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The results of investigation in the area of desigrof lightweight composite structures
are presented. The thin, two-dimensional and ligealastic disk reinforced with fiber-
mat and subjected to service loading is considélrkd.problem of optimal layout of the
fiber-mat in the disk domain in order to obtain timnimal weight and the assumed
mechanical properties of this structure is disadis$®e adequate model of this structure
and relevant optimality conditions for this typedw#sign problem are derived. To solve
of the problem, the optimization procedure basedtlen evolutionary algorithm is
proposed. The problem of weight minimization ofistural components reinforced with
the fiber-mat is illustrated by simple numericaample.
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1. INTRODUCTION

During the last decades there has been a growitggest in using fibrous
composite materials for products used in many aoéaschnical applications.
This group of modern materials is different fromrm@onventional ones. The
fibrous composites can consist of unidirectiondefs, fiber-mat or woven
fibers suspended in a matrix. The fibers are thecypal reinforcing or load-
carrying agent. They are typically strong and sflfhe functions of the light
matrix is to support and protect the fibers angrtavide a means of distributing
load among and transmitting load between the fibénsus, the fibrous
composites are characterized by very good mecHapicgerties associated
with their small weight and they are ideal for mastyuctural components in
which these properties are required.
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The optimal design of the composite structure very complex process.
To fulfill the small weight and assumed mechanpmalperties of the composite
structure we can modify some its structural paramnsesuch as properties of the
matrix and the reinforcing fibers, percentage parétion of the fibers in the
matrix or fiber shape and orientation. Thus, theex design of such structures
requires adequate analysis and, in particular, wategand accurate models for
numerical simulation. In the present paper, thelltesof investigation in the
area of designing of the lightweight disks reinfcwith fiber-mat are
presented. These results can be treated as agtpdint for optimal design of
real composite structures subjected to service. ltagill allow for avoiding
expensive experimental testing, which can be reditoethe final phase of
structural design.

2. PROBLEM FORMULATION

Let us consider a thin, two-dimensional and lingaglastic disk (Fig.1)
supported on the boundary  portion §;  with prescribed
displacement® = {u,’, u} T and loaded by body force€ = {f.%,f,%}" with
domainA as well as by external tractiof®={T,%, T,}" acting along the
boundary portiorg.

fibers (3, Ew, Yw P, pu2)

MatriX (7, Em, ) w2 4
ARTTIHRY <0
R
agatsteleletel

Fig. 1. Two-dimensional composite disk subjectedexvice loading

The material of the disk is a composite made of arim reinforced with
a fiber-mat about lower mechanical properties caegbeo the matrix. This
reinforcement consists of two orthogonal familidslang and straight fibers.
Let us assume that:

* The matrix is homogeneous, isotropic and linealdgtec. The mass density
of the matrix isy,, and the mechanical properties of matrix are atarzed
by Young’'s modulug,, and Poisson’s ratio..

 The fibers are homogeneous, isotropic and linealgstic. They are
regularly spaced and perfectly aligned in the mairhe mass density of the
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fibers isyy, and Young's modulus and Poisson’s ratio are aehbyE,, and
Vi, respectively.

» The fiber volume fraction in the composite mateisah, and it is the sum of
volume of fiberg, in the 1-direction and volume of fibgg, in the 2-
direction of reinforcement.

» The fibers layout at any point of the compositedefined by the fiber
orientationd, which is the angle between the fiber line in 1hdirection and
thex-axis of the global coordinate system.

» The fibrous composite is macroscopically homogereand linearly elastic
material with orthotropic material properties.

The general idea of the design of composite madseneagards the
modification of the structure parameters of the posite, such as properties of
the reinforcing fibers and the matrix, percentaggipipation of the fibers in the
material or fiber orientation. Each of these paranmeinfluences the properties
of composite material and can be treated as thgrdesriableb during the
optimal design of structural components made ottimaposite.

The problem discussed in this paper concerns thienapdesign of the
composite structure in order to obtain the minimvaight of the disk with the
imposed requirements in the range of its mechanjalperties. This
optimization problem can be written in generaltzs inimization of the mass
density of the composite material, expressed imfas follows:

min. F; =(0u0 + Puz) Ve = Vi) + Vin (2.2)

subjected to the global or local behavioral corstsa
jr(o,e,u,b) dA+ jw(TO,u) ds; |-G, <0 (2.2)
A S

where ' and W are continuous functions depending on the dispiacs

u={u,u}’, strain e={e., e, K} and stresso={c, g, i}  fields

induced in the deformed disk for the configuratioh composite structure
described by design vectbr

3. ANALYSISOF STRUCTURAL BEHAVIOR

The behavior of the composite disk shown in Figah be described by the
equilibrium equation given in form [6]:

divo+f°=0 (3.1)

as well a kinematical relation between the straith the displacement fields [6]:
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e=Blu (3.2)

whereB is a linear differential operator relating thepdésement field with the
strain field. A linear stress-strain relation is@®ed in the form of generalized
Hooke’s law [6]:

o=Dle (3.3)

whereD denotes the extensional stiffness matrix for tloeleh of the composite
material reinforced with the fiber-mat. Besidese tthisk is subjected to the
boundary conditions expressed as follows [6]:

om=T° onS;
{uzu0 ons, (3.4)

wheren = {n,, ny}T is the unit normal vector on the external bound&aof the
disk.

The set of equations (3.1)-(3.4) constitutes thendary problem for the
disk. This problem can be solved, for instancehlie aid of the finite element
method (FEM). The detailed description of this noeltis presented in [1].

fibers (%, Ew, Yw, O, Puz)

Dy = Dy (Em, Vim, Ew, Yur pw, )
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Fig. 2. Material reinforced with fiber-mat: a) re@mposite, b) model of composite

In analysis step of structural behavior, the micopécally non-homogeneous
composite material is modeled by a plane, homoges)eorthotropic and
linearly elastic material (Fig.2). The purpose b€ tmodeling process is to
determine the extensional stiffness matix for that model in the global
coordinate system and to express its componentsrins of the mechanical
properties of the fibers and the matrix, as wellténrms of the fiber volume
fraction and the fiber orientation.

The extensional stiffness matrl, appearing in (3.3), for the assumed
model of composite in the global coordinate systenis expressed by [4]:
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D=Tlco™’

(3.5)

The matrixC denotes here the stiffness matrix for the compasith respect to
the material axes 1-2, coinciding with the fiberediions and it has the

following form [4]:

E EWVa
1-viVy 1-VipVy
c=| Ewp E,
1-vpVy 1-vly
0 0

0

0

G, i

(3.6)

whereE; and E, are the apparent Young's moduli in the 1-directéord the
2-direction, respectively, while;, is the major and; is the minor Poisson’s’
ratio, andG,, denotes the in-plane shear modulus for the corgddsing the

model of lamina, presented in [2], these so-cakegineering constants are
obtained in two steps of modeling process (Fig.3).
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Fig. 3. Two steps of modeling process for mategaiforced with fiber-mat
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First, the engineering constants for the mategaiforced with one family of
long fibers with the fiber volume fractigm, are calculated as follows [2]:

El(l) = EWIOV\ﬂ. + Em (1_ IOV\/].)

L0 = Ew[l"' (ke _1):0w1]
[pm +ke 0= Py )] [1+ (kE _1):0\/\/1] - (kEVm - Vw)2 P L= Py1)
E
=Pt p) v v 37
o 0 __ Enlke @+vo)A+ pun) + @+ v,)0 o))

2@+ vy ke @V ) A= Py) + LH V) AH p)]

where kg = E%E
m

Such unidirectionally fiber-reinforced composite tigated as an orthotropic
matrix and next, it is reinforced with the secoadlily of fibers with the fiber
volume fractiong,, in the direction perpendicular to the 1-directibmally, the
engineering constants for the bidirectionally fipeinforced composite can be
expressed in the following form [2]:

E,=E,o,+E?1-p,) where E® =E,® for p, = p,,

E,=E,0w + Ez(l) A= Pu2)

E 3.8
Vo1 =V Pz + Vo1 A= D) and v, = VZlE_l 58)
2
+ +
= _ks@+p0) + (1= pwz) G, where kg :%
k (1 pwz) + (1+ pwz) 2(:I--‘_\/W)GR

The matrixT, appearing in equation (3.5), denotes the transfton matrix
from the global coordinate systeay to the material axes 1-2 and it has the
form [4]:
cos’ 6 sin’ @ 2sindcosd
T=| sin’@ cosd - 2sinfcosd (3.8)
-sinfcosf sinfcosd cos G -sin® 8

This matrix is considered as the matrix functiorfibér orientation anglé.
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4. OPTIMIZATION PROCEDURE

To perform the optimization task, defined by equadi (2.1)-(2.2), the
evolutionary algorithm is proposed (Fig.4). Thisthasl based on the imitation
of the evolution processes occurring in the nastitefinds the growing interest
in engineering design problems. The evolutionargoathm is a simple,
powerful and effective tool used for finding thesbsolution in a complicated
space of design parameters and it is not limited lgstrictive assumption about
the search space. This method needs only the iat@mmbased on the value of
objective function and constraints, which is itsmadvantage in comparison to
the optimization methods based on the gradientrimdition of the objective
function and constraints. Besides, in contrastdtemninistic methods, which
often fall into a local optimum, the evolutionarigerithm always finds the
global optimum or the solution close to this optimu

START

GENERATION OF EVALUATION OF
INITIAL POPULATION | 9  CURRENT POPULATION |4 ANALYSIS (FEM)

stop
criterion?

OPERATION OF

CURRENT POPULATION
» DETERMINISTIC SELECTION
» HEURISTIC CROSSOVER
* NON-UNIFORM MUTATION

'

CURRENT POPULATION
= NEW POPULATION

Fig. 4. Flow chart of evolutionary algorithm

It should be added that the evolutionary algoritiengenerally suited for
unconstrained optimization problems. Thus, in tlasecof the optimization
problem with the constraints, the penalty funcimproach [3] is applied in the
proposed algorithm. Using this approach, the camstd problem (2.1)-(2.2) is
transformed to an unconstrained one as follows:
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min. Z (b, ) = min.| £, (b) +%iai [max.©G, (b)) (4.1)

i=1

wherea is a vector of positive coefficients of penaltynétions, andng is a
number of inequality constraints in the constraipeablem.

As it is shown in Fig.4, the evolutionary algorithstarts from random
selection of the initial population dff chromosomes. Each chromosome is a
coded vector of design parametérsand it represents a point in design space
and describes one possible solution to the givelpm. The floating point
representation [5] is applied in this step of theletionary algorithm:

ch, - b, =[b,b,,...b,] where i:/l\pbi =B min) + T (Bimaxy = Biminy) (4.2)
The notationsbiminy and bimaxy are the variable bounds for theh design
parameter of the vectdx;, whiler is a random number in ran¢@ 1).

Thereatfter, all chromosomes in the current popaiasire evaluated using

the objective functiondf..

A
=L..

J v(ch))=F.(b;) (4.3)

N
where v(ch) denotes a fitness value of tiih chromosome. This value is
related to the value of the objective functioRalfor thej-th vector of design
parameter®;. The analysis of structural behavior is perfornusthg the finite
element method (FEM) in this step of the evolutigredgorithm.

The current population is processed by three maiaraiors of the
evolutionary algorithm. They are deterministic sétan, heuristic crossover and
non-uniform mutation. Before these processes, thwwep law scaling [5] is
applied in the algorithm. It is mainly responsilibe the better search aspect of
the evolutionary algorithm. At this point, the faional Z is transformed to the
new form, so-called the fitness functiofig| according to the rule:

(_a Z(0)=Znin (0) j
Fp (b) —e Zmax(b)=Zmin (b) (4.4)
whereZ,in(b) andZ,.(b) denote minimal and maximal value of the functiacha
in the current population, respectively, whilés a positive scaling parameter.

The main idea of the selection operator is thabgjochromosomes are
picked from the current population and multiple iespof them are created. As a
result of this, ,bad” chromosomes are eliminatemhfithe population and do not
undergo any further modification. The determinisédection [5] is used in the
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proposed version of the evolutionary algorithmskithe selection probability
for each chromosomg is calculated as follows:

3R6) 9
=1

and next the number of its expected copiég, is obtained:
Oy = Py N (4.6)

The number of copies of each chromosome is equaltémer part ofolkr.
Finally, the chromosomes are placed in the popmrataccording to the
fractional part ofolk., and the empty places in this population are filgth
the copies of chromosomes from the beginning optiulation.

The heuristic crossover [5] operator recombinegdoarly chosen two
parents chromosomesh; and ch, to form a better child chromosorb,
according to the following scheme:

ch=r(ch, -ch)+ch,  where F,(ch,)2=F,(ch) (4.7)

wherer is a random number in rang@,1). This operation is carried out with a
crossover probabilitp.. It must be added that the child chromosome caarbe
infeasible solution. In this case, the crossoverator is repeated.

As the last operator, the non-uniform mutation |S] applied. This
operator alters a chromosome locally:

ch =[by,..b . ,b] = ch'=[b,..b" ... b, (4.8)

The component of the chromosoimds chosen with a mutation probabiljby.
Its new value is calculated from the following t@aship:

b + -1 &9P%) (0,00 —b) if 1=0
b'= (4.9)
b, _(1_r(1_k/ LP)S)(bl _bi(min)) if 1=1
wherebminy andbimax are the variable bounds for théh design parametéy, r
denotes aandom number in rang®,l), k is a iteration number andP is a
maximal number of generations, whielefines a degree of non-uniform.
Applying these three operators, a new populatiosabfitions is created
and the single cycle of the evolutionary algorithwhich is known as a
generation, comes to the end. Each successiveai@mecontains better ,partial
solutions” than in the previous generations, anadvecges towards the global



88 Jacek WISNIEWSKI, Krzysztof DEMS

optimum. This procedure is continued until no sabsal improvement of the
best or average population statistics for a fewseontive generations.

5. NUMERICAL EXAMPLE

To illustrate the problem of optimal design of ligleight composite structure,
simple numerical example is presented in this Secti

Let us consider a thin disk supported along it¢ ldundary and
uniformly loaded by traction on the upper boundasjt is shown in Fig.5. The
material of the disk is a composite made of eposyrixireinforced with glass-
mat. The material data of the components of theposite material are given in
Table 1.
It is also assumed that the stiffness of reinfordeskk corresponding to work
done by external forces should be equal to 2.20 [J]

12 MPa

200 mm

AL ELLLALALALT AL LY "y

4¢——— 300 mm ~——p

Fig. 5. Composite disk subjected to load and bogndanditions

Table 1. Material data of components of composiéenial

y[kg/m?] E [GPa] v
fibers (glass E) 2.49*F0 75 0.25
matrix (epoxy) 1.15*1® 35 0.38

The problem discussed in this example concern®phienal orientation of the
fiber-mat in the composite material so that thekdibiould be as light as
possible.

First, the reference solution for the compositek diminforced with the
glass-mat with the standard fiber orientatioff; €0f) is presented in Fig.9.
However, one can note that this solution correspdaadhe assumed stiffness of
the disk, but it does not guarantee a minimal wedajithe disk. To fulfill the
assumed requirements for the disk we can modifunael participation of the
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reinforcing fibers and fiber orientation in the iopization process under actual
loading conditions of this composite structure.

The optimization problem, defined generally by dopres (2.1)-(2.2), was
written in the following form:

min. Fc:(pm+pw2)(yw_ym)+ym (51)

subjected to the global behavioral constraint:

T 0 _
ju T°dS, - STIFF, <0 5.2)
S
and the geometrical constraints:
0< Pyt P <1
S e (5.3)
0"<6<90

where g, and g, are the fiber volume fractions in the 1-directiand 2-
direction of reinforcement, respectively aréll denotes the angle of fiber
orientation between fiber line in the 1-directiondathe x-axis of the global
coordinate systemy. These variables define the layout as well thauwa
participation of the fiber-mat in the composite ath@y were treated as the
vector of design variablds i.e.b = {0, Aw, 8}, which was determined in the
optimization process.

To solve the optimization task, the evolutionargogithm, presented in
Section 4 was used. The data of this algorithmgaren in Table 2. To analyze
the behavior of the disk, its domain was discretizgo 15<10 two-dimensional
four-node quadrilateral elements (Fig.6).

Table 2. Data of evolutionary algorithm

type of data value
number of chromosomes in population N =230
positive scaling parameter a=0.1
crossover probability p. = 0.95
replication number of crossover process rc =10
mutation probability pm = 0.20
degree of non-uniform s=0.9
replication number of mutation process rm=10
stop criterion ws= le-4
number of testing generations in stop criterign LG =25
maximal number of generations LPax= 1000
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Fig. 6. Discretization of disk domain using fingeements

The design problem was considered for two casésediiber volume fraction in
the directions of reinforcement. First, the sanberfivolume fraction, and next
different fiber volume fraction in the 1-directi@amd 2-direction was discussed.
The results of the optimization process are givemable 3, and the optimal
layouts of the reinforcing fiber-mat in the diskna@in are shown in Fig.7 and 8.

Finally, these optimal solutions were compared wille reference
solution (Fig.7) for the disk reinforced with thedr-mat with the standard fiber
orientation (8; 90°) in order to qualify the results of the optimizati

Table 3. Results of optimization process and refezesolution

fiber fiber volume mass density stiffness
orientation fraction of disk of disk

optimal Pur =0.28 _

. _ y =1.90*10
solution 1 57.81,147.88 |  , -0.08 g/ 2.20[J]
optimal P =0.14 _

) _ y = 1.85*10
solution 2 64.35,154.35 |, -0.38 kg/m] 2.20[J]
reference Pur = 0.35 é
solution 0. =035 y =2.09*1

0% o Pz kg/m] 2.20 [J]




WEIGHT MINIMIZATION OF STRUCTURAL COMPONENTS ...

91

"

l—
j—
le—

l—
»
le—

l¢—
l—
l—
l€e—
l—
]

1
i j 9=57.81°
) 4

fibers 1 —28%

ARLNAL AL AL e Ny o

matrix ~ 44% q

fibers 2 — 28%

y=1.90*10° [kg/m’)
STIFF=2.20 [J]

Fig. 7. Optimal disk reinforced with fiber mat —seal

S

j—

l—
l——|

9=64.35"

-

fibers 1 - 14%

AANENL LSRR L L b

matrix — 48%

fibers 2 — 38%

7= 1.85*10° [kg/m’]
STIFF=2.20[J]

Fig. 8. Optimal disk reinforced with fiber mat —sea2

RRRNEE

<.—.
<
»

CCRXN

fibers 1 — 35%

(X

matrix — 30%

7= 2.09*10° [kg/m¥]
fibers 2 — 35%

STIFF =220 [J]
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It can be easily observed from results presentethlvie 3 as well Fig.7-9 that

each of these solutions satisfies assumed mednessf of the disk. However,

the optimal layout of the reinforcing fiber-mattime disk domain with the same
fiber volume fraction in the 1-direction and 2-ditien decreases the weight of
the disk by 10%, while in the case of differentqegitage participation of fibers

in the directions of reinforcement, this weight &se by 12%, when compared
to the reference disk.

6. CONCLUDING REMARKS

The results of investigation in the area of designof lightweight structural
components reinforced with fiber-mat are preseritethe paper. The results
allow us to state that the minimal weight and teeuaned requirements in the
range of the mechanical properties for these coitgpasructures can be
obtained when the fibers are optimally distribugedl oriented in the structure
with respect to the assumed measure of structwhavior. For finding this
optimal layout of the reinforcing fiber-mat in teguctural components domain,
the evolutionary algorithm was proposed. This atbor can constitute an
alternative technique for classical methods appgheabtimization of composite
structures, or can supplement them.

The presented analysis can be also treated as rtingtgoint for
computer-oriented optimal design procedures of sgalctural components
made of composite materials. Such a procedure dlanv dor avoiding
expensive experimental testing, which can be reditoethe final phase of
structural design.
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OPTYMALNE PROJEKTOWANIE LEKKICH ELEMENTOW
KONSTRUKCYJNYCH WZMACNIONYCH MATAMI WEOKIENNICZYMI

Streszczenie

W pracy przedstawiono wyniki basladotyczce optymalnego projektowania lekkich
struktur kompozytowych. Obiektem baddyty ptaskie, dwuwymiarowe i liniowo-
sprezyste elementy konstrukcyjne wykonane z materialmpo@zytowego wzmocnionego
mati wtokiennicz, i obcihzone statycznie sitami dziatlmymi w ich plaszczinie.
Projektowanie takich struktur rozpatrzono z uwag@ optymalne ulzenie maty
wiékienniczej w materiale kompozytowym, tak abyneéat konstrukcyjny wykonany z
tego materiatlu uzyskiwat nibwie najmniejsa mag wilasciwa przy jednoczesnym
spetnieniu stawianych wymagav zakresie okrdonych wtasnéci mechanicznych. W
pracy przedstawiono odpowiedni model struktury komypowej, warunki optymalnego
rozwiazywania tego typu problemu, a do poszukiwania optggcth rozwizan
zaproponowano meted optymalizacyja opart na algorytmie ewolucyjnym.
Rozpatrywany problem zilustrowano przyktadem nuroenym. Uzyskane wyniki mag
stanowé punkt wygcia do projektowania optymalnej struktury matenatd
kompozytowych wzmacnianych matami witékienniczymi bedacych tworzywem
konkretnej konstrukcji pracggej pod zadanym ohgieniem, pozwalac tym samym
uniknma¢ kosztownych i pracochtonnych baddoswiadczalnych, ktére mamma ograniczy
do kaicowych bada eksperymentalnych gotowej konstrukciji.





