
CIVIL AND ENVIRONMENTAL ENGINEERING REPORTS 
 

No. 5  2010 
 

RHEOLOGICAL REDISTRIBUTION OF STRESSES 
IN MULTI-LAYERED BEAMS 

Tomasz SOCHA 
University of Zielona Góra, Faculty of Civil and Environmental Engineering,  

Department of Structural Mechanics 
ul. prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland 

t.socha@ib.uz.zgora.pl 

The paper concerns problems of rheology in wooden structures reinforced 
with polyester-glass composite bars glued to them by means of epoxy resin. A theoretical 
model of the behaviour of a multi-layered beam is presented. The component materials 
of this beam are described with equations for linear viscoelastic media (five- and six-
parameter rheological models). The Bernoulli’s plane sections hypothesis has been 
assumed and this assumption includes the statement that the particular layers 
are perfectly composed with no allowances for creep. Equations for stresses have been 
derived. To verify the elaborated theoretical model, a program of experimental tests has 
been prepared. The performed calculations have revealedthat the theoretical model 
is consistent with the experimental data. The redistribution of stresses occurs 
in the beam, also when global loads are constant in time. 

Keywords: multi-layered structures, redistribution of stresses, rheology, 
viscoelasticity 

1. INTRODUCTION 

This paper concerns the analysis of stresses in viscoelastic multi-layered beams. 
The rheological characteristics of a beam made from a single material 
are manifested by deformations that increase with time (creep) or decreasing 
of stresses (relaxation of stresses). In the multi-layered beams a redistribution 
of stresses may occur due to different rheological properties of the component 
materials, which leads to changes in the location of the neutral axis, strains 
and displacements in time. The layers of the considered multi-layered beam 
are bonded together by means of an epoxy  resin adhesive that exhibits 
pronounced rheological properties, which further enhances the viscous response 
of the beam as a whole. 
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2. THEORETICAL MODEL OF A MULTI-LAYERED BEAM 

A typical multilayer beam is illustrated in Fig. 1. 

 
Fig. 1. A multi-layered beam: a) internal forces in ith layer,  

b) a cross-section of the beam 

The following assumptions have been made [1, 2, 3, 5, and 6]: 
1. A cross section of a beam is symmetrical with respect to the vertical axis z. 
2. A beam is composed of layers made of linear viscoelastic materials 

exhibiting the same rheological properties in tension and compression. 
3. Planar cross-sections remain planar before and after bending (the Bernoulli 

hypothesis). 
4. The layers are perfectly joined without slip. 
5. Temperature and moisture conditions are constant in time. 

As a result of a load applied at any point in an ith layer of the beam, 
a strain εi is caused, defining by the formula: 

 ii z⋅Κ=ε , (2.1) 

where K – curvature. 
After differentiation dependence (2.1) assumes this form: 

 ii zdd ⋅Κ=ε . (2.2) 

It follows from the formulae of equilibrium of statics that the sum total 
of normal forces operating in all layers equals 0: 

 ∑
=

==
n

i

iNN
1

0 . (2.3) 

The normal force iN , in turn, is the resultant force of normal stresses 
in an ith layer whose field in the cross section equalsiA : 

 ∫=
iA

iii dAN σ . (2.4) 
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The rheological behaviour of material in each layer is described by means 
of an integral representation of linear viscoelastic medium [2]: 

 εσ dE ∗= , (2.5) 

where: 
E – a relaxation function, 
dε – an increment of strain, 
∗  – the convolution product. 
Replacing representation (2.4) with (2.5), we obtain:  

 ∫ ∗=
iA

iiii dAdEN ε , (2.6) 

and taking into account representation (2.2): 

 ∫ ⋅Κ∗=
iA

iiii dAzdEN . (2.7) 

Therefore, the equilibrium of normal forces (2.3) assumes the form: 

 ∑ ∫
=

=⋅Κ∗=
n

i A

iiii

i

dAzdEN
1

0 , (2.8) 

and after transformation: 

 ∑ ∫
=

=⋅Κ∗=
n

i A

iii

i

dAzdEN
1

0 . (2.9) 

The integral in representation (2.9) corresponds to the static moment 

of cross-sectional area iA  of ith layer with respect to the neutral axis 
of the beam: 

 ∫=
iA

iii dAzS , (2.10) 

and so representation (2.9) can be presented in the following form: 

 ∑
=

=⋅Κ∗=
n

i

ii SdEN
1

0 . (2.11) 

It follows from equation (2.11) that: 

 ∑
=

=⋅
n

i

ii SE
1

0 . (2.12) 

Equation (2.12) makes possible calculating the time changeable distance 
from the neutral axis. 
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The bending moment in an ith layer can be calculated 
from the representation: 

 ∫ ⋅=
iA

iiii dAzM σ , (2.13) 

and taking into account representation (2.2) and the integral representation 
of constitutive equations of linear viscoelastic behaviour (2.5): 

 ( )∫ ⋅Κ∗=
iA

iiii dAzdEM
2

. (2.14) 

The above equation can be transformed into: 

 ( )∫⋅Κ∗=
iA

iiii dAzdEM
2

, (2.15) 

where: 

 ( )∫=
iA

iii dAzI
2

, (2.16) 

corresponds to the moment of inertia of cross-sectional area iA  of ith layer 
with respect to the neutral axis of beam. 

Having considered (2.16), equation (2.15) assumes the following form: 

 iii IdEM ⋅Κ∗= . (2.17) 

The total bending moment in cross-section will be equal to the sum total 
of partial bending moment in each layer: 

 ∑∑
==

⋅Κ∗==
n

i

ii
n

i

i IdEMM
11

. (2.18) 

The convolution product can be identified on the basis of equation (2.17): 

 
i

i
i

I

M
dE =Κ∗ . (2.19) 

The same product can be established from representations (2.2) and (2.5): 

 
i

i
i

z
dKE

σ=∗ . (2.20) 

After comparing the right sides of equations (2.19) and (2.20), 
the equation representing the normal stresses in an ith layer is obtained: 
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ii
i

I

zM ⋅=σ . (2.21) 

This equation has a form which is analogical with the classical 
dependence on the distribution of normal stresses in a homogenous bending 
beam. However, the moment iM  remains unknown. It can be identified 
by means of the condition of strain deformation. Representations (2.17) 
and (2.18) lead to the following dependences: 

 ( ) 1−⋅∗=Κ iii IEMd , (2.22) 
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−

=




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

 ⋅∗=Κ ∑
n

i

ii IEMd . (2.23) 

Comparing the right sides of the above equations, it is possible to derive 
the dependence describing the bending moment in an ith layer: 

 MIEIEM
n

i

iiiii ∗






 ⋅∗⋅=
−

=
∑

1

1

. (2.24) 

Integral equation (2.23) makes possible calculating curvature K, and to be 
more specific, the discrete set of curvature values in subsequent points in time t. 
Using curvature values, deflection can be identified by means of the equation: 

 
2

2

dx

ud=Κ . (2.25) 

Integration of the above equation enables calculating beam deflections 
u at any time t.  

Unfortunately, the convolution product, appearing in the above equations, 
is a source of significant difficulties in a precise calculation. Therefore, 
to calculate curvature K, an approximated calculation was used, where 
the convolution product (2.18) is approximated by the sum with a variable 
summation limit. Dependence (2.20) was transformed similarly. Both equations 
have the following form: 
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Curvature increments in subsequent moments were calculated 
from formula (2.26), and on their basis, by means of formula (2.27), normal 
stresses in each layer were specified. 

It needs to be stressed that at the starting point 0=t  the relaxation 
function ( )tEi  of the material in ith layer it assumes the value of modulus 

of elasticity iE0  of the material, that is: 

 ( ) ii EtE 00 == . (2.28) 

In a homogenous linear viscoelastic beam, during creep, an increment 
in the value of deflection will be observed, whereas the stresses are constant 
in time. In the case of a multi-layered and multi-material arrangement, 
the aforementioned phenomenon may only occur when the relaxation functions 
in the particular layers of material are similar, that is: 

 ( ) ( )tEktE ii ⋅= , (2.29) 

where ik  is the factor of proportionality specified for each layer, and ( )tE  
is the basic relaxation function. In any other case the redistribution of stresses 
will occur between the constituent layers of the intersection. 
 Using the above dependencies to calculate stresses and deflections 
in a viscoelastic multilayered bar is possible after specifying the relaxation 
function ( )tEi  of rheological model of the material in each layer. The values 

of modulus of elasticity i
jE  in the equations and coefficients of elasticity i

jη  

are to be identified experimentally in creep tests or relaxation tests. 
Due to significant difficulties in carrying out relaxation tests, the former 
solution is usually applied. The method of determining values of parameters 

i
jE and i

jη  is discussed in [5]. 

3. LABORATORY TESTS 

Long-term experimental investigations of layered beams were conducted 
at the laboratory in the Institute of Building Engineering at the University 
of Zielona Góra. The multi-layered beams of natural dimensions made of wood, 
polyester glass composite bars and epoxy adhesive, were examined in the four-
point bending test (Fig. 2).  

With the aim of comparison, additional tests were carried out on wooden 
beams of homogenous cross-section with the identical geometrical 
characteristics as the layered beam’s cross-section. The cross-sections 
of the beams and their geometrical characteristics are displayed in Fig. 3, 
wherein the symbols denote: 
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AD, AK, AL, AP – areas of cross-section, 
PLKD EEEE 0000 ,,,  – elastic moduli, 

IL, IZ – the moment of inertia of cross-sectional area, 
Z

d
Z

g
L WWW ,,  – section moduli, 

D, K, L, P, Z – index of materials: wood, adhesive, homogeneous beam,  
composite bar, reinforced beam. 

 
 
 
 
 
 

Fig. 2. General view of LS and ZS beams 

Up to the point of stress value being equal appr. 30% of failure load, 
the wood may be treated as linear viscoelastic medium [5]. Therefore, 
in experiments the equal stress L

nF%30  was adopted, where LnF  is the average 

force destroying the homogenous beam, marked earlier in tests on short-term 
loads. The duration of the load equalled 100 days. Then the beams were relieved 
for 35 days, whereupon they were loaded again. They were relieved and loaded 
again. The whole multi-stage loading program is presented in Fig. 4. Six beams 
of each type (LS and ZS) were subjected to the test and the mean values 
of the results were calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Cross-sections of the tested beams: a) homogeneous wooden cross-section, LS, 
b) cross-section with embedded composite reinforcement, ZS 
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Fig. 4. The multi-step programme of loads of LS and ZS beams: 
a) load change, b) hypothetical deflection change 

4. RHEOLOGICAL MODELS OF COMPONENT MATERIALS 

The rheological properties of the polyester glass and the epoxy adhesive 
are described with the five-parameter model shown in Fig. 5a, whereas the six-
parameter model shown in Fig. 5b is used for the wood. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Rheological models: a) five-parameter model, b) six-parameter model 
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The material parameters E and η of these models have been determined 
from additional separate tests conducted on samples of these materials 
and evaluated by the method of least squares. The mathematical formulae 
for the relaxation function of each of the applied models were derived from 
the constitutive relations of linear viscoelasticity in differentia form by making 
use of the Laplace transformation [4, 5, and 7]. 

5. REDISTRIBUTIONS OF STRESSES 

The pertinent wooden beams in glued-in composite reinforcement are statically 
indetermined arrangements. Deformations in each material are limited owing 
to the condition of agreement of deformations.  Furthermore, each material 
displays different rheological features, and so a redistribution of stresses occurs 
in the bar, even when the global loads are constant in time. 

The results of the calculations performed by means of equations (2.26) 
and (2.27) in the form of stress values in selected days are presented in Table 1. 
Stresses in the lower (Dd

ttσ ) and upper ( Dg
ttσ ) edge of the wooden part 

of the reinforced cross-section and in the glue (K
ttσ ) and the reinforced bar (Pttσ ) 

were correlated. In order to compare, extreme stresses in the beams LS (Lttσ , 
at the lower and upper edge of the beam cross-section) are presented. 

Table 1. Normal stresses in beams ZS and LS 

Phase Day 
Wood – ZS beams Glue 

K
ttσ  [MPa] 

Composite 
P
ttσ  [MPa] 

LS beams 
L
ttσ  [MPa] 

Dg
ttσ  [MPa] 

Dd
ttσ  [MPa] 

load 
0 -15,86 14,94 2,89 47,15 15,42 

100 -15,48 14,09 2,00 57,71 15,42 

unload 
100 0,38 -0,85 -0,89 10,56 0,0 

135 0,20 -0,46 -0,23 5,33 0,0 

load 
135 -13,02 11,99 2,19 44,63 12,85 

205 -12,82 11,56 1,52 50,24 12,85 

unload 
205 0,39 -0,89 -0,89 10,95 0,0 

240 0,24 -0,55 -0,31 6,40 0,0 

load 
240 -18,25 16,87 3,06 61,37 17,99 

310 -17,95 16,18 2,17 70,10 17,99 

unload 
310 0,54 -1,24 -1,21 15,12 0,0 

345 0,33 -0,78 -0,39 8,97 0,0 

The results of the calculations in the form of function of relative stress 
change in time t (quotient of normal stresses in time t and time t=0, 
( ) %100/ 0 ⋅i

t
i
tt σσ ) are shown on Fig. 6-11. 
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Fig. 6. Relative changes of normal stresses in ZS beams during the period 

0 – 100 days 

 

Fig. 7. Relative changes of normal stresses in ZS beams during the period 
100 – 135 days 

 

Fig. 8. Relative changes of normal stresses in ZS beams during the period 
135 – 205 days 
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Fig. 9. Relative changes of normal stresses in ZS beams during the period 
205 – 240 days 

 

Fig. 10. Relative changes of normal stresses in ZS beams during the period 
240 – 310 days 

 

Fig. 11. Relative changes of normal stresses in ZS beams during the period 
310 – 345 days 
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An analysis of the diagrams enables making the conclusion that, in bent 
wooden elements with glued-in composite reinforcement, a significant 
redistribution of stresses in the intersection is observed. When the load is active, 
the composite bar is additionally loaded and in extreme cases the stresses rise 
by 50% with relation to stresses at time t=0. The stresses in the wood decrease 
slightly (appr. 10%), both in the compressed and the tensioned area. 
The stresses in the glued joint decrease significantly (appr. 30%). This results 
from its sensitivity to creep (in glue tests the rheological deflections rose 
by 50%). 

During the periods of relieving the beams, owing to different rheological 
properties of the particular materials, a redistribution of stresses is also 
observed. In each part of cross-section a decrease in stress values is observed, 
though at a different velocity. The largest changes are observed in the composite 
bar and the glue. 

6. VERIFICATION OF BERNOULLI HYPOTHESIS 

In order to test Bernoulli hypothesis, results of measurements of deformations 
were used. More specifically, the mean values of deformations LS

tdε  and ZS
tdε  

are calculated on the basis of 36 readings.  
The degree of agreement of mean deformation values with Bernoulli 

hypothesis will be even larger when the deformation function is nearer a straight 
line, and the measure of this agreement corresponds to the value of linear 
correlation R between average measurement result and the point 
of measurement at the depth of the beam.  

The results of calculations and measurements are presented in Fig. 12, 13, 
and 14. The results are given for time t=0, t=310 and t=345 days, that is the time 
of commencement, completion of the test and the last day of activity 
of the largest load. Unfortunately, due to the measurement by means 
of a mechanic tensometer and the way the reinforcement was located in ZS 
beams, only wood deformations were measured. 

The analysis of correlation between localisation of deflection measuring 
point and mean values of deflections has revealed that, during all the period 
of time, strong linear interdependence was observed, both for homogenous 
and reinforced beams. In each case the coefficient value of linear correlation 
equalled R=0,999. 

Diagrams of theoretical deformation function LS
ttε  and ZS

ttε  are presented 
in Fig. 12, 13 and 14. The experimental deformations display a large degree 
of agreement with the theoretical model during the period of load activity. More 
divergences are observed in no-load periods, during the last stage in particular. 
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Fig. 12. Theoretical and experimental deformations of ZS and LS beams 

at time t=0 days 

 

 

Fig. 13. Theoretical and experimental deformations of ZS and LS beams 
at time t=310 days 
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Fig. 14. Theoretical and experimental deformations of ZS and LS beams 
at time t=345 days 

7. CONCLUSIONS 

The experimental tests presented in the article and the theoretical elaboration 
of their results enable drawing the following conclusions: 
• The adopted theoretical model of reinforced beam displays good agreement 

with empirical data and can be used to calculate a broad range of settings, 
such as beams with glued-in reinforcement or the typical composite 
structures. 

• A significant redistribution of stresses in the cross-section occurs in the bent 
wooden elements with glued-in composite reinforcement. The composite bar 
is further loaded when the load is active, in extreme cases the stresses rise 
by 50% with relation to stresses at time t=0. Stresses in the wood decrease 
slightly (appr. 10%), both in the compression and tensioned area. In turn, 
stresses in the glue joint decrease significantly, which results from its 
sensitivity to creep (in tests of glue samples the increment of rheological 
deformations equalled 50% of elastic ones). During no-load periods, a 
decrease in deformation values is observed at each place of intersection, 
though at a different pace. The largest changes are observed in the 
composite bar and the glue. 
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REOLOGICZNA REDYSTRUBUCJA NAPRĘŻEŃ W BELKACH 
WIELOWARSTWOWYCH 

S t r e s z c z e n i e  

W referacie przedstawiono problemy reologii konstrukcji wielowarstwowych 
na przykładzie belek drewnianych wzmacnianych wklejonymi prętami kompozytowymi 
(trzy warstwy: drewno, spoina klejowa o dużej grubości, pręt kompozytowy). 
Zaprezentowano teoretyczny model pracy tego typu belki zbudowany w oparciu 
o równania ośrodków liniowo lepkosprężystych, hipotezę płaskich przekrojów 
oraz założenie idealnego zespolenia elementów składowych. Wykorzystując rachunek 
operatorowy wyprowadzono równania ugięć i naprężeń. W celu weryfikacji modelu 
teoretycznego przeprowadzono badania doświadczalne na belkach w skali naturalnej, 
litych i wzmocnionych. Wykonane obliczenia wykazały dobrą zgodność modelu 
teoretycznego z danymi doświadczalnymi. Stwierdzono istotną redystrybucję naprężeń 
w obrębie przekroju poprzecznego. 




