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The paper proposes a modeling of the load carrying capacity of steel-concrete composite 
structures with slip. An analytical approach to the load carrying capacity calculation of 
multilayered composite elements and structures with slip is presented. The interaction of 
layers of composite beams and bars on the example of two- and three-layers, including 
thin-wall ones, was analyzed. The results are compared with numerical calculations using 
a program based on the finite element method. Then the problem of the limit analysis for 
the spatial skeleton structures is formulated as an optimization problem. 
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1. INTRODUCTION 

Steel-concrete composite structures mean connection all element parts of the 
construction in such a way that in the calculations could be treated as one 
system [9, 14, 21]. The tie of layers is made using different types of connectors. 
Due to the flexibility of the connection it is not always achieved full contact of 
layer of composite structures. 

The problem of interaction of layers for composite structures has been the 
subject of many works, theoretical and experimental, for example [8, 10-12, 15-
19, 22, 24], but it was not explained until the end. 

The paper presents an analytical approach to calculate the limit load 
capacity of multilayered composite structural elements with slip. The problem 
of interaction layers was presented. The numerical calculations is performed on 
the base of program Abaqus/Standard [1] for beams with two-and three-layers, 
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simply supported at ends and loaded with concentrated force in the middle of 
the span. Then, the bearing capacity of the complex skeleton structures has been 
formulated as a problem of optimization. 

The analytical approach assumes perfectly plastic bearing layers material 
(reinforced concrete and steel) and continuous or discrete constraints in 
perfectly plastic contact of these layers. 

In the numerical calculations of composite structures were included real 
constitutive relationships for material layers. 

2. ANALYTICAL SOLUTIONS FOR COMPOSITE BEAM AND 
BARS WITH SLIP 

2.1. Two-layer composite reinforced concrete-steel beam 
First let consider a limit state of load carrying capacity for two-layer reinforced 
concrete-steel beam with slip loaded by the forces F (Figure 1). The cross-
section of beam is constant. In this Figure „1” denotes a plastic hinge in cross-
section of element with slip; “2” is the same, for element with a full connection, 
without slip. 

 
 
 
 
 

 
 

Fig.1. Two-layer reinforced concrete-steel beam in the limit state with slip  
 
 
 
 
 
 

 
 

Fig. 2. Two-layer beam, a) destruction mechanisms 1…2a; b) relationship moment M vs 
angle φ for mechanisms 1…2a 

For the typical finite element of beam there are possible the different 
mechanisms of element destruction (see Figure 2.a), including plastic hinge in 
cross-section with full connection of layers 1, the same for layers with slip 2 and 
next with brittle destruction of connectors 2a. The relationships between 
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bending moment M and corresponding angle φ in cross-section for destruction 
mechanisms 1…2a are shown in Figure 2.b. 

We analyse here a general case (Fig. 2.a,2) for typical element of the 
reinforced concrete-steel beam in the limit state with slip s1,2 under the forces F 
and moments Ml, M0. The normal σ0i and tangent τ0i stresses in the i-layers 
section are shown in Figure 3, i = [1:2]. Distributed forces t01,2 in the connectors 
at the surface between layers 1,2 are assumed constant at length interval a. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.3. Forces and stresses in the reinforced concrete-steel beam in the limit state of load 
carrying capacity with slip 

The contact forces for continuous or discrete constraints N01,2 and the 
bending moment M0 in cross-section may be written as follows: 

2,012,01 atN = or ,2,012,01 ∑
∈

=
Jj

jjtaN  (2.1)

,2,0102010 cNMMM ++=  (2.2)

where aj, t01,2j are length and distributed force in the j-connector constraints; J is 
a set of j-connectors; c is the distance between the centers of weight (or 
stiffness) of the individual i-layers [3], M0i is the plastic bending moment in  
i-layer, i = [1:2]. 

The value of c determines the possibility of layers slip in the limit state:  
when c > (h1 + h2)/2, then the maximum bending moment M0* is formed in the 
cross-section with slip; when c = (h1 + h2)/2, then the plastic hinge is formed in 
the cross-section like for whole composite bar without slip (Fig. 2.a,1) with the 
bending moment M0*0 [24]. Finally for the scheme (Fig. 2.a,2a) in the Eqns (2.1) 
we have t01,2 =0. 
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For calculating of the value c can be also used numerical approach. Very 
important will be to identify parameter c adopted in analytical and numerical 
model. The parameters of these models can be obtained in laboratory tests. 

Bending moment M0 can be moreover calculated for the whole element, 

.0 FaMM l +=  (2.3) 

Internal forces in layers 1, 2 are limited by conditions of plasticity or 
strength 

,0),,,( 101012,011 ≤KMVNϕ  (2.4) 

,0),,,( 202022,012 ≤KMVNϕ  (2.5) 

where K1, K2 are constant plastic/strength parameters. For the reinforced 
concrete layer, with rectangular cross-section and asymmetric reinforcing 
(Figure 3, Ast > Asc), the function φ(·) is shown in Figure 4. This function can be 
calculated algorithmically [3, 21] using different computer programs, for 
example [4, 6, 23]. For the thin-walled steel layer function φ(·) can be calculated 
iteratively, taking into account the effective cross-section, for example, by PN-
EN 1993-1-1 [13, 20]. For the I-section of beam in the case of loading by 
bending moment M with shear force V and longitudinal force N, function φ(·) 
for a limit surface M - N - V is shown in Figure 5.  

In the limit state of element the load F will be maximum,  
maxF = F*0, or 

.max→F  (2.6) 

 
 

Fig. 4. Function of strength φ(M, N) for the reinforced concrete layer  
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We can solve the optimization problem (2.1)-(2.6), replacing inequalities (2.4), 
(2.5) on equations, and from relationships (2.1)-(2.5) define the maximum load 
F*0 of element and bending moment M0*0 in cross-section. 

Then we calculate the whole beam. For the beam as in Figure 1 the 
problem is not difficult to direct analysis. General case for complex spatial 
structures will be examined in 3rd Part.  
 
 
 
 
 
 
 
 
 
 

Fig. 5. Limit surface for M - N - V of steel I-beam cross section by PN-EN 1993-1-1 

2.2. Three- and multilayer composite reinforced concrete-steel beam 
For the calculation of three-layer reinforced concrete and steel beam was 
distinguished a typical element loaded by the forces and moments as shown in 
Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Forces and stresses in the three-layer beam in the state of load carrying capacity 
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The mechanisms of element destruction, including full connection 1 and 
different cases for yuielding of connectors 2…4 are presented in Figure 7.a. The 
relationships between bending moment M and corresponding angle φ in cross-
section for these destruction mechanisms 1…4 are shown in Figure 7.b. 

We assume first that slip occurs as a result of yuielding of connectors 1, 2 
and 2, 3 for layers 1...3 (Fig.7.a,4). 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Fig. 7. Three-layer beam, a) destruction mechanisms 1…4; b) relationship moment M vs 

angle φ for mechanisms 1…4 

The contact forces at the surfaces of layers and the bending moment in 
cross-section can be written as: 

,, 3,023,022,012,01 atNatN ==  (2.7)

,3,23,022,12,010302010 cNcNMMMM ++++=  (2.8)

where t01,2 i t02,3 are distributed forces in the connectors, respectively 1,2 and 2,3 
for layers 1...3. Bending moment M0 can be also written as (Figure 6): 

.0 FaMM l +=  (2.9)

Conditions of plasticity/strength in the layers 1...3 are defined as:  

,0),,,( 101012,011 ≤KMVNϕ  (2.10)

,0),,,,( 202023,022,012 ≤KMVNNϕ  (2.11)
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,0),,,( 303033,023 ≤KMVNϕ  (2.12) 

where the parameters K1, ..., K3 are similar to Part 2.1. 
We solve the optimization problem (2.6)-(2.12), where inequalities 

(2.10)-(2.12) are replaced by the equations and from these relationships define 
the maximum load F*1 of element and bending moment M0*1 in cross-section. 

Next, we assume that slip occurs as a result of yuielding for connectors 
1,2 (Fig. 7.a,2) or connectors 2,3 in layers 1...3 (Fig. 7.a,3). 

Like in Part 2.1, define the maximum loads F*2, F*3 of composite beam 
and bendig moments M0*2, M0*3 in cross-section with slip and force F*0 and 
bendig moment M0*0 in cross-section without slip (Fig. 7.a,1).  

          
 
 

 
 

 
 
 
 
Fig. 8. Four-layer beam, a) destruction mechanisms 1…8; b) relationship moment M vs 

angle φ for mechanisms 1…8 

 
Then the maximum load and bending moment will be as follows: 
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Finally we calculate the whole composite structures (see Part 3).  
Similarly, the same formulae can be derived for multilayer elements and 

two or three-dimentional bars in skeleton sctructures with slip, where 
generalized forces (normal and shere forces, bending and twisting moments) and 
generalized plastic hinges are forming in the cross-section. 

For the multilayer elements with m slip surfaces we have a set J of 
mechanisms of destruction, where |J| = 2m. The case of four-layer beam, m =3 
and |J| = 8, is presented in Figure 8. 

3. OPTIMIZATION PROBLEMS FOR CARRYING CAPACITY 
OF THE COMPOSITE STRUCTURES  

In contrast to the optimization problem for the limit load analysis of usual 
structures with full-contact of layers [2, 5, 7, 25], we have to take into account 
here the possibility of slip for the composite ones (Figure 9). The hinges 1, 2 
here were early defined in Figure 1. 

 
 
 
 
 

 
 
 
 
 

 
Fig. 9. Mechanism of the destruction for the composite frame, taking into account slip 

Then the problem in the vector-matrix form (for the static principle) is 
formulated as follows. 

We have to maximize the limit load multiplier µ for the vector load µF, 

max,→µ  (3.1)

with restrictions: 
- conditions of equilibrium of moments M in cross-sections and construction 
loads µF, 

AM = µF  (3.2)

- conditions cross-sections yielding  
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where ,,*0 Jjj ∈M  is vector limit moments for j-mechanisms of destruction; J 

is a set of mechanisms of destruction, |J| = 2m; m is a number of slip surfaces. 
For the generalized forces in the spatial skeleton structures (normal N and 

shear V forces, bending M and twisting T moments) we apply the principle of 
generalized plastic joints; vector of moments M in equations (3.2) will be 
changed on a internal forces vector S, S = (N, Vy, Vz, T, My, Mz),  

AS = µF  (3.4)

and in conditions (3.3) of plasticity of cross-sections [2, 24], 
,,),,(max JjJjjjj ∈≤∈ 0KSϕ  (3.5)

where ,, Jjj ∈K  denote the set of vectors with constant parameters, similar as 

in Parts 2.1 and 2.2. 
The system of relations (3.1) - (3.3) is a linear programming problem 

while the system (3.1), (3.4), (3.5) belongs to non-linear programming problems 
for composite structures in the limit state of load carrying capacity with slip. 

4. NUMERICAL ANALYSIS OF COMPOSITE BEAMS 

The numerical solution of problem was found by the finite element method 
(FEM), using program Abaqus/Standard [1].  

Calculations were carried out for the composite steel-concrete beams of 
following types: two-layer beam with height h=h2+h3 and three-layer one with 
an additional layer with height h1 (Figure 10). Beams of length L = 5 m were 
simply supported at ends, and loaded by concentrated forces F at the center of 
span. 
 
 
 
 
 
 

 
 

Fig. 10. Scheme with loading and cross-section of composite beam 

The first beam has a concrete plate with a thickness h2 = 12 cm and width 
b = 80 cm connected with a steel I-beam (PN-300) with height h3 = 30 cm. The 
second beam has an additional concrete layer with a thickness h1 = 6 cm. 

The material parameters for the components of steel beam and concrete 
middle layer were taken from paper [18]: for compressed concrete the modulus 
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of elasticity Ec = 30745 MPa, compressive strength fc =32,37 MPa and 
compressive strain, corresponding to the maximum compressive strength, εc1 = 
0,0022. For steel the yield stress were taken 273,0 MPa. And for additional 
concrete layer modulus of elasticity is equal Ec = 2000 MPa. 

The numerical calculations were made for the following material models: 
a) plasticity with hardening for concrete; b) ideal plasticity for steel. 

In the FEM analysis the concrete plates were modeled using eight-node 
solid elements (C3D8R), for the steel beam was used shell elements (S4R). 

Were analyzed the following contact cases between composite beam 
layers: 
1. Two-layer beam:  a) full contact (without slip, Fig. 2.a,1); b) a contact, in 

which it is possible the slip between the upper surface of the steel beam and 
the lower plane of the plate (Fig. 2.a,2). 

2. Three-layer beam: a) full contact (without slip, Fig. 7.a,1); b) slip between 
upper layer of concrete and upper surface of the middle concrete plate and 
full contact between upper surface of the steel beam and lower surface of the 
middle concrete plate (Fig. 7.a,2); c) slip between upper surface of the steel 
beam and lower surface of the middle concrete plate and full contact between 
upper layer of concrete and upper surface of the middle concrete plate (Fig. 
7.a,3); d) slip in each plane of contact (Fig. 7.a,4). 

Full contact of the individual layers of beams was carried out in Abaqus 
as a continuous contact of type „tie”. This way of connection of the layers to 
ensure the continuity of displacements was used, for instance, in the paper [12]. 

Flexibility of connection was modeled by definition of contact taking into 
account the slip between the layers of the beam. It was carried out by 
introducing the coefficient of friction µ between the layers: for concrete-steel 
contact µ = 0,5 and for the concrete-concrete contact µ = 0,6. 

The aim of numerical calculation was to estimate limit load capacity of 
beams for different ways of connection modeling (full contact or contact with 
slip). The results of calculations are shown in Figures 11, 12. 

Figure 11 presents the relationship between load F and the vertical 
displacement u2 in the middle of the span of two-layer composite beam.The 
limit load value for the two-layer beam with full contact was estimated as 
325 kN. If the beam model takes into account slip, this force is much smaller 
and amounts 200 kN. 

For the three-layer beam with full contact the load limit value is about 
500 kN. For individual contact cases is obtained lower values of the limit load. 
Decrease of beam carrying capacity is shown in Figure 12.  
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Fig. 11. The relationship of load F vs the vertical displacement u2 in the middle of the 

span of two-layer composite beam 

 

 
Fig. 12. The relationship of load F vs the vertical displacement u2 in the middle of the 

span of three-layer composite beam 

The displacement s1,2 of concrete plate relatively to the steel beam for two-layer 
beams under vertical load F is shown in Figure 13.  
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Fig. 13. The relationship of slip s1,2 vs vertical force F in two-layer beam 

 

 
Fig. 14. The relationship of slip s2,3 vs loading force F in three-layer beam 
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Relationship between slip s1,2 and vertical force F is non-linear for the 
whole loading range. This applies to both the two- and three-layer beams taking 
into account the slip in each contact surface (Figure 14). The nonlinearity of 
relationship F-s is clearly greater beyond 80% of load limit. 

Figure 15 shows the von Mises stress σred distribution in the middle 
section α-α for the limit state (at a load F = 325 kN) of the two-layer beam 
without slip. 

 

 
Fig. 15. Von Mises stresses σred in section α-α of two-layer beam without slip 

The fields of stresses σred for concrete plate and steel I-beam without slip 
at a load F = 325 kN are shown in Figure 16. 

 
 
 

 
 
 
 
 
 
 

 
Fig. 16. The fields of stresses σred for two-layer beam without slip: a) in the plate,  

b) in the steel beam  

a) 

b) 
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The method of modeling of contact between layers have an influence on 
the strain distribution in the beam cross-section. In the case composite beams 
with slip at maximal loading F = 200 kN we can observe a discontinuity of 
strain in plane of contact (Figure 17) for the section β-β (see Figure 10) in 
contrast to beams with full contact of layers.  

 
Fig. 17. Strains in section β-β of two-layer beam with slip  

5. SUMMARY 

The paper proposes a modeling of the load carrying capacity of steel-
concrete multilayer composite structures with slip on the example of two-and 
three-layer beams. It presents an analitical approach for calculating the limit 
load capacity of composite elements and structures as an optimization problem. 
Analytical results are compared with numerical calculations. An approach given 
in the paper can be applied to composite structures, in which the layers are made 
from another materials. Further analysis can involve the limit load determining 
for beams and frames with more complex elements with different mechanisms 
of destructure. 
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NOŚNOŚĆ GRANICZNA ZESPOLONYCH STALOWO-BETONOWYCH 
KONSTRUKCJI Z POŚLIZGIEM 

S t r e s z c z e n i e  

W referacie zaproponowano modelowanie nośności granicznej zespolonych stalowo-
betonowych konstrukcji z poślizgiem. Przedstawiono analityczne podejście do obliczania 
nośności granicznej wielowarstwowych elementów i konstrukcji zespolonych z 
poślizgiem. Przeanalizowano współdziałanie warstw konstrukcji zespolonych, w tym 
cienkościennych, na przykładzie belek dwu- i trójwarstwowych. Wyniki zostały 
porównane z obliczeniami numerycznymi wykonanymi przy użyciu programu opartego o 
Metodę Elementów Skończonych. Następnie zagadnienie nośności granicznej 
przestrennych konstrukcji szkieletowych zostało określone jako problem optymalizacji. 
 


