give
trust results and only nonsmooth criterion of miaknlead to a trust result of the
identification.

Keywords: pavement system, heat transfer problerameters and boundary
conditions identification, least squares and minimmidteria

1. INTRODUCTION

The problems of heat transfer for the road strectare of great practical
importance. They define the border of freezinglef soils which serves as a
basis for the execution of a rain water drainagstesy [18]. The analysis of the
problem of heat transfer for the road structurgtensoil embankment and the
soil base will qualify the pavement as an isolatayer.
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The problems of heat transfer were early discussethfluences of the
surroundings on the upper surface of the soils @ama@ments [16]. This paper
examines the problem of heat transfer for the mpadement (pavement and
base) as a layered isotropic plate on the soil ekrhant for the soil base. Direct
and inverse mathematical models of heat transéesaggested and the unsteady
heat transfer is realized with the use of finiteneént analysis and design
software COSMOS/M. The numerical results are comstbavith the experiment
data for the real exploitation conditions on théduski province road No 297 in
Poland on the route Zagan-Kozuchow [1-3].

2. MATHEMATICAL MODEL AND NUMERICAL METHOD
FOR THE HEAT TRANSFER PROBLEM

2.1. Modd of heat transfer for the road pavement

A two dimensional direct problem of heat transferexamined for the road
pavement as a layered isotropic plate on the sdilamkment and the soil base.
The system of axial coordinates Oxy is used. Thegong differential Fourier —

Kirchhoff equation for heat transfer for the nonmfugeneous body is as
follows:
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whereT(Dl:= T(x, t) is a temperaturé; X = (x, y) is a vector of the body point,
x0Q; Q is a region of two dimensional space for variablels Q [J R% t
is time, s;p is density of the material, kg/m8,; is specific heat for constant
pressure, kJ/(KK); A is thermal conductivity, W/(fK); Q(x, t) is the
volumetric heat generation rate, kl#®; A, C,, andp are as the functions of
coordinatex, further constant for every layer of the body (Hij

In the general case, taking into account heat fearend freezing for two-
dimensional, nhonhomogeneous ground medium, diffedeaquation (2.1) we
propose to write as follows (generalized equatijoist as was done for 1D
problem in [12]):
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whered(i) is also a “heat capacity” as a function of icausfuty i; d(i) is analogy
with specific heat,, i is ice quantity for the fixed temperaturg¢l2]; K is a heat
of ice melting;W; is a soil moisture.
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Further, the temperature of the body satisfiesitiiteal as well as boundary
conditions. The first condition

T (x,0)=®,(x), xOQ, (2.3)

means that temperatulél)l = ®y(x) for every body poink of regionQ at the
initial time t = 0 is known; the functio®(x) is continuous for all pointg 0 Q ,
whereQ = Q0T ; I is the surfacd;:= bd Q; bd is a symbol of the bod§ board.
We assume conditions of type | as the boundary itond on the external

surface of the body (plate of pavement and soilsma$l” for every timet,
which assign temperature distribution,

Tt =d)t), xOF, t>0; (2.4)

®(x, t) is a given a continuous function from €) for all points of regior .

In this paper the border condition (2.3) can bdyeea in different cases
(Fig 1). For the layers of road pavement on thd e@ consider it as a
heterogeneous, unrestricted heat (semi — condudborya limited contour.
Alternatively, in the first case of border, the mamatureT := @, of contourl
(on the infinity deptly — o for all pointsx [0 ") is limited,

T(X,0,t) =P <+o0, xOI ,y - 0, t>0. (2.5)

In the second case on a definite depth of the cortoborder (on the depth
y = H for all pointsx O I")) the temperature dn should be definite as follows:

T(X,H,t):CDH<+oo, Xl:][__,y:H’ t>0. (2.6)

Furthermore, on the boundary between the road pawveand the surroundings
I, (for the convection problem), we have to use bamndonditions of type IlI:

h[@s(x,t) - To(x,t)] =q, xOlp, t>0, (2.7)

whereh is a heat transfer (convection) coefficient, \\A):; T, is an ambient
temperatureq is a heat flux, W/

Finally, let us write the boundary conditions of tol coupling for the
pavement plate and the layers of the soil basen(emy conditions of type V).
We assume that on the internal surfacgsbetween the bodigsandj, there is
an ideal heat contact. Then, for the temperafuaadT; as well as the bodiesj
the following equations hold true

Ti(x,t) =Tix,t), xOTij, t>0; (2.8)

A[OTi(x,t) /0] = A[OTi(x,t)/8n], xOTij, t>0; (2.9)

in a series for all the body humberg) O [1:5].
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As a result, we have a two dimensional mixed bogndalue transient problem

of the heat transfer (2.1), (2.3)-(2.9) lub (2.2)3) with boundary conditions of

type I, Il and IV. r.
pu

NS

‘V
<

ri,j v
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Fig 1. The model for the heat transfer problem
. . . oT .
The stationary problem will be easier, duebt? =0 andT(:) :=T(x) in the Egn

(2.1) lub (2.2), without initial condition (2.3}t includes Eqn (2.1) lub (2.2) and
conditions (2.4)-(2.9).

2.2. Finitedement method

Numerical solution of the given boundary-value peob will be
performed by the finite element method. The egeivalariational formulation
will be used for this aim. In this case the comaisi (2.8)—(2.9) are fulfilled
automatically for a heterogeneous (layered) body.

As a result of the diskretization of the transikeat transfer problem, the
relations can be written in the form of the follogimatrix differentialequation
[28]

[KJr}+[cl o7}

where the global conductivity and specific heatrioes K andC, and the load
vectorf are obtained as a result of aggregation for seépfinite elements; {}
is vector of the temperature in the jointdiofte elements.

The numerical solution of the problem (2.10) waalired by means of
the COSMOS/M System [9]. Various boundary condgiomere taken into
account and particularly the arbitrary form of thig#ial conditions and the actual
law of the temperature versus time variation ofdhieor of the external surface
of the road cover.

{t}, (2.10)
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It is also worth mentioning that the finite diffeie method is admissible
for this problem [20].

3. DESCRIPTION OF THE ROAD STRUCTURE AND THE
METHOD OF INVESTIGATION

Elements of the given embankment-type road straciwe shown in Fig 2. The
measurements were conducted on the Lubuski provoee No 297 in Poland
on the route Zagan-Kozuchow. Two experimental iseators of 3 m width and
4 m length each were built up from the cataloguestaihdard structures of
flexible and semi rigid pavements. The road stmesuwere built up as
embankment-type, formed from non-swelling soilspuyr G1 of soil bearing
capacity — middle dimension of sandy patrticles,hwihe following cross-
sections:

Section 1

1. SMA mixture-wearing course 0-12,8 grading — 5 ciokth
2. Asphalt concrete binder course 0-20 grading — @hiok.
3. Asphalt concrete base course 0-20 grading — 7 mk. th
4. Crusher-run base course — 20 cm thick.
5. Natural base, sand with middle particles.

Section 2
1. SMA mixture-wearing course 0-12,8 grading — 5 ciokth
2. Asphalt concrete binder course 0-20 grading — Thiak.
3. Asphalt concrete base course 0-20 grading — 7 mk. th
4. Cement stabilized granular aggregate base coursm2bick.
5. Natural base, sand with middle particles.

Characteristics of the materials are given in TdhleNote that in the
literature the data for the soil materials is Wigiifferent; here their average
values are taken.
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Fig 2. Elements of road structure
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Table 1. Characteristics of the materials

Materials Thermal conductivity Specific heat,, Density
A, W/(mK) kJ/(kgK) p, kg/n?
SMA/asphalt concrete 1.4 0.47 2530
Crushed stone, stabilized 0.4 0.35 1940
mechanically
Soil, stabilized by cement 0.99 0.25 1880
Sand with middle particles 0.58 0.23 1600

The temperature sensors were set into the paveitiegy. were placed on
the axis of a moving vehicle (between the wheeads)both sectors under the
following pavement surface:

1 cm under the surface, in the wearing course \({260), Fig. 2);

5 cm under the wearing course ((1-1), (2-1));

18 cm under the bituminous base course ((1-2))X2-2

38/39 cm under the sub base ((1-3), (2-3));

80 cm, in the soil foundation ((1-4), (2-4)) - berdof freezing for the
Lubuski province.

Data which was measured in even temporary spacessed to create a
graph of schedule temperatures or unestablishetuctimity of warmth.

* & & o o

4. NUMERICAL AND EXPERIMENTAL RESULTS

The numerical solution of the temperature distitnutvas obtained by means of
the finite element system COSMOS/M [9] for the nealterial parameters of the
road construction. The finite element TRIANG wasedigo discretize the
domain of the road construction. The adopted meat sthiown in Fig. 3. The
total number of elements was 9189, and the numb@&odes, 4820, was the
number of unknown nodal temperatures. The 10 homs interval with the
initial temperature conditions, which followed fraifme measurement data, was
considered, and the time interval was constart),3 h. It means that the whole
analysis was performed at 35 equal time intervals.

The numerical analysis was performed on the basigemperature
registrations. Measurements were executed for weaaditions as well as for
summer conditions. They were done between 8 pnd(@@n 01.02.2003 and 1
pm (13:00) on 02.02.2003 (for negative temperajuasswell as between 0.00
am and 11:30 pm on 17.05.2007 (for positive termtpegea) for section 1 of the
road No 297 in Poland.
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The temperature distribution registered at 0:000am7.05.2007 and at 11:30
pm on 17.05.2007 was treated as the initial comuttip(x) for the numerical
analysis. The temperatufges registered on the external layer surface 0 cm)
of the road during the analysed 24 hours period Was main data
@ (0 for the transient heat transfer problem. We assliadditionally that on the
depthy = - 80 cm the temperature is constant all the tame is equal to
®()=16,1°C for positive temperatures. As far as the matgualameters are
concerned, the data shown in Table 1 was adopted.
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Fig 3. The FEM mesh used in calculations
The temperature distribution at the 24-th houthef analysis (17.05.2007)
was shown in Fig. 4.
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Fig 4. Temperature distribution at the 24-th hduthe analysis
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5. INVERSE OPTIMIZATION PROBLEMS

The direct problems (2.1), (2.3)-(2.9) lub (2.2)%2are well-posed boundary-
value problems. However, to improve the convergentetheoretical and
experimental results, two inverse (ill-posed) peol are formulated, to identify
respectively the boundary conditions and and hesienal parameters of road
structure. Note, that the problem of identificatioh mechanical systems is
currently studied in extensive literature [5-7, 18- 17, 19, 22-26], including
those devoted to problems of heat and mass tradsfér 9, 20, 21, 27].

5.1. ldentification of boundary conditions by least squares method

A problem of transient heat transfer for the ro@dgment is analysed as an
exact inverse formulation for the reconstructionbofindary conditions on the
side and bottom surfac€s of the analysed zone (Fig. 5).

Fig 5. Measuring zone for the inverse optimizagooblem

At the same time, the boundary conditions on thpeupsurfacd | are

known and on theurfacel 3 are measured. Thus, we have an inverse boundary
problem, which can be presented as an optimizatioblem.

The governing differential equation (2.1) for h&ainsfer for the body is
as follows (see Part 1)

a(cT) a( 6Tj a(,aT
=— | A—|+—|A—|+q.,, t>0 xOQ. 5.1
Pt ~ox\” ox ay\” ay b &4

Further, the temperature of the body satisfiednti@l conditions (2.2) and the
conditions (2.3) known on bounddry have the following form:

T(Xx0) =d,(Kx), xUQ,

(5.2)
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T(xt)=®K,t), xOr,, t>0; (5.3)
The boundary conditions dn
T t)=vit), xt)Or,, (5.4)

are unknown and the functiorf-) has to be found from the measuring of the
temperature ofs,

TXt)=WYWkt), (xt)Or;,. (5.5)

Then inverse optimization problem can be formulatestich way:
find

J(w) =min J(v),

v (5.6)

where

I) = [(Tixt) - W 1) ds, 5.7)

subject to conditions (5.1) - (5.5).

The extremum problem (5.1) - (5.7) is a problemopfimal control. It
contains the following unknowns: the fi€lgx, t), x 0 Q, of temperature in time
t as state variables, and the same one of the tamperfieldv(x, t) onT, as
control variables. The optimal solutiow(x, t) is the functionv of the
temperature field of, in timet.

This problem is ill-posed. Its solution is based the technique of
regularization of A.N. Tikhonov [20, 23, 24]. Assarthe next smoothing form
of functional (5.7)

3) = [((TEixt)- WA +avhs 5:8)

I3

where the Tikhonov factom>0 in the second term is a parameter of
regularization, which depends on the differencenéfirst term of Eqn (5.8).

For the new well-posed problem (5.1) — (5.6), (5¥& find the
approximate solution using the method of iteratibhe number of iteration in
this method will be taken here as a parametergflagization.

Analogously for the steady heat transfer, the gnob(5.1) - (5.6.), (5.8)
will be a simpler problem of optimal control, namel
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J(v) - min,

Y (5.9)
J(v) = rI((T(V:X)— W(x))” +UV2)3'S' (5.10)
%(AZ_U%% /1‘2—; -0, x0OQ, (5.11)
T(¥) = ® ), xOT,, (5.12)
T(x)=v(), xdr,, (5.13)
T(X):=W(x), xOT,. (5.14)

measured temperature onlayer 2-1
— measured temperature onlayer 2-2
—— measured temperature onlayer 2-3
—#—temperature onlayer 2-0
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Fig 6. The temperature distribution registered 8:©3.2007 for the road pavement construction
with crusher-run base course
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measured temperature onlayer 2-1 —*—calculated temperature onlayer 2-1
measured temperature onlayer 2-2 —*— calculated temperature onlayer 2-2
[°C] measured temperature onlayer 2-3 “— calculated temperature onlaver 2-3

—#—temperaturs onlayer 2-0 —#*—measured temperature onlayer 2-4

19,5

=
—}'3—{;::* i T N A e R e i U T i S SR e e e e S RO RN
L *-— o >

- e

Fety

1.0 5.0 9.0 13,0 17.0 21.0 25.0 28.0 33.0 37.0 41.0 45.0 49.0
[step]
Fig 7. The temperature distribution registered 8193.2007 for the road pavement construction
with crusher-run base course

The sensitivity of this problem is rather signifitaand the results of
direct and inverse solutions are different in tege of 10 %.

Another possible method might also be the finitmeti method of
Beck [27].

5.2. ldentification of heat parameters by least squares method

Identification of material parameters was carried wsing the overdetermined
inverse problem [21], where the number of pararseteught is not equal to the
number of measurement points. To this end, reswdte analyzed temperature
measurement read from the road surface for theerdift criteria for the
objective function and the regularization paranset€he identification was
performed by two criteria, namely the criterionledst squares and the criterion
of minimax. The first, widely distributed method svaarly used and detally
described in [3].

5.3. Identification of heat design parameter s by minimax method

Another, less common method of solving inverse lgmis is to use a minimax
method [10, 22]. This method consists of minimizthg maximum deviations
(ie, differences in theoretical and experimentauhs). This method provides
better results than the method of least squanmese $i smooths out the resulting
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function, which becomes more adapted to the actwaiditions of heat
exchange.

According to the minimax criterion when the numbar unknown
parameters equals the number of measurement pamts = m, the solution of
the inverse problem will be the solution foequations of the form:

m

ZﬁTc(v,t) ~T, ()], dt =0, i01:n, (5.15)

il o

where:
tp IS measurement time,
Te:= (Te, i O 1:m) is a vector of measured parameters,
T. := (T, i O 1:m) is a vector of parameters calculated in the fdanib.15),
mis number of measured parameters,
v:= (v, i 0 1:n) is a vector of unknown parameters,
n is number of unknown parameters.
Otherwise in a particular case when the numbemnk&hown parametens
is less than the number of measurement paints# m. Then the solution of the
inverse problem will be the solution for the follimg functions:

max 2
tO[0:t, )\ T, + T,

e,min e max

ITC(V,t)-Te(t)IJ =0, i01:m, (5.16)

where:

Teminj Temax; are the limits for the measured temperalyyen thej-th point.
Therefore, summary functiop of the normalized errors (deviations) as

nonsmooth minimax criterion should be minimized:

Pl =ming ) (5.17)
Y,
where:
_ Mmax max ; )
¢(V)‘jD[;L;m]tm[o:to](Temin T T, (v, 1) Te(t)|) (5.18)

J

The solution of this ill-posed problem (5.17)-(5.18& based on
regularization technique of A.N. Tikhonov [19, 22Zhe formula (5.18) has to
replace by following smoothing one,
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9, (V) =

max max 2
JOR:mtdo:t, ]\ T, +T

e,min e max

T, (v, ) —Te(t)lj +
,- (5.19)

+alv[’,

where a Tikhonov factoo>0 in the second term is also a parameter of

regularization,
vl = 1/,ELZn(ViZ) (5.20)

For example, the problem of determining of there@hductivities for the two
first layers of road structures, namely for asplecalicrete and crushed stone,
stabilized mechanically (see Part 3), was constiere

Fig 8. Thecriterion surfaces(v) for the vectow = (A4, A,) of coefficients of thermal
conductivity: a) the criterion of least squaresth®) criterion of minimax

As a result of numerical analysis for the idenéifion based on least-squares
method we can find the optimal values of thermaidumtivity only for two
from three test materials forming the layers of droeonstruction (Fig
8.a). Therefore, this method was considered nof aecurate and replaced it
with identification based on the minimax criteriddsing the nonsmooth
minimax optimization we can determine the optimalues of all test materials
(Fig 8.b).

Finally we obtained the next optimal vector = (A*, A,*) := (1,70; 1,90),
accordingly for layers of asphalt concrete and fleds stone, stabilized
mechanically. This result may be considered as lal \@ane, since thermal
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conductivityA,* of asphalt concrete is close to the valué.pfE 1.84, obtained
experimentally using a camera ISOMET 2104 [2];dffgerence is 5.0%.

6. CONCLUSIONS

In a general case, it is advisable to realize tfayais of the 2D or 3D-problems
for the heat transient regime of a real layereddrs@ucture, in the form of
embankment or cavity with the use of the methodsdefitification for its
mathematical models and a suitable computer saftwar

It is possible to find boundary conditions or plegdiand mechanical
properties for inhomogeneous layered bodies usipgmal control or
overdetermined problem of multi-parameter iderdificn respectivly. In these
cases the criterion of least squares does not gwst results and only
nonsmooth minimax criterion leads to a trust resiilthe identification of the
boundary fields or material parameters sought.
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WYMIANA CIEPLA W KONSTRUKCJI NAWIERZCHNI DROGOWEJ
| IDENTYFIKACJA PARAMETROW MATERIALOWYCH TWORZACYCH JEJ
WARSTWY

Streszczenie

W pracy przedstawiono identyfikacjparametéw materialtowych oraz warunkéw
granicznych érodka niejednorodnego, jaki stanowi konstrukcja ieaxehni drogowej.
Problem ten rozwizano poprzez analiz wymiany ciepta dla ukiadu ,ptyta
wielowarstwowa — nasyp — podi®d gruntowe”. Na podstawie wieloletnich bada
doswiadczalnych rozktadu temperatury sformutlowane agstproste i odwrotne
zagadnienia nieustalonego przeplywu ciepta, zreatime przy pomocy metody
elementow skiczonych. Dla identyfikacji stosowane byty metodgdiiej i niegtadkiej
optymalizacji z kryterium najmniejszych kwadratovan kryterium minimaxu. Druga z
metod okazata eiskuteczn, poniewa w odr&nieniu od pierwszej niiwe byto
wyznaczenie optymalnych waém wszystkich badanych materiatéw twacgch
warstwy konstrukcji drogowej. Podane przyktady @yalnumerycznej poréwnane
zostaly z wynikami badadoswiadczalnych uzyskanych z poligonéw zlokalizowanych
na drodze wojewddzkiej nr 296 w miejscawioKozuchéw w Polsce.





