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The results of investigation in the area of designing of lightweight composite structures 
are presented. The thin, two-dimensional and linearly elastic disk reinforced with fiber-
mat and subjected to service loading is considered. The problem of optimal layout of the 
fiber-mat in the disk domain in order to obtain the minimal weight and the assumed 
mechanical properties of this structure is discussed. The adequate model of this structure 
and relevant optimality conditions for this type of design problem are derived. To solve 
of the problem, the optimization procedure based on the evolutionary algorithm is 
proposed. The problem of weight minimization of structural components reinforced with 
the fiber-mat is illustrated by simple numerical example. 
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1. INTRODUCTION 

During the last decades there has been a growing interest in using fibrous 
composite materials for products used in many areas of technical applications. 
This group of modern materials is different from more conventional ones. The 
fibrous composites can consist of unidirectional fibers, fiber-mat or woven 
fibers suspended in a matrix. The fibers are the principal reinforcing or load-
carrying agent. They are typically strong and stiff. The functions of the light 
matrix is to support and protect the fibers and to provide a means of distributing 
load among and transmitting load between the fibers. Thus, the fibrous 
composites are characterized by very good mechanical properties associated 
with their small weight and they are ideal for many structural components in 
which these properties are required. 
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The optimal design of the composite structure is a very complex process. 
To fulfill the small weight and assumed mechanical properties of the composite 
structure we can modify some its structural parameters, such as properties of the 
matrix and the reinforcing fibers, percentage participation of the fibers in the 
matrix or fiber shape and orientation. Thus, the correct design of such structures 
requires adequate analysis and, in particular, adequate and accurate models for 
numerical simulation. In the present paper, the results of investigation in the 
area of designing of the lightweight disks reinforced with fiber-mat are 
presented. These results can be treated as a starting point for optimal design of 
real composite structures subjected to service load. It will allow for avoiding 
expensive experimental testing, which can be reduced to the final phase of 
structural design. 

2. PROBLEM FORMULATION 

Let us consider a thin, two-dimensional and linearly elastic disk (Fig.1) 
supported on the boundary portion  SU with prescribed 
displacement u0 = {ux

0, uy
0} T and loaded by body forces f0 = {fx

0, fy
0} T with 

domain A as well as by external traction T0 = {Tx
0, Ty

0} T acting along the 
boundary portion ST. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two-dimensional composite disk subjected to service loading 

The material of the disk is a composite made of a matrix reinforced with  
a fiber-mat about lower mechanical properties compared to the matrix. This 
reinforcement consists of two orthogonal families of long and straight fibers. 
Let us assume that: 
• The matrix is homogeneous, isotropic and linearly elastic. The mass density 

of the matrix is γm, and the mechanical properties of matrix are characterized 
by Young’s modulus Em and Poisson’s ratio νm. 

• The fibers are homogeneous, isotropic and linearly elastic. They are 
regularly spaced and perfectly aligned in the matrix. The mass density of the 
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fibers is γm, and Young’s modulus and Poisson’s ratio are denoted by Ew and 
νw, respectively. 

• The fiber volume fraction in the composite material is ρw and it is the sum of 
volume of fiber ρw1 in the 1-direction and volume of fiber ρw2 in the 2-
direction of reinforcement. 

• The fibers layout at any point of the composite is defined by the fiber 
orientation θ, which is the angle between the fiber line in the 1-direction and 
the x-axis of the global coordinate system. 

• The fibrous composite is macroscopically homogeneous and linearly elastic 
material with orthotropic material properties. 

The general idea of the design of composite materials regards the 
modification of the structure parameters of the composite, such as properties of 
the reinforcing fibers and the matrix, percentage participation of the fibers in the 
material or fiber orientation. Each of these parameters influences the properties 
of composite material and can be treated as the design variable b during the 
optimal design of structural components made of the composite. 

The problem discussed in this paper concerns the optimal design of the 
composite structure in order to obtain the minimal weight of the disk with the 
imposed requirements in the range of its mechanical properties. This 
optimization problem can be written in general as the minimization of the mass 
density of the composite material, expressed in form as follows: 

( )( ) mmwwwcF γγγρρ +−+= 21.min  (2.1)

subjected to the global or local behavioral constraints: 
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where Γ and Ψ are continuous functions depending on the displacement 
u = {ux , uy}

T, strain e = {ex , ey , γxy}
T and stress σσσσ = {σx , σy , τxy}

T fields 
induced in the deformed disk for the configuration of composite structure 
described by design vector b. 

3. ANALYSIS OF STRUCTURAL BEHAVIOR 

The behavior of the composite disk shown in Fig.1 can be described by the 
equilibrium equation given in form [6]: 

00 =+ fσσσσdiv  (3.1)

as well a kinematical relation between the strain and the displacement fields [6]: 
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uBe ⋅=  (3.2)

where B is a linear differential operator relating the displacement field with the 
strain field. A linear stress-strain relation is assumed in the form of generalized 
Hooke’s law [6]: 

eD ⋅=σσσσ  (3.3)

where D denotes the extensional stiffness matrix for the model of the composite 
material reinforced with the fiber-mat. Besides, the disk is subjected to the 
boundary conditions expressed as follows [6]: 


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=⋅
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S

S

on0

0

uu

onTnσσσσ
 (3.4)

where n = {nx , ny}
T is the unit normal vector on the external boundary S of the 

disk. 
The set of equations (3.1)-(3.4) constitutes the boundary problem for the 

disk. This problem can be solved, for instance, with the aid of the finite element 
method (FEM). The detailed description of this method is presented in [1]. 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Material reinforced with fiber-mat: a) real composite, b) model of composite 

In analysis step of structural behavior, the microscopically non-homogeneous 
composite material is modeled by a plane, homogeneous, orthotropic and 
linearly elastic material (Fig.2). The purpose of the modeling process is to 
determine the extensional stiffness matrix D for that model in the global 
coordinate system and to express its components in terms of the mechanical 
properties of the fibers and the matrix, as well in terms of the fiber volume 
fraction and the fiber orientation. 

The extensional stiffness matrix D, appearing in (3.3), for the assumed 
model of composite in the global coordinate system x-y is expressed by [4]: 
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T−− ⋅⋅= TCTD 1  (3.5)

The matrix C denotes here the stiffness matrix for the composite with respect to 
the material axes 1-2, coinciding with the fiber directions and it has the 
following form [4]: 
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where E1 and E2 are the apparent Young’s moduli in the 1-direction and the  
2-direction, respectively, while ν12 is the major and ν21 is the minor Poisson’s’ 
ratio, and G12 denotes the in-plane shear modulus for the composite. Using the 
model of lamina, presented in [2], these so-called engineering constants are 
obtained in two steps of modeling process (Fig.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Two steps of modeling process for material reinforced with fiber-mat 
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First, the engineering constants for the material reinforced with one family of 
long fibers with the fiber volume fraction ρw1 are calculated as follows [2]: 
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(3.7)

Such unidirectionally fiber-reinforced composite is treated as an orthotropic 
matrix and next, it is reinforced with the second family of fibers with the fiber 
volume fraction ρw2 in the direction perpendicular to the 1-direction. Finally, the 
engineering constants for the bidirectionally fiber-reinforced composite can be 
expressed in the following form [2]: 
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The matrix T, appearing in equation (3.5), denotes the transformation matrix 
from the global coordinate system x-y to the material axes 1-2 and it has the 
form [4]: 
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This matrix is considered as the matrix function of fiber orientation angle θ. 
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4. OPTIMIZATION PROCEDURE 

To perform the optimization task, defined by equations (2.1)-(2.2), the 
evolutionary algorithm is proposed (Fig.4). This method based on the imitation 
of the evolution processes occurring in the nature still finds the growing interest 
in engineering design problems. The evolutionary algorithm is a simple, 
powerful and effective tool used for finding the best solution in a complicated 
space of design parameters and it is not limited by a restrictive assumption about 
the search space. This method needs only the information based on the value of 
objective function and constraints, which is its main advantage in comparison to 
the optimization methods based on the gradient information of the objective 
function and constraints. Besides, in contrast to deterministic methods, which 
often fall into a local optimum, the evolutionary algorithm always finds the 
global optimum or the solution close to this optimum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Flow chart of evolutionary algorithm 

It should be added that the evolutionary algorithm is generally suited for 
unconstrained optimization problems. Thus, in the case of the optimization 
problem with the constraints, the penalty function approach [3] is applied in the 
proposed algorithm. Using this approach, the constrained problem (2.1)-(2.2) is 
transformed to an unconstrained one as follows: 
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where αααα is a vector of positive coefficients of penalty functions, and ng is a 
number of inequality constraints in the constrained problem. 

As it is shown in Fig.4, the evolutionary algorithm starts from random 
selection of the initial population of N chromosomes. Each chromosome is a 
coded vector of design parameters b, and it represents a point in design space 
and describes one possible solution to the given problem. The floating point 
representation [5] is applied in this step of the evolutionary algorithm: 
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b  (4.2)

The notations bi(min) and bi(max) are the variable bounds for the i-th design 
parameter of the vector b, while r is a random number in range 〈0,1〉. 

Thereafter, all chromosomes in the current population are evaluated using 
the objective functional Fc: 
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=

ν  (4.3)

where v(chj) denotes a fitness value of the j-th chromosome. This value is 
related to the value of the objective functional Fc for the j-th vector of design 
parameters bj. The analysis of structural behavior is performed using the finite 
element method (FEM) in this step of the evolutionary algorithm. 

The current population is processed by three main operators of the 
evolutionary algorithm. They are deterministic selection, heuristic crossover and 
non-uniform mutation. Before these processes, the power law scaling [5] is 
applied in the algorithm. It is mainly responsible for the better search aspect of 
the evolutionary algorithm. At this point, the functional Z is transformed to the 
new form, so-called the fitness functional Fp, according to the rule: 
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where Zmin(b) and Zmax(b) denote minimal and maximal value of the functional Z 
in the current population, respectively, while a is a positive scaling parameter. 

The main idea of the selection operator is that „good” chromosomes are 
picked from the current population and multiple copies of them are created. As a 
result of this, „bad” chromosomes are eliminated from the population and do not 
undergo any further modification. The deterministic selection [5] is used in the 
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proposed version of the evolutionary algorithm. First, the selection probability 
for each chromosome pj is calculated as follows: 
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and next the number of its expected copies olk(ch) is obtained: 
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 (4.6)

The number of copies of each chromosome is equal to integer part of olk(ch). 
Finally, the chromosomes are placed in the population according to the 
fractional part of olk(ch) and the empty places in this population are filled with 
the copies of chromosomes from the beginning of the population. 

The heuristic crossover [5] operator recombines randomly chosen two 
parents chromosomes ch1 and ch2 to form a better child chromosome ch’, 
according to the following scheme: 

( ) )()(:where' 12212 chFchFchchchrch pp ≥+−=  (4.7)

where r is a random number in range 〈0,1〉. This operation is carried out with a 
crossover probability pc. It must be added that the child chromosome can be an 
infeasible solution. In this case, the crossover operator is repeated. 

As the last operator, the non-uniform mutation [5] is applied. This 
operator alters a chromosome locally: 

],...,',...,['],...,,...,[ 11 nijnij bbbchbbbch =→=  (4.8)

The component of the chromosome bi is chosen with a mutation probability pm. 
Its new value is calculated from the following relationship: 
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where bi(min) and bi(max) are the variable bounds for the i-th design parameter bi, r 
denotes a random number in range 〈0,1〉, k is a iteration number and LP is a 
maximal number of generations, while s defines a degree of non-uniform. 

Applying these three operators, a new population of solutions is created 
and the single cycle of the evolutionary algorithm, which is known as a 
generation, comes to the end. Each successive generation contains better „partial 
solutions” than in the previous generations, and converges towards the global 
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optimum. This procedure is continued until no substantial improvement of the 
best or average population statistics for a few consecutive generations. 

5. NUMERICAL EXAMPLE 

To illustrate the problem of optimal design of lightweight composite structure, 
simple numerical example is presented in this Section. 

Let us consider a thin disk supported along its left boundary and 
uniformly loaded by traction on the upper boundary, as it is shown in Fig.5. The 
material of the disk is a composite made of epoxy matrix reinforced with glass-
mat. The material data of the components of the composite material are given in 
Table 1.  
It is also assumed that the stiffness of reinforced disk corresponding to work 
done by external forces should be equal to 2.20 [J]. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Composite disk subjected to load and boundary conditions 

 

Table 1. Material data of components of composite material 

 γ [kg/m3] E [GPa] ν 

fibers (glass E) 2.49*103 75 0.25 

matrix (epoxy) 1.15*103 3.5 0.38 

The problem discussed in this example concerns the optimal orientation of the 
fiber-mat in the composite material so that the disk should be as light as 
possible. 

First, the reference solution for the composite disk reinforced with the 
glass-mat with the standard fiber orientation (00; 900) is presented in Fig.9. 
However, one can note that this solution corresponds to the assumed stiffness of 
the disk, but it does not guarantee a minimal weight of the disk. To fulfill the 
assumed requirements for the disk we can modify volume participation of the 
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reinforcing fibers and fiber orientation in the optimization process under actual 
loading conditions of this composite structure. 

The optimization problem, defined generally by equations (2.1)-(2.2), was 
written in the following form: 

( )( ) mmwwwcF γγγρρ +−+= 21.min  (5.1)

subjected to the global behavioral constraint: 
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where ρw1 and ρw2 are the fiber volume fractions in the 1-direction and 2-
direction of reinforcement, respectively and θ denotes the angle of fiber 
orientation between fiber line in the 1-direction and the x-axis of the global 
coordinate system x-y. These variables define the layout as well the volume 
participation of the fiber-mat in the composite and they were treated as the 
vector of design variables b, i.e. b = {ρw1, ρw2, θ }, which was determined in the 
optimization process. 

To solve the optimization task, the evolutionary algorithm, presented in 
Section 4 was used. The data of this algorithm are given in Table 2. To analyze 
the behavior of the disk, its domain was discretized into 15×10 two-dimensional 
four-node quadrilateral elements (Fig.6). 

Table 2. Data of evolutionary algorithm 

type of data value 

number of chromosomes in population N = 30 

positive scaling parameter a = 0.1 

crossover probability pc = 0.95 

replication number of crossover process rc = 10 

mutation probability pm = 0.20 

degree of non-uniform s = 0.9 

replication number of mutation process rm = 10 

stop criterion ws = 1e-4 

number of testing generations in stop criterion LG = 25 

maximal number of generations LPmax = 1000 
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Fig. 6. Discretization of disk domain using finite elements 

The design problem was considered for two cases of the fiber volume fraction in 
the directions of reinforcement. First, the same fiber volume fraction, and next 
different fiber volume fraction in the 1-direction and 2-direction was discussed. 
The results of the optimization process are given in Table 3, and the optimal 
layouts of the reinforcing fiber-mat in the disk domain are shown in Fig.7 and 8. 

Finally, these optimal solutions were compared with the reference 
solution (Fig.7) for the disk reinforced with the fiber-mat with the standard fiber 
orientation (00; 900) in order to qualify the results of the optimization. 

Table 3. Results of optimization process and reference solution 

 
fiber  

orientation 
fiber volume  

fraction 
mass density 

of disk 
stiffness 
of disk 

optimal  
solution 1 57.810; 147.810 

ρw1 = 0.28 

ρw2 = 0.28 
γ  = 1.90*103 

[kg/m3] 
2.20 [J] 

optimal  
solution 2 64.350; 154.350 

ρw1 = 0.14 

ρw2 = 0.38 
γ  = 1.85*103 

[kg/m3] 
2.20 [J] 

     

reference 
solution  00; 900 

ρw1 = 0.35 

ρw2 = 0.35 γ  = 2.09*103 
[kg/m3] 

2.20 [J] 
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Fig. 7. Optimal disk reinforced with fiber mat – case 1 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Optimal disk reinforced with fiber mat – case 2 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Reference disk reinforced with fiber mat 
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It can be easily observed from results presented in Table 3 as well Fig.7-9 that 
each of these solutions satisfies assumed mean stiffness of the disk. However, 
the optimal layout of the reinforcing fiber-mat in the disk domain with the same 
fiber volume fraction in the 1-direction and 2-direction decreases the weight of 
the disk by 10%, while in the case of different percentage participation of fibers 
in the directions of reinforcement, this weight decrease by 12%, when compared 
to the reference disk. 

6. CONCLUDING REMARKS 

The results of investigation in the area of designing of lightweight structural 
components reinforced with fiber-mat are presented in the paper. The results 
allow us to state that the minimal weight and the assumed requirements in the 
range of the mechanical properties for these composite structures can be 
obtained when the fibers are optimally distributed and oriented in the structure 
with respect to the assumed measure of structural behavior. For finding this 
optimal layout of the reinforcing fiber-mat in the structural components domain, 
the evolutionary algorithm was proposed. This algorithm can constitute an 
alternative technique for classical methods applied in optimization of composite 
structures, or can supplement them. 

The presented analysis can be also treated as a starting point for 
computer-oriented optimal design procedures of real structural components 
made of composite materials. Such a procedure can allow for avoiding 
expensive experimental testing, which can be reduced to the final phase of 
structural design. 
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OPTYMALNE PROJEKTOWANIE LEKKICH ELEMENTÓW 
KONSTRUKCYJNYCH WZMACNIONYCH MATAMI WŁÓKIENNICZYMI 

S t r e s z c z e n i e  

W pracy przedstawiono wyniki badań dotyczące optymalnego projektowania lekkich 
struktur kompozytowych. Obiektem badań były płaskie, dwuwymiarowe i liniowo-
sprężyste elementy konstrukcyjne wykonane z materiału kompozytowego wzmocnionego 
matą włókienniczą i obciążone statycznie siłami działającymi w ich płaszczyźnie. 
Projektowanie takich struktur rozpatrzono z uwagi na optymalne ułożenie maty 
włókienniczej w materiale kompozytowym, tak aby element konstrukcyjny wykonany z 
tego materiału uzyskiwał możliwie najmniejszą masę właściwą przy jednoczesnym 
spełnieniu stawianych wymagań w zakresie określonych własności mechanicznych. W 
pracy przedstawiono odpowiedni model struktury kompozytowej, warunki optymalnego 
rozwiązywania tego typu problemu, a do poszukiwania optymalnych rozwiązań 
zaproponowano metodę optymalizacyjną opartą na algorytmie ewolucyjnym. 
Rozpatrywany problem zilustrowano przykładem numerycznym.  Uzyskane wyniki mogą 
stanowić punkt wyjścia do projektowania optymalnej struktury materiałów 
kompozytowych wzmacnianych matami włókienniczymi i będących tworzywem 
konkretnej konstrukcji pracującej pod zadanym obciążeniem, pozwalając tym samym 
uniknąć kosztownych i pracochłonnych badań doświadczalnych, które można ograniczyć 
do końcowych badań eksperymentalnych gotowej konstrukcji. 
 




