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The paper presents selected practical applications and results of computer simulations 
from the field of numerical linear algebra realized by means of neural networks. Bearing 
in mind aspects of applications, it has been decided that priority should be given to the 
description of the problem of soling over-determined linear systems in the norm 2l  and 
the norm 1l .  
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1. INTRODUCTION 
The problem of solving linear systems is one of basic tasks present in a wide 
class of fields of science. A preferred method of estimating parameters of linear 
models (Gauss-Markov models) is the least squares method, which enables the 
reduction of a random influence of measurement errors being in the Gauss 
distribution to a value determined by the norm 2l . The norm 2l  leads closer 
towards the solution in the other norms [7], but when the observation vector is in 
disagreement with the Gauss distribution an optimum criterion for optimisation 
can be the norm 1l , and in special cases the norm ∞l . The interdisciplinary 
character of the subject of artificial neural networks provides a favourable 
strategy for the optimisation of models describing phenomena and processes 
existing in nature. Neural networks circumferential in structure have been 
applied for solving over-determined systems of linear equations on the basis of 
the minimisation an objective function (energy function) in a particular norm. 
Algorithms carrying out standard matrix operations (inversion and pseudo 
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inversion of matrices, specifying values and eigenvectors, SVD decomposition) 
work as a result of the application of neural networks in which signals flow in 
one direction (one direction networks). When permanent integrators are properly 
chosen the process of progression towards the solution is faster.  

2. MATERIALS AND METHODS 
The most common basic tasks and application tasks realised in the field of 
geodesy concern estimating components of the vector of parameters of over-
determined systems of linear equations  

lAx ≅ , (1) 

where: nm
ij Ra ×∈= ][A  (m>n) - the matrix of a model with real entries, 

mR∈l  - the observation vector, nR∈= T
nxxx ],..., ,[ 21x  - the estimated vector 

of parameters. The minimisation of the criterion 

minimum||→l-Ax||  (2) 
requires the formulation of a form of an energy function (Lapunov function) 
whose bottom energy state corresponds to the solution expected ∗x . In general 
we will define the energy function (objective function) as  

∑
=

=
m

i
E

1
)]([)( xx ivω , (3) 

where )]([ xivω  represents a convex function in relation to the vector of 

parameters x in the whole space nR , which will next be called the weight 
function, and its derivative in relation to the correction )(xiv  - the activation 

function [2]. For this reason for 2/2
ii vii pv =)(ω  ( 0>ip )  the standard 

activation model of a square energy function (the weighed criterion of the least 
squares) has the form 

)-()-(
2
1)(),( lAxPlAxxPx T∑

=
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m
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iivpE

1
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2
1  (4) 

 (the ratio ½ simplifies the transformations) with the weight matrix 
),...,,( 21 mpppdiag=P . A convex function used in linear algebra is the logistic 

function represented by  
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)](ln[cosh()( xii vv α
β
αω =i , (5) 

whose parameters 0>α  and 0>β  impose an optimisation strategy. The 
energy function corresponding to this function is defined as follows:  

)]}(ln{cosh[),,( xx ivβ
β
αβα =E . (6) 

 Another option in the class of convex functions is the function with the 
form  

|)(|)]([ xx ii vv =iω , (7) 

in this case the energy function  

∑
=

=
m

i
ivE

1
| |)()( xx , (8) 

undergoes minimisation, whose form is expressed by the formula of the rule of 
the minimum of absolute deviation.  

3. NEURAL NETWORKS SOLVING SYSTEMS OF LINEAR 
EQUATIONS 

Solving systems of linear equations is one of basic tasks of optimising neural 
networks with a circular structure presented in fig. 1. 

It results from the dependence that the solution of the system of linear 
equations (1) is equivalent to the minimisation of a square function without 
limits. Gradient methods are included into effective optimisation methods, but 
for a large value of the index cond(A) convergence of these methods is slow. 
The process of estimation of the value of parameters of the function (4) can be 
described by means of the system of differential equations  

)(x1E
dt
d

∇−= µx  (9) 

where 0>jµ  - the learning ratio, and the gradient of the energy function on the 

assumption that P=I, is described by the dependence )-(][ lAxAx T=∇ 1E . 
Then, the system of equations (1) written in a scalar form looks as follows  
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∑ ∑ ∑
= = =

−−=
n

p

m
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n

k
ikikip

j lxaa
dt

dx

1 1 1
)]([µ . (10) 

Bearing in mind that the function )(x1E  is a Lapunov function (a random 
real function whose changes during the algorithm are not positive) and the 
Hessian AAT=B , the solution of the system of equations is asymptotically 
stable ( )∞→t  [7]. A scheme of the architecture of a neural network intended 
for solving systems of linear equations Ax=l is presented in fig.1.  
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Fig. 1. Structure of a neural network intended for solving systems of linear equations 

Disagreement between the distribution of observation errors and the 
normal distribution excludes the use of the classic method of the least squares. 
Then, the criterion of the mean square error is not resistant to disturbances and 
data deviate from the model intended (outliers). A solution to this problem is to 
replace the square function (4) with the logistic function (5) whose 
corresponding function is the energy function 

)]}(ln{cosh[),,( ∑
=

=
m

i
E

1
xx ivβ

β
αβα . (11) 

The minimisation of the above criterion function consists in solving the system 
of differential equations  
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where  
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For large values of the ratio α  and small values of the ratio β  the results 
of minimisation correspond to the results obtained by means of the procedure 
(10), and a change in the value of these ratios leads closer to the results of 
equalisation according to the rule of the least modules, because 

)(-2e-1)](tanh[ xx iv
iv ββ ≈ , and the value of the activation function )( ivig  

approaches the value of the signum function [4].  

For the distribution of observation errors undergoing the Cauchy 
distribution, which has higher values for arguments more distant from the 
average in comparison to the values of the Gauss distribution, an optimum 
minimisation criterion is the norm 1l . By modifying the objective function (3) to 
the form (7) as a convex weight function, we obtain the irregular objective 
function (8) (energy function), whose minimisation requires special procedures 
of mathematical programming [1] or the application of an algorithm with the use 
of neural networks, which is simple to achieve. The problem of the minimisation 
of the energy function (8) in the norm 1l  consists in solving the system of 
differential equations  

∑
=

=
m

i
ijad

1
)](sgn[ xiv

dt
µx , (14) 

and the modified activation function (modified signum function)  

( )[ ]




<−
>

=
0)(gdy   
0)(gdy

x
x

i

i
v
v

1
1

sgn xiν  (15) 

determines the sign of the left-sided or the right sided derivative  in the 
neighbourhood of the point x (function (8) is continuous, but it is not 
differentiable in relation to x). Values of parameters obtained by means of 
equalisation in the norm 1l  correspond to the values of observation medians on 
the assumption that the matrix A is a full rank matrix.  
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At this point, it is necessary to add that apart from the objective function 
(8), whose form is the formulation of the rule of absolute deviations as a 
“natural” robust estimation, a number of weight functions were arbitrarily 
formulated in order to identify outstanding observations and to eliminate their 
unfavourable influence on estimation results. In order to define a weight 
function it is necessary to consider the condition of continuity and to limit the 
activation function of the resistant estimator, its characteristic feature is the 
breakdown point ∗α  as a specified limit of random errors. The average value is 
not a resistant estimator, because for m/1=∗α even a single observation 
changes the value of the estimator. For the median and 5,0=∗α , the estimator 
breaks down when the lumber of outstanding observations is at least half of all 
the observations carried out [9]. The most popular weight function is the Huber 
function [5], because the estimator which results from the application of this 
function with a specific limit of random errors is an estimator with the smallest 
variance in the class of functions satisfying this limitation.  

4. RESULTS AND DISCUSSION 
A numerical solution of the equalisation of a levelling network (fig. 2) with 
minimum limitations of degrees of freedom according to the rules described by 
the models (4), (6) and (8), is presented on the example below. 

 
Fig 2. Structure of a levelling network undergoing equalisation 

Table 1. Data (simulation) 
No. Observation codes Free expressions ][mmh∆  
1 1-2 +0,7 
2 2-3 +1,6 
3 3-4 -1,5 
4 4-5 +1,2 
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5 3-5 -0,9 
6 5-6 -0,5 
7 2-5 +1,6 
8 6-3 +0,6 
9 6-2 -1,8 
10 1-6 +1,4 

Table 2. Value of parameters ][mmh∆  

A. Model (4) B. Model (6) 
α=1; β=20 

C. Model (6) 
α=20; β=1 

D. Model (8) 

0 0 0 0 
-0,72 -0,86 -1,04 -0,81 
+0,94 +0,86 +0,65 0,70 
-0,63 -0,71 -0,80 -0,70 
+0,50 +0,43 +0,49 +0,50 

m0=0,97 mm m̂ =0,97 mm m̂ =1,01 mm m̂ =0,98 mm 
Hence, we see that the tasks of solving over-determined systems of linear 
equations carried out numerically are approximately in agreement with the 
assumptions adopted, and the amount of calculations necessary to determine 
arithmetical operations is small in this case. 

One direction neural networks can be used to carry out standard matrix 
operations, which include the determination of the converse of a positively 
definite square matrix B  rank r  ( AAB T= ). In order to carry out this 
operation it is necessary to design an adequate structure of a neural network 
which will minimize an energy function. It results from the formula of the 
inversion C of the matrix B that CB=I. By multiplying this equation by the non-
zero vector ],...,,[ nxxx 21=x  (the vector undergoes normalisation) we obtain 
CBx=x. On this basis the definition of the criterion function (energy function) 
assumes the form [8]  

2|||| x-BxC=E . (16) 

At this point let us pay attention to the fact that the vector x represents a 
teaching vector and at the same time an assigned vector. The operation of 
networks belonging to the type of auto-associating networks merely consists in 
adapting the weights of ijV ( )1,2,...,;1,2,..., njni ==   of the matrix 1-BC =  on 
the basis of the algorithm of error back propagation, according to the formula 

)(- iij xyV −= µ
dt

dCij , (17) 
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where iy  - actual value of the neural network output signal , ix  - known value 
of the output signal.   
Example 1. The inversion -1B  of the positively definite symmetrical matrix B 

0))(det( ≠B  

B=























−
−−

−
−−
−−

83280
35021
20443

82462
01323

 























−
−−

−−
−−
−−−

== −

0598,00052,01060,00367,01322,0
0052,01654,00995,00424,00723,0
1060,00995,01105,00963,00133,0

0367,00424,00963,00032,01083,0
1322,00723,00133,01083,02502,0

1BC  

Example 2. The inversion -1B  of the positively definite asymmetrical matrix B 
0))(det( ≠B  

B = 























−−−
−−

−
−−

−

24012
32648
20564

02832
10573























−−−
−−−
−−−

−−
−−−

==

9101,06292,11437,24494,34202,1
3539,00225,14337,12303,29078,0
2247,04270,06404,08764,04494,0

1236,01348,02022,03820,02472,0
3596,04831,08247,02022,15191,0

1-BC  

By analogy to the calculation of the inversion of the matrix by means of 
the Gauss method, we have a completely feasible method of realising this task 
by means of neural networks, which consists in solving a system of differential 
equations  

)(xj
j v

dt
dx

µ−= , (18) 

where correction ∑
=

−=
n

i
jijij lxav

1
)(x  for j=1,2,…,n.. For each consecutively 

calculated column of the inversion matrix it is necessary to successively adopt: 
TTTT ][0,0,0,0,1 ][0,0,0,1,0 ][0,0,1,0,0 ,][0,1,0,0,0,][1,0,0,0,0 5432

T
1 ===== lllll ,, . 

The result obtained represents the matrix -1BL = . 
It is commonly known that if the matrix B is a square non-singular matrix 

then the minimisation of the criterion function (4) (on the assumption that 
IP = ) leads to the estimator of the least squares lAAAx T-1T )(=∗ . There also 

exists a converse of the non-singular matrix, which can be determined on the 
basis of known eigenvalues }{ iλ  and eigenvectors }{ iw  on the basis of the 
equation [3]  
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∑
=

− =
r

i

T
ti

i
ww

1

1 1
λ

B , (19) 

where r denotes the rank of the matrix B.  
We will begin searching for eigenvalues and eigenvectors of the 

symmetrical matrix by means of neural networks with presenting the symmetric 
and non-singular matrix   

B = 























−
−−

−−
−−
−−−

20100
03411
14201

01021
01114

  

in the form TwwB Λ=  ]),...,,diag[( 21 nλλλ=Λ , which is bilaterally multiplied 
by a random non-zero vector x, and we obtain  

0Bx-xww =Λ T . (20) 

Then, considering the dependence 1ww =T , we will write  

0x-wxw =T .  (21) 

On the basis of the two final equations the energy function defined will assume 
the form (explanations concerning the relationship between teaching networks 
can be found in paper [3])  

2
||||{|| 2 x-wxwBx-wxw T||

2
1

+Λ= TE . (22) 

We obtain the minimum of this function by solving the system of differential 
equations  

ii
i zu

dt
d ˆµ
λ

−=  (23) 

])()([ )()()()(
iii

i uzu
dt

d 2211ˆ dydyx −+−+−= µ
w

 (24) 

The results of the numerical realisation of the calculation of eigenvalues 
and eigenvectors (the following values of signals have been adopted: 
( ) tixi ωsin=t  where ( )5,,1=i  for 71e=ω  and 01,0=µ ) and the verification 

of the solution to the task are presented below: 
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a) eigenvalues     























−

=Λ

9176,10000
03413,1000
001177,200
0005373,60
00002058,4

 

 
b) matrix of eigenvectors     























−−
−

−
−−−−

−−

=

1913,02271,09434,01282,00728,0
6179,00938,02081,07261,01973,0

7016,02372,01202,06527,01048,0
1687,08207,02483,00824,04790,0

0011,04162,00759,03548,08338,0

w  

c) verification of the solution TwwΛ=B  























−
−−

−−−
−−−
−−−

=≅

0136200230004310315001670
0023098142993239948097200
0043199323993010114099610

0315099480011409890199040
0167097200996109904099113

/

,,,,,
,,,,,
,,,,,

,,,,,
,,,,,

BB  

The linear task of the least squares lAx ≅  can be solved by means of the 
distribution of the matrix A in relation to particular values (the SVD 
distribution). Then [6]  

mnT R ×−+ ∈=  1UVSA  (25) 

where nnR ×∈V  and mmR ×∈U  are orthogonal, and 1−S  is the matrix of the 
inverses of singular values ( ) mn

r R ×− ∈= 0,,0,/1,,/1diag 1
1  σσS  

01 >≥≥ rσσ  . In order to verify whether the pseudoinverse +A  of the 
matrix A has been determined correctly, it is necessary to check whether the 
dependence AA AA +=  is satisfied. The pseudoinverses of the matrix A in the 
form 






















−

=

0173
4163
21153

3143
4113

A , 
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are determined on the basis of singular values 



















=−

00000
004075,000
0000940,00
00000430,0

1S , 

of the components of the matrix 



















−−
−−

−−−
−−−

=

00231,03675,09298,0
9487,02741,01442,00638,0
04980,08106,03080,0
3162,08224,04325,01914,0

V  

 
and the components of the matrix 























−−−−
−−−−

−−
−

−−−−

=

4420,05001,03036,06693,01202,0
8381,00160,01383,04548,02670,0

2035,01828,00957,02089,09340,0
2416,07296,03336,05442,00396,0
0489,04285,08765,00736,02007,0

U . 

The pseudoinverse of the matrix A, calculated according to the relationship (25), 
is: 



















−−−−
−−−

−−
−−−

=+

0155,00037,00455,00235,00028,0
0245,00086,00110,00445,00995,0

1142,00663,00159,00267,01696,0
0735,00257,00329,01336,02984,0

A

, 

and the verification of the solution AAAA +=  equals 






















−

=′≅

0020,00003,10003,70090,3
0012,40002,10000,60060,3
0004,210001,19997,40030,3
0004,30000,19994,30000,3

9972,39997,09985,09991,2

AA . 

It is also necessary to add that the pseudoinverse +A  of the matrix nmR ×∈A  
can be determined by means of the factorization QR of the matrix A, where 

mmR ×∈Q  is a matrix with orthonormal columns, nmR ×∈R  is a triangular or 
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trapezoidal matrix. Then, the pseudoinverse +A  is calculated from the 
dependence [6]: 

TQRQRA 1−+++ == . (26) 

The factors of the distribution QR of the matrix A are matrixes with the forms: 























−−
−−−

−−−
−−

−−−

=

4669,01236,05432,05212,04472,0
8379,00575,00471,03041,04472,0

1939,07438,04490,00869,04472,0
2041,06486,05662,01303,04472,0
0271,00860,04249,07819,04472,0

Q  























−
−
−−
−−−−

=

0000
6800,17000
8416,5000
3041,006043,40
6260,112361,22859,107082,6

R

, 

and the pseudoinverse  



















−−−−
−−−

−−
−−−

=+

0155,0037,00455,00235,00028,0
0245,00086,00110,00445,00995,0

1142,00663,00159,00267,01696,0
0735,00257,00329,01336,02984,0

A

. 

5. CONCLUSIONS 
The problems of solving selected tasks of matrix algebra by means of the 
technique of neural networks presented in the paper are becoming more and 
more important because they can be used in a number of fields of technology. 
With little complexity and refinement of the mathematical apparatus and the use 
of software implementation it is possible to obtain results almost in real time. 
The choice of an adequate form of the convex function discussed in the paper in 
the aspect of the specificity of a particular problem (e.g. resistance to 
disturbances), makes it possible to choose the most favourable approach to the 
solution of an over-determined system of linear equations without the necessity 
to determine the converse of a Hessian matrix. The problem of determining the 
inversion of eigenvalues and eigenvectors of a square matrix, included into 
standard matrix operations, can be successfully solved by means of neural 
networks on condition that an energy function is properly defined for a particular 
operation, and constant integrators are properly chosen. The parallel operation of 
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the stable algorithms presented numerically shortens the time used to solve the 
tasks. 
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ZAGADNIENIE ROZWIĄZYWANIA WYBRANYCH ZADAŃ ALGEBRY 
LINIOWEJ ZA POMOCĄ SIECI NEURONOWYCH  

S t r e s z c z e n i e  

W pracy przedstawiono wybrane zastosowania praktyczne i wyniki symulacji komputerowych z 
zakresu numerycznej algebry liniowej, realizowanej za pomocą sieci neuronowych. Mając na 
względzie aspekty zastosowań, uznano za celowe nadać priorytet opisowi zagadnienia 
wyrównania nadokreślonych układów liniowych w normie 2l  oraz w normie 1l . Do 

standardowych operacji numerycznych zaliczono również algorytmy obliczania inwersji macierzy 
kwadratowych oraz wyznaczania ich wartości własnych i wektorów własnych.  
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