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An elastic isotropic multi-wedge system with raljidbcated thin defects under longitu-

dinal shear is considered. The procedure of coctitruof asymptotics of the stress and
displacement fields in the vicinity of the systepea using the apparatus of generalized
functions and Mellin transform is presented. Théiamof generalized stress intensity
factor near the wedge system apex is introduced. pfbcedure proposed is applied to
determine analytically the asymptotic distributminstress and displacement fields in the
three-wedge system peak. The generalized stresssityt factor near the three-wedge
system apex is analyzed.

Keywords: wedge system, angular point, singulaoityer, stress assymptot-
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1. INTRODUCTION

Modeling of mechanical systems based on the liekaticity theory sometimes
requires consideration the surfaces with angulamtpolt leads to the fact that
some parameters of physico-mechanical fields arscrieed by singular
expressions. Generally speaking the presence giilgirity conflicts with initial
assumptions of the model of elastic continuum asdilts of contradictions that
are included in the mathematical model of probleBesides the solutions with
singularities give the authentic qualitative pietwf distribution and quantita-
tive characteristics of the field outside of sonegyvsmall vicinity of singularity
point. In the cases when in the vicinity of irregupoint the finite integral cha-
racteristics can be determined they are utilizestassfully to analyze the phy-
sical properties of the field [6].
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The analysis of physico-mechanical fields in thanity of angular points
of material interface is carried out on the modglions, namely on the systems
composed of a certain number of coupled wedgesgaxie common point. In
addition mainly the methods of complex Kolosov-Muoslkshvili potentials
[3, 5], Airy stress functions [1, 8, 11] and thethwd of singular integral equ-
ations [12] are used. However it yields the cumisees expressions which
complicate obtaining the analytical writing of agyatics of the stress-strain
state even for the two-wedged composite. Theredgra rule the attention is
restricted to study only order of the stress figialgularity. The Mellin trans-
form use [14, 15, 16] somewhat simplifies the gah&wrm of expression and
makes it possible to determine the stress inteffiadiors in the vicinity of the
wedge system apex in special cases of antiplar@emmoof elasticity theory for
two wedges [15]. But the problems with writing thepressions describing the
physico-mechanical fields in the vicinity of thestgm peak, the tips of thin
interphase defect and in the whole region occupied multi-wedge composite
still remain. The same questions arise also dudiescription of the fields of
other physical nature (in particular, electromagnféld) in a multi-component
wedge system [9, 10].

In this paper the authors propose an efficient @gugr to solution of the
problem on the stress-strain state of multi-wedgsdesn with radially located
thin inclusions under longitudinal shear. The apptobases on the method of
generalized conjugate problem for the piecewisedganeous media, method
of jump function, application of apparatus of getieed functions and it makes
possible to write the stress and displacementdigidthe composite composed
of arbitrary number of wedges. lIts utilization ikistrated on the example of
elucidation of distribution of the stress field nele point of convergence of
three wedges, loaded by concentrated force, withniogg angle at the tip

a,=2m/3 (i=1,2,3 under conditions of the first and second boundatye
problems.

2. FORMULATION OF A CONJUGATE PROBLEM FOR
PIECEWISE-HOM OGENEOUSWEDGE SYSTEM

Consider a composite composed of an arbitrary nurabéeterogeneous iso-
tropic coupled wedgesS (i =1,2,...n) with opening angles at the tip
a;(ay +a,+...+a, < 2m) and wedge-shaped not&,; (Fig. 1) which is un-

der the longitudinal shear=0,v= O,W:W(r ,¢) . Loading of the notch edges is

described by the corresponding boundary conditibhi linear defects occupying
the region rD[ai;q] are on the coupling lines of the wedges
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¢p=¢, =a;+a,+..+a,. Their presence is modeled by the jump functions
[16, 17] f,; (r), f,i (r) and the generalized function [7] as

J¢Z‘¢+o T4z ‘¢ -0 =ty (I’) ( ) W|¢+0_W1¢l_o= fui (I’)(ﬂ(a,lq)

do)=[s(r-a)-S ()] SO0 ez
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Fig. 1. General scheme of the problem

For convenience all transformations are realizeth& polar coordinate
systemr,¢ with the system apex as center pdint Then in each of wedge§

(i :1_n) that form the system the Cauchy relations, Hotadtis and equilibrium

equation that reads

6W ,u,aw ,u,azvv (izl,n——])

a2 r o r2o9% @)

DW= 14

are realized and on the line of wedge couplihg ¢, the conjugation condi-
tions

(U}le‘%zh foi () elan), (wa-w)l,_, = fu(r)dan) @

are satisfied.
Here w ,0}, ,cr'¢z are displacements and stresses in the welpegs is

the shear modulus of the wed§e material.

Depending on the load type the boundary conditiares given on the
system surfaces.
Thus following the procedure given in [7] the wediystem is to be con-

sidered as an integral regio®=S| JS,| J..| JS, composed of an arbitrary
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numbern of regions§ within the limits of which the Cauchy conditioriso-
oke’s law and the equilibrium conditions (2) areliz=d and on the boundary
surfacesp = ¢; the conjugation conditions (3) are given.

2
Extend the displacement function (r,¢), differential operator%,
r

W
o and shear modulgs which are constant in the regid§ to the whole
r

region S in the form
9°w  ow S
{Eﬁkzﬁnw,M}DfU¢)=n+§Xﬁu-ﬁ)&%¢—¢) @)
i=1

Using the connection between the generalized aasliclal derivatives
[6] and the conjugation conditions (3) we obtaipaatly degenerated differen-
tial equation

(s 4)= 55602 (0-0)52C00-0)  ©
where
ci(r)= fui (1)[ St (r —a) =S, (r -b)]
CZ( ) 2r/fu|+f )|:S+(r_a)_ :| MZHM Z\;I¢ =¢,-0

with the following boundary conditions:
1) in the case of the first boundary-value problem

M), M =) ®)
a¢ #=0 :ul a¢ =9, /'ln
2) in the case of the second boundary-value problem
W|¢=o =W0(r)' W|¢=¢n = n+l(r) ; (7)

3) in the case of a mixed boundary-value problemveariants are possible -

:Lfo(r)v Wog, = Whea(r). (©)

H
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9
b) W, =Wo(r), %M =/JLnTn+1(f)- 9)

The partly-degenerated equation (5) together wibnidary conditions
(6) - (9) we shall call (similarly to [6]) a gendizeed conjugate problem as re-
gards the wedge composite with thin radial defattengitudinal shear.

Thus elucidation of the stress-strain state in dgeesystem under longi-
tudinal shear is reduced to solution of equatign\{h corresponding boundary
conditions (6) - (9)

3. CONSTRUCTION OF SOLUTION TO THE GENERALIZED
CONJUGATE PROBLEM

Having applied the Mellin transform to equation (@ proceed to solution of
the problem

2~ n-1 . n-1 .
g PH=S ()4 (9-0)+ £EH)5(9-4) (10
=1

=1

in the space images

B i - foi (P+1)  fh,1— 1 OW
where (p)=1f,(p), Cy(p)=—"= BT ’
Cl( ) WI( ) 2( ) M Hi+ a¢¢=¢i—0

fi _.[fk' o(a.b)rPdr (k=w0), ¢= Izﬂrp ldr is the Mellin trans-

form of the corresponding functions.
The general solution of equation (10) is of thenfor

(p.9) = A( p)[cosmb—fil“‘#f’“’i Ly sif p(¢-41)]S. (¢~ ¢ )j +

i=1 p/’ll +1

n-1,, — . .

+Bl(p)[sinp¢—z“#_f"uzsir{p(¢—¢i s, (6-4 )J+
i=1 1+

(11)

+§[f p)cod p(g )]+ p(,u sif p(¢-¢)]-

1+1

- H sinl p(g -4 )}]&(¢—¢i):

i+1
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_ i1,
L, =-psinpg, - ZM Lf cod p(4 -k ) ]
k=1 Hi+1

_ i1,
L, = pcospg, —ZMLE co$ p(¢ o) | .

| k~=1 Hi+1 (12)
1L =0, |_‘3=§(M cog p(# ~4«) |-

k=1 Mk
ol plsin]p(p= )] -4 s cof (s, -1
k+1

Depending on the load nature on the notch surtacgetermine the func-
tions A (p), B,(p) the following expressions are written:

1)if the boundary conditions are in the form@‘ =T0(p+1),
p=0 M
6_W :fn+1(p+1) then
a¢ ¢:¢n ILIn
fn+1(p+1) g0 _
A&(p):—+_zpfvvi(p)3|n|:p(¢n_¢i):|_
/'InAl A.‘].i:]_
i(p+1 1,
_%( pCOSp¢n _ZM LIZ CO% p(¢n _¢i ):Ij -
1Py iz His1

(13)

- f{[ﬁ_muslco{p(%_@ )]}Bl( p)= (el

A |\ M M pL4

n-1 A —// .
Ay =(p) =-psin pg, —Z% Ly cos p(#, —4) ]
i=1 1+1

2) if \M|¢=o :WO( p)' V~Vn|¢=¢§n = Wn+l( p)' then
A(p)="ip(p),

wnzz(p) A_lzzllfvw (p)cod p(¢n -4)]-
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) stp oo~ SHLTH L Gl (g0 - g )]J—

Sl st futonoa], g
b =05 () =sinpgy ~ 3 AL, i p(g, ~4)];
3a) if W, =Vip(p), %¢:¢n = f”*lﬁlsﬂ), then

5 ()= 00 L8 (ool o, -4

_inz_:l[fm (p+1)—(ﬂi—1‘ﬂi)|—i3]cos[p(¢n ~¢)] _W(p)
O35 Hisy B

(15)
n-1 A — 7/
><(—psin Pén —Z% Li cog p(#n — ¢ )]] A p) =Wo(p)
=1 i+1
n-1 A -7/
A = Dz(p) = pcospg, —Z% L, co$ p(¢, ~ 1) ]
=1 i+1
LW _f(ptl)
3b) |f£¢=o—1T, vv|¢=¢n =Wy (), then
W 1 n—1~
A(p)=—"2-=73 fi(p)cog p(¢n—¢i) ]+
Ay Dy
+i'§[f~m(P+1)_(,Ui+1_ﬂi)|-i3(p)}3in[P(¢n_¢i)}_fo(p+1)x
Ao PL+1 PA 351 (16)
n-1 A — ) T
x(sin pp - > AAH L sinf p(g, - ¢, )]J B (p)=rolP*Y)
i=1 i+1 plul

n-1, _, .
A, =04(p) =cospd, —Z% Lisin[ p(4,—91) ]
i=1 1+1
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So applying the relations (13) — (16), the predéma11) and Hooke's
law by means of the Mellin transform theorem thresst and displacement field
components are determined as

_ 1 c+ic>o~ B u C+ioo aw( p,¢) o
W(I’,¢)—2ni c—J‘iooW(p,¢)r pdpv 0-¢z—_2.C__[mTl’ P dp,
i (17)
CHico
__ M - —p1
%= "o C_jioo pw(p.¢)r~ " dp.

To calculate the obtained integrals it is reasamablutilize the residue
theorem, and finally we will obtain the stressed displacements in the form of
series in the poles of the integrand function

w(r,8) =Z%Zo)gs( p)ou(p ,¢)&J_p .

p )

Py (P
U¢Z(r’¢)=zm93(9)92(ﬂ’¢)(5j :

P,
-(p+1)

oelr0)= Tl yoo(mspo) )
where g;(p.¢), 92(p.#). 9s(p) are the functions dependent on the partic-
ular statement of the problem, which are constdiotethe basis of expressions
(11) - (17), their general form is not given heoe fack of space;p, are the
roots of the transcendental equatidgy:=0 - for the first problem of elasticity
theory; A, =0 - for the second problem of elasticity theofy; =0 or A, =0

(depending on the boundary conditions) — for theeahione.
According to the conclusions of [1] the stressdi&r r — 0 will have

the singularity of ordelr_(1+Rep) if the denominator of the corresponding inte-

grand has zeroes on the strifi< Re( p) < (. Hence, to determine the singulari-
ty order A =1+ Rep it is necessary to solve the corresponding trardeatal
equationA; (p) =0 (j :1_4)

To determine the unknown jump functions one shoslklthe conditions of
interaction between a composite and inclusion wiithtyield the system of sin-

gular integral equations from which the unknown gufanctions are to be de-
fined.



ON DETERMINATION OF THE STRESS-STRAIN STATE OF A MULTI-WEDGE SYSTEM 243

It should be noticed that the equatian(p) =0 (j =1,_4) in its structure

is identical to that obtained by G. Sulym, M. Makkio [2] and the results of
calculations of maximal singularity order are tr@me in all cases. Also it
should be noted that in special cases of a two-e&/aggtem the equations coin-
cide with that obtained by I. Butvinnik [3]. In tlease of a crack located on the
wedge bisectrix or between two wedges with idehtipgning angles the results
obtained on the basis of (17) coincide with thesooletained by M. Savruk [12]
and A. Shahani [15].

If inside of one of the wedge§; of the system at the point with polar

coordinatesp=¢, , r =a (¢j_1 <¢ <¢;, j-1I<i< j) the concentrated force

T is applied and on the notch edges the homogersmusdary conditions are
given then this case is modeled so that on the #reg, the stress jump
f,i (r)=TJ(r —a) is to be considered when the displacement juiyr) =0

is absent (Fig. 2).

Fig. 3. A three-wedge
Fig. 2. The scheme of a system loaded by interoaten- system

trated force

Taking into consideration our profound interesttlie behavior of the
stress and displacement fields in the vicinity fué stress concentrators where
the stress field is singular we study the stregmptotics in the vicinity of the
system peak. In the neighborhood of irregular poihimaterial interface the
stress field nature is determined by the compobérisymptotic series conta-
ining the maximum peculiarity. Thus, in order tdetenine the stress state it is
sufficient to calculate the residual in that pdie walue of which provides the
greatest peculiarity of stresses in the vicinityhef system apex. As a result it is
elucidated that the stresses and displacementsinadl vicinity of the system
apex can be described asymptotically by such egjmes
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A P 1-1" 5
W(0) =5 (mdan(po) L] = (),
J
_ T VP Ryfy(0)
0'¢z(r,¢)_A,_ (o) gs(po)gz(poﬁ)(aj _—ji'r”* , (18)
-(p*1) K
Urz(r.¢)=—%gg(p)gl(p,¢)(éj :%;(f)'

where py = maxRepU(- 1,0 is the solution of equation; (p) =0 (j :1_4)
which ensures the maximal value of the stress peitylin the vicinity of the
system peakA; (p) =0 is the equation which is constructed accordinghto
boundary conditions given on the edges of the weatiggped notch on the basis
of equations (13) - (16)gs(Pg). i (Po.#) (i=1,2) are the functions con-
structed on the basis of equations (11) - (12)i(dpeneral form is not presented
because of inconveniencef is a constant coefficient which characterizes the
type and way of loadingf; (¢) is an angular function near the maximal value

of the singularity orde(i =1,2,3), which characterizes the angular variation of
the displacement and stress distribution and is s depend on the way of the
system load;A” is the maximal order of singularity.

Granting that at passage to the limit from a weslgggem with a wedge-
shaped notch to a crack or a rigid inclusion in bgemneous medium
(ap=...= Qj1=0j41=..=0p1=0, OF [h=fpr ==, Qnq= 0) the
expressions (18) are same as the known expredsiotize stress and displace-
ment asymptotics in the vicinity of the crack tipragid inclusion in homoge-
neous material [17] and the valué3 is the same as that of a classical stress
intensity factor (SIF)K3;. We can conclude that the coefficieﬁg is the ana-
logy of the SIF for inclusion in homogeneous materTherefore according to
the definition in [17] it will be right to calIK3 a generalized stress intensity
factor for a wedge system (GSIFWS).

4. THREE-WEDGE SYSTEM LOADED BY CONCENTRATED
SHEAR FORCE

As noted above in a general cases the equaﬂqr(sp) =0 are transcendental
and to find their roots one needs the numericahods. However in some cases
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of particular configuration of the system the tamental equation converts into a
trigonometric one the roots of which can be foundlgtically. For example in
the case when the system consists of three wedgds opening angle

a; =2m/3 (i =1,2,3 (Fig. 3) the characteristic equation will be of florm

fa(p)sinap| fi(ta bz, bn) + F {18 2, 4tn) COBP]= (19)

where the functionsfy (4, (15, 143) . f5 (4, 112, 143), f3(p), depending on the
boundary conditions, are of the form:
in the case of the first boundary-value problem —

fo (kg 113) = 14 Ky K 1=Ky) By (4, g, 113) = (1K) (14 K ),
f3(Q) =q;

in the case of the second one —

fy (44 oo tt3) =Ky =1+ k{1 ko) Fp (41, o p13) = (1 Kg) (k 3+ D),

f3(P)=1; k= /1y, k3= pa/ o, a=2m/3, B= 41/ 3.
Thus the solutions of equation (19) are of the form
{ 1‘1(A11,A1241:»,)J+ 2m
to(tntiopts) ) B

f1(:u1wu2uu3)J g, =
fo(thtiatts) ) ™"«

1
Py, = +—arcco

B

p2n=27m+iarch( (nO0z).

5. NUMERICAL STUDIES

Using the relations (18), (11) - (16) and solutiohgquation (19) the asymptot-
ics of stresses and displacements in a three-weygljem loaded by a concen-
trated shear forcd at pointg =a, r =a (Fig. 3) were written. For different

values of relation of shear modWj = 141/ 1», k3 = s/ 11, the dependence of
distribution of tangential stressel%z(r,gb) (the function of stress distribution

according to (18y = f,(¢)) and values of GSIFWE; (K = Ks/T 2P ) on

the location of point of application of concentchtiorce were studied. Some
results of numerical studies are presented in Bigs7.

As can be seen from the graphs of distributioraafjential stresses in the
case of the first boundary value problem the makstr@sses will be approxi-
mately on the crack continuation (Fig. 4). In tlese of absolutely rigid inclu-
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sion and partly delaminated absolutely rigid inas(the second and mixed
boundary-value problems) the stress maximum wiltdeched on the clamped
edge in the wedge with larger shear modulus (Biglrbaddition under condi-

tions of the second boundary-value problem thesstfer some value of the
angle is equal to zero and then changes its sigiwe Iconsider a solid plate
composed of wedges then the stress which is maximalodulus will be rea-

ched on the coupling line of wedges with largeidity.
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Fig. 4. The function of distribution of the  Fig. 5. The function of distribution of the
tangential stresses under conditions  tangential stresses under conditions of the

of the first boundary-value problem second boundary-value problem
1-k; =10,k, =10; 1-k; =100;k, = 10;
2 -k =10,k, =10G; 2 -k =50;k, =10;
3 -k =10,k, =100C 3-k =10;k, = 10.
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Fig. 6. The values of GSIFWS Fig. 6. The values of GSIFWS
under conditions of the under conditions of the
first boundary-value problem second boundary-value problem
1-k; =10, k3 = 5G; 1-k; =10, k3 = 5G;
2 -k =10, k; =1G; 2 -k =10, k; =1G;
3-k =10, k;=5. 3-k =10, k;=5.

The results presented in Figs. 6-7 show that chafigelation of shear
moduli and point of application of concentratedctoinfluences essentially the
guantitative value of GSIFWS. For the case of alkcthe maximal value of
GSIFWS will be in the case when the force is agbtia the notch edge (Fig.6).
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As it is seen from other studies and for the cdgmdially-delaminated absolu-
tely rigid inclusion we will have the maximal valwé GSIFW if the force is

applied on the free edge of a wedge system. Faylatiedy rigid inclusion we

will have the GSIFWS maximal value if the forceaigplied on the lingp = 7

(Fig. 7). For certain values of angge that determines the line of application of

the concentrated force the GSIFWS value will beaédgo zero (Fig. 6). This
testifies that in these cases to evaluate thesssteain state in the vicinity of the
system apex one cannot utilize a component of amtiogseries which contains
the maximal value of singularity (it is equal tao@e One must take the compo-
nent of the asymptotic series containing the siagyl which is subsequent in
the modulus value.

6. CONCLUSIONS

Basing on the constitutive relations of elasti¢hgory for homogeneous body,
legitimacy of representing the physico-mechanideracteristics of a piecewi-
se-homogeneous system in the form of piecewise-gemeous functions of
polar angle and on the apparatus of the theorepnélized functions the ana-
Iytical-numerical procedure is proposed to defihe stress and strain field in
the wedge composite with thin radial defects. fipli@ation reduces the pro-
blem of study of the stress-strain state in thénitic of irregular point of mate-
rial interface to finding the solution of one pgitlegenerated differential equ-
ation of the form (5).

A general solution of this equation is constructdiilizing this equation the
analytical expressions of Mellin transformant sésses and displacements in the
system composed of arbitrary number of wedges thithradially located inclu-
sions are written. Besides the analytical presiemaf asymptotics of stresses and
displacements in the vicinity of multi-wedge systapex and equations to calcula-
te the stress singularity order are written. Irpactal case of three-wedge system
composed of wedges with opening angles= 277/3 (i =1, 2,3 the possibility to
find such roots analytically is demonstrated.

Basing on the general form of asymptotics of seesnd displacements
in the vicinity of the system apex and results 16, 17] we have introduced
the concept of generalized stress intensity fdota multi-wedge system and justi-
fied the legitimacy of this concept. Using the atetd results the numerical studies
of variation of the GSIFWS value in a three-wedggtesn vs. the point of applica-
tion of concentrated force were carried out.

It is shown that for some values of the angle whietermines the line of
application of the force the stress-strain statth@vicinity of the system apex
is described by a component of asymptotic serigsiwtontains not the maxi-
mal singularity but the subsequent one in the melualue. Thus we can select
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the point the concentrated force at which will natise singular stresses in the
vicinity of the system apex.
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OKRESLENIE STANU NAPREZEN | PRZEMIESZCZEN W UKLADZIE
WIELOKLINOWYM Z PROMIENIOWYMI DEFEKTAMI PRZY SCINANIU
WZDLUZNYM

Streszczenie

Przedstawione badania dotycaowego podégia do rozwizywania zagadnienia anty-
ptaskiego dla ukltadu wieloklinowego z uatmymi promieniowo cienkimi niejedno-
rodndiciami. Metoda ta, wykorzystuje podeje uogélnionego zagadnienia sprenia
materiatébw do modelowania istnienia cienkich defekiza pomog funkcji skokéw. To
daje maliwo$¢ otrzymania w postaci analitycznej transformat Mellnapezen i prze-
mieszczé w pakietach z dowolniloscia klindw. Wskutek stosowania metody wyzna-
czenie stanu nagreniowo-odksztatceniowego w ukfadzie klinowym podcgeinania
wzdtuznego sprowadza sido rozwizywania jednego e#ciowo zdegenerowanego
réwnania ra@niczkowego z odpowiednimi warunkami brzegowymi. jego rozwiazania
stosuje si transformacja catkowa Mellina, ktérej transformdts dowolnej iléci kom-
ponentéw uktadu klinowego mpa znaleé¢ w postaci analitycznej. W wyniku przepro-
wadzonych badazostaly otrzymane asymptotyki napen i przemieszczew otoczeniu
wierzchotka uktadu klinowego oraz transformaty Mell przemieszcze Wprowadzono
pojecie uogoélnionego wspoéitczynnika intensywoionapezen w wierzchotku klina oraz
dla szeregu uktadéw wieloklinowych otrzymano pésaalityczm dla napezen i prze-
mieszczé w dowolnym punkcie kompozytu. Rowunieostat doktadnie zbadany przypa-
dek obcazenia skupion sita uktadu z trzech klindw.





