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In this paper it is analysed a stationary heat gotidn in laminates made of two
materials non-periodically distributed as microlaas along one direction. It is assumed
that this laminate has a functionally (transveydafiraded macrostructure along this
direction. Some effects of the microstructure irdiatribution of a temperature are
investigated using the tolerance modelling, cf.libek edited by Cz. Wmiak et al. [6].
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1. INTRODUCTION

In this contribution there are considered laminatekich are made of two
materials. It is assumed that these materials &teitdited non-periodically
along a direction normal to laminas. Every lamioasists of two sub-laminas
and has thickness. On the macroscopic level these composites haegmged
(macroscopic) properties continuously varying aldhg direction normal to
laminas, cf. Fig. 1a. On the microlevel, their mogructure is defined by a non-
uniform distribution function A=A(x), cf. Fig. 1b. These laminates are treated
as made ofunctionally graded materials (FGM), cf. [10]. Hence, they can be
calledtransversally graded laminates with non-uniform distribution of laminas.

FGM-type laminates are usually analysed by usinthaus proposed for
macroscopically homogeneous structures, e.g. peritaminates, cf. [10].
Between these methods there can be mentioned Hassel orthe asymptotic
homogenization, cf. [5]. Models with microlocal parameters are also used to
analyse heat conduction in periodic laminates]7f.Unfortunatelly, equations
of these models neglect usually the effect of therastructure size.
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On the other hand, this effect can be describetthenframework ofthe
tolerance modelling, proposed to the modelling non-stationary probldors
periodic composites in the book [12]. This methaakvadopted to investigate
various problems of FGM-type structures in a seakpapers, e.g. for a heat
conduction in transversally graded laminates iM][land in longitudinally
graded composites in [8, 9]. Certain summarisonsaplications of this
technique for composites and structures of thid kian be found in [11, 6].

b)

)

Fig. 1. A cross section of a transversally gradadihate: a) on the macroscopic level,
b) on the microscopic level — a non-uniform digitibn of laminas

The main aim of this note is to ude tolerance model equations of heat
conduction for transversally graded laminates with non-uniform distribution of
laminas (TGL), cf. Fig. 1b, to investigate a stationary heatduaion along the
direction normal to laminas. Here, there are shaistributions of the total
temperature in the laminate. Some effects of tHedegtribution and material
properties on the temperature are presented.

2. MODELLING FOUNDATIONS

It is assumed that subscriptyg, ..., are related to the coordinate syst®rix,,
and run over 1, 2. Let us denotex;; byt the time coordinate; by derivatives
of x; and alsod=0d;. The layer thickness along thxeaxis is equaH andthe
length dimension along the-axis is equalL. The region on the plan®xx,
occupied by this layer is denoted I63x=, where Q=(0,H), ==(0,L). The
laminate is made of two materials distributedminaminas having the varied
thicknessA. These materials have heat conduction tensors edathponents
ki, ki, i,j=1,2. Let the T material have the constant thicknéggf. Fig. 1b),

such that<<H. This thickness is callethe microstructure parameter. Everyn™
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lamina has not constant thickness Hence, then™ lamina consists of two
homogeneous sub-laminas having thicknegggsl =const and Aj,=A,-I, cf.

Fig. 1b. Let us introduce material volume fractiomthe n™ lamina defined as
v =1/, V=N, . Sequence{v,}, n=1,...m, is monotone and satisfies
condition |vj,; -V, k<1, for n=1,...m-1. Since v;,+v;= 1sequence{v; }
satisfies similar conditions. We can approximateusmces{v, } {vi},

n=1,...m, by continuous functiong’(-), v"(-), which describe the gradation of
material properties along theaxis. Similarly, we can approximate sequence
{An} of laminas thicknesses by functidiix). The function’(-), v"(-) are called
the fraction ratios of materials, cf. [4]. Let us also introducéhe non-
homogeneity ratio v defined byv(-)=[v'(-)v"(-)]”. Although for these laminates
a basic cell i) cannot be determined, we can define a certainumifiorm cell
distribution inQ as Q(x) =[x—-A(x)/2,x+A(X)/2], whereA(x) is calledthe cell
distribution function. All these functions\((:), v"(-), A(")) are assumed to be
slowly-varying, cf. [11]. Hence, the layer undernswleration is calledhe
transversally graded laminated layer (the TGL layer).

Let 8 denote the unknown temperature field. Moreovee, stationary
heat conduction problem in the TGL layer is analyséthin the Fourier’s
model, i.e. it is described by the following eqoat{without heat sources):

0;(k;0;6) =0, (2.2)

where coefficientsk;=k;(x) are highly-oscillating, tolerance-periodic, non-
continuous functions im. Since equation (2.1) is not a good tool to ingase
heat conduction problems it can be replaced byeuwifitial equations having
slowly-varying coefficients usinthe tolerance modelling, cf. [6].

3. BASIC CONCEPTS

In the modelling some introductory concepts defimeflL1, 6] are used, e.g. an
averaging operator, a tolerance-periodic functmmslowly-varying function, a
highly oscillating function. Here, some of them arentioned.

The averaging operator for an arbitrary integrable functidn(which can
also depend o), defined inQ , has the form

_ ~ X+A(X)/2 _
<f>(x)=A(x) 1J‘X_MX)/2 f(§)dg, XOAX)/2H =A(x)/2]. (3.1)

It can be observed that for tolerance-periodic fiomcf of X, its averaged value
calculated from (3.1) is a slowly-varying functionx, cf. [11, 6].
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Denote byd'f thek-th gradient of functiofi=f(x), x1Q, k=0,1,3%=f; by f® ()
— a function defined if2 x Rm; and byd — the tolerance parameter.

FunctionfdHY(Q) is the tolerance-periodic function, f OTRPXQ,Q), if for
k=0,1 the following conditions hold:

() (OxOQ)(F O (XIOHOQ)) [|oxf

(ii) jg(mf W ([2)dzOCo(Q) .
where the periodic approximation of okf in Q(x),xOQ, is denoted by
feo(xy, k=0,1.

FunctionFOHY(Q) is the slowly-varying function, F OSVQ,Q), if

(i) FOTR(QQ),

(i) (OxOQ)[F® (XDy=0%F(x), k=01].
Periodic approximatiorF® of 9xF ()l in Q(x) is a constant function for every
xQ.

Function@dHY(Q) is the highly oscillating function, CJHOY(Q,Q) , if

(i)  eOTR{Q.Q),

(i) (OxOQ) [@9 (xPhpy=04@(x), k=01],

(i) OFOSVE(Q,Q) O =@F OTP*(Q,Q)

f0o (x D, , = F(x)okp(x) . k=1.

If a=0 then we denotd = f©.

Let h(Q] be a highly oscillating, continuous functiomJHO}(Q,Q),

defined onQ, with piecewise continuous and bounded graddnt Function
h(D) is the fluctuation shape function of the 1% kind, if it depends or as a
parameter and satisfies conditions:

(19) 0*hOO(1*™) for k=0,1,0°h=h,

(2°) <h>(x)=0 for everyx(1Q.
A set of all fluctuation shape functions of tiékind is denoted bFSH(Q,Q) .

o, (- f XMooy =9l

4. MODELLING ASSUMPTIONS

Following [11, 6] and using the introductory contepwo fundamental
modelling assumptions can be formulated.

The micro-macro decomposition is the fundamental assumption, in which
it is assumed that temperatrean be decomposed in the form

B, X2) =W(X,X2) +(X) Q(X,X2), (4.1)
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with basic unknownsW([X,), Q((X,) OSVH(Q,Q) and the known fluctuation
shape function h()OFS(Q,Q). Function W({k,) is called the
macrotemperature, but the additional unknowrQ(L[k,) is the fluctuation
amplitude. It is assumed thdt([)l is continuous, linear across every sub-lamina
thickness and of an ord€X(l) function, which satisfies conditions (1°)-(2%). |
can be given by:

13YE) o X L _1n(x) -1 ]
I\/§V"(X) [ZMX)w(x)] for xO(=4A(X),~3A(X) +A(RV'(X)),

VR p Xy ARV
W30 gy TV for xDBAR) -AXV()AAR).

h(x) = (4.2)

with X being a centre of)(l), cf. [11].
The next modelling assumptionis the tolerance averaging
approximation, in which it is assumed that teri@$d) are negligibly small, e.qg.:

<f>(x)=<f>(x)+0(3), < fF>(x) =< f >(X)F(X) +O(d)
< fo(hF) > (x) =< foh > (x)F (x) + O(d),
x0Q; 0<d<<1, fOTRHQ, ), FOSV$(Q, ), hOFS(Q,, ).

5. TOLERANCE MODELLING

Following [6] the modelling procedure is outline@rl. In the first step, the
action functional is formulated

A B = [ [ANZ0:0@2E1).8(zE0)dedz (5.1)
Q=
with the lagrangean\(,9;6,0) THO2(Q, Q) given by
N =20,6k;0,6. (5.2)
Hence, the Euler-Lagrange equation takes the form
9, 2N _9N_q (5.3)
006 06

Using the principle of stationary action from edoat(5.3) (combined with
(5.2)) the fundamental equation of the Fourier'satheonduction (2.1) is
derived. The second step is the application oftdherance modelling to action
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functional (5.1). Substituting micro-macro decompos (4.1) to (5.1) and
averaging by (3.1), we obtain the tolerance aveagf functional A (6()))

AnW,Q) = [ [ <Ay > (x,0W,0,Q,8,Q)dEdx,
Q=

with the averaged lagrangea\, > in the form

<Ny >=3(OW <k; >0 W +Q <0hky,0h>Q +0,Q <kyh? >03,Q +

+OW <kyoh>Q +Q <dhky >0 W), (54)

Using the principle of stationary action to lagreag A, Euler-Lagrange
equations take the form:

a-a</\h>—a</\h>=o

I GA) oW
5 9<Ay> _0<Ay> o (5.5)
fo0Q  aQ

The above equations have slowly-varying, functiauafficients.

6. TOLERANCE MODEL EQUATIONS
Substituting (5.4) to (5.5) we obtain the averahedt conduction equations:

0(<kyy > (X)OW)+ < Kpp > (X)020N +0(< k00 >(X)Q) =0,

<k 0h > (X)OW+ <k, 9hoh > ()Q - 12(v(X))? <ksp > ()2, Q =0, &1

involving a term depending explicitly on the midrosture parameter. The
above equations have slowly-varying, functional ficents, in contrast to
equation (2.1) with functional, non-continuous,tiygoscillating coefficients.
Heat conduction for transversally graded laminaseglescribed in the
framework ofthe tolerance model by equations (6.1) together with micro-macro
decomposition (4.1). These equations make it plessibinvestigate the effect
of the microstructure size on heat transfer fois¢heomposites. For the TGL
layer we have to formulate boundary conditionstha macrotemperatui& on
the edgesx=0, H, x,=0, L, but for the fluctuation amplitud® on the edges
x=0,L. Unknowns W, Q have a physical sense under conditions
W(Ex)OSVHQ,Q) QUx)ISVHQ,Q), being aposteriori evaluation of

tolerance parameteér
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7. APPLICATIONS — HEAT CONDUCTION ACROSS LAMINAS

7.1. Introduction
Let us assume that the TGL layer subjected to rmrihlegradient in the direction
parallel to thex-axis. Thus, temperatugeis a function ok, 8=6(x), and then the
tolerance model unknowns are also functions only, =W(x), Q=Q(x). Let
k =k, k'=k{;, k" =k{; be heat conduction coefficients in sub-laminas.
Denote

K(X) = V(XK +v"(x)k", K(x) =2+/3v(x)(k —k"), K(X) =12V (X)k" +V"(X)K').
Equations (6.1) can be written as:

O[K (X)W + K( x)_Q] =0, 7.1)
Q=-K(X)[K(x)]oW.
Substituting (7.1)into (7.1) and denoting
Kef (x) = K() = [K(R]TK ()] (7.2)
we have only one equation
J[K e (x)oW] = 0. (7.3)

Using the above equation, the fluctuation amplit@ecf. (7.1}, and micro-
macro decomposition (4.1) taking the form

B()=W(x)+h(x)Q(), (7.4)

the stationary heat conduction across laminasdrtBL layer can be described.

7.2. Exact solutions to the model equations

Since equation (7.3) has slowly-varying coefficientdefined by known
functions, e.g. by’, v”, v, h, it can be integrated to find the solution. Foe th
considered layer having constant coefficiekitsk” and the fluctuation shape
function given by (4.2) the effective heat condastcoefficient™ is equal

Keff (x) = kK"K + (K" —K)V'(X)] L. (7.5)
Denoting
p() = [v(x)dx,
assuming the following boundary conditions for ncaemperatur&V:
x=0: W()=T,; x=H: W(H)=0, (7.6)



108 Jarostaw JEDRYSIAK

and bearing in mind formula (7.5) we obtain the magamperature in the form:

W) =CIx(K) L+ (k" =K)(KK) ()] +Cs (7.7)
where constant§,, C, are:
c,=T kk" . C=-T kH + (k" -k p(H) (7.8)

(k"=k)[p@O) - p(H)] -kH (k"=K)[PO) - p(H)] -kH
From (7.1) the fluctuation amplitud® can be calculated
Q(x) = (k" ~k)(KKk") v (X)C;. (7.9)
Substituting (7.7) and (7.9) to (7.4) we obtain fivenula for temperature,
B(X) ={x(k") L+ (k" = K)(KK) L p(x) +Lh(V()C+C,, (7.10)

which with constant&,, C,, (7.8), and the fluctuation shape function(4.2),
determines the “exact” distribution of the temperatin the TGL layer in the
framework of the tolerance model.

7.3. Calculational results

Let the layer thicknesd be coupled with the microstructure paramétey the
relation H=2(m-1)l, wherem is the number of laminas. We consider three cell
distribution functions:

1) the linear function (denoted loy1)

A(x) = x5+ (7.11)

2) the square function (denoted doy2)
A(X) = x2BmHom) (7.12)

(m-)(@2m-1)H?2

3) the cubic function (denoted ly=3)

A(X) = X350 +1 (7.13)

with X as the centre of “cell”. Calculations are also enddr a periodic
laminate with the constant functiox(x)=21 (denoted bya=0). The fraction
ratios of materials are defined in the form:

V'(X) =1(A(X))1, V'(X) =1-V'(X).
Selected calculational results are shown in Figc&culations are made

for m=20, thus the ratityH=0.026. Fig. 2 shows curves of temperatiigiven
by formula (7.10) versus coordinaktl[0,H]. Diagrams are made for ratios
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k"/k'=1/3 @) andk"/k'=1/5 (). Some results of macrotemperat¥keand the
fluctuation amplitude) can be found in [4].
Under the obtained results some remarks can beaufated:

1. Values of temperatur@ depend on the cell distribution functions, i.e.:
a) the biggest values are for the cubic function (¥.13
b) the smallest values are for the linear functiod 1.
Values of the temperature depend on ratidgk’ of heat conduction
coefficientsk’, k” of material properties, i.e.:
a) the temperature increase with the decreasing iof k&',

b) the temperature in the periodic layer (the cas®) is independent of

2.

N[

ratiok’, k”.
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Fig. 2. Diagrams of temperatuBeversusc-coordinate (for cell distribution functions:

linear @=1), squared=2), cubic ¢=3); and the periodic distribution£0))

8. REMARKS

The tolerance modelling, cf. the book edited by @azniak et al. [6], leads
from the differential equation of heat conductionihwhighly-oscillating, non-
continuous, tolerance-periodic coefficients to tkgstem of differential
equations with slowly-varying coefficients. Thedmnce model equations take
into account the effect of the microstructure singhe heat conduction.
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Under the results of the example we can observe:
» Exact analytical solutions to the tolerance modglagions can be obtained
for the stationary heat conduction.
» Distributions of the temperature depend on:
- the cell distribution functions in the TGL layer,
- differences between heat conduction coefficientk’ki.e. ratiok”/k'.
Other applications of the tolerance model to vasiguoblems of heat
conduction for the transversally graded laminatésh& shown in forthcoming
papers.
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STACJONARNE PRZEWODNICTWO CIAPLA W LAMINATACH
O NIEROWNOMIERNYM ROZMIESZCZENIU WARSTW

Streszczenie

W pracy rozpatrywany jest stacjonarny problem pammictwa ciepta w laminatach
charakteryzuyjcych st ,wolna” zmiam wlasngci makroskopowych @ednionych)
w kierunku prostopadtym do warstw. Pray, ze rozmieszczenie warstw jest
nieréwnomierne. Wplyw mikrostruktury na rozktad tmenatury catkowitej zbadano
wykorzystupc modelowanie tolerancyjne, por. Cz. ¥k et al. [6].





