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In this paper it is analysed a stationary heat conduction in laminates made of two 
materials non-periodically distributed as microlaminas along one direction. It is assumed 
that this laminate has a functionally (transversally) graded macrostructure along this 
direction. Some effects of the microstructure in a distribution of a temperature are 
investigated using the tolerance modelling, cf. the book edited by Cz. Woźniak et al. [6]. 
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1. INTRODUCTION 

In this contribution there are considered laminates, which are made of two 
materials. It is assumed that these materials are distributed non-periodically 
along a direction normal to laminas. Every lamina consists of two sub-laminas 
and has thickness λ. On the macroscopic level these composites have averaged 
(macroscopic) properties continuously varying along the direction normal to 
laminas, cf. Fig. 1a. On the microlevel, their microstructure is defined by a non-
uniform distribution function – λ=λ(x), cf. Fig. 1b. These laminates are treated 
as made of functionally graded materials (FGM), cf. [10]. Hence, they can be 
called transversally graded laminates with non-uniform distribution of laminas. 

FGM-type laminates are usually analysed by using methods proposed for 
macroscopically homogeneous structures, e.g. periodic laminates, cf. [10]. 
Between these methods there can be mentioned those based on the asymptotic 
homogenization, cf. [5]. Models with microlocal parameters are also used to 
analyse heat conduction in periodic laminates, cf. [7]. Unfortunatelly, equations 
of these models neglect usually the effect of the microstructure size. 
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On the other hand, this effect can be described in the framework of the 
tolerance modelling, proposed to the modelling non-stationary problems for 
periodic composites in the book [12]. This method was adopted to investigate 
various problems of FGM-type structures in a series of papers, e.g. for a heat 
conduction in transversally graded laminates in [1-4] and in longitudinally 
graded composites in [8, 9]. Certain summarisons of applications of this 
technique for composites and structures of this kind can be found in [11, 6]. 
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Fig. 1. A cross section of a transversally graded laminate: a) on the macroscopic level,  

b) on the microscopic level – a non-uniform distribution of laminas 

The main aim of this note is to use the tolerance model equations of heat 
conduction for transversally graded laminates with non-uniform distribution of 
laminas (TGL), cf. Fig. 1b, to investigate a stationary heat conduction along the 
direction normal to laminas. Here, there are shown distributions of the total 
temperature in the laminate. Some effects of the cell distribution and material 
properties on the temperature are presented. 

2. MODELLING FOUNDATIONS 

It is assumed that subscripts i, j, …, are related to the coordinate system Ox1x2, 
and run over 1, 2. Let us denote: x≡x1; by t the time coordinate; by ∂i derivatives 
of xi; and also ∂≡∂1. The layer thickness along the x-axis is equal H and the 
length dimension along the x2-axis is equal L. The region on the plane Ox1x2 
occupied by this layer is denoted by Ω×Ξ, where Ω≡(0,H), Ξ≡(0,L). The 
laminate is made of two materials distributed in m laminas having the varied 
thickness λ. These materials have heat conduction tensors with components 

ijij kk ′′′  , , i,j=1,2. Let the 1st material have the constant thickness l (cf. Fig. 1b), 

such that l<<H. This thickness is called the microstructure parameter. Every nth 
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lamina has not constant thickness λn. Hence, the nth lamina consists of two 
homogeneous sub-laminas having thicknesses const==λ′ ln  and lnn −λ=λ′′ , cf. 

Fig. 1b. Let us introduce material volume fractions in the nth lamina defined as 

nnnnn l λλ′′≡ν′′λ≡ν′ / ,/ . Sequence }{ nν′ , n=1,…,m, is monotone and satisfies 

condition 1|| 1 <<ν′−ν′ + nn , for n=1,…,m−1. Since 1=ν′′+ν′ nn  sequence }{ nν′′  

satisfies similar conditions. We can approximate sequences }{ nν′ , }{ nν′′ , 

n=1,…,m, by continuous functions ν′(·), ν″(·), which describe the gradation of 
material properties along the x-axis. Similarly, we can approximate sequence 
{ λn} of laminas thicknesses by function λ(x). The functions ν′(·), ν″(·) are called 
the fraction ratios of materials, cf. [4]. Let us also introduce the non-
homogeneity ratio ν defined by ν(·)≡[ν′(·)ν″(·)]½. Although for these laminates 
a basic cell in Ω cannot be determined, we can define a certain non-uniform cell 
distribution in Ω as ]2/)(,2/)([)( xxxxx λ+λ−≡Ω , where λ(x) is called the cell 

distribution function. All these functions (ν′(·), ν″(·), λ(·)) are assumed to be 
slowly-varying, cf. [11]. Hence, the layer under consideration is called the 
transversally graded laminated layer (the TGL layer). 

Let θ denote the unknown temperature field. Moreover, the stationary 
heat conduction problem in the TGL layer is analysed within the Fourier’s 
model, i.e. it is described by the following equation (without heat sources): 

 ,0)( =θ∂∂ jiji k  (2.1) 

where coefficients kij=kij(x) are highly-oscillating, tolerance-periodic, non-
continuous functions in x. Since equation (2.1) is not a good tool to investigate 
heat conduction problems it can be replaced by differential equations having 
slowly-varying coefficients using the tolerance modelling, cf. [6]. 

3. BASIC CONCEPTS 

In the modelling some introductory concepts defined in [11, 6] are used, e.g. an 
averaging operator, a tolerance-periodic function, a slowly-varying function, a 
highly oscillating function. Here, some of them are mentioned. 

The averaging operator for an arbitrary integrable function f (which can 
also depend on x2), defined in Ω , has the form 

 ].2/)(,2/)([,)()()(
2/)(

2/)(
1 xHxxdfxxf

xx

xx
λ−λ∈ξξλ=>< ∫

λ+

λ−
−  (3.1) 

It can be observed that for tolerance-periodic function f of x, its averaged value 
calculated from (3.1) is a slowly-varying function in x, cf. [11, 6]. 
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Denote by ∂kf the k-th gradient of function f=f(x), x∈Ω, k=0,1, ∂0f≡f; by ),(~ )( ⋅⋅kf  

– a function defined in mR×Ω ; and by δ – the tolerance parameter. 
Function f∈H1(Ω) is the tolerance-periodic function, ),(1 ΩΩ∈ δTPf , if for 

k=0,1 the following conditions hold: 

(i) ))(),(~()( 0)( ΩHxfx k ∈⋅∃Ω∈∀  ]||),(~)([|| )(
)(

0 δ≤⋅−⋅∂ ΩΩ xx H
kk xff , 

(ii) ∫ ⋅
Ω∈⋅

)(
0)( )(),(~

Ω
Cdzzf k . 

where the periodic approximation of fk∂  in ,),( Ω∈xxΩ  is denoted by 

),(~ )( ⋅xf k , k=0,1. 

Function F∈H1(Ω) is the slowly-varying function, ),(1 ΩΩ∈ δSVF , if 

(i) ),(1 ΩΩ∈ δTPF , 

(ii) ]1,0),(|),(~[)( )(
)( =∂=⋅Ω∈∀ kxFxFx k

x
k

Ω . 

Periodic approximation )(~ kF  of )(⋅∂ Fk  in )(xΩ  is a constant function for every 

x∈Ω. 
Function φ∈H1(Ω) is the highly oscillating function, ),(1 ΩΩ∈φ δHO , if 

(i) ),(1 ΩΩ∈φ δTP , 

(ii) ]1,0),(~|),(~[)( )(
)( =φ∂=⋅φΩ∈∀ kxxx k

x
k

Ω , 

(iii) ),( ΩΩ∈∀ α
δSVF  ),( ΩΩ∈φ≡∃ α

δTPFf   

  1,|)(~)(|),(~
)()(

)( =φ∂=⋅ kxxFxf
xx

kk
ΩΩ

. 

If α=0 then we denote )0(~~ ff ≡ . 

Let h(⋅) be a highly oscillating, continuous function, ),(1 ΩΩ∈ δHOh , 

defined on Ω , with piecewise continuous and bounded gradient ∂1h. Function 
h(⋅) is the fluctuation shape function of the 1st kind, if it depends on l as a 
parameter and satisfies conditions: 

(1º) ∂kh∈O(l 1−k) for k=0,1, ∂0h≡h, 
(2º) <h>(x)≈0 for every x∈Ω. 

A set of all fluctuation shape functions of the 1st kind is denoted by ),(1 ΩΩδFS . 

4. MODELLING ASSUMPTIONS 

Following [11, 6] and using the introductory concepts two fundamental 
modelling assumptions can be formulated. 

The micro-macro decomposition is the fundamental assumption, in which 
it is assumed that temperature θ can be decomposed in the form 

 θ(x,x2)=W(x,x2)+h(x)Q(x,x2), (4.1) 
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with basic unknowns ),(),(),,( 1
22 ΩΩ∈⋅⋅ δSVxQxW  and the known fluctuation 

shape function ),()( 1 ΩΩ∈⋅ δFSh . Function W(⋅,x2) is called the 

macrotemperature, but the additional unknown Q(⋅,x2) is the fluctuation 
amplitude. It is assumed that h(⋅) is continuous, linear across every sub-lamina 
thickness and of an order O(l) function, which satisfies conditions (1º)-(2º). It 
can be given by: 










λν′λ−λ∈ν′′−
λν′

ν

ν′′λ+λ−λ−∈ν′+
λν′′

ν−
=

)),(),()()((for)](
)(

2[
)(
)(3

)),()()(),((for)](
)(

2[
)(
)(3

)(

2
1

2
1

2
1

2
1

xxxxxx
x

x
x
xl

xxxxxx
x

x
x
xl

xh  (4.2) 

with x  being a centre of )(⋅Ω , cf. [11]. 

The next modelling assumption is the tolerance averaging 
approximation, in which it is assumed that terms O(δ) are negligibly small, e.g.: 

 
).,(),,(),,(;10;

),()()()()(
)()()()(),()()(

111 ,,, Ω∈Ω∈Ω∈<<δ<Ω∈
δ+>∂=<>∂<

δ+>=<><δ+>=<><

δδδ FShSVFTPfx
OxFxhfxhFf

OxFxfxfFOxfxf
 

5. TOLERANCE MODELLING 

Following [6] the modelling procedure is outlined here. In the first step, the 
action functional is formulated 

 ,)),,(),,,(,())(( ∫ ∫
Ω Ξ

ξξθξθ∂=⋅θ dzdtztzz iΛΑ  (5.1) 

with the lagrangean ) ,(),,( 0 ΩΩ∈θθ∂⋅ δHOiΛ  given by 

 .2
1 θ∂θ∂= jiji kΛ  (5.2) 

Hence, the Euler-Lagrange equation takes the form 

 .0
  

=
θ∂

∂−
θ∂∂

∂∂ ΛΛ
j

j  (5.3) 

Using the principle of stationary action from equation (5.3) (combined with 
(5.2)) the fundamental equation of the Fourier’s heat conduction (2.1) is 
derived. The second step is the application of the tolerance modelling to action 
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functional (5.1). Substituting micro-macro decomposition (4.1) to (5.1) and 
averaging by (3.1), we obtain the tolerance averaging of functional ))(( ⋅θΑ  

 ,),,,,(),( 2∫ ∫
Ω Ξ

ξϑ∂∂><= dxdQQWxQW ihh ΛΑ  

with the averaged lagrangean >< hΛ  in the form 

 
).

(

11

2
2

222112
1

WhkQQhkW
QhkQQhhkQWkW

jjii

jijih

∂>∂<+>∂<∂+
+∂><∂+>∂∂<+∂><∂>=< Λ

 (5.4) 

Using the principle of stationary action to lagrangean hΑ  Euler-Lagrange 

equations take the form: 

 
.0

 

,0
)(

2
2 =

∂
><∂−

∂∂
><∂∂

=
∂

><∂−
∂∂

><∂∂

QQ

WW
hh

h

i

h
i

ΛΛ

ΛΛ

 (5.5) 

The above equations have slowly-varying, functional coefficients. 

6. TOLERANCE MODEL EQUATIONS 

Substituting (5.4) to (5.5) we obtain the averaged heat conduction equations: 

 
,0)())(()()(

,0))(()())((
2222

22
1111

11222211

=∂><ν−>∂∂<+∂>∂<
=>∂<∂+∂><+∂><∂

QxkxlQxhhkWxhk
QxhkWxkWxk  (6.1) 

involving a term depending explicitly on the microstructure parameter l. The 
above equations have slowly-varying, functional coefficients, in contrast to 
equation (2.1) with functional, non-continuous, highly oscillating coefficients. 

Heat conduction for transversally graded laminates is described in the 
framework of the tolerance model by equations (6.1) together with micro-macro 
decomposition (4.1). These equations make it possible to investigate the effect 
of the microstructure size on heat transfer for these composites. For the TGL 
layer we have to formulate boundary conditions for the macrotemperature W on 
the edges x=0, H, x2=0, L, but for the fluctuation amplitude Q on the edges 
x2=0, L. Unknowns W, Q have a physical sense under conditions 

),(),( 1
2 ΩΩ∈⋅ δSVxW  ),(),( 1

2 ΩΩ∈⋅ δSVxQ , being a posteriori evaluation of 

tolerance parameter δ. 
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7. APPLICATIONS – HEAT CONDUCTION ACROSS LAMINAS 

7.1. Introduction 
Let us assume that the TGL layer subjected to a thermal gradient in the direction 
parallel to the x-axis. Thus, temperature θ is a function of x, θ=θ(x), and then the 
tolerance model unknowns are also functions only of x, W=W(x), Q=Q(x). Let 

111111 ,, kkkkkk ′′≡′′′≡′≡  be heat conduction coefficients in sub-laminas. 

Denote 

 ).)()((12)(),)((32)(~,)()()( kxkxxKkkxxKkxkxxK ′ν ′′+′′ν′≡′′−′ν≡′′ν ′′+′ν′≡
(

 

Equations (6.1) can be written as: 

 
.)]()[(~
,0])(~)([

1 WxKxKQ
QxKWxK
∂−=

=+∂∂
−

(  (7.1) 

Substituting (7.1)2 into (7.1)1 and denoting 

 12 )]([)](~[)()( −−≡ xKxKxKxK eff
(

 (7.2) 

we have only one equation 

 .0])([ =∂∂ WxK eff  (7.3) 

Using the above equation, the fluctuation amplitude Q, cf. (7.1)2, and micro-
macro decomposition (4.1) taking the form 

 θ(x)=W(x)+h(x)Q(x), (7.4) 

the stationary heat conduction across laminas in the TGL layer can be described. 

7.2. Exact solutions to the model equations 
Since equation (7.3) has slowly-varying coefficients, defined by known 
functions, e.g. by ν′, ν″, ν, h, it can be integrated to find the solution. For the 
considered layer having constant coefficients k′, k″ and the fluctuation shape 
function given by (4.2) the effective heat conduction coefficient Keff is equal 

 1)]()([)( −ν′′−′′+′′′′= xkkkkkxK eff . (7.5) 

Denoting 

 ∫ ν′= dxxxp )()( , 

assuming the following boundary conditions for macrotemperature W: 

 ,0)(:;)0(:0 ==== HWHxTWx  (7.6) 



108 Jarosław JĘDRYSIAK 

 
 

and bearing in mind formula (7.5) we obtain the macrotemperature in the form:  

 2
11

1 )]())(()([)( CxpkkkkkxCxW +′′′′−′′+′′= −− , (7.7) 

where constants C1, C2 are: 

.
)]()0()[(

)()(,
)]()0()[(

21
HkHppkk

HpkkHkTC
HkHppkk

kkTC
′−−′−′′

′−′′+′−=
′−−′−′′

′′′=  (7.8) 

From (7.1)2 the fluctuation amplitude Q can be calculated 

 .)())(()( 1
1

6
3 CxkkkkxQ ν′′′′−′′= −  (7.9) 

Substituting (7.7) and (7.9) to (7.4) we obtain the formula for temperature θ,  

 ,)]}()()([))(()({)( 216
311 CCxxhxpkkkkkxx +ν+′′′′−′′+′′=θ −−  (7.10) 

which with constants C1, C2, (7.8), and the fluctuation shape function h, (4.2), 
determines the “exact” distribution of the temperature in the TGL layer in the 
framework of the tolerance model. 

7.3. Calculational results 
Let the layer thickness H be coupled with the microstructure parameter l by the 
relation H=2(m-1)l, where m is the number of laminas. We consider three cell 
distribution functions: 

1) the linear function (denoted by α=1) 

 lxx mH
mlH +=λ −

−
)1(
)(2)( ; (7.11) 

2) the square function (denoted by α=2) 

 lxx Hmm
mlHm +=λ −−

−
2)12)(1(

)(62)( ; (7.12) 

3) the cubic function (denoted by α=3) 

 lxx Hm
mlHm +=λ −

−
32)1(
)(43)( ; (7.13) 

with x  as the centre of “cell”. Calculations are also made for a periodic 
laminate with the constant function λ(x)=2l (denoted by α=0). The fraction 
ratios of materials are defined in the form: 

 )(1)(,))(()( 1 xxxlx ν′−=ν′′λ=ν′ − . 

Selected calculational results are shown in Fig. 2. Calculations are made 
for m=20, thus the ratio l/H=0.026. Fig. 2 shows curves of temperature θ given 
by formula (7.10) versus coordinate x∈[0,H]. Diagrams are made for ratios 
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k″/k′=1/3 (a) and k″/k′=1/5 (b). Some results of macrotemperature W and the 
fluctuation amplitude Q can be found in [4]. 

Under the obtained results some remarks can be formulated: 
1. Values of temperature θ depend on the cell distribution functions, i.e.: 

a) the biggest values are for the cubic function (7.13), 
b) the smallest values are for the linear function (7.11). 

2. Values of the temperature depend on ratio k″/k′ of heat conduction 
coefficients k′, k″ of material properties, i.e.: 
a) the temperature increase with the decreasing of ratio k″/k′, 
b) the temperature in the periodic layer (the case α=0) is independent of 

ratio k′, k″. 

 

Fig. 2. Diagrams of temperature θ versus x-coordinate (for cell distribution functions: 
linear (α=1), square (α=2), cubic (α=3); and the periodic distribution (α=0)) 

8. REMARKS 

The tolerance modelling, cf. the book edited by Cz. Woźniak et al. [6], leads 
from the differential equation of heat conduction with highly-oscillating, non-
continuous, tolerance-periodic coefficients to the system of differential 
equations with slowly-varying coefficients. The tolerance model equations take 
into account the effect of the microstructure size on the heat conduction. 
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Under the results of the example we can observe: 
• Exact analytical solutions to the tolerance model equations can be obtained 

for the stationary heat conduction. 
• Distributions of the temperature depend on: 

- the cell distribution functions in the TGL layer, 
- differences between heat conduction coefficients k′, k″, i.e. ratio k″/k′. 

Other applications of the tolerance model to various problems of heat 
conduction for the transversally graded laminates will be shown in forthcoming 
papers. 
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STACJONARNE PRZEWODNICTWO CIAPŁA W LAMINATACH  
O NIERÓWNOMIERNYM ROZMIESZCZENIU WARSTW 

S t r e s z c z e n i e  

W pracy rozpatrywany jest stacjonarny problem przewodnictwa ciepła w laminatach 
charakteryzujących się „wolną” zmianą własności makroskopowych (uśrednionych)  
w kierunku prostopadłym do warstw. Przyjęto, że rozmieszczenie warstw jest 
nierównomierne. Wpływ mikrostruktury na rozkład temperatury całkowitej zbadano 
wykorzystując modelowanie tolerancyjne, por. Cz. Woźniak et al. [6]. 
 




