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In this paper static analysis of Kirchhoff plates is considered. A transverse and in-plane 
loading is taken into consideration. The Finite Strip Method is used and the suitable 
fundamental solutions are applied. According to the finite strip method a continuous 
structure is divided into a set of identical elements simply supported on opposite edges. 
The unknowns are deflections and transverse slope variables along the nodal lines. The 
finite difference formulation is applied to express the equilibrium conditions of the 
discrete system. This reduces the number of degrees of freedom. The solution of a 
difference equation of equilibrium yields the fundamental function of the considered 
plate strip. The fundamental solution derived in this way, can be used to solve the static 
problem of a finite plate in the analogous way as the boundary element method is 
applied for continuous systems.  

Keywords:  Fundamental solutions, finite strip method, Kirchhoff plates, initial 
stability and static analysis 

1. INTRODUCTION  

The Finite Strip Method (FSM) was created as a numerical tool to solve specific 
engineering problems [8, 9]. This method is the alternative to the most popular 
Finite Element Method. Application of FSM does not require high number of 
degrees of freedom. The choice of the FSM to analyse structures requires finding 
and applying some types of functions called fundamental functions or 
fundamental solutions. A fundamental solution describes the behaviour of an 
infinite structure in the sense of generalized displacements and forces caused by 
a specific type of external loading. 
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The Boundary Element Method (BEM) which is often used in the thin and 
thick plates theory [2, 7, 11], was used to establish the critical forces. For the 
initial stability problem, the modified approach to the thin plate analysis with an 
assumed physical boundary condition was proposed by Guminiak and Sygulski 
[5], and also Guminiak [4]. Modelling of the plate bending problem with in-
plane loading requires a modification of the governing boundary integral 
equation. It is necessary to introduce a set of internal collocation points in which 
the plate curvature should be found. The analysis of plates with a wide range of 
arbitrary shapes by BEM was discussed by Katsikadelis [6]. The author used the 
Analog Equation Method combined with BEM to establish distribution of in-
plane forces, calculate critical forces and solve static problem with known in-
plane forces. He presented the classic formulation of thin plate bending with 
corner concentrated forces and equivalent shear forces.   

In this paper the critical forces were derived using the boundary element 
method and the procedure described by Guminiak [4, 5]. Moreover, the critical 
forces were derived analytically using the formula given in [12]. The static 
analysis based on the finite strip method (FSM) of an infinite plate strip with 
transverse and normal loading leads to the fundamental functions for the 
considered structure. A plate structure infinite in one direction, simply supported 
on its opposite edges is considered. The plate strips with such boundary 
conditions are commonly applied as bridge structures, as box or plate elements. 

2. STATIC ANALYSIS OF A PLATE  

According to the finite strip method [8] the continuous body is approximated by 
the regular mesh of identical finite strips of arbitrary width b and length L (see 
Fig. 1). 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1. An infinite plate strip discretization 
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The unknowns are deflections and transverse slope amplitudes along the 
nodal lines. Assuming a simply supported, four-degree-of-freedom finite strip 
for discretization (Fig. 2), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. A finite plate strip 

the field of displacements for an arbitrary strip I is expressed in the combined 
form of harmonic series expansion: 
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For another boundary conditions of a finite strip one may use more complex 
trigonometrical functions in equation (1), i.e. for clamped edges 
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may be derived as the sum of amplitudes obtained for an arbitrary n-th element 
of the harmonic series: 
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Using the displacement functions (1) in the minimization procedure for the 
potential energy formula:  
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we obtain the set of infinite number of linear equations: 
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where: )(wM x , )(wM y , )(wM xy  are appropriate bending moments, )(wSx  is 

the axial force, [ ]T
jjii

I ww  φφ=q  and [ ]T
jjii

I mTmT  =P  are the 

displacement and force vectors for I-th strip, respectively, KI
  is the stiffness 

matrix and GI is the geometrical matrix of the finite strip element. 

2.1. The element geometrical matrix   
The geometrical matrix G for the finite strip of width b (see Fig. 2) can be 
derived from the expression: 
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σi are membrane stresses (constant across the plate thickness) produced by the 
in-plane forces acting at the finite strip borders. Using the equation (2) in the 
equation (6) leads to the geometrical matrix for any (I-th) finite element: 
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where h is the plate thickness. 
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2.2. The element stiffness matrix 
The element stiffness matrix for a four-degree-of-freedom I-th strip can be 
derived from: 

∫ ∫ ⋅⋅⋅=
b L

TI dxdy
0 0

 BDBK , (9)

where: 
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The above mentioned flexural stiffness parameters for an orthotropic plate are: 
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In the case of an isotropic plate these coefficients (10) have simpler form: 
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where: E is the Young's modulus and pν  is the Poisson's ratio. 

After some operations the stiffness matrix takes the form: 

4433221 KKKKK 1n ⋅+⋅+⋅+⋅= αααα  (12)

where Ki are number matrices: 
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iα  are coefficients depending on physical and geometrical parameters of the 
considered structure: 
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2.3. The equilibrium equations 
The equilibrium equations are derived applying the finite element methodology. 
Having derived the element geometrical (8) and stiffness (12) matrices the 
equilibrium equations for the n-th harmonic element, after assembling two 
adjacent elements R-th and (R+1)-th (Fig. 3) are of the form: 
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where jiT ,  and jim ,  are forces derived for each element using equation (5). 

 
 
 
 
 
 
 
 
 

Fig. 3. Forces acting at a nodal line r 

For a regular system the equilibrium conditions (15) can be written in the form 
of difference equations equivalent to the FEM matrix formulation [9]: 
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nE  is the shifting operator (see [1]):  
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is the second-order difference operator  
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iα  are the functions of harmonic number n given by (14), rP  and rm  are the 

forces and moments acting at the nodal line r (with co-ordinates py  and my , 

respectively). After elimination of the slope function rφ , the equilibrium 
conditions are transformed into one fourth-order difference equation with one 
unknown rw  (nodal transverse displacement amplitude for the n-th harmonic): 
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For the regular infinite plate strip, equation (20) is equivalent to the set of 
infinite number of equilibrium conditions derived using the finite strip 
methodology (FSM). The solution of this equation enables one to determine the 
state of deformation of the entire considered structure. 

3. THE FUNDAMENTAL SOLUTION  

Solution of the finite difference equilibrium equation (20) yields the 
fundamental functions for the considered system. In order to solve the static 
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problem of the structure loaded by the force 0,0,0 rrr PPP δ⋅=δ=  ( 0=rM , 0,rδ  

– Kronecker delta) we use the discrete Fourier transform in x direction [10]: 
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Applying both transforms (22) to the equilibrium equation (20) yields the 
formula: 

( )( ) ( )
( ) ( )∫

π

α⋅
+α+α

α+α
π

=
0

2
21

coscos

coscos
d

CB

rSSP
w

mm

r , (23)

where: 

( ) ( )442 24 BBBBm −=  , ( ) ( )4024 424 BBBBCm +−= , 
 

( )431 2BS pββ=  , ( ) ( )4342 42 BS pββ−β= . 
(24)

The solution, i.e. the nodal displacement amplitude may be expressed in the 
form of the following recurrent relation: 
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The integrals occurring in the above formula: 
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can be easily solved in an analytical way. The formula (25) expresses the 
deflection amplitude along the nodal line r for an arbitrary n-th element of the 
harmonic series in a closed analytical form. From the equilibrium equations (16) 
the following relations for the transverse slope amplitudes are obtained: 

0
2

01
1

2

1

2
1 2

2

2
ww

Prp

β
β−β−

β
β+

β
β

−=θ ,  

 

( )11
3

2
1

3

43
1

2
−+−+ −

β
β−θ−θ

β
β−β=θ rrrrr ww . 

(29)

The functions of displacements at the nodal line r are in the form of the sums: 
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where N is the  number of harmonic elements, ( )nwr  and ( )nrθ  are amplitudes 
obtained from (25) and (29), respectively.  

The fundamental functions (30) for the infinite strip enable one to solve 
the static problem of a rectangular plate with finite dimensions, according to the 
indirect BEM. 

4. NUMERICAL EXAMPLES  

A problem of the initial stability of rectangular plates subjected to uniformly 
distributed loading q and compressive forces Nx is considered. All types of 
boundary conditions are introduced in the analysis. 

The plate properties are as follows: Young’s modulus E = 205 GPa, Poisson’s 
ratio v = 0.3. The number of finite strips chosen for discretization was 6 and 12. 
Analytical solutions for the problem of initial stability of Kirchhoff plates were 
evaluated basing on the procedures given by Girkmann [3], Timoshenko and 
Woinowsky-Krieger [13] and Timoshenko and Gere [12]. 

4.1. The square simply-supported plate  
The square plate, simply-supported on all edges and subjected to the uniformly 
distributed transverse loading and constant loading acting in plane is considered. 
The plate dimensions are l = lx = ly = 1.0 m, the plate thickness h = 0.02 m, the 
uniformly distributed transverse loading p = 100 kN/m2 and the constant loading 
acting in-plane Nx (Fig. 4). 
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Fig. 4. Square, simply-supported plate subjected to the uniformly distributed loading p 

and constant loading in-plane Nx 

The values of critical forces obtained using the analytical solution given in 
[12] and applying the BEM formulation presented in [5] are shown in Table 1. In 
the considered approach the plate boundary was divided into ten elements.  

Table 1. The values of critical force 

Ncr 
[kN/m] 

Analytical 
 solution  

BEM   
solution 

1 5928.993 5978.358 
2 9264.052 9450.545 
3 16.469.42 17102.466 

The results obtained for the first critical force are presented in Table 2. 
The calculations were carried out for various values of in-plane loading. The 
constant loading Nx was assumed to be lower than the critical force. 

Table 2. Deflection and bending moment at the point A 

Nx ( )4
A plDw ⋅  ( )2A plM x  

0.0 0.004081 0.049700 
0.25 · Ncr 0.006903 0.070470 
0.50 · Ncr 0.012212 0.123610 
0.75 · Ncr 0.052933 0.533570 
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 Nx  Nx 

A 



Application of fundamental solutions to the static analysis of thin plates subjected … 119 

 
 

4.2. The square plate, simply-supported on two opposite edges with 
two clamped edges  

In this example the square plate, simply-supported on two opposite edges with 
two clamped edges, subjected to the uniformly distributed transverse loading and 
constant loading acting in plane is considered. The plate dimensions are l = lx = ly 

= 1.0 m, the plate thickness h = 0.02 m, the uniformly distributed transverse 
loading p = 100 kN/m2. The calculations were carried out for a few values of 
constant load Nx , which acts in plane (Fig. 5). 

The value of the critical force for the considered plate obtained 
analytically [12] and derived applying BEM procedure [5] equals Ncr = 10090 

kN/m and Ncr = 11635 kN/m, respectively. The values of deflection and bending 
moment at the middle point of the plate are shown in Table 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Square plate, simply-supported on two opposite edges with two  
edges clamped, subjected to the uniformly distributed loading p  

and constant in plane loading Nx 

Table 3. Deflection and bending moment at the point A 

Nx ( )4
A plDw ⋅  ( )2A plM x  

0.0 0.002174 0.03430 

0.25 · Ncr 0.002792 0.04477 

0.50 · Ncr 0.003891 0.06335 

0.75 · Ncr 0.006397 0.10553 
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 Nx  Nx 
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4.3. The rectangular plate, simply-supported on all edges  
The rectangular plate, simply-supported on all edges subjected to the uniformly 
distributed transverse loading and constant loading acting in-plane is considered 
(Fig. 6).  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Rectangular, simply-supported plate, subjected to the uniformly distributed 
loading p and constant in-plane loading Nx 

The plate dimensions are  l =0.5 lx = ly = 1.0 m, the plate thickness 
h = 0.02 m, the uniformly distributed transverse loading p = 100 kN/m2. The 
value of constant loading Nx , which acts in-plane depends on the critical force 
(see Tab. 4). 

Table 4. Deflection and bending moment at the point A 

Nx ( )4
A plDw ⋅  ( )2A plM x  

0.0 0.01017 0.04434 

0.25 · Ncr 0.01358 0.05194 

0.50 · Ncr 0.01726 0.06208 

0.75 · Ncr 0.02340 0.07025 

In this case the value of the critical force was derived applying BEM 
methodology [5]. For the considered plate the critical force equals Ncr = 5983 
kN/m. The value of deflection and bending moment at the middle point of  the 
plate are shown in Table 4. 

4.4. The rectangular plate, simply-supported on two opposite edges 
and with two free edges 

The rectangular plate, simply-supported on two opposite edges with two free 
edges is considered. Apart from the uniformly distributed transverse loading p = 
100 kN/m2 , the constant load Nx acts in-plane (Fig. 7). The plate dimensions are 
ly = 2.0 m, lx = 1.0 m, the plate thickness is h = 0.02 m. 
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Fig. 7. Rectangular plate, simply-supported on two opposite edges  
and with two free edges, subjected to the uniformly distributed loading p  

and constant in-plane loading Nx 

The results derived using the BEM procedure given in [5] yield the critical 
force value Ncr = 403 kN/m. The fundamental functions obtained using the FSM 
enable to derive the deflections and bending moments for the considered plate at 
the middle point A (Table 5). 

Table 5. Deflection and bending moment at the point A 

Nx ( )4
A plDw ⋅  ( )2A plM x  

0.0 0.19830 0.46548 

0.25 · Ncr 0.28101 0,70641 

0.50 · Ncr 0.48291 1,29549 

0.75 · Ncr 1.72861 4,93285 

As it was expected the values of deflection and bending moment at the middle 
point for each example plate increase with the growth of the in-plane loading. 

5. CONCLUDING REMARKS  

In this paper the static analysis of thin plates with a transverse and in-plane 
loading was considered. The equilibrium conditions for an infinite strip were 
derived in the form of one difference equation. The solution of this equation, i.e. 
the fundamental function for an infinite plate strip, was derived basing on the 
finite strip method (FSM). This method is an important alternative to the most 
popular Finite Element Method, because it does not require a high number of 
degrees of freedom. The fundamental solution derived in this way, can be used 
to solve the static problem of a finite plate. Moreover, plates simply supported 
on their opposite edges and loaded in-plane are commonly applied as bridge 
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  p 
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 Nx  Nx 

lx 

ly 

0.5ly 0.5ly 
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structures, as box or plate elements. The numerical results demonstrate the 
effectiveness and efficiency of the proposed method. 
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ZASTOSOWANIE FUNKCJI FUNDAMENTALNYCH W ANALIZIE STATYCZNEJ 
PŁYT CIŃKICH OBCIĄŻONYCH POPRZECZNIE I W PŁASZCZYŹNIE 

S t r e s z c z e n i e  

W pracy przedstawiono analizę statyczną płyt cienkich, obciążonych zarówno 
poprzecznie jak i w płaszczyźnie, z wykorzystaniem metody pasm skończonych. 
Zgodnie z zasadami metody pasm skończonych, ciągły i nieograniczony układ 
aproksymowany jest nieskończoną liczbą identycznych elementów, którymi są pasma 
skończone swobodnie podparte na przeciwległych bokach. Niewiadomymi są tzw. 
amplitudy ugięć i kątów obrotu na liniach węzłowych, czyli na brzegach swobodnych 
pasma skończonego. Po określeniu macierzy sztywności i macierzy geometrycznej 
elementu skończonego wyprowadzone zostało różnicowe równanie równowagi, które 
obowiązuje dla każdej linii węzłowej pomiędzy elementami. Główną zaletą tej metody 
jest możliwość przedstawienia warunków równowagi dla całego rozważanego układu w 
postaci jednego równania rekurencyjnego. Rozwiązanie wpomnianego równania dla 
regularnego, dyskretnego pasma płytowego nazywane jest funkcją fundamentalną. 
Rozwiązanie fundamentalne otrzymane w ten sposób zostało wykorzystane do 
rozwiązania problemu statyki płyty o skończonych wymiarach, w sposób analogiczny 
jak metoda elementów brzegowych w statyce układów ciągłych. Podstawową korzyścią 
wynikającą ze stosowania metody elementów brzegowych (BEM) oraz metody pasm 
skończonych (FSM) jest mniejszy nakład obliczeniowy w porównaniu z innymi, 
podobnymi metodami. 
 
 
 




