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A heat transfer problem for the road pavement system “layered plate – embankment – 
soil base” is formulated. There are suggested mathematical models and their realization 
with the use of finite element analysis and design software program by solving the 
layered plate on the ground foundation. Transient thermal state for this road structure is 
defined by discretization of the system described by different material properties. The 
theoretical results are compared with the experiment data for the real road pavement of 
Lubuski province road No 297 on the route Zagan-Kozuchow in Poland. Finally, two 
inverse problems are formulated, to identify respectively the boundary conditions and 
heat material parameters of road structure by smooth (least squares) and nonsmooth 
(minimax) optimization. It was shown that the criterion of least squares does not give 
trust results and only nonsmooth criterion of minimax lead to a trust result of the 
identification. 

Keywords: pavement system, heat transfer problem, parameters and boundary 
conditions identification, least squares and minimax criteria 

1. INTRODUCTION 

The problems of heat transfer for the road structure are of great practical 
importance. They define the border of freezing of the soils which serves as a 
basis for the execution of a rain water drainage system [18]. The analysis of the 
problem of heat transfer for the road structure on the soil embankment and the 
soil base will qualify the pavement as an isolation layer. 
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The problems of heat transfer were early discussed as influences of the 
surroundings on the upper surface of the soils and pavements [16]. This paper 
examines the problem of heat transfer for the road pavement (pavement and 
base) as a layered isotropic plate on the soil embankment for the soil base. Direct 
and inverse mathematical models of heat transfer are suggested and the unsteady 
heat transfer is realized with the use of finite element analysis and design 
software COSMOS/M. The numerical results are compared with the experiment 
data for the real exploitation conditions on the Lubuski province road No 297 in 
Poland on the route Zagan-Kozuchow [1-3]. 

2. MATHEMATICAL MODEL AND NUMERICAL METHOD 
FOR THE HEAT TRANSFER PROBLEM 

2.1.  Model of heat transfer for the road pavement 
A two dimensional direct problem of heat transfer is examined for the road 
pavement as a layered isotropic plate on the soil embankment and the soil base. 
The system of axial coordinates 0xy is used. The governing differential Fourier –
 Kirchhoff equation for heat transfer for the nonhomogeneous body is as 
follows: 
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where T(⋅) := T(x, t) is a temperature, K; x = (x, y) is a vector of the body point, 
x ∈ Ω; Ω is a region of two dimensional space for variables x ∈ Ω ⊆ R2; t 
is time, s; ρ is density of the material, kg/m3; cp is specific heat for constant 
pressure, kJ/(kg⋅K); λ  is thermal conductivity, W/(m⋅K); Q(x, t) is the 
volumetric heat generation rate, kJ/(s⋅m3); λ , cp, and ρ are as the functions of 
coordinate x, further constant for every layer of the body (Fig. 1). 
In the general case, taking into account heat transfer and freezing for two-
dimensional, nonhomogeneous ground medium, differential equation (2.1) we 
propose to write as follows (generalized equation, just as was done for 1D 
problem in [12]): 
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where d(i) is also a “heat capacity” as a function of ice quantity i; d(i) is analogy 
with specific heat cp, i is ice quantity for the fixed temperature T [12]; K is a heat 
of ice melting; W0 is a soil moisture. 
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Further, the temperature of the body satisfies the initial as well as boundary 
conditions. The first condition 

,  ),()0,( 0 Ω∈Φ= xxxT  (2.3) 

means that temperature T(⋅) = Φ0(x) for every body point x of region Ω  at the 
initial time t = 0 is known; the function Φ0(x) is continuous for all points Ω∈x , 
where Γ∪Ω=Ω ; Γ is the surface, Γ:= bd Ω; bd is a symbol of the body Ω board. 
We assume conditions of type I as the boundary conditions on the external 
surface of the body (plate of pavement and soil massive) Γ for every time t, 
which assign temperature distribution, 

 ;0    ,   ),,(),( >Γ∈Φ= tttT xxx  (2.4) 

Φ(x, t) is a given a continuous function from (x, t) for all points of region Γ. 
In this paper the border condition (2.3) can be analysed in different cases 

(Fig 1). For the layers of road pavement on the soil we consider it as a 
heterogeneous, unrestricted heat (semi – conductor) for a limited contour. 
Alternatively, in the first case of border, the temperature T := Φ∞ of contour Γ- 
(on the infinity depth y → ∞ for all points x ∈ Γ-) is limited, 

.0    ,,   ,),,(  _ >∞→Γ∈+∞<Φ= ∞∞ tytT xx  (2.5) 

In the second case on a definite depth of the contour Γ- border (on the depth  
y = H for all points x ∈ Γ-) the temperature on Γ- should be definite as follows: 

.0    ,,   ,),,(  _ >=Γ∈+∞<Φ= tHytHT H xx  
(2.6) 

Furthermore, on the boundary between the road pavement and the surroundings 
Γp (for the convection problem), we have to use boundary conditions of type III: 

[ ] ,0    ,   ,),(),(  >Γ∈=−Φ tqtTth pps xxx  (2.7) 

where h is a heat transfer (convection) coefficient, W/(m2·K); Tp is an ambient 
temperature; q is a heat flux, W/m2. 

Finally, let us write the boundary conditions of mutual coupling for the 
pavement plate and the layers of the soil base (boundary conditions of type IV). 
We assume that on the internal surfaces Γi,j, between the bodies i and j, there is 
an ideal heat contact. Then, for the temperature Ti and Tj as well as the bodies i, j 
the following equations hold true 

;0    ,   ),,(),(  , >Γ∈= ttTtT jiji xxx  (2.8) 

[ ] [ ] ;0    ,   ,/),(/),(  , >Γ∈∂∂=∂∂ ttxTtxT jinjjnii xλλ  (2.9) 

in a series for all the body numbers (i, j) ∈ [1:5]. 
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As a result, we have a two dimensional mixed boundary-value transient problem 
of the heat transfer (2.1), (2.3)-(2.9) lub (2.2)-(2.9) with boundary conditions of 
type I, II and IV. 

 
 

 
Fig 1. The model for the heat transfer problem 

The stationary problem will be easier, due to 0=
∂
∂

t

T
 and T(·) := T(x) in the Eqn 

(2.1) lub (2.2), without initial condition (2.3); it includes Eqn (2.1) lub (2.2) and 
conditions (2.4)-(2.9). 

2.2. Finite element method 
Numerical solution of the given boundary-value problem will be 

performed by the finite element method. The equivalent variational formulation 
will be used for this aim. In this case the conditions (2.8)–(2.9) are fulfilled 
automatically for a heterogeneous (layered) body.  

As a result of the diskretization of the transient heat transfer problem, the 
relations can be written in the form of the following matrix differential equation 
[28] 
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where the global conductivity and specific heat matrices K and C, and the load 
vector f are obtained as a result of aggregation for separate finite elements; {T} 
is vector of the temperature in the joints of finite elements. 

The numerical solution of the problem (2.10) was realized by means of 
the COSMOS/M System [9]. Various boundary conditions were taken into 
account and particularly the arbitrary form of the initial conditions and the actual 
law of the temperature versus time variation of the air or of the external surface 
of the road cover. 
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It is also worth mentioning that the finite difference method is admissible 
for this problem [20]. 

3. DESCRIPTION OF THE ROAD STRUCTURE AND THE 
METHOD OF INVESTIGATION 

Elements of the given embankment-type road structure are shown in Fig 2. The 
measurements were conducted on the Lubuski province road No 297 in Poland 
on the route Zagan-Kozuchow. Two experimental road sectors of  3 m width and 
4 m length each were built up from the catalogue of standard structures of 
flexible and semi rigid pavements. The road structures were built up as 
embankment-type, formed from non-swelling soils; group G1 of soil bearing 
capacity – middle dimension of sandy particles, with the following cross-
sections:  

Section 1 
1. SMA mixture-wearing course 0-12,8 grading – 5 cm thick.  
2. Asphalt concrete binder course 0-20 grading – 6 cm thick. 
3. Asphalt concrete base course 0-20 grading – 7 cm thick. 
4. Crusher-run base course – 20 cm thick. 
5. Natural base, sand with middle particles. 

Section 2 
1. SMA mixture-wearing course 0-12,8 grading – 5 cm thick.  
2. Asphalt concrete binder course 0-20 grading – 7 cm thick. 
3. Asphalt concrete base course 0-20 grading – 7 cm thick. 
4. Cement stabilized granular aggregate base course 20 cm thick. 
5. Natural base, sand with middle particles. 

Characteristics of the materials are given in Table 1. Note that in the 
literature the data for the soil materials is visibly different; here their average 
values are taken. 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Elements of road structure 
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Table 1. Characteristics of the materials 

Materials Thermal conductivity 
λ, W/(m⋅K) 

Specific heat cp, 
kJ/(kg⋅K) 

Density 
ρ, kg/m3 

SMA/asphalt concrete 1.4 0.47 2530 

Crushed stone, stabilized 
mechanically 

0.4 0.35 1940 

Soil, stabilized by cement 0.99 0.25 1880 

Sand with middle particles 0.58 0.23 1600 

The temperature sensors were set into the pavement. They were placed on 
the axis of a moving vehicle (between the wheels) for both sectors under the 
following pavement surface: 
♦ 1 cm under the surface, in the wearing course ((1-0), (2-0), Fig. 2); 

♦ 5 cm under the wearing course ((1-1), (2-1)); 
♦ 18 cm under the bituminous base course ((1-2), (2-2)); 

♦ 38/39 cm under the sub base ((1-3), (2-3)); 

♦ 80 cm, in the soil foundation ((1-4), (2-4)) - border of freezing for the 
Lubuski province. 

Data which was measured in even temporary spaces was used to create a 
graph of schedule temperatures or unestablished conductivity of warmth. 

4. NUMERICAL AND EXPERIMENTAL RESULTS 

The numerical solution of the temperature distribution was obtained by means of 
the finite element system COSMOS/M [9] for the real material parameters of the 
road construction. The finite element TRIANG was used to discretize the 
domain of the road construction. The adopted mesh was shown in Fig. 3. The 
total number of elements was 9189, and the number of nodes, 4820, was the 
number of unknown nodal temperatures. The 10 hours time interval with the 
initial temperature conditions, which followed from the measurement data, was 
considered, and the time interval was constant, Dt=0,3 h. It means that the whole 
analysis was performed at 35 equal time intervals. 

The numerical analysis was performed on the basis of temperature 
registrations. Measurements were executed for winter conditions as well as for 
summer conditions. They were done between 8 pm (20:00) on 01.02.2003 and 1 
pm (13:00) on 02.02.2003 (for negative temperatures) as well as between 0.00 
am and 11:30 pm on 17.05.2007 (for positive temperatures) for section 1 of the 
road No 297 in Poland.  
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The temperature distribution registered at 0:00 am on 17.05.2007  and at 11:30 
pm on 17.05.2007 was treated as the initial conditions Φ(x) for the numerical 
analysis. The temperature Tmes registered on the external layer surface (y = 0 cm) 
of the road during the analysed 24 hours period was the main data  
Φ (⋅) for the transient heat transfer problem. We assumed additionally that on the 
depth y = - 80 cm the temperature is constant all the time and is equal to 
Φ(⋅)=16,1oC for positive temperatures. As far as the material parameters are 
concerned, the data shown in Table 1 was adopted. 
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Fig 3. The FEM mesh used in calculations 

The temperature distribution at the 24-th hour of the analysis (17.05.2007) 
was shown in Fig. 4. 

 

 
 
 
 

Fig 4. Temperature distribution at the 24-th hour of the analysis 
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5. INVERSE OPTIMIZATION PROBLEMS 

The direct problems (2.1), (2.3)-(2.9) lub (2.2)-(2.9) are well-posed boundary-
value problems. However, to improve the convergence of theoretical and 
experimental results, two inverse (ill-posed) problems are formulated, to identify 
respectively the boundary conditions and and heat material parameters of road 
structure. Note, that the problem of identification of mechanical systems is 
currently studied in extensive literature [5-7, 13-15, 17, 19, 22-26], including 
those devoted to problems of heat and mass transfer [4, 8, 9, 20, 21, 27]. 
 

5.1. Identification of boundary conditions by least squares method 
A problem of transient heat transfer for the road pavement is analysed as an 
exact inverse formulation for the reconstruction of boundary conditions on the 
side and bottom surfaces Γ2 of the analysed zone (Fig. 5). 
 

 
Fig 5. Measuring zone for the inverse optimization problem 

At the same time, the boundary conditions on the upper surface Γ1 are 
known and on the surface Γ3 are measured. Thus, we have an inverse boundary 
problem, which can be presented as an optimization problem. 

The governing differential equation (2.1) for heat transfer for the body is 
as follows (see Part 1) 
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Further, the temperature of the body satisfies the initial conditions (2.2) and the 
conditions (2.3) known on boundary Γ1 have the following form: 

,   ),()0,( 0 Ω∈Φ= xxxT  
(5.2) 
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;0   ,   ),,(),( 1 >Γ∈Φ= tttT xxx  (5.3) 

The boundary conditions on Γ2 

,),(   ),,(:),( 2Γ∈= ttvtT xxx  (5.4) 

are unknown and the function v(·) has to be found from the measuring of the 
temperature on Γ3, 

.),(   ),,(:),( 3Γ∈Ψ= tttT xxx  (5.5) 

Then inverse optimization problem can be formulated in such way: 
find 
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subject to conditions (5.1) - (5.5). 
The extremum problem (5.1) - (5.7) is a problem of optimal control. It 

contains the following unknowns: the field T(x, t), x ∈ Ω, of temperature in time 
t as state variables, and the same one of the temperature field v(x, t) on Γ2 as 
control variables. The optimal solution w(x, t) is the function v of the 
temperature field on Γ2 in time t. 

This problem is ill-posed. Its solution is based on the technique of 
regularization of A.N. Tikhonov [20, 23, 24]. Assume the next smoothing form 
of functional (5.7) 

where the Tikhonov factor α>0 in the second term is a parameter of 
regularization, which depends on the difference in the first term of Eqn (5.8).  

For the new well-posed problem (5.1) – (5.6), (5.8) we find the 
approximate solution using the method of iteration. The number of iteration in 
this method will be taken here as a parameter of regularization. 

Analogously for the steady heat transfer, the problem (5.1) - (5.6.), (5.8) 
will be a simpler problem of optimal control, namely 
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Fig 6. The temperature distribution registered on 17.05.2007 for the road pavement construction 

with crusher-run base course 
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Fig 7. The temperature distribution registered on 17.05.2007 for the road pavement construction 

with crusher-run base course 

The sensitivity of this problem is rather significant, and the results of 
direct and inverse solutions are different in the range of 10 %. 

Another possible method might also be the finite time method of  
Beck [27]. 

5.2. Identification of heat parameters by least squares method 
Identification of material parameters was carried out using the overdetermined 
inverse problem [21], where the number of parameters sought is not equal to the 
number of measurement points. To this end, results were analyzed temperature 
measurement read from the road surface for the different criteria for the 
objective function and the regularization parameters. The identification was 
performed by two criteria, namely the criterion of least squares and the criterion 
of minimax. The first, widely distributed method was early used and detally 
described in [3]. 

5.3. Identification of heat design parameters by minimax method 
Another, less common method of solving inverse problems is to use a minimax 
method [10, 22]. This method consists of minimizing the maximum deviations 
(ie, differences in theoretical and experimental results). This method provides 
better results than the method of least squares, since it smooths out the resulting 
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function, which becomes more adapted to the actual conditions of heat 
exchange. 

According to the minimax criterion when the number of unknown 
parameters n equals the number of measurement points m, n = m, the solution of 
the inverse problem will be the solution for n equations of the form: 
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where: 
t0 is measurement time, 
Te := (Tei, i ∈ 1:m) is a vector of measured parameters, 
Tс := (Tсi, i ∈ 1:m) is a vector of parameters calculated in the formula (5.15), 
m is number of measured parameters, 
v := (vi, i ∈ 1:n) is a vector of unknown parameters, 
n is number of unknown parameters. 

Otherwise in a particular case when the number of unknown parameters n 
is less than the number of measurement points m, n ≠ m. Then the solution of the 
inverse problem will be the solution for the following functions: 
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where: 
Te,min,j, Te,max,j are the limits for the measured temperature Te,j in the j-th point. 

Therefore, summary function ϕ of the normalized errors (deviations) as 
nonsmooth minimax criterion should be minimized: 
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The solution of this ill-posed problem (5.17)-(5.18) is based on 
regularization technique of A.N. Tikhonov [19, 22]. The formula (5.18) has to 
replace by following smoothing one, 
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where a Tikhonov factor α>0 in the second term is also a parameter of 
regularization, 

∑
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For example, the problem of determining of thermal conductivities for the two 
first layers of road structures, namely for asphalt concrete and crushed stone, 
stabilized mechanically (see Part 3), was considered. 
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Fig 8. The criterion surfaces φ(v) for the vector v = (λ1, λ2) of coefficients of thermal 
conductivity: a) the criterion of least squares, b) the criterion of minimax 

As a result of numerical analysis for the identification based on least-squares 
method we can find the optimal values of thermal conductivity only for two 
from three test materials forming the layers of road construction (Fig 
8.a). Therefore, this method was considered not very accurate and replaced it 
with identification based on the minimax criterion. Using the nonsmooth 
minimax optimization we can determine the optimal values of all test materials 
(Fig 8.b). 
Finally we obtained the next optimal vector v* = (λ1*, λ2*) := (1,70; 1,90), 
accordingly for layers of asphalt concrete and crushed stone, stabilized 
mechanically. This result may be considered as a valid one, since thermal 

a) b) 
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conductivity λ1* of asphalt concrete is close to the value of λ1 = 1.84, obtained 
experimentally using a camera ISOMET 2104 [2]; the difference is 5.0%. 

6. CONCLUSIONS 

In a general case, it is advisable to realize the analysis of the 2D or 3D-problems 
for the heat transient regime of a real layered road structure, in the form of 
embankment or cavity with the use of the methods of identification for its 
mathematical models and a suitable computer software. 

It is possible to find boundary conditions or physical and mechanical 
properties for inhomogeneous layered bodies using optimal control or 
overdetermined problem of multi-parameter identification respectivly. In these 
cases the criterion of least squares does not give trust results and only 
nonsmooth minimax criterion leads to a trust result of the identification of the 
boundary fields or material parameters sought. 

REFERENCES 

1. Aliawdin P., Marcinowski J., Wilk P.: Theoretical and experimental analysis 
of heat transfer in the layers of road pavement, Civil and environmental 
engineering reports, 1, University of Zielona Góra Press, Poland, 2005, 7-18. 

2. Aliawdin P., Polczynski J., Wygocka A.: Theoretical and experimental 
determination of heat parameters of road pavement layers. Insulation, 135, 2 
(2009), 84-89. (In Polish). 

3. Aliawdin P., Polczynski J.: Analysis of heat transfer in road pavement 
structures using methods of optimization / Selected papers of the 9th 
International Conference “Modern Building Materials, Structures and 
Techniques”, May 16–18, 2007, Vilnius, Lithuania. III, Technika, Vilnius, 
(2007), 873-880. 

4. Alifanov O.M.: Inverse heat transfer problems, Springer-Verlag, New York, 
1994. 

5. Bakushinsky A.B., Kokurin M.Yu.: Iterative methods for approximate 
solution of inverse problems, Springer-Verlag, New York, 2004. 

6. Beluch W. et al. Granular computing in evolutionary identification / Witold 
Beluch, Tadeusz Burczyński, Adam Długosz, Piotr Orantek, in: Computer 
Methods in Mechanics, ASM 1, Lectures of the CMM 2009, Springer-
Verlag, Berlin, Heidelberg, 2010, 149-163. 

7. Bui, H.D.: Inverse Problems in the Mechanics: An Introduction. CRC Press, 
Bocca Raton, 1994. 

8. Ciałkowski M., Grysa K.: A sequential and global method of solving an 
inverse problem of heat conduction equation, Journal of Theoretical and 
Applied Mechanics, Warsaw, 48, 1, (2010), 111-134. 



HEAT TRANSFER IN ROAD PAVEMENT STRUCTURE AND … 77 

 
 

9. COSMOS/M. Designer II. A complete design analysis system. Version 1.2. 
Structural Research and Analysis Corporation. Los Angeles, California. 
1996. 

10. Demyanov V.F.: Nonsmooth optimization, in: Bomze I.M., Demyanov V.F., 
Fletcher R., Terlaky T., Pólik I., Di Pillo G., Fabio S.: Nonlinear 
optimization, Springer-Verlag, New York, 2010, 55-164. 

11. Hetmaniok Edyta, Zielonka Adam: Solving the Inverse Heat Conduction 
Problem by using the Ant Colony Optimization algorithm, in: CMM-2009 - 
Computer Methods in Mechanics, 18–21 May 2009, Zielona Góra, Poland, 
(2009), 205-206. 

12. Kolesnikov A.G.: To change the mathematical formulation of the problem of 
soil freezing, Reports of the USSR Academy of Sciences, Moscow, 82, 6, 
(1953), 889-891. (In Russian). 

13. Ljung Lennart: System Identification. Theory for the User. Second Edition. 
Prentice-Hall PTR, Linkoping University Sweden. New Jersey, 1999. 

14. Maier, G., Bocciarelli, M., Fedele, R.: Some innovative industrial prospects 
centered on inverse analyses, in: Z. Mroz, G. Stavroulakis Eds., Parameter 
Identification of Materials and Structures, CISM, Springer-Verlag, New 
York, 2005. 

15. Maier G. et al.: Synergic Combinations of Computational Methods and 
Experiments for Structural Diagnoses / Giulio Maier, Gabriella Bolzon, 
Vladimir Buljak, Tomasz Garbowski, Bartosz Miller, in: Computer Methods 
in Mechanics, Lectures of the CMM 2009, Springer-Verlag, Berlin, 
Heidelberg, 2010, 453-476. 

16. Mieczkowski P.: Calculating the temperature of upper layer of asphalt 
pavement - the physical model, Drogownictwo, 8, (2001), 230-235. (In 
Polish). 

17. Osipov Ju.S., Vasiljev F.P., Potapov M.M.: Fundamentals of dynamic 
regularization method. Moscow, Moscow State University, 1999. (In 
Russian). 

18. Peck L., Jordan R., Koenig G.: SNTHERM-RT Predictions of pavement  
temperature, U.S. Army Engineer Research and Development Center Cold 
Regios / Research and Engineering Laboratory (CRREL), August 2002. 

19. Ramm Alexander G.: Inverse problems mathematical and analytical 
techniques with applications to engineering: Mathematical and analytical 
techniques with applications to engineering, Springer Science, Business 
Media, Inc., New York, 2005. 

20. Samarski A. A., Vabischevich P.N.: Computational heat transfer, Editorial 
URSS, Moscow, 2003. (In Russian). = Samarski A. A., Vabischevich P.N.: 
Computational heat transfer, 1: Mathematical modeling; 2: The finite 
difference methodology, Wiley, New York, 1995. 



78 Piotr ALIAWDIN, Jarosław POŁCZYŃSKI 

 
 

21. Taler J., Duda P.: Solving of direct and inverse problems of heat transfer. 
WNT, Warszaw, 2003. (In Polish). 

22. Tarantola Albert: Inverse problem theory and methods for model parameter 
estimation, Society for Industrial and Applied Mathematics, Philadelphia, 
2005. 

23. Tikhonov, A.N., Arsenim, V.Y.: Solution of Ill-Posed Problems, Wiley, 
New York, 1977. 

24. Tikhonov A.N., Goncharsky A., Stepanov V.V., Yagola A.G.: Numerical 
methods for the solution of ill-posed problems, Springer-Verlag, New York, 
2011. 

25. Uhl, T.: Computer-aided identification of constructional models. WNT, 
Warsaw, 1997. (in Polish). 

26. Uhl, T., Lisowski, W. and Bochniak, W.: Problems of tuning the finite 
element models, AGH, Cracow, 2000. (in Polish). 

27. Zabaras, N.: Inverse problems in heat transfer, in: Handbook of numerical 
heat transfer / Ed. Minkowycz W.J. et al., Wiley, New York, 2006, 525-557. 

28. Zienkiewicz O.C., Taylor R.L. The Finite Element Method, 1: The Basis, 
Fifth edition, Butterworth Heinemann, Oxford, Auckland, Boston, 
Johannesburg, Melbourne, New Delhi, 2000. 
 

WYMIANA CIEPŁA W KONSTRUKCJI NAWIERZCHNI DROGOWEJ  
I IDENTYFIKACJA PARAMETRÓW MATERIAŁOWYCH TWORZĄCYCH JEJ 

WARSTWY 

S t r e s z c z e n i e  

W pracy przedstawiono identyfikację parametów materiałowych oraz warunków 
granicznych ośrodka niejednorodnego, jaki stanowi konstrukcja nawierzchni drogowej. 
Problem ten rozwiązano poprzez analizę wymiany ciepła dla układu „płyta 
wielowarstwowa – nasyp – podłoże gruntowe”. Na podstawie wieloletnich badań 
doświadczalnych rozkładu temperatury sformułowane zostały proste i odwrotne 
zagadnienia nieustalonego przepływu ciepła, zrealizowane przy pomocy metody 
elementów skończonych. Dla identyfikacji stosowane były metody gładkiej i niegładkiej 
optymalizacji z kryterium najmniejszych kwadratów oraz kryterium minimaxu. Druga z 
metod okazała się skuteczną, ponieważ w odróżnieniu od pierwszej możliwe było 
wyznaczenie optymalnych wartości wszystkich badanych materiałów tworzących 
warstwy konstrukcji drogowej. Podane przykłady analizy numerycznej porównane 
zostały z wynikami badań doświadczalnych uzyskanych z poligonów zlokalizowanych 
na drodze wojewódzkiej nr 296 w miejscowości Kożuchów w Polsce. 




