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The paper presents selected practical applications and results of computer simulations
from the field of numerical linear algebra realized by means of neural networks. Bearing
in mind aspects of applications, it has been decided that priority should be given to the
description of the problem of soling over-determined linear systems in the norm [, and

the norm 1.
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1. INTRODUCTION

The problem of solving linear systems is one of basic tasks present in a wide
class of fields of science. A preferred method of estimating parameters of linear
models (Gauss-Markov models) is the least squares method, which enables the
reduction of a random influence of measurement errors being in the Gauss

distribution to a value determined by the norm I,. The norm I, leads closer

towards the solution in the other norms [7], but when the observation vector is in
disagreement with the Gauss distribution an optimum criterion for optimisation

can be the norm |y, and in special cases the norm | . The interdisciplinary

character of the subject of artificial neural networks provides a favourable
strategy for the optimisation of models describing phenomena and processes
existing in nature. Neural networks circumferential in structure have been
applied for solving over-determined systems of linear equations on the basis of
the minimisation an objective function (energy function) in a particular norm.
Algorithms carrying out standard matrix operations (inversion and pseudo
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inversion of matrices, specifying values and eigenvectors, SVD decomposition)
work as a result of the application of neural networks in which signals flow in
one direction (one direction networks). When permanent integrators are properly
chosen the process of progression towards the solution is faster.

2. MATERIALS AND METHODS

The most common basic tasks and application tasks realised in the field of
geodesy concern estimating components of the vector of parameters of over-
determined systems of linear equations

Ax=1, (1)
where: A =[a;]e R™" (m>n) - the matrix of a model with real entries,
| ¢ R - the observation vector, X = (X, %,.... X;] T ¢ R" - the estimated vector
of parameters. The minimisation of the criterion

|| Ax - I ||[— minimum (2

requires the formulation of a form of an energy function (Lapunov function)

whose bottom energy state corresponds to the solution expected x*. In general
we will define the energy function (objective function) as

E(X) = o[;(X)], 3)

i=
where @[V;(X)] represents a convex function in relation to the vector of

parameters x in the whole space R", which will next be called the weight
function, and its derivative in relation to the correction v;(x) - the activation

function [2]. For this reason for (V)= p,vi2/2 (pj >0) the standard

activation model of a square energy function (the weighed criterion of the least
squares) has the form

18 1
E(X,P) :EZ pivZ (X) =5 (Ax-1) Tp(AX-1) (4)
i=1
(the ratio % simplifies the transformations) with the weight matrix
P =diag(p, p7,..., P;y) - A convex function used in linear algebra is the logistic
function represented by
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(1) =~ Infeosh(e; ()], (5)

whose parameters « >0 and £ >0 impose an optimisation strategy. The
energy function corresponding to this function is defined as follows:

E(X a, f) =%ln{cosh[ﬂv/(X)]}- (6)

Another option in the class of convex functions is the function with the
form

o [v; (01 v;(x) |, (7)
in this case the energy function
E() =D [vi() 1, 8
i=1

undergoes minimisation, whose form is expressed by the formula of the rule of
the minimum of absolute deviation.

3. NEURAL NETWORKS SOLVING SYSTEMS OF LINEAR
EQUATIONS

Solving systems of linear equations is one of basic tasks of optimising neural
networks with a circular structure presented in fig. 1.

It results from the dependence that the solution of the system of linear
equations (1) is equivalent to the minimisation of a square function without
limits. Gradient methods are included into effective optimisation methods, but
for a large value of the index cond(A) convergence of these methods is slow.
The process of estimation of the value of parameters of the function (4) can be
described by means of the system of differential equations

W ¥E () (9)
dt
where uj >0 -the learning ratio, and the gradient of the energy function on the

assumption that P=I, is described by the dependence VE;[x]=A T(Ax -D.
Then, the system of equations (1) written in a scalar form looks as follows
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de n m n
T:_Zﬂ[zaip(zaikxk -1;)]. (10)
p=l i<l k=1
Bearing in mind that the function E;(x) is a Lapunov function (a random
real function whose changes during the algorithm are not positive) and the
Hessian B=A’A, the solution of the system of equations is asymptotically
stable (t — o) [7]. A scheme of the architecture of a neural network intended

for solving systems of linear equations Ax=l is presented in fig.1.
b1

©
1

©

Fig. 1. Structure of a neural network intended for solving systems of linear equations

Disagreement between the distribution of observation errors and the
normal distribution excludes the use of the classic method of the least squares.
Then, the criterion of the mean square error is not resistant to disturbances and
data deviate from the model intended (outliers). A solution to this problem is to
replace the square function (4) with the logistic function (5) whose
corresponding function is the energy function

E(x.a,f) =%§In{cosh[ﬂv,-(x)]}. (12)

i=1

The minimisation of the above criterion function consists in solving the system
of differential equations
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dx ; n m n
Iy it a9 (i - 1T} (12)

S k=1
where

da(vy) _ {5 In[cosh(Bv; ()1}

- : 13
v, 70 atanh[v; (x)]. (13)

9i () =

For large values of the ratio « and small values of the ratio £ the results

of minimisation correspond to the results obtained by means of the procedure
(10), and a change in the value of these ratios leads closer to the results of
equalisation according to the rule of the least modules, because

tanh[Bv;(X)] ~1- 26X and the value of the activation function g;(v;)
approaches the value of the signum function [4].

For the distribution of observation errors undergoing the Cauchy
distribution, which has higher values for arguments more distant from the
average in comparison to the values of the Gauss distribution, an optimum
minimisation criterion is the norm |;. By modifying the objective function (3) to
the form (7) as a convex weight function, we obtain the irregular objective
function (8) (energy function), whose minimisation requires special procedures
of mathematical programming [1] or the application of an algorithm with the use
of neural networks, which is simple to achieve. The problem of the minimisation
of the energy function (8) in the norm I; consists in solving the system of

differential equations

dx &
= ygiaij sgn[v;(X)], (14)

and the modified activation function (modified signum function)

1 gdy vi(x)>0
snlilal={ Sl 0”0 1)

determines the sign of the left-sided or the right sided derivative in the
neighbourhood of the point x (function (8) is continuous, but it is not
differentiable in relation to x). Values of parameters obtained by means of
equalisation in the norm |, correspond to the values of observation medians on

the assumption that the matrix A is a full rank matrix.
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At this point, it is necessary to add that apart from the objective function
(8), whose form is the formulation of the rule of absolute deviations as a
“natural” robust estimation, a number of weight functions were arbitrarily
formulated in order to identify outstanding observations and to eliminate their
unfavourable influence on estimation results. In order to define a weight
function it is necessary to consider the condition of continuity and to limit the
activation function of the resistant estimator, its characteristic feature is the

breakdown point ™ as a specified limit of random errors. The average value is
not a resistant estimator, because for «* =1/meven a single observation

changes the value of the estimator. For the median and a” =0,5, the estimator

breaks down when the lumber of outstanding observations is at least half of all
the observations carried out [9]. The most popular weight function is the Huber
function [5], because the estimator which results from the application of this
function with a specific limit of random errors is an estimator with the smallest
variance in the class of functions satisfying this limitation.

4. RESULTS AND DISCUSSION

A numerical solution of the equalisation of a levelling network (fig. 2) with
minimum limitations of degrees of freedom according to the rules described by
the models (4), (6) and (8), is presented on the example below.

Fig 2. Structure of a levelling network undergoing equalisation

Table 1. Data (simulation)

No. Observation codes Free expressions Ah[mm]
1 1-2 +0,7
2 2-3 +1,6
3 3-4 -1,5
4 4-5 +1,2
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5 3-5 -0,9
6 5-6 -0,5
7 2-5 +1,6
8 6-3 +0,6
9 6-2 -1,8
10 1-6 +1,4

Table 2. Value of parameters Ah [mm)]

A. Model (4) B. Model (6) C. Model (6) D. Model (8)
o=1; p=20 0=20; p=1
0 0 0 0
-0,72 -0,86 -1,04 -0,81
+0,94 +0,86 +0,65 0,70
-0,63 -0,71 -0,80 -0,70
+0,50 +0,43 +0,49 +0,50
m=0,97 mm m=0,97 mm m=1,01 mm m =0,98 mm

Hence, we see that the tasks of solving over-determined systems of linear
equations carried out numerically are approximately in agreement with the
assumptions adopted, and the amount of calculations necessary to determine
arithmetical operations is small in this case.

One direction neural networks can be used to carry out standard matrix
operations, which include the determination of the converse of a positively
definite square matrix B rank r (B:ATA). In order to carry out this
operation it is necessary to design an adequate structure of a neural network
which will minimize an energy function. It results from the formula of the
inversion C of the matrix B that CB=I. By multiplying this equation by the non-
zero vector X =[x, Xo,...,X,] (the vector undergoes normalisation) we obtain
CBx=x. On this basis the definition of the criterion function (energy function)
assumes the form [8]

E =||CBx-x||°. (16)

At this point let us pay attention to the fact that the vector x represents a
teaching vector and at the same time an assigned vector. The operation of
networks belonging to the type of auto-associating networks merely consists in
adapting the weights of Vij (71=1,2,....m j=12,...,n) of the matrix C= B on

the basis of the algorithm of error back propagation, according to the formula

dc;
7='ﬂvj(Yi—Xi), (17)
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where y; - actual value of the neural network output signal , x; - known value
of the output signal.

Example 1. The inversion B! of the positively definite symmetrical matrix B
(det(B) = 0)

3 -2 3 -1 0 0,2502 -01083 -0,0133 -0,0723 01322
-2 6 4 -2 8 —-01083 0,0032 0,0963 -0,0424 0,0367
B=| 3 4 4 0 -2|C=B1=[-00133 00963 01105 00995 -0,1060
-1 -2 0 5 3 -0,0723 -0,0424 10,0995 01654 0,0052
0 8 -2 3 8 01322  0,0367 -01060 0,0052 0,0598

Example 2. The inversion B! of the positively definite asymmetrical matrix B
(det(B) = 0)

3 7 -5 0 1 -0,5191 -1,2022 08247 0,4831 -0,3596

-2 3 8 -2 0 0,2472 03820 -0,2022 -01348 01236
B=|4 6 5 0 -2/C=Bl=|- 0,4494 -08764 0,6404 0,4270 -0,2247
-8 4 6 -2 3 -0,9078 -2,2303 14337 10225 -0,3539
-2 -1 0 4 -2 -14202 -3,4494 21437 16292 -0,9101

By analogy to the calculation of the inversion of the matrix by means of
the Gauss method, we have a completely feasible method of realising this task
by means of neural networks, which consists in solving a system of differential
equations

dx ;

P
el 1R (18)

n
where correction v (x) = Zajixi —I; for j=12,...,n.. For each consecutively
i=1
calculated column of the inversion matrix it is necessary to successively adopt:
I, =[1,0,0,0,0]" 1, =[0,1,0,0,0]" ,13=[0,0,1,0,0]" 14 =[0,0,0,1,0]" ,15 =[0,0,0,0,1]" .

The result obtained represents the matrix L = B,

It is commonly known that if the matrix B is a square non-singular matrix
then the minimisation of the criterion function (4) (on the assumption that
P =1) leads to the estimator of the least squares x* = (ATA)'lATI . There also
exists a converse of the non-singular matrix, which can be determined on the
basis of known eigenvalues {;} and eigenvectors {w;} on the basis of the
equation [3]
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r
_ 1 T
BL1="ww , 19
i (19)
i=1
where r denotes the rank of the matrix B.
We will begin searching for eigenvalues and eigenvectors of the

symmetrical matrix by means of neural networks with presenting the symmetric
and non-singular matrix

(4 -1 -1 -1 0]
-1 2 0 -1 0
B=|-1 0 2 4 -1
-1 -1 4 3 0
|0 0 -1 0 2]

in the form B =wAw' (A =diag[4y, 45,..., 4n]) , Which is bilaterally multiplied
by a random non-zero vector x, and we obtain

WAW' X-Bx=0. (20)

Then, considering the dependence w Tw =1, we will write

w/wx-x=0. (21)
On the basis of the two final equations the energy function defined will assume
the form (explanations concerning the relationship between teaching networks
can be found in paper [3])

E:%{HWTAWX-BXHZ+||WTWX-X||2. (22)

We obtain the minimum of this function by solving the system of differential
equations

di;

T Z (23)

aw ; ~
=X+ D —d D)z (v -d D)) (24)

The results of the numerical realisation of the calculation of eigenvalues
and eigenvectors (the following values of signals have been adopted:
x;(f)=isinat where i=(1...,5) for @=1e’ and  =0,01) and the verification
of the solution to the task are presented below:



14

Maria Mréwczyniska

a) eigenvalues

(42058 0
0 65373
A=| 0 0
0 0
0 0
b) matrix of eigenvectors
[ 0,8338 —0,3548
—-0,4790 -0,0824
w=| 01048  0,6527
01973  0,7261
|-0,0728 -0,1282

0

0
21177

0

0

—-0,0759

—-0,2483

-0,1202
0,2081
0,9434

0
0
0

13413

0 -1,

0,4162
0,8207
0,2372
0,0938
0,2271

-0,6179

o O o

0
9176 |

0,0011 ]|
-0,1687
0,7016

0,1913 |

c) verification of the solution B = wAw'

[ 39011
—-0,9904

B/ -

~0,9961
~09720
| 00167

—-09904
19890
-0,0114
—-0,9948
0,0315

—-09961 -09720 0,0167 |

-0,0114
19930
39932

-1,0043

-09948 0,315

39932
29814
0,0023

~10043
00023
20136 |

The linear task of the least squares Ax=1 can be solved by means of the
distribution of the matrix A in relation to particular values (the SVD
distribution). Then [6]

At =vs iyt er™m (25)

whereV € R™" and U € R™™ are orthogonal, and S™* is the matrix of the
of  singular s™! —diag(/oy,....1/6,,0,...,0)e R™™
6,>...26,>0. In order to verify whether the pseudoinverse A* of the
matrix A has been determined correctly, it is necessary to check whether the

dependence A=A A"A is satisfied. The pseudoinverses of the matrix A in the
form

inverses values

-3
21 |

w W w w w
~N o g N~ P
R N Y
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are determined on the basis of singular values

0,0430 0 0 00
g1 0 0,0940 0 00 ’
0 0 0,4075 0 O
0 0 0 00
of the components of the matrix

-01914 -0,4325 10,8224 -0,3162

-0,3080 -0,8106 -0,4980 0

T|-00638 -01442 0,2741 09487
-0,9298 0,3675 —0,0231 0

and the components of the matrix

[-0,2007 —-0,0736 08765 —0,4285 —0,0489]
0,0396 -0,5442 03336 0,7296  0,2416
U=|-09340 10,2089 -0,0957 01828 0,2035
-0,2670 -0,4548 -01383 0,0160 -0,8381
| -01202 -0,6693 -0,3036 -0,5001 0,4420 |

The pseudoinverse of the matrix A, calculated according to the relationship (25),

IS:
0,2984
. | -01696
0,0995
~0,0028

0,1336

0,0445

and the verification of the solution

[2,9991
3,0000
3,0030
3,0060

13,0090

—-0,0267

—-0,0329
0,0159
—-0,0110
—-0,0235 0,0455

0,9985
3,9994
4,9997
6,0000
7,0003

0,9997
1,0000
1,0001
1,0002
1,0003

—-0,0257
0,0663
—0,0086
-0,0037

—-0,0735
01142
—0,0245
—-0,0155

A=AATA equals

3,9972
—3,0004
21,0004 |-
4,0012
0,0020 |

It is also necessary to add that the pseudoinverse A* of the matrix A eR™"
can be determined by means of the factorization QR of the matrix A, where

Qe R™M js a matrix with orthonormal columns, R e R™" is a triangular or
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trapezoidal matrix. Then, the pseudoinverse A™ is calculated from the
dependence [6]:

A*=R*Q* =R1Q". (26)
The factors of the distribution QR of the matrix A are matrixes with the forms:
[-0,4472 10,7819 04249 -0,0860 —0,0271]
-0,4472 01303 -0,5662 0,6486 0,2041
Q=|-0,4472 -0,0869 -0,4490 0,7438 0,1939

-0,4472 -0,3041 0,0471 00575 -0,8379
|—0,4472 -05212 05432 01236  0,4669 |

[~6,7082 —10,2859 —2,2361 —11,6260]

0  -46043 0  -03041

R=| 0 0 0 58416
0 0 0  -17,6800

| o 0 0 0o |

and the pseudoinverse
0,2984 01336 -0,0329 -0,0257 -0,0735
+ |-01696 -0,0267 0,0159 00663 01142
- 0,0995 0,0445 -0,0110 -0,0086 -0,0245
-0,0028 -0,0235 10,0455 -0,037 -0,0155

5. CONCLUSIONS

The problems of solving selected tasks of matrix algebra by means of the
technique of neural networks presented in the paper are becoming more and
more important because they can be used in a number of fields of technology.
With little complexity and refinement of the mathematical apparatus and the use
of software implementation it is possible to obtain results almost in real time.
The choice of an adequate form of the convex function discussed in the paper in
the aspect of the specificity of a particular problem (e.g. resistance to
disturbances), makes it possible to choose the most favourable approach to the
solution of an over-determined system of linear equations without the necessity
to determine the converse of a Hessian matrix. The problem of determining the
inversion of eigenvalues and eigenvectors of a square matrix, included into
standard matrix operations, can be successfully solved by means of neural
networks on condition that an energy function is properly defined for a particular
operation, and constant integrators are properly chosen. The parallel operation of
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the stable algorithms presented numerically shortens the time used to solve the
tasks.
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ZAGADNIENIE ROZWIAZYWANIA WYBRANYCH ZADAN ALGEBRY
LINIOWEJ ZA POMOCA SIECI NEURONOWYCH

Streszczenie

W pracy przedstawiono wybrane zastosowania praktyczne i wyniki symulacji komputerowych z
zakresu numerycznej algebry liniowej, realizowanej za pomoca sieci neuronowych. Majac na
wzgledzie aspekty zastosowan, uznano za celowe nadal priorytet opisowi zagadnienia
wyrownania nadokre§lonych uktadow liniowych w normie I, oraz w normie I;. Do

standardowych operacji numerycznych zaliczono rowniez algorytmy obliczania inwersji macierzy
kwadratowych oraz wyznaczania ich warto$ci wlasnych i wektoréw wiasnych.
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