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An elastic isotropic multi-wedge system with radially located thin defects under longitu-
dinal shear is considered. The procedure of construction of asymptotics of the stress and 
displacement fields in the vicinity of the system apex using the apparatus of generalized 
functions and Mellin transform is presented. The notion of generalized stress intensity 
factor near the wedge system apex is introduced. The procedure proposed is applied to 
determine analytically the asymptotic distribution of stress and displacement fields in the 
three-wedge system peak. The generalized stress intensity factor near the three-wedge 
system apex is analyzed.  
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1. INTRODUCTION 

Modeling of mechanical systems based on the linear elasticity theory sometimes 
requires consideration the surfaces with angular points. It leads to the fact that 
some parameters of physico-mechanical fields are described by singular 
expressions. Generally speaking the presence of singularity conflicts with initial 
assumptions of the model of elastic continuum and results of contradictions that 
are included in the mathematical model of problems. Besides the solutions with 
singularities give the authentic qualitative picture of distribution and quantita-
tive characteristics of the field outside of some very small vicinity of singularity 
point. In the cases when in the vicinity of irregular point the finite integral cha-
racteristics can be determined they are utilized successfully to analyze the phy-
sical properties of the field [6].  
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The analysis of physico-mechanical fields in the vicinity of angular points 
of material interface is carried out on the model regions, namely on the systems 
composed of a certain number of coupled wedges having one common point. In 
addition mainly the methods of complex Kolosov-Muskhelishvili potentials 
[3, 5], Airy stress functions [1, 8, 11] and the method of singular integral equ-
ations [12] are used. However it yields the cumbersome expressions which 
complicate obtaining the analytical writing of asymptotics of the stress-strain 
state even for the two-wedged composite. Therefore as a rule the attention is 
restricted to study only order of the stress field singularity. The Mellin trans-
form use [14, 15, 16] somewhat simplifies the general form of expression and 
makes it possible to determine the stress intensity factors in the vicinity of the 
wedge system apex in special cases of antiplane problem of elasticity theory for 
two wedges [15]. But the problems with writing the expressions describing the 
physico-mechanical fields in the vicinity of the system peak, the tips of thin 
interphase defect and in the whole region occupied by a multi-wedge composite 
still remain. The same questions arise also during description of the fields of 
other physical nature (in particular, electromagnetic field) in a multi-component 
wedge system [9, 10]. 

In this paper the authors propose an efficient approach to solution of the 
problem on the stress-strain state of multi-wedge system with radially located 
thin inclusions under longitudinal shear. The approach bases on the method of 
generalized conjugate problem for the piecewise-homogeneous media, method 
of jump function, application of apparatus of generalized functions and it makes 
possible to write the stress and displacement fields in the composite composed 
of arbitrary number of wedges. Its utilization is illustrated on the example of 
elucidation of distribution of the stress field near the point of convergence of 
three wedges, loaded by concentrated force, with opening angle at the tip 

2 3iα π=  ( )1,2,3i =  under conditions of the first and second boundary-value 

problems. 

2. FORMULATION OF A CONJUGATE PROBLEM FOR 
PIECEWISE-HOMOGENEOUS WEDGE SYSTEM 

Consider a composite composed of an arbitrary number of heterogeneous iso-
tropic coupled wedges ( )1,2,...,=iS i n  with opening angles at the tip 

( )1 2 ... 2α α α α π+ + + ≤i n  and wedge-shaped notch 1+nS  (Fig. 1) which is un-

der the longitudinal shear ( )0, 0, ,ϕ= = =u v w w r . Loading of the notch edges is 

described by the corresponding boundary conditions. Thin linear defects occupying 
the region [ ];∈ i ir a b  are on the coupling lines of the wedges 
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1 2 ...ϕ ϕ α α α= = + + +i i . Their presence is modeled by the jump functions 

[16, 17] ( ) ( ),σ i wif r f r  and the generalized function [7] as  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
0 00 0

, , , ,

, , 1 0 ; 0 0 .

i ii i
z z i i i wi i i

i i i i

f r a b w w f r a b

a b S r a S r b S

ϕ ϕ σ ϕ ϕϕ ϕ
σ σ φ φ

φ ξ ξ ξ

+ −+ −

+ + +

− = − =

 = − − − = > ≤   

(1)

 

 
Fig. 1. General scheme of the problem 

For convenience all transformations are realized in the polar coordinate 
system ,ϕr  with the system apex as center point O . Then in each of wedges iS  

( )1,i n=  that form the system the Cauchy relations, Hook’s law and equilibrium 

equation that reads  

( )
2 2

2 2 2
0 1, 1i i i i i

i i i
w w w

w i n
r rr r

µ µµ µ
ϕ

∂ ∂ ∂∆ = + + = = −
∂∂ ∂  

(2)

are realized and on the line of wedge coupling ϕ ϕ= i  the conjugation condi-
tions 

( ) ( ) ( ) ( ) ( ) ( )1
1, , ,

i
i

i i
z z i i i i i wi i if r a b w w f r a bϕ ϕ σ ϕ ϕϕ ϕ

σ σ φ φ+
+ ==

− = − =
 

(3)

are satisfied. 

Here , , ϕσ σi i
i rz zw  are displacements and stresses in the wedge iS ; µi  is 

the shear modulus of the wedge iS  material. 
Depending on the load type the boundary conditions are given on the  

system surfaces.  
Thus following the procedure given in [7] the wedge system is to be con-

sidered as an integral region 1 2 ... nS S S S= U U U  composed of an arbitrary 
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number n  of regions iS  within the limits of which the Cauchy conditions, Ho-
oke’s law and the equilibrium conditions (2) are realized and on the boundary 
surfaces ϕ ϕ= i  the conjugation conditions (3) are given. 

Extend the displacement function ( ),ϕiw r , differential operator 
2

2

∂
∂

iw

r
, 

∂
∂

iw

r
 and shear moduli µi  which are constant in the region iS  to the whole  

region S  in the form  

( ) ( ) ( )
2 1

1 12
1

, , , ,µ ϕ ϕ ϕ
−

+ +
=

 ∂ ∂  = + − − ∂∂  
∑
n

i i
i i i i i

i

w w
w f r f f f S

rr
�

 
(4)

Using the connection between the generalized and classical derivatives 
[6] and the conjugation conditions (3) we obtain a partly degenerated differen-
tial equation 

( ) ( ) ( ) ( ) ( )
1 1

1 22 2
1 1

1 1
, ,ϕ δ ϕ ϕ δ ϕ ϕ

− −

+ +
= =

′∆ = − + −∑ ∑
n n

i i
i i

i i

w r C r C r
r r

 (5)

where  

( ) ( ) ( ) ( )1 + +=  − − −  
i

wiC r f r S r a S r b  

( ) ( ) ( ) ( ) 1
2

1 1 0

2

ϕ ϕ

µ µ
µ µ ϕ

+
+ +

+ + = −

− ∂=  − − −  −  ∂
i

wii i i

i i

rf r w
C r S r a S r b  

with the following boundary conditions: 
1) in the case of the first boundary-value problem – 

( ) ( )0 1
10

, ;
n

n
n

w r w r
r r

ϕ ϕ ϕ
τ τ

ϕ µ ϕ µ +
= =

∂ ∂= =
∂ ∂

 (6)

2) in the case of the second boundary-value problem – 

( ) ( )0 10
,

n
nw w r w w rϕ ϕ ϕ += == = ; (7)

3) in the case of a mixed boundary-value problem two variants are possible - 

а) ( ) ( )0 1
10

, ,
n

n
w r

r w w rϕ ϕ
ϕ

τ
ϕ µ +=

=

∂ = =
∂

 (8)
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b) ( ) ( )0 10
,

n

n
n

w r
w w r rϕ

ϕ ϕ
τ

ϕ µ +=
=

∂= =
∂

. (9)

The partly-degenerated equation (5) together with boundary conditions 
(6) - (9) we shall call (similarly to [6]) a generalized conjugate problem as re-
gards the wedge composite with thin radial defects at longitudinal shear. 

Thus elucidation of the stress-strain state in a wedge system under longi-
tudinal shear is reduced to solution of equation (5) with corresponding boundary 
conditions (6) - (9) 

3. CONSTRUCTION OF SOLUTION TO THE GENERALIZED 
CONJUGATE PROBLEM 

Having applied the Mellin transform to equation (5) we proceed to solution of 
the problem 

( ) ( ) ( ) ( )
2 1 1

2
1 2

1 1

δ ϕ ϕ δ ϕ ϕ
ϕ

− −

+ +
= =

∂ ′+ = − + −
∂ ∑ ∑

n n
i i

i i
i i

w
p w C r C r

% % %%  (10)

in the space images 

where ( ) ( )1 =i
wiC p f p%% , ( ) ( ) 1

2
1 1 0

1σ

ϕ ϕ

µ µ
µ µ ϕ

+

+ + = −

+ − ∂= −
∂

i

ii i i

i i

f p w
C p

% %% , 

( ) ( ) 1

0

,φ
∞

−= ∫
p

ki ki i if f r a b r dr%  ( ),σ=k w , 1

0

ψ ψ
∞

−= ∫
pr dr%  is the Mellin trans-

form of the corresponding functions. 
The general solution of equation (10) is of the form 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
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1
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−
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( ) ( ) ( ) ( )
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 +
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

−
 − − − 



∑
%

%

 

(11)
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( )
1

1
1 1

11
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i
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−
+
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−
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1
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(12)

Depending on the load nature on the notch surface, to determine the func-
tions ( ) ( )1 1,A p B p  the following expressions are written: 

1) if the boundary conditions are in the form 
( )0
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1pw

ϕ

τ
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+∂ =
∂

%%
, 

( )1 1

n

n

n
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+

=
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( ) ( ) ( ) ( )
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(13)

2) if ( ) ( )1 0 10
, ,ϕ ϕ ϕ += == =

n
n nw w p w w p% % % %  then  
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So applying the relations (13) – (16), the presentation (11) and Hooke’s 
law by means of the Mellin transform theorem the stress and displacement field 
components are determined as 

( ) ( ) ( ) 1,1
, , , ,

2 2

c i c i
p p

z
c i c i

w p
w r w p r dp r dp

i iϕ
ϕµϕ ϕ σ

π π ϕ

+ ∞ + ∞
− − −

− ∞ − ∞

∂
= =

∂∫ ∫
%

%  

( ) 1, .
2

c i
p

rz
c i

pw p r dp
i

µσ ϕ
π

+ ∞
− −

− ∞

= − ∫ %  

(17)

To calculate the obtained integrals it is reasonable to utilize the residue 
theorem, and finally we will obtain the stresses and displacements in the form of 
series in the poles of the integrand function 

( ) ( ) ( ) ( )
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∑

∑

∑

ii

i

i

i

i

i
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i i
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p

z i i
j ip

p
i

rz i i
j ip

Ta r
w r g p g p
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r g p g p
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p T r
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a p a

 

where ( )1 ,ϕig p , ( )2 ,ϕig p , ( )3 ig p  are the functions dependent on the partic-

ular statement of the problem, which are constructed on the basis of expressions 
(11) - (17), their general form is not given here for lack of space; ip  are the 

roots of the transcendental equation: 1 0∆ =  - for the first problem of elasticity 

theory; 2 0∆ =  - for the second problem of elasticity theory; 3 0∆ =  or 4 0∆ =  

(depending on the boundary conditions) – for the mixed one. 
According to the conclusions of [1] the stress field for 0→r  will have 

the singularity of order ( )1 Re− + pr  if the denominator of the corresponding inte-
grand has zeroes on the strip ( )1 Re 0− < <p . Hence, to determine the singulari-

ty order 1 Reλ = + p  it is necessary to solve the corresponding transcendental 

equation ( ) 0∆ =j p  ( )1,4=j . 

To determine the unknown jump functions one should use the conditions of 
interaction between a composite and inclusion what will yield the system of sin-
gular integral equations from which the unknown jump functions are to be de-
fined.  
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It should be noticed that the equation ( ) 0∆ =j p  ( )1,4=j  in its structure 

is identical to that obtained by G. Sulym, M. Makhorkin [2] and the results of 
calculations of maximal singularity order are the same in all cases. Also it 
should be noted that in special cases of a two-wedge system the equations coin-
cide with that obtained by I. Butvinnik [3]. In the case of a crack located on the 
wedge bisectrix or between two wedges with identical opening angles the results 
obtained on the basis of (17) coincide with the ones obtained by M. Savruk [12] 
and A. Shahani [15]. 

If inside of one of the wedges jS  of the system at the point with polar 

coordinates ϕ ϕ= i , =r a  ( )1 , 1j i j j i jϕ ϕ ϕ− < < − < <  the concentrated force 

T  is applied and on the notch edges the homogeneous boundary conditions are 
given then this case is modeled so that on the line ϕ ϕ= i  the stress jump 

( ) ( )σ δ= −if r T r a  is to be considered when the displacement jump ( ) 0≡wif r  

is absent (Fig. 2). 

   
а б 

Fig. 3. A three-wedge  
system Fig. 2. The scheme of a system loaded by internal concen-

trated force 

Taking into consideration our profound interest in the behavior of the 
stress and displacement fields in the vicinity of the stress concentrators where 
the stress field is singular we study the stress asymptotics in the vicinity of the 
system peak. In the neighborhood of irregular point of material interface the 
stress field nature is determined by the component of asymptotic series conta-
ining the maximum peculiarity. Thus, in order to determine the stress state it is 
sufficient to calculate the residual in that pole the value of which provides the 
greatest peculiarity of stresses in the vicinity of the system apex. As a result it is 
elucidated that the stresses and displacements in a small vicinity of the system 
apex can be described asymptotically by such expressions 
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%

%

%

 (18)

where ( )0 max Re 1;0= ∈ −p p  is the solution of equation ( ) 0∆ =j p  ( )1,4=j , 

which ensures the maximal value of the stress peculiarity in the vicinity of the 
system peak; ( ) 0∆ =j p  is the equation which is constructed according to the 

boundary conditions given on the edges of the wedge-shaped notch on the basis 
of equations (13) - (16); ( )3 0g p , ( )0,ϕig p  ( )1,2=i  are the functions con-

structed on the basis of equations (11) - (12) (their general form is not presented 
because of inconvenience); 3K%  is a constant coefficient which characterizes the 

type and way of loading; ( )ϕif  is an angular function near the maximal value 

of the singularity order ( )1,2,3=i , which characterizes the angular variation of 

the displacement and stress distribution and it does not depend on the way of the 

system load; *λ  is the maximal order of singularity. 
Granting that at passage to the limit from a wedge system with a wedge-

shaped notch to a crack or a rigid inclusion in homogeneous medium 
( 1 1 1 1... ... 0α α α α− + += = = = = =j j n , or 1 2 ..µ µ µ= = = n , 1 0α + =n ) the 

expressions (18) are same as the known expressions for the stress and displace-
ment asymptotics in the vicinity of the crack tip or rigid inclusion in homoge-
neous material [17] and the value 3K%  is the same as that of a classical stress 

intensity factor (SIF) 3K . We can conclude that the coefficient 3K%  is the ana-

logy of the SIF for inclusion in homogeneous material. Therefore according to 
the definition in [17] it will be right to call 3K%  a generalized stress intensity 

factor for a wedge system (GSIFWS). 

4. THREE-WEDGE SYSTEM LOADED BY CONCENTRATED 
SHEAR FORCE 

As noted above in a general cases the equations ( ) 0j p∆ =  are transcendental 

and to find their roots one needs the numerical methods. However in some cases 
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of particular configuration of the system the transcendental equation converts into a 
trigonometric one the roots of which can be found analytically. For example in 
the case when the system consists of three wedges with opening angle 

( )2 3 1,2,3i iα π= =  (Fig. 3) the characteristic equation will be of the form 

( ) ( ) ( )3 1 1 2 2 1 2sin , ,..., , ,..., cos 0,n nf p p f f pα µ µ µ µ µ µ β + =   (19)

where the functions ( )1 1 2 3, ,f µ µ µ , ( )2 1 2 3, ,f µ µ µ , ( )3f p , depending on the 

boundary conditions, are of the form: 
in the case of the first boundary-value problem –  

( ) ( )1 1 2 3 1 3 1, , 1 1f k k kµ µ µ = + + − , ( ) ( )( )2 1 2 3 1 3, , 1 1f k kµ µ µ = + + , 

( )3f q q= ; 

in the case of the second one – 

( ) ( )1 1 2 3 1 3 1, , 1 1f k k kµ µ µ = − + + , ( ) ( )( )2 1 2 3 1 3, , 1 1f k kµ µ µ = + + , 

( )3 1f p = ; 1 1 2 3 3 2, ,k kµ µ µ µ= = 2 3, 4 3α π β π= = . 

Thus the solutions of equation (19) are of the form 

( )
( )

1 1 2 3
1

2 1 2 3

, ,1 2
arccos

, ,n
f n

p
f

µ µ µ π
β µ µ µ β

 
= ± +  

 
, 

( )
( )

1 1 2 3
2

2 1 2 3

, ,2
arch

, ,n
fn

p i
f

µ µ µπ
β µ µ µ

 
= +   

 
, 3n

n
q

π
α

=  ( )n Z∈ . 

5. NUMERICAL STUDIES 

Using the relations (18), (11) - (16) and solutions of equation (19) the asymptot-
ics of stresses and displacements in a three-wedge system loaded by a concen-
trated shear force T  at point ϕ α= , =r a  (Fig. 3) were written. For different 

values of relation of shear moduli 1 1 2µ µ=k , 3 3 2µ µ=k  the dependence of 

distribution of tangential stresses ( ),ϕσ ϕz r  (the function of stress distribution 

according to (18) ( )2τ ϕ= f ) and values of GSIFWS 3K%  ( 0
3 2µ= pK K T a% ) on 

the location of point of application of concentrated force were studied. Some 
results of numerical studies are presented in Figs. 4 – 7. 

As can be seen from the graphs of distribution of tangential stresses in the 
case of the first boundary value problem the maximal stresses will be approxi-
mately on the crack continuation (Fig. 4). In the case of absolutely rigid inclu-
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sion and partly delaminated absolutely rigid inclusion (the second and mixed 
boundary-value problems) the stress maximum will be reached on the clamped 
edge in the wedge with larger shear modulus (Fig. 5). In addition under condi-
tions of the second boundary-value problem the stress for some value of the 
angle is equal to zero and then changes its sign. If we consider a solid plate 
composed of wedges then the stress which is maximal in modulus will be rea-
ched on the coupling line of wedges with larger rigidity. 

  

Fig. 4. The function of distribution of the 
tangential stresses τ  under conditions  
of the first boundary-value problem 

1 - 1 210, 10= =k k ; 

2 - 1 210, 100= =k k ; 

3 - 1 210, 1000= =k k . 

Fig. 5. The function of distribution of the 
tangential stresses τ  under conditions of the 

second boundary-value problem 
1 - 1 2100; 10= =k k ; 

2 - 1 250; 10= =k k ; 

3 - 1 210; 10= =k k . 

  
Fig. 6. The values of GSIFWS  

under conditions of the  
first boundary-value problem 

1 - 1 310, 50= =k k ; 

2 - 1 310, 10= =k k ; 

3 - 1 310, 5= =k k . 

Fig. 6. The values of GSIFWS  
under conditions of the  

second boundary-value problem 
1 - 1 310, 50= =k k ; 

2 - 1 310, 10= =k k ; 

3 - 1 310, 5= =k k . 

The results presented in Figs. 6-7 show that change of relation of shear 
moduli and point of application of concentrated force influences essentially the 
quantitative value of GSIFWS. For the case of a crack the maximal value of 
GSIFWS will be in the case when the force is applied on the notch edge (Fig.6). 



ON DETERMINATION OF THE STRESS-STRAIN STATE OF A MULTI-WEDGE SYSTEM 247 

 
 

As it is seen from other studies and for the case of partially-delaminated absolu-
tely rigid inclusion we will have the maximal value of GSIFW if the force is 
applied on the free edge of a wedge system. For absolutely rigid inclusion we 
will have the GSIFWS maximal value if the force is applied on the line ϕ π≈  
(Fig. 7). For certain values of angle ϕ  that determines the line of application of 
the concentrated force the GSIFWS value will be equal to zero (Fig. 6). This 
testifies that in these cases to evaluate the stress-strain state in the vicinity of the 
system apex one cannot utilize a component of asymptotic series which contains 
the maximal value of singularity (it is equal to zero). One must take the compo-
nent of the asymptotic series containing the singularity which is subsequent in 
the modulus value. 

6. CONCLUSIONS 

Basing on the constitutive relations of elasticity theory for homogeneous body, 
legitimacy of representing the physico-mechanical characteristics of a piecewi-
se-homogeneous system in the form of piecewise-homogeneous functions of 
polar angle and on the apparatus of the theory of generalized functions the ana-
lytical-numerical procedure is proposed to define the stress and strain field in 
the wedge composite with thin radial defects. Its application reduces the pro-
blem of study of the stress-strain state in the vicinity of irregular point of mate-
rial interface to finding the solution of one partly-degenerated differential equ-
ation of the form (5). 

A general solution of this equation is constructed. Utilizing this equation the 
analytical expressions of Mellin transformant of stresses and displacements in the 
system composed of arbitrary number of wedges with thin radially located inclu-
sions are written. Besides the analytical presentation of asymptotics of stresses and 
displacements in the vicinity of multi-wedge system apex and equations to calcula-
te the stress singularity order are written. In a special case of three-wedge system 
composed of wedges with opening angles 2 3iα π=  ( )1,2,3i =  the possibility to 

find such roots analytically is demonstrated. 
Basing on the general form of asymptotics of stresses and displacements 

in the vicinity of the system apex and results of [2, 16, 17] we have introduced 
the concept of generalized stress intensity factor for a multi-wedge system and justi-
fied the legitimacy of this concept. Using the obtained results the numerical studies 
of variation of the GSIFWS value in a three-wedge system vs. the point of applica-
tion of concentrated force were carried out.  

It is shown that for some values of the angle which determines the line of 
application of the force the stress-strain state in the vicinity of the system apex 
is described by a component of asymptotic series which contains not the maxi-
mal singularity but the subsequent one in the modulus value. Thus we can select 
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the point the concentrated force at which will not cause singular stresses in the 
vicinity of the system apex.  
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OKREŚLENIE STANU NAPRĘŻEŃ I PRZEMIESZCZEŃ W UKŁADZIE 
WIELOKLINOWYM Z PROMIENIOWYMI DEFEKTAMI PRZY ŚCINANIU 

WZDŁUŻNYM 

S t r e s z c z e n i e  

Przedstawione badania dotyczą nowego podejścia do rozwiązywania zagadnienia anty-
płaskiego dla układu wieloklinowego z ułożonymi promieniowo cienkimi niejedno-
rodnościami. Metoda ta, wykorzystuje podejście uogólnionego zagadnienia sprzężenia 
materiałów do modelowania istnienia cienkich defektów za pomocą funkcji skoków. To 
daje możliwość otrzymania w postaci analitycznej transformat Mellina naprężeń i prze-
mieszczeń w pakietach z dowolną ilością klinów. Wskutek stosowania metody wyzna-
czenie stanu naprężeniowo-odkształceniowego w układzie klinowym podczas ścinania 
wzdłużnego sprowadza się do rozwiązywania jednego częściowo zdegenerowanego 
równania różniczkowego z odpowiednimi warunkami brzegowymi. Do jego rozwiązania 
stosuje się transformacja całkowa Mellina, której transformaty dla dowolnej ilości kom-
ponentów układu klinowego można znaleźć w postaci analitycznej. W wyniku przepro-
wadzonych badań zostały otrzymane asymptotyki naprężeń i przemieszczeń w otoczeniu 
wierzchołka układu klinowego oraz transformaty Mellina przemieszczeń. Wprowadzono 
pojęcie uogólnionego współczynnika intensywności naprężeń w wierzchołku klina oraz 
dla szeregu układów wieloklinowych otrzymano postać analityczną dla naprężeń i prze-
mieszczeń w dowolnym punkcie kompozytu. Również został dokładnie zbadany przypa-
dek obciążenia skupioną siłą układu z trzech klinów. 




