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Thin linear-elastic cylindrical shells having a nageriodic structure along two
directions tangent to the shell midsurfackipériodic shelly are objects of
considerations. The aim of this contribution isfeomulate a new mathematical non-
asymptotic model for the analysis of dynamic praoidefor such shells. The model is
derived by applyinghe combined modelling procedyseesented in [11]. The combined
modelling includes boththe asymptoticas well asthe non-asymptotic (tolerance)
modelling techniquesThe resultingcombined modéhas constant coefficients and takes
into accountthe length-scale effecAn important advantage of the proposed model is
that it makes it possible to separate the macrascd@scription of special dynamic
problems from their microscopic description. Apption of the resulting model
equations to the analysis of a certain micro-vibraproblem is presented.

Keywords: biperiodic cylindrical shells, dynamicsathematical modelling,
averaging of integral functionals, length-scaleetf

1. INTRODUCTION

Thin linear-elastic Kirchhoff-Love-type cylindricadhells with a periodically
inhomogeneous structure along two directions tantenhe shell midsurface
are analysed. By periodic inhomogeneity we shalamperiodically variable
shell thickness and/or periodically variable irerand elastic properties of the
shell material. Shells of this kind are term@geriodic As an example we can
mention cylindrical shells with periodically spacdnilies of thin stiffeners as
shown in Fig. 1. The period of inhomogeneity isuassd to be very large
compared with the maximum shell thickness and gemgll as compared to the
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midsurface curvature radius as well as the smalidstracteristic length
dimension of the shell midsurface.

Because properties of such shells are describdughyy oscillating and
non-continuous periodic functions, the exact equwtiof the shell theory are
too complicated to apply to investigations of eegiring problems. That is why
a lot of different approximate modelling methods &hells of this kind have
been proposed. Periodic cylindrical shells (plate®) usually described using
homogenized modelderived by means adsymptotic method<f. [3, 5, 10].
Unfortunately, in models of this kinthe effect of a cell sizgalledthe length-
scale effegton the overall shell behaviour is neglected.

The periodically densely stiffened shells are alswdelled as
homogeneous orthotropic structures, cf. [2, 6]. ®hbotropic model equations
with coefficients independent of the period lengéimnot be used to the analysis
of phenomena related to the existence of microgtradength-scale effect (e.qg.
the dispersion of waves, the occurrence of additibigher-order free vibration
frequencies and higher-order critical forces).

In order to analyse the length-scale effect in dyinaor/and stability
problems, the new averaged non-asymptotic modeldiof cylindrical shells
with a periodic micro-heterogeneity either along tdirections tangent to the
shell midsurface Kiperiodic structurg or along one directionugiperiodic
structure have been proposed by Tomczyk in a series ofrpapey. [14, 15,
16, 17, 18, 19, 22, 25], and also in the books P2A0,23, 24]. These, so called,
the tolerance modelfhave been obtained by applyinbe non-asymptotic
tolerance modelling techniqu@roposed and discussed in the monographs [1,
11, 26, 28], to the known governing equations atKhoff-Love theory of thin
elastic shells (partial differential equations witimctional highly oscillating
non-continuous periodic coefficients). Contrarystarting equations, governing
equations of the tolerance models have coefficievitich are constant or
slowly-varying and depend on the period lengthnbbimogeneity. Hence, these
models make it possible to investigate the efféet cell size on the global shell
dynamics and stability. This effect is described rhgans of certain extra
unknowns calledfluctuation amplitudesand by knownfluctuation shape
functionswhich represent oscillations inside the periogligell. Moreover, it
was shown that the tolerance models of uniperidigiGand densely stiffened
shells describe selected problems of the micro4jesof such shells, cf. [22,
23, 24]. It means that contrary to equations derileg using the asymptotic
homogenised methods, the tolerance model equatiosise it possible to
investigate the micro-dynamics of periodic shelldependently of their macro-
dynamics. In the papers and books, mentioned alibeeapplications of the
proposed models to analysis of special problembrgeaith dynamics as well
as stationary and dynamical stability of periodicadensely stiffened
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cylindrical shells have been presented. It was shihat the length-scale effect
plays an important role in these problems and capemeglected.

It has to be emphasized that the non-asymptotcdote models of shells
with uni- and biperiodic structure have to be led independently, because they
are based on different modelling assumptions. Toxeining equations for
uniperiodic shells are more complicated. It meahat tontrary to the
asymptotic approach, the uniperiodic shell is nospecial case of biperiodic
shell

The application of the tolerance averaging techmitguthe investigations
of selected dynamic problems for periodic plates loa found in many papers,
e.g. in [4] and [7, 8], where dynamics of HenckyBdaype plates and of
Kirchhoff-type plates is analysed, respectively, [(2] and [13], where
dynamics of wavy-type plates and of densely stéfeKirchhoff-type plates is
investigated, respectively. For review of applicatdf the tolerance approach to
the modelling of different periodic and also nomipéic structures the reader is
referred to [1, 11, 26, 28].

The main aim of this contribution is to formulatenaw mathematical
non-asymptotic model for the analysis of speciahatgic problems for
biperiodic shells under consideration. The modetlésived by applyinghe
combined modelling procedyrpresented in [11], to the known Euler-Lagrange
equations which explicit form coincides with thevgming equations of the
simplified Kirchhoff-Love shell theory. The combihanodelling technique is
realized in two steps. In the first stépe macroscopic model equatiorming
independent of the microstructure size, are derlwedneans ofhe consistent
asymptotic procedureAssuming that in the framework of the macroscopic
model the solution to the problem under considenais known, we can pass to
the second step, which is basedtba tolerance (hon-asymptotic) modelling
The Euler-Lagrange equations derived in the sestey depend on the cell size
and hence, they are referred to #e superimposed microscopic model
equations Coefficients of the resulting equations are camstThe main
advantage of the combined model is that it makgmdésible to separate the
macroscopic description of some special problenmnfrtheir microscopic
description

The second aim of this contribution is to apply tigained model to
determinethe new additional higher order free micro-vibratidrequencies
occurring in periodic shells and depending on tledl tength dimensions,
independently of the lower (classical) free madiwration frequencies being
independent of the period lengths.

Note, thatthe combined moddbr analysis of dynamic and/or stability
problems foruniperiodic cylindrical shelldias been proposed and discussed in
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[24]. However, this model cannot be used to analg$idynamic problems of
biperiodic shellsbeing object of considerations in this paper.

It should be mentioned that the periodic cylindrishells investigated
here are widely applied in civil engineering, ma$ten as roof girders and
bridge girders. They are also widely used as hgssif reactors and tanks.
Periodic shells having small length dimensionsedeeents of air-planes, ships
and machines.

In the subsequent section the basic denotatioefipnary concepts and
starting equations will be presented.

2. FORMULATION OF THE PROBLEM

In this paper we investigate linear-elastic thircalar cylindrical shells. The
shells are reinforced by families of ribs, whicte greriodically and densely
distributed in circumferential and axial directiohells of this kind are termed
biperiodic Example of such shell is shown in Fig. 1.

In order to describe the shell geometry defibe (0,L;)x(0,L,) as a set

of points x = (x},x?) in R?; x},x* being the Cartesian orthogonal coordinates
parametrizing regior 0 R?. Let OX*x?x° stand for a Cartesian orthogonal
coordinate system in the physical spdg&. Points of E* will be denoted by

X = (x5, %x%,%x%) . A cylindrical shell midsurfacel is given by its parametric
representation M E{YD E3 :Y:F(xl,xz),(xl,xz)DQ}, where F() is the
smooth  function such that ar/ox'[@T/0x* =0, oF/ox'@T/ox" =1,
0T/0x? @T/0x* =1. It means that oM we have introduced the orthonormal
parametrization and hendg, L, are length dimensions . It is assumed that

x' and x* are coordinates parametrizing the shell midsurédoeg the lines of
its principal curvature and along its generatr@spectively, cf. Fig. 1.
Subsequently, sub- and superscript§ .., run over sequenck 2 and

are related to midsurface parametexi‘sxz; summation convention holds. The
partial differentiation related tox® is represented byd,. Moreover, it is
denoted 0, 5=0,..05. Differentiation with respect to time coordinate
tO[t, t,] is represented by the overdot. Denoteagy and a®® the covariant
and contravariant midsurface first metric tensorsspectively. For the
introduced parametrizatiog,s = a®® = 3% are the unit tensors.

Let d(x) andr stand for the shell thickness and the constansumidce
curvature radius, respectively.
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Denote byb,s the covariant midsurface second metric tensor. ther
introduced parametrizatiom,, = b, =b,; =0 andb;; = -r .

Let A, and A, be the period lengths of the stiffened shell stmec
respectively inx*- and x?-directions, cf. Fig. 1. Definéhe basic cellA and
the cell distribution(Q,A) assigned tQQ = (0,L;)x(0,L,) O R? by means of:
A=[-N 12, M/ 2] x[-A512,A,/2],

(Q,A) ={A(xL, x%) = (X, x?) +A, (x5 x3) 0 Q)
where point(x}, x? )is a centre of a celA(x}, x
The diameterA Ew/(}\l)z +(}\2)2 of A is assumed to satisfy conditions:

AMdpa>>1 A/r<<1 and A/min(Ly,L,) << 1 Hence, the diameter will be
called the microstructure length parameten every cell A X ) we introduce

2 and Q is a closure o).

local coordinatesz*, z2 along thex!- and x2-directions, respectively, with the
0-point at the centre of the cell. It means thatdbll A has two symmetry axes:
for z=0 and z? = 0. Hence, inside the cell, the geometrical, elasticl

inertial properties of the stiffened shell are digmad by symmetric (i.e. even)

functions ofz = (4, 2%) 0[N /2, A/ 2 X[-A,12,X, 1 2].

Fig. 1. A fragment of periodically stiffened cylincal shell
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A function f(x) defined onQ will be called A -periodic if for arbitrary
points  (x},x?), (X} £ A, x2), (X, X2 £A,), (P £A,x% £X,) it satisfies
condition:

f(xhx%) = FO £, x%) = (X x2£N,) = (XX £, x% £),) in the whole
domain of its definition and it is not constant.

Denote byu, =uy(x,t), w=w(x,t), xJQ, tO(ty.t), the midsurface
shell displacements in directions tangent and nbtonil , respectively. Elastic
properties of the shell are described by shellfrsds tensorsD Y x(,)

B"BVé(x) . Let p(x) stand for a shell mass density per midsurfaceanei. In
the problem considered here the external forcdswiheglected.

Functionsp X ), DP®(x), B®®®(x) andd &), xOQ, are assumed to
be A-periodic with respect to arguments, x? .

It is assumed that the behaviour of the stifferfezllsinder consideration
is described by the action functional

Lilo t1
Alg W) = [ | [L(X,0pUq, Uy, 0w, W, W)dtdxCdx" (2.1)
00ty
where lagrangianL(x,0pUq, Uy, 0qgW W W )s highly oscillating function with
respect tox and has the well-known form, cf. [2, 27]

L= %(Df)‘ﬁvﬁaﬁuo,aauy +2r "D P guy +r 2 DM A+ 22)

+ B9 wd sw—pa®Pu,ug —pi?).

Obviously, in the above formula it has been taken account thab; = —r .
Moreover, we recall that under the orthonormal peataization introduced on
the shell midsurface, the contravariant midsurfiirsé metric tensora®® takes
the following valuesa® = Ofor a #p anda®® = 1for a =p.
The principle of stationary action applied # leads to the following
system of Euler-Lagrange equations
% a(aaLu ) +%aaul_ =0
BYa o
_aO(B oL _a_L +2£ =0
0(0qpwW) Ow Ot oW

(2.3)
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After combining (2.3) with (2.2) the above systeamde written in the
form

05(D P9 5u ) +1 79 (D*PHw) = pa®Piig

(2.4)
r DP9 5uy +0,45 (B0, 5w) +p 2D Hw = —pvi.
It can be observed that equations (2.4) coincidb thie well-known governing
equations of simplified Kirchhoff-Love theory ofithelastic shells, cf. [27]. In

the above equations the displacememis=u, (x,t), w=w(x,t) are the basic

unknowns. For periodic shells coefficients of lagian L and hence also of
equations (2.4) are highly oscillating non-contiasidunctions depending ax
with a periodA . That is why equations (2.3) (or their explicitrfo(2.4)) cannot
be directly applied to investigations of enginegriproblems. Our aim is to
“replace” these equations by equations with constagfficients depending on
the microstructure size. To this etttk combined modelling technigge/en in
[11] will be applied. To make the subsequent anslysore clear, in the next
Section we shall outline the basic concepts andmh& assumptions of this
approachfollowing the book [11] together with some resydtesented in [26].

3. MODELLING CONCEPTSAND ASSUMPTIONS

The combined modelling technigisebased on two modelling procedures. The
first of them is calledhe consistent asymptotic modellirithe second one is
termedthetolerance modelling

3.1. Basic concepts

The fundamental concepts of the tolerance modekirey those of tolerance
determined by tolerance parameter, cell distrilbyttolerance periodic function
and its two special cases: slowly-varying and higidcillating functions. The
tolerance approach is based on the notion of teeaging of tolerance periodic
function.

The main statement of the modelling procedureas ¢wery measurement
as well as numerical calculation can be realizegrattice only within a certain
accuracy defined biplerance parameted being a positive constant.

The concept otell distribution (Q,A) assigned toQ = (0,L;)x(0,L, )
has been introduced in the previous Section.

A bounded integrable functionf [ (Hefined on Q =[0,L;]%[0,L,]

(which can also depend danas a parameter) is calléolerance periodiowvith
respect to cellA and tolerance parametér, if roughly speaking, its values in
an arbitrary cellA X )can be approximated, with sufficient accuracy,tigy
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corresponding values of a certain-periodic function f, (z), zZOA(x),x0Q .
Function f, is a A -periodic approximatiorof f in A(x). This condition has
to be fulfilled by all derivatives off up to theR-th order, i.e. byall its

derivatives which occur in the problem under coesitiory in the problem
analysed hereR is equal either 1 or 2. In this case we shall evrit

f DTP5R (Q,A) . It has to be emphasized that for periodic stmastieing object
of considerations in this paper functiofy (z), zOA(x),x 0Q has the same

analytical form in every celp x(,)xdQ . Hence, f, (I} is independent ok .

In the general case, i.e. for tolerance periodigcstires (i.e. structures which in
small neighbourhoods ofA x( fan be approximately regarded as periodic),

f, = f,(x,2), z0A(X),x0Q.

Subsequently we will denote by=(9,,0, the gradient operator iQ
and by 0k f 0O, k=01..,R, thek-th gradient of functionf [()defined inQ,
where 3°f (1= f . Let £ (z), zOA(x) be a periodic approximation of
ok f DTP5R(Q,A) incell Ax), xO0Q, k= 01..,R, fxo([ﬂs f, (.

A continuous bounded differentiable functiow x ( defined on
Q =[0,4]x[0,L,] (which can also depend oh as a parameter) is called

slowly-varyingwith respect to celA and tolerance parametér, if
v(x) OTRR(Q,A),

_ (3.1)
vi®(z) =a*v(x), k=01..,R, forevery zOA(x),xOQ,

It means that periodic approximatiof) of aXv(JJ in A(x) is a constant
function for every xOQ. Under the above conditions we shall write
vOSVR(Q,A).

Function h &) defined in Q=[0,L,]*[0,L,] is called the highly
oscillating function with respect to cellA and tolerance parameted,
hOHOZ(Q,4), if

h(x) OTRR(Q,4),

(Ov(x) DS (Q,A)) (f =hvOTRR(Q,4)),

h(2) =9y (2), (3.2)
£}(2) =0*Nn (2) v(x),

fork =01...,R and for every zOA(x),x0Q.
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In the problem considered here we also deal #ithhighly-oscillating
functions which are A -periodic, i.e. they are special cases thie highly-
oscillating tolerance A-periodic functions defined above. Let

h(x) O HO§(Q,A) be a\ -periodic function defined i which is continuous
together with its gradient®*h, k=1,...,R-1 and has either continuous a

piecewise continuous bounded gradiéfh. Function h [ will be calledthe
fluctuation shape functionif it depends onA as a parameter and satisfies
conditions (32), and (32),, (in (32), d*h, (z) is replaced byd*h Z ),
together with conditions:

o*hoo(\® %), k=01..,R 9°h=h,

[u@h(2)dz=0, zOA(x), (3.3)
A(X)

[oh(z)dz=0, zOA(X), x0Q, k=12..R,

A(X)

where is a certain positive valuell-periodic function defined if .

Let f(D]DTI%R (Q,A). By the averaging of tolerance periodic function
f =9°f and its derivatives 9% f ,k=12...,R, we shall mean function
<o¥f >(x), xOQ, defined by
1

<d¥f>(x) =
4] 5

[t (x2)dz, k=01..R zOA(x), xOQ.(3.4)
()
For periodic media periodic approximatiod,) of 9%f in A(x) is
independent of argument and <9¥f > is constant. For tolerance periodic
media<d* f > is a smooth slowly-varying function of.

Let f(x,a"g(x)), k=01...,R be a composite function defined M
such that f(x,0%g(x)) JHO2(Q,A), g(x)OTRR(Q,A). The tolerance
averaging of this function is defined by

<f(z,6kg(z)>(x)sﬁ [ xz,0 (x,2)dz, zDOA(x), xO0Q.(3.5)
A

)
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For periodically microheterogeneous shells und@steration functionf, is

independent ok and < f([Bkg(Eﬂ> is constant. It can be seen, that definition

(3.4) is a special case of definition (3.5).
In the tolerance modelling of dynamic problems pariodic shells we
also deal withmean(constanf value < f > of A -periodic integrable function

f() defined by

< f(2) >Ei

a [f(2dz, zOA(X), xOQ. (3.6)
A

(x)

On passing frontolerance averagingo the asymptotic averaginge
retain only the concept ohighly-oscillating function In the asymptotic
approach we deal witmean(constan} value < f > of A -periodic function

f() defined by (3.6).

More general definitions of these concepts arergine[11, 26] and also
in [1].

3.2. Modelling assumptions

The fundamental assumption imposed on the lagrangiaer consideration in
the framework othe tolerance averaging approadh calledthe micro-macro

decompositionlt states that the displacement fields occurrinthis lagrangian
have to bethe tolerance periodic functiongn x. Hence, they can be
decomposed intounknown averaged displacementging slowly-varying

functions in x and fluctuations represented Hgnown highly-oscillating
functions called fluctuation shape functionand by unknown fluctuation
amplitudesbeingslowly-varyingin x .

The fundamental assumption imposed on the lagrangisder
consideration in the framework ofhe consistent asymptotic averaging
approachis calledthe consistent asymptotic decomposititinstates that the
displacement fields occurring in this lagrangianehto be replaced by families
of fields defined in an arbitrary cell and depend emall parameter
€e=1/n,n=122,.... These families of displacements are decomposedpart

described by unknown functions being continuousiyried inQ and highly-
oscillating part depending oa and represented by known fluctuation shape

functions and by unknown functions being continlpbsunded inQ .
For details the reader is referred to [11, 26].
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4. COMBINED MODELLING

A new mathematical model for the analysis of dyrmanproblems for
biperiodically stiffened cylindrical shells underorssiderations will be
formulated. In order to derive this model the newsvcalled the combined
modelling procedurgproposed in [11], will be applied

The combined modelling includes both the asymptasiovell as the non-
asymptotic modelling procedures.

The combined modelling technique is realized in st&ps. The first step
is based onthe consistent asymptotic procedusdich leads from starting
equations (2.3) to the Euler-Lagrange equatigitis constant coefficientseing
independent of the microstructure cell size. Hetlee model obtained in the
first step is referred to athe macroscopic modelAssuming that in the
framework of the macroscopic model the solutionth@ problem under
consideration is known, we can pass to the sectap] which is based athe
tolerance (non-asymptotic) modellinghe Euler-Lagrange equations derived in
the second stejpave constant coefficients which depend on thescadl Hence,
the model obtained in the second step is refereecstthe superimposed
microscopic model

4.1. Step 1. Consistent asymptotic modelling

We start withthe consistent asymptotic averaging of lagrangiamccurring in
(2.1). To this end let us introduce two systemgheflinear independent highly-

oscillating periodicfluctuation shape functionsh®(JI0HO;(Q,4), a=1..,n

and g"(JOHOZ QA), A=1.N. These functions are assumed to be

postulateda priori in every problem under consideration. They camln@ined
by a certain periodic discretization of the celbw we have to introducthe
consistent asymptotic decompositioof displacements u, =u,(z,t),

w=w(z,t), z=(Z,2%) OAX), tO(te.t;), in an arbitrary celd X ) x0Q

Ugy (Z,t) Suy (z/et) =T, (z,t) +en2 (2§ (z,t), a=1,..,n,
W, (z,t) =w(z/e,t) =W(z,t) +e2g2(z2W A (z,t), A=1.,N, (4.1)
zOA, (), tO(tg,ty),
where summation convention ovarand A holds, ande=1/m, m=12 ..,
A, =(—eN/2,eN12), A (X)=x+A,, xOQ, h2(z) =h?(z/e),

g?(z)EgA(z/s). Unknown functionst, U3 in (4.1) are assumed to be
continuous and bounded together with their firstrivdgives. Unknown
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functions WW * in (4.1) are assumed to be continuous and boutwtgther
with their derivatives up to the second order.
Moreovert,,U2,w,W* are assumed to be independentofThis is the

main difference between the asymptotic approacheurmbnsideration and
approach which is used in the homogenisation thexbrys, 9].
Due to the fact that lagrangiabh defined by (2.2) is highly oscillating

with respect to x there exists for every xOQ, lagrangian
Ly (z,aBua,ua,aan,W,W) which constitutes aA -periodic approximation of

lagrangianL in A(x), zOA(x). Let L, be a family of functions given by
Lxs = Lx (levaﬁusavusa-auBstWs-Ws) =

= 2[DP¥(2/ £)05U 0, + 2 D2/ £) WUy +
2 (4.2)
+1r 72D Nz/ g)w,w, + BP(2/€)0 (p W0 5W +
_uaaBusausB _U(Ws)z] :
Substituting the right-hand sides of (4.1) inta2§4and taking into account that
if € -0 then every continuous and bounded functibnz t ( ,zJA, (x),
tO(to,Y), tends to functionf x(t, ) xOQ, as well as after neglecting terms

0O(g) , O(?) we arrive at
Lye = Ly (2/€,05Tq (X,1) +9gh?(2/€)U (x,1), Uy (X,1),
0qpW (X, 1) +04p9" (2/ WA (X,1), W(X, 1), W(X,1))

Moreover, if ¢ —» 0then, by means of a property of the mean valug9tfthe
obtained result tends weakly tdlo(aBUa,Ug,ﬁa,auBW,W,WA,W), where

L=t [ L (2,050, U2, Uy, 00 W, WW A, W)dz, zDA(KX), xOQ. It follows

|A| A(X)
that
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Lo(Oply U Uy 0pW,WW * W) =
= %[< DP(2) > 85U, 050, +2< D' (2)a5h%(2) > dpU,UL +
+< DP®(2)a5h?(2)95h"(2) >U2Ug +2r (< D*(2) > 95U, W +
< D(xBlltha >WU2) +r72 < D7) > (W)? + (4.3)
+< B (2) > 0,5 W + 2 < B (2)9,50(2) > 0,s WA +
+<B®P(2)0,59%(2)0,59° (2) >W WE +
-<p>a®lp-<p>W)?,  zOAKX), xOQ,
where denotation (3.6) has been used.

Function L, , given above, ishe averaged form of lagrangiab defined
by (2.2)under consistent asymptotic averaging

In the framework of consistent asymptotic modelling introducethe
consistent asymptotic action functiomkfined by

Lot

N

Lodtdb@dxt

—

L
Af?g(ﬁu ,US,V_V,WA) = J-
0

o —

t

o

where L, is given by (4.3).
Under assumption thall, /d(d,U, ), oL, /0(d,,W) are continuous, from

the principle of stationary action fcﬂq?g, we obtain

GB aLO 4‘i aLo =0 ,
8(d5U,) 0t AU,
oy Ay 00l _

—OGB T T o 0,
0(0pW) OW Ot OW 4.4)
aLo = ’ a_l21 ln1
U2
a"OA:o, A=12,...N.
ow

Combining (4.4) with (4.3) we arrive at the expiéorm of the consistent
asymptotic model equatiofier U, ,w,U2,W*
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<D > 9450, +1 7t < DM > 95w+ < DWPYYZhP > 95U +
-<p>a®®ip =0,
<BP¥ > 94 sW+ < B9 5g® >0, WE +1r <D™ >9,5u, +
+r2<DM>w4r <D™y hP>Uf-<p>w=0, (4.5)
<9gh?D®5h° > U = - <9zh* D > 94U, +
1 <Dl s
<0439 B%0,59% >W*" = - <0,39°B*Y° >0 ;W
It can be shown that Ilinear transformation$&s,E given by
Gy =<9gh*D Mash° >, E*® =<9,,9”B""9 50° >, respectively, are

invertible. Hence, solutionbl\',’,wA to (4.5} 4 can be written in the form

UL = (G|« 95hDPW > 85T, + 17t <dghDP I > )

A -1y AB B S — (4.6)
WA =—(E™)"® <9,59°B%P° >0 5w,

where G and E™ are the inverses of the linear transformatidAsE ,
respectively. Substituting (4.6) into (4.5and setting
S _ 5 -1yab b >
DﬁBV =< DYPY 5 _ <« DUBNX 0,h? > (G2 <a,h DX 5

(4.7)

Brc]xﬁyé =< BaBy6 S —< BunZangA > (E—l)AB <aungBpZy6 >
we arrive finally at the following form of Euler-gaange equations far;, w

D095y + D opW- < > 2 =0, (4.8)
BrPY g, sW + 1 D050, +1 DR WA < >W =0. '

Since functionsu, (G1), w((X) have to be uniquely defined @ x ty(t; ,, )
we conclude thati, (C1), w [, have to take the form

U (X,t) =T (X,8) +h* (VU2 (1),

(4.9)
w(x,E,t) =W(x,t) + g (W A (x,t), x0OQ, tO(tet;),

with U2,W* given by (4.6).
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Equations (4.8) together with formula (4.9) reprgsthe consistent
asymptotic modebf Euler-Lagrange equations (2.4) derived fromrdagian
(2.2). Coefficients in equations (4.8) are consiantontrast to coefficients in
equations (2.4) which are discontinuous, highlyillzig and periodic. The
above model is not able to describe the lengthesetibct on the overall shell
dynamics being independent of the microstructudé siee. That is why the
model derived in the first step of combined modellis referred to ashe
macroscopic moddbr the problem under consideration.

In the first step of combined modelling it is assahthat functionsi, ,w

obtained as solution to a certain boundary-initialue problem for consistent
asymptotic equations (4.8) are known. Hence, thezaalso known functions

Ugg (X, 1) =Ty (X,t) +h2 (XU & (X,1) ,

(4.10)
Wo (6,E,1) =W(X,t) + g (W A (x,1), x0Q, tO(te.ty),

whereU2,W* are given by means of (4.6).

4.2. Step 2. Superimposed modelling-tolerance approach
The second step of the combined modelling will balized by means dhe
tolerance procedurect. [1, 11, 26, 28]. To this end we assume thgt and w,

given by (4.10) are the knowntolerance periodic functions i.e.
Ugg (%,1) OTRHQ,A) , Wy (x,t) OTRZ(Q,A), xOQ, t0 (ty.t;).

Let functions ck(x), k=12,..m and bX(x),K =12,..,M be the new
known A -periodic in x fluctuation shape functionsc*(QJOHO;(Q,A),
bX (JOHOZ2(Q,A), such that cKOOWM), A, 00 X )
b DO(M?), A9b" DOMN?), N0, DO(N*), <pc* >=<pbX >=0 and
<pckeP >=<ub®pb® >=0 for k# p,KzP, where p ) is the shell mass
density being a\ -periodic function with respect ta . In dynamic problems,

the fluctuation shape functions®,b® introduced in the second step of

combined modelling represent either the principaldes of free periodic
vibrations of the cellA X )or physically reasonable approximation of these

modes. Hence, they can be obtained as solutionsrtain periodic eigenvalue
problems describing free periodic vibrations of tedl, cf. [21]. Let functions

Q('j (x,t), k=12..,m andVK &t) K=12.,M be the new unknowns called
fluctuation (microscopic) amplitudeswhich are slowly-varying in X,
QX (x,t) OSVH(Q,A) OTRH(Q,A), VK (x, ) DSVE(Q,A) O TRZ(Q,A) .
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We shall introduc¢he extra decomposition superimposedugp, w,

Ugg (%, 1) = Ugg (X,1) + €K (X)QE (x, 1) ,

(4.11)
Wi (X,1) = Wo (6, 1) + B XV K (1), x0Q, tO(tg.ty).

Summation convention ovek =12,...m and K =12,..,M holds. If u,, and
w, are known then the above formula will be refertedas decomposition
superimposed on the first step of combined modgllin

Due to the fact thatiy, () DTR(Q,A) and w, (1) OTR? Q A) there

exist periodic approximations of these functionsd aof their pertinent
derivatives in evenA X )

Bearing in mind properties of the slowly-varyingdahighly-oscillating
functions, cf. (3.1), (3.2), the periodic approxtioas of Uy, € 1), OgUcy (Z,t)

andug €1)in A(x), zOA(x), xOQ , have the form

Ueax (2,1) = Ugg (X,1) + ¢ (2)Qq (x,1),
(9pUca )x (1) = Bgliog (X,t) +9pC" (2)Q5 (x.1). (4.12)
Ugerx (2,1) = Ugg (X,1) + (20 (x.1).
for everyxdQ , almost everyz0A X )and everyt 0 tg t; )
The periodic approximations ofy, z € ., )0,gW, (2,€,t) and W, € 1) in
A(x), zOAX), xOQ , have the form

Wo (2,8) = Wo (x,8) +bX (2V € (x,1),
(Do ) (1) = 0 (X, 1) + Db (2V K (x,1), (4.13)
Wy (2,8) = Wo (x,8) +bX (2V € (x,1)

for everyx 0 Q , almost everyz A X Jand everyt 0 tg t; )
Setting u, =u,,W, =w, we obtain from (2.2) lagrangian
Lo (X, 0pUcg , Ucq 10 oW, Wh, Wip) DHOZ (Q,4), xOQ. Since Ly, is highly

oscillating with respect tox then there exists a periodic approximation
chx(Zv(aBuca)x-UCGXv(aaBWb)vabx-be)- ZDA(X), of ch in everyA 6( )v

where functional arguments of.,, are given by means of (4.12), (4.13).
Lagrangian L., has the form of lagrangian (2.2) in which
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0pUcq =0pUq, Ugy =Uq,0qpW, =05gW, W, =W, W, =W are  replaced by
(08Uca )x s Ucax (O apWh )x s Wox s Why »  FEspectively. Substituting the right hand
sides of approximations (4.12), (4.13) into lagiand-.,, and using tolerance

averaging formula (3.5) we arrive tie tolerance averaging of lagrangian,,
in A(x) under superimposed decompositi¢#.11). Introducing the extra
approximationl+A/r =1, the obtained result has the form

<L > (Qq.Qq.V V) =
:%[< DP¥9 5Unq Oty > +2 < DWPY95c*d5uq, > QI +
+< D9,k 5" > QlQy +
+2r < DM g Wy > + < DP9 ck wy > QT + (4.13)
+172 < D™ wgwy > + < BP9 gwipd 5w > +
+2< BP0 50 gwp >V K+ < B 5b" 9 sbt >V iV E +
— <paPugy Uog > = <p(Vip)? > +
—<pcc' >a®PQfQp —<ub b VK V'],
Due to periodic structure of the shell averagds> on the right-hand side of

(4.14) are constant and calculated by means of.(3.6
Functional

Loy
A(QEVX) = [ [ [< Lgp >dtdxaxt,
00ty

where< L, > is given by (4.14), is calletthe tolerance averaging of functional
Alu,,w) defined by (2.1)under superimposed decompositi¢h.11). The
underlined terms in (4.14) depend on microstruckemgth parametexk .

The principle of stationary action applied £, given above leads to the

following system of equations fdb('j VK
aa<|-(:b> a<|-(:b>_
a an h an - 0'
a a (4.15)
aa<|-(:b> a<|-(:b>_
il : - =0
G \VAN VA
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Combining (4.15) with ( 4.14) we obtain finally tle&plicit form of the Euler-
Lagrange equations

- <D, 9,5c" >Q, -<pctc >a™PGy =

(4.16)
=r < DY ckwg > + < Do ckapug, >, kI =12,...m,

< BP9 0" 9 5b" >V + < pbXbt V't = - < BV, 49 o0 >
K,L=12,.M.

" (4.17)

Let us observe that in the problem under considerate have obtained
system of governing equations which consists of imdependent subsystems.
The first from them is the system @m equations for fluctuation amplitudes

Qg, cf. (4.16), whereas the second one is the sysitnlM equations for

fluctuation amplituded/ <, cf. (4.17). The right-hand sides of (4.16) and. {3
are known under assumption thaj, ,w, were determined in the first step of
modelling.

Equations (4.16) and (4.17) have to be considemgkether with
decomposition

Ug (%,1) = T (x,8) + 2 (U (x,8) + X ()QK (x,1),

W(X,t) = W(x,t) + g2 W A (x, 1) + b (x)v K (x,1), (4.18)
x0Q, tO(tet), a=1..n, k=1..m A=1.,N, K=1.,M,

where functionsﬂu,Ug‘,\Tv,WA have to be obtained in the first step of combined

modelling, i.e. in the framework ahe consistent asymptotic modellindt
follows thatthe combined modelerived here is represented by
. macroscopic modealefined byequations (4.8) fol,,Ww with expressions

(4.6) for U2,W”", obtained by means ofhe consistent asymptotic

modelling and being independent of the microstructure lengthis
assumed that in the framework of this model theitgmt (4.10) to the
problem under consideration is known,

. superimposed microscopic model equatiqdsl6), (4.17) derived by
means ofthe tolerance (non-asymptotic) modellirspme coefficients of
these equations (underlined terms) depend on tleeostiucture length
parametemn ,

. decompositiorf4.18)
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Coefficients of all equations derived in the franoekv of combined
modelling are constant in contrast to coefficieint®quations (2.4) which are
discontinuous, highly oscillating and periodic.

The model proposed here can be applied to andigskemgth-scale effect
in selected problems of dynamics of biperiodicaliyd densely stiffened
cylindrical shells under consideration. Moreovender special conditions it
makes it possible to separate the macroscopic igéear of a certain problem
from its microscopic description.

Applying the tolerance modellindirectly to the decomposition (4.18) we

also obtain the system of equations fgr,w,U2,Q%,W* V¥ . However, this

system is much more complicated then the systeairadd in the framework of
the combined modelling.

5. MICRO-DYNAMICSOF THE SHELL

Now, we are to show that the combined model, pregdere, makes it possible
to study micro-dynamics of periodic shells undensideration independently of
their macro-dynamics. To this end, instead of fiomst c* (01 b () in (4.16),
(4.17) we introduce fluctuation shape functions
h*(la=1..,n, g”(0 A=1.,N, respectively, settingn=m N=M . By
means of the consistent asymptotic modelling waiabt

< D®PP9,c*dguy, >+t < DWPMggh?w, >=< D sh? > 9T, +

+< D9 h%9sh° >U2 +rt < DPHg h? >w=0, ab=12..n, -
< BuByéayégAaaBWO S—< BaByéayégA >ao(|3V_V+ (5.1)
+<B9 59%,50° >WB =0, AB=12..N.

It means that the right-hand sides of equations6j4and (4.17) are equal to
zero and the final result is given by equations

< DP95h395h° > QP +< ph®h® >aPQp =0,
ab=12..n,

(5.2)

<B®9,39"9,50% >V B+ <pg”g® 3°® =0,
AB=12,.N.

(5.3)

Equations (5.2), (5.3) are independent of solutiags, w, obtained in
the framework othe macroscopic modednd hence describe selected problems
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of the shell micro-dynamics; e.g. the free micrbration problem. Moreover,
the shell’'s micro-dynamics in the axial and circamshtial directions can be
analysed independently of its micro-dynamic behavia the direction normal
to the shell midsurface.

It has to be emphasized that problems describd8.8y, (5.3) are related

to unknown fieldsu, =u, (x,t) and w=w(x,t) by means ofu, = u,, +h*Q¥,
w=w, +g"“vV", whereu,,w, are determined by the consistent asymptotic

modelling.

At the end of this section, using equations (52)3) we derive formulae
for free micro-vibration frequencies of a certalosed biperiodically stiffened
shell. The stiffened shell under consideration rieated as a shell with
periodically varying thickness and periodically yiag elastic and inertial
properties. It is assumed that both the shell atiffersers are made of
homogeneous isotropic materials. We confine ouesete the simplest form of
the combined model in whica=n=A=N =1. It assumed that the fluctuation
shape functions are known in the problem under idenstion. Let the
investigated problem be rotationally symmetric wahperiod A/r; hence

Q EQll in (5.2) is equal to zero and the remaining slevdyying unknowns
Q,=Q3, V =V?! of equations (5.2), (5.3) are independent of aepumnx’.
Obviously, the highly-oscillating fluctuation shafnctionsh=h! and g = g*

are A -periodic functions of both arguments and x2. It is assumed that the
edges x> =0,x> =L, are simply supported, i.e. they are hinged whik t
support free, cf. [27].

Equations (5.2) and (5.3) reduce now to the form

(< D2M%3,h)2 > + < D222%(9,h)2 5)Q, +<p(h)? >a?d, =0, (5.4)

(<B™Y01,0)* > + < B#%(0,,0)* > +2< BM#0,,00,,0 > +

. (5.5)
+4<B'1%0,,0)% >)V +<p(g)> >V = 0.
Solutions to equations (5.4) and (5.5) will be takethe form
2 2
X“,t) = Ay coskx”)cos ,
Q2 (x%,t) = Aq coskx”) cos(@ ) (5.6)

V(x%,t) = A, sin(kx®)cos@t) ,
where Ay 20, A, # Oare micro-vibration amplitudes being arbitrarystants,

k =1t/L, is a wave number anay, wy are frequencies of free micro-vibrations
along the generating lines and in direction nornealthe shell midsurface,



ON THE MODELLING OF DYNAMIC PROBLEMS FOR BIPERIODICALLY... 199

respectively. It can be observed that solution8)(&@te slowly-varying functions
in argumentx?, because of, under assumptidhlL, <<1, the wave numbek
satisfies condition(k =1t/ L,) << T1U/A .

Substituting (5.6)and (5.6 into (5.4) and (5.5), respectively, under extra
denotations

D% =<D?%9,h)? > + <D??@,h)2 >, pp =A2<p(h)?>,
B =< BM%%9,,0)% > + < B?%2%(9,,0)% > +2 < B1'%%,,00,,0 > +
+4<B%0 )% > po =N <p(g)? >,

we arrive at formulae for
» free micro-vibration frequencyn; in axial direction

2 = , (5.7)

« free micro-vibration frequencyw, in direction normal to the shell
midsurface

B
Mg

W= (5.8)

The free micro-vibration frequencies derived abodepend on
microstructure length parameter. Hence,they cannot be obtained in the
framework of the commonly used asymptotic modelsedbdically stiffened
shells

6. FINAL REMARKS

Thin linear-elastic Kirchhoff-Love-type circular laydrical shells with a

periodically inhomogeneous structure along the uciMerential and axial
directions are objects under consideration. Sheflsthis kind are termed
biperiodic As an example we can mention cylindrical sheligweriodically

spaced families of longitudinal and circular stiffes as shown in Fig.1.
Dynamic and stability behaviour of such shells@gecribed by Euler-Lagrange
equations (2.3) generated by the well known Lageafgnction (2.2). The
explicit form of (2.3), given by (2.4), coincidestiwthe governing equations of
the simplified Kirchhoff-Love theory for elastic alfs. For periodic shells
coefficients of these equations are highly osdéillatnon-continuous periodic
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functions. That is why the direct application ofiatjons (2.4) to investigations
of specific problems is non-effective even usingpatational methods.

In this contribution,the new mathematical non-asymptotic motte
analysis of selected dynamic problems for periatiells under consideration
has been formulated by applyitige combined modelling procedugiven in
[11]. Contrary to starting equationthe resulting combined model equations
have constant coefficients and take into account thaylerscale effectThe
combined modelling technique is realized in tw@sté he first step is based on
the consistent asymptotic averaging of lagrangign2) under consistent
asymptotic decompositiord.1) of the shell displacements. The resulting
averaged form of lagrangian (2.2) is given by (4T3)en, applying the principle
of stationary action tahe consistent asymptotic action functiorggfined by
means of averaged lagrangian (4.3), we arrive rEagrange equations (4.8)
with constant coefficients which are independenthefmicrostructure cell size.
Hence, the model obtained in the first step isrreteto asthe macroscopic
model Assuming that in the framework of the macroscapadel the solution
(4.10) to the problem under consideration is knowe,can pass to the second
step. This step is based tme tolerance averaging of lagrangig@.2) under
superimposed decompositig¢h.11). The resulting tolerance averaged form of
lagrangian (2.2) is given by (4.14). Then, applythg principle of stationary
action tothe tolerance averaged action functiomifined by means of averaged
lagrangian (4.14), we arrive at Euler-Lagrange &qoa (4.16), (4.17) with
constant coefficients which depend on the cell ¢imelerlined terms). Hence,
the model obtained in the second step is refereedsthe superimposed
microscopic model Thus, the new combined modebproposed here, is
represented bynacroscopic model equatior{d.8) together with expressions
(4.6) and solution (4.10) and ksuperimposed microscopic model equations
(4.16), (4.17) as well as ldecompositior{4.18).

The important advantages of the new shell mpdabosed here are listed
below.

* The coefficients of the combined model equatioescanstant and some of
them depend on the microstructure length paramatett means that the
proposed model equations describe the effect otéfiesize on the overall
shell dynamics. Hence, they can be used to theg/sisalf many phenomena
caused by the length-scale effect, e.g. for ingastns ofthe additional
higher-order free vibration frequenciescurring in the periodic shells.

e The resulting combined model equations are uniqadelermined by the
postulatedfluctuation shape functionsvhich describe fluctuations of the
shell displacements inside the cell from the qaalie point of view. The
fluctuation shape functions introduced into macopsc model by means of
decomposition (4.1) can be obtained by a certariogie discretization of
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the cell while those introduced into superimposeadrascopic model by

means of decomposition (4.11) represent eithemptireipal modes of the

free periodic vibrations of the cell or physicatlasonable approximations
of these modes. In most problems the fluctuatiaapshfunctions specified
in the first and second steps of combined modebireydifferent due to the
different character of the macroscopic and the sop®sed microscopic

models. However, from the formal point of view tHRactuation shape

functions of both the models can coincide.

e Under assumption th#e fluctuation shape functiofstroduced in the first
step of combined modelling coincide with those ddtrced in the second
step, we have derived superimposed microscopic megieations (5.2),
(5.3) which are independent of the solutions olgdim the framework of
the macroscopic model. Taking into account thisltese can conclude that
an important advantage of the combined model isithmakes it possible to
separate the macroscopic description of some sppcidlems from their
microscopic descriptionlt means that in the framework of the combined
model we can study micro-dynamics of periodic shalider consideration
independently of their macro-dynamics.

Using superimposed microscopic model equationg énd (5.3), the free
micro-vibration frequencies caused by a periodicucttire of a certain
biperiodically stiffened shell have been derivedependently of the macro-
vibration frequencies. The results given by medn&b d) and (5.8) depend on
the microstructure length ancannot be obtained in the framework of the
commonly used asymptotic models for dynamic arsabfgperiodically stiffened
shells

It is worth noting that the combined model for ysé of dynamic and
stability problems for cylindrical shells with owlirectional periodic structure
(uniperiodic shell was proposed and discussed in [24]. We recall tha
tolerance models of uniperiodic shells are notgbecial cases of the tolerance
models of biperiodic shells.

More detailed discussion of the combined modeldfpramic analysis of
biperiodic shells proposed in this contributionllWwe presented separately.
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MODELOWANIE ZAGADNIEN DYNAMIKI W BIPERIODYCZNIE
UZEBROWANYCH POWLOKACH WALCOWYCH

Streszczenie

W pracy wyprowadzono nowy nieasymptotyczny modetagly do analizy dynamiki
cienkich liniowo-spgzystych powtok walcowych typu Krchhoffa-Love’'a, padiycznie i
gesto webrowanych w dwdch kierunkach stycznych do powlemzérodkowej powtoki.
Do wyprowadzania réwna wykorzystano technik ,combined modelling”
zaproponowafnw monografii [11]. Modelowanie jest dwuetapowe pigrwszym etapie,
stosujic procedu¢ modelowania asymptotycznego, otrzymuije raiodel makroskopowy
rozwazanych powtok, maicy state wspoétczynniki, ktore nie zaleod dtugdci okresu
periodycznéci mikrostruktury. Zaktadag, ze rozwihzanie danego problemu brzegowo-
pocztkowego w ramach modelu makroskopowego jest znareechodzi & do etapu
drugiego, w ktorym w oparciu o techaiknodelowania tolerancyjnego wyprowadza si
réwnania modelu mikroskopowegmatazonego na model makroskopowy etapu
pierwszego Réwnania modelu mikroskopowego majtate wspoétczynniki zaime od
wielkosci  komorki periodycznéci. Proponowany gombined model” moze by
zastosowany do badania efektu skali w zagadnienieiamiki mikroperiodycznych
powlok walcowych.Zalety modelu jest toze umdliwia rozdzielenie makroskopowego
opisu szczegoélnych zagadiigynamiki powtok od ich opisu mikroskopowego





