CIVIL AND ENVIRONMENTAL ENGINEERING REPORTS

No. £ 201C

NON-STATIONARY HEAT TRANSFER IN TWO-PHASE
HOLLOW CYLINDER WITH FUNCTIONALLY GRADED
EFFECTIVE MATERIAL PROPERTIESWITH SECOND
KIND OF BOUNDARY CONDITIONS

Piotr OSTROWSKI
Department of Structural Mechanics, Technical Ursitg of Lodz
Al. Politechniki 6, 90-924 £.64 Poland
piotr.ostrowski@p.lodz.pl

The unidirectional non-stationary heat conduction tivo-phase hollow cylinder is
considered. The conductor is made of two-phaséfgthcomposites and has a smooth
gradation of effective properties in the radialediion. Therefore, we deal here with a
special case of functionally graded materials, FG& [6]). The formulation of
mathematical model of the conductor is based ontdlerance averaging approach
(TAA), cf. [8]. Considerations in this paper arstrected only to the unidirectional non-
stationary heat conduction, where on the boundaiesgiveng-constant or periodic
function of heat fluxes g= q(o,t), &k = G(o,t) for every time period t, and function of
initial temperature®® = @°%(,t) for t = . The effect of fibres width on the temperature
field will be also examined.
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1. BASIC CONCEPTS

1.1. Subject of contribution

The main aim of this paper is to consider the temaiduction in two-phase
hollow cylinder. This consideration concerns onlighwthe non-stationary heat
transfer problem in two-phase composite with a reita@stic microstructure,
which is, for a fixed radiug, periodic along the angular axis and has smooth
and functional effective properties in the radimedtion (Fig.1). Therefore, we
deal here with a special case of functionally gdaghaterials, FGM, cf. [6].
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Fig. 1. Structure of the two-phase functionallydgd composite in a) micro- and b)
macro-scale

The analysis of the heat transfer in the hollowindgr made from
functionally graded materials we can find in [&],[where material properties
are expressed as power or exponential functionthefradial coordinate. In
paper [1] we can find application of higher-ordeedry for thermal analysis in
functionally graded materials.

1.2. Model equations

The physical phenomenon of the non-stationary heausfer is described by
well known Fourier equation

co-00k me)=q,, (1.1)

which contains (in this case) highly oscillatingdaiscontinuous coefficients

- heat conduction tensor, and specific heatQ, - internal thermal sources. The
modelling problem is how to describe microheter@gers conductor by certain
averaged equations. The formulation of the macmiscmathematical model

for the analysis of heat transfer in the conductoder consideration will be

based on the tolerance averaging technique, &].[The general description of
this technique and application to analysis of ligjnally graded stratified

media can be found in [4], [7].
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Fig. 2. Deterministic microstructure of composite

The object of our considerations is a hollow conducwith
microstructure given on Fig.2. This microstructigeletermined by the unit cell
A with the diameter ofA =27/ N, whereN is a number of cells in considered
composite.

The fibres widthg is in general given by

9(0)=1/R;, (1.2)

for /7D[0,1), which implies functional macroscopic material pedies inp-
direction. Volume fractions of homogeneous layerse adenoted by
v'(p)=d(p)/ 2p and  v'(p)=g(p)/ dp, where d(p)=Ap-g(p).
Dimensionless functionv =/v'v" is referred to as the distribution of

heterogeneity.
The one of the fundamental assumptions in toleraneeaging approach
concerns with the temperature field decomposition

o(g.p.t)=6(g.p.t)+hig,0)W(p.0.1), (1.3)

where¢D[0,2n), pD[RO,Rk] andt= QO Functions of averaged temperatdre
and oscillation amplitude temperatupeare assumed to be slowly varying, i.e.
6(Clo.t).(Lo,t)ISVE(Q,A). The exact definition of thelowly varying and
tolerance periodic function can be found in [7-8]. The expected foomthe
temperature oscillations, caused by discontinuftyhe coefficients in (1.1), is

assured by the "saw-typébcally periodic function (Fig.3), which would be
called the fluctuation shape functibn
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Fig. 3. Fluctuation shape function

where d(p)=d(p)/ p.
The second concept of the modelling techniquedsatreraging operation

P+A12
(Np0)= [ Tlzo)ez, (1.4
18] 432
where |A| =A. On the grounds of this definition we can formelélhe second

modelling assumption, the tolerance averaging agmiation. In the course of
modelling it is assumed that tern@(s) are negligibly small, where is a

certain tolerance parameter, cf. [7]. For the aabjttolerance periodic function
f OTPX(Q,A), slowly varying function F 0SV}(Q,A) and fluctuation shape

function hOFSE(Q,A) we have

{(fF>=<f>F +0(¢)

(10(hF)) = (foh)F +( f)TF +0(e)’ (L.5)

tolerance model. Bearing in mind the mean valuéndiem (1.4) and all model
assumptions, we conclude to the system of averagedations (cf. [7]):
0o(k)og+(kdhy)-(c)=0
™ 2\m 2 2 ’ (16)
0 <kh >D¢/ —<k6h>D6—<kah >1//—<ch >¢/:o

describing two dimensional heat conduction in tvwage hollow cylinder,
where internal thermal sourc€s are neglected. The coefficients
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(k) =k'v'+k"v" |(kah)=2v+3(k'-k")  [(c)=c'V' +c"V"
(kh?) = A%2(k)" | (ken?) =12k'v” +kev') " | {eh)=a2v2(e) " (T

are continues and functional. The gradient opesatothe above equations have

the form
(0 0 _ 0 =i 0
O —(—a ’_0 j 0 (—a ,O], O (O,—a J (1.8)

The obtained averaged differential equations (ia®)e smooth functional
coefficients in contrast to coefficients in equatil.1). To obtain the results,
numerical methods had to be used (Maple softwarthigicase). This model
takes into account an effect of microstructure simethe overall heat transfer
behaviour.

2. EXAMPLESOF APPLICATION

The main aim of this chapter is to display mosthyeadfect of parametey in
(1.2) on the temperature field in time. These abmstions concern the
unidirectional heat transfer for a two-phase cotmluavith deterministic
microstructure (Fig.2) ofN =60 cells for geometric values dR, :1[m] and

R, = 3[m]. In general we shall denote isotropic tensor afdutivity for each

of components
_,ml O
k-ktﬁo 1] 2.1)

where fixed values of conductivity are listed elo

Table 1. Material properties

phase | phase Il
clom =k 1| 3432000 14600
k MK | 58 0.045

Because of the decomposition (1.3), twice more iakiioundary
conditions are needed as distinct from determimigtoblem approach. Hence,
in the interior of considered composite we dendie tnitial temperature

e°(t=0)=0[°c| as:
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6° =(e)=0[°c] andy® =(e°h)=0[°c]. (2.2)

The second kind of boundary condition we shall usided here as a fixed heat
flux value on the boundary. Moreover, for the haates in the radial direction,
g, andq,, on the inner and outer boundary, respectivelycaleulate

Tofr)=-{2 |Tele)--
) ah) (2.3)
w(RO)__<kh2> _Dw(Rk)_ <kh >

If F is a ¢-constant function, then(Fh>=0. All above conditions and

formulations will be used for all following examglén subsequent part of this
paper.

2.1. Heat transfer intime

Let us consider two-phase hollow cylinder (Fig.lpder heat fluxes
=1000MWm ™| and g, (R )= 0[Wm™|, where fibres width is expressed

by (1.2) forn = 05

Averaged temperature

o(p, 1) — - (= 10800 [s]
“ et =7200 [5]

— t=3600 5]

Fig. 4. Averaged temperature varying in time

Since the averaged temperature vary in time, theliarde oscillation
temperature is constant and equal to zero for etirmeyt.
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2.2. Fibreswidth effect

Various values of parametgrare considered and theirs effect on temperature
field. Initial-boundary conditions are the sameim<.1. The obtained results
aftert = 3600 [s] for averaged temperature:

Averaged terperature

— =025
rei1)=0.50
— -1 =0.75

2 25 k)

Fig. 5. Fibres width effect on averaged temperagfier one hour

and amplitude oscillation temperature is equal éooz The wider fibres, the
faster decreasing of temperature near the innendsoy, but the greater value
of the temperature on the inner surface of consitieonductor.

2.3. Periodic load effect

The last example deals with particular case, wigchery similar to that from
2.1. Geometry and initial-boundary conditions dre $ame, except the heat flux
on the inner boundary, which is not constant buiopéc along angular axis:

a(8) = {1 + n(?ﬂ ﬂoooﬁ/Vm‘z] (2.4)

Since<q0> =1000Wﬂ‘2], the averaged temperature course of time:
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Averaged temperature

— t=3600 [s]
- reot=7200 5]
— - t=10800 [5]

o(p, )

Fig. 6. Averaged temperature varying in time

is the same as that on Fig.4. However, this time dmplitude oscillation
temperature near the inner boundary is not equzdito:

Amplitude oscillation temperature
—t=13600 [s]

D T T T T
| 1,5 2 25 3
_2— p
et =7200[5]

wip.t) %
(p-2) ] — -t= 10800 [5]

—10-

_12_
Fig. 7. Amplitude oscillation temperature varyimgtime

The diagram on Fig.7 reveals thatunction does not vary in time.

3. SUMMARY

The tolerance averaging approximation leads to nitthematical model of
composites conductor with functionally graded miatemproperties. The
obtained model equations have continuoues codifigién opposition to a
discrete model, where they are strongly oscillati@mce the proposed model
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equations have smooth functional coefficients tlemost cases solutions to
specific problem, for heat conductor under consitien, have to be obtained
using well known numerical methods (Maple softwafE)e tolerance model

takes into account an effect of the microstrucgize on the temperature field.
Moreover, by changing fibres width, we can obta@sithble temperature field

inside composite. However, for the-constant boundary conditions and
isotropic material properties for each of compogagtiiere is no temperature
oscillation revealed.
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NIESTACJONARNY PRZEPLYW CIEPLA W PRZEWODNIKU
CYLINDRYCZNYM Z WARUNKAMI BRZEGOWYMI DRUGIEGO RODZAJU

Streszczenie

Przedmiotem rozwan niniejszej pracy jest analiza wplywu pewnych pasaGw
geometrycznych przewodnika na przebieg pola temperadla zagadnienia
niestacjonarnego przeptywu ciepta. Rozpatrywanyewaodnik jest dwusktadnikowym
kompozytem o deterministycznej mikrostrukturze,riktév kierunku ktowym jesti-
periodyczny (dla ustalonego promiema a w kierunku promieniowym jego efektywne
wlasndci zmieniaj sie w sposéb wolnozmienny. &t, mamy tutaj do czynienia ze
szczegOllnym przypadkiem materiatu o funkcyjnej @@idwtasndci, FGM (por. Suresh

, Mortensen, 1998). Samo zjawisko przewodznia aiepisane jest rGwnaniem Fouriera,
ktére zawiera niegpte i silnie oscylujce wspotczynniki. Model matematyczny
opisupcy zjawisko przewodzenia ciepta w rozpatrywanym gomycie opieréa Sie
bedzie na technice tolerancyjnej aproksymacji (poroziak, Wierzbicki, 2000). W
pracy ograniczymy sijedynie do przypadku jednowymiarowego przeptywep&, w
ktorym na brzegach przewodnika dana jest stald periodyczna funkcja ggtcsci
strumienia ciepta g= q(o,t), g = g(e,t) dla dowolnej chwili czasu t, oraz funkcja pola
temperatury®® = ©%¢,t) w chwili pocatkowej t = t. Rozpatrywano réwniewplyw
szerokdci inkluzji na pedkos¢ zmian pola temperatury w obszarze przewodnika.





