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APPLICATION OF FUNDAMENTAL SOLUTIONSTO THE
STATIC ANALYSISOF THIN PLATESSUBJECTED TO
TRANSVERSE AND IN-PLANE LOADING
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In this paper static analysis of Kirchhoff platesconsidered. A transverse and in-plane
loading is taken into consideration. The Finiteiistvlethod is used and the suitable
fundamental solutions are applied. According to finée strip method a continuous
structure is divided into a set of identical eletsesimply supported on opposite edges.
The unknowns are deflections and transverse slapables along the nodal lines. The
finite difference formulation is applied to expredg equilibrium conditions of the
discrete system. This reduces the number of degrédseeedom. The solution of a
difference equation of equilibrium yields the funtlntal function of the considered
plate strip. The fundamental solution derived iis thay, can be used to solve the static
problem of a finite plate in the analogous way ks boundary element method is
applied for continuous systems.

Keywords: Fundamental solutions, finite strip noethKirchhoff plates, initial
stability and static analysis

1. INTRODUCTION

The Finite Strip Method (FSM) was created as a migaletool to solve specific
engineering problems [8, 9]. This method is theraktive to the most popular
Finite Element Method. Application of FSM does metjuire high number of
degrees of freedom. The choice of the FSM to amaisictures requires finding
and applying some types of functions called fundaale functions or
fundamental solutions. A fundamental solution déss the behaviour of an
infinite structure in the sense of generalized ldispments and forces caused by
a specific type of external loading.
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The Boundary Element Method (BEM) which is ofteedis the thin and
thick plates theory [2, 7, 11], was used to essabthe critical forces. For the
initial stability problem, the modified approachttee thin plate analysis with an
assumed physical boundary condition was propose@uyiniak and Sygulski
[5], and also Guminiak [4]. Modelling of the platending problem with in-
plane loading requires a modification of the goimgnboundary integral
equation. It is necessary to introduce a set efriral collocation points in which
the plate curvature should be found. The analylsgates with a wide range of
arbitrary shapes by BEM was discussed by Katsikaf#]. The author used the
Analog Equation Method combined with BEM to estsibldistribution of in-
plane forces, calculate critical forces and soldics problem with known in-
plane forces. He presented the classic formulatiothin plate bending with
corner concentrated forces and equivalent sheeegor

In this paper the critical forces were derived gdine boundary element
method and the procedure described by Guminiak][4voreover, the critical
forces were derived analytically using the formgigen in [12]. The static
analysis based on the finite strip method (FSMawfinfinite plate strip with
transverse and normal loading leads to the fundtahdnnctions for the
considered structure. A plate structure infinite@ne direction, simply supported
on its opposite edges is considered. The plat@sstwith such boundary
conditions are commonly applied as bridge strustusie box or plate elements.

2. STATIC ANALYSISOF A PLATE

According to the finite strip method [8] the contous body is approximated by
the regular mesh of identical finite strips of &idmy widthb and lengthL (see
Fig. 1).
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Fig. 1. An infinite plate strip discretization
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The unknowns are deflections and transverse slopitades along the
nodal lines. Assuming a simply supported, four-degof-freedom finite strip
for discretization (Fig. 2),

Fig. 2. A finite plate strip

the field of displacements for an arbitrary stris expressed in the combined
form of harmonic series expansion:

w (xy)= Y N, sin (1)

Where:q:]=[V\(,n Q, W, (pj’n]T is the vector of displacement amplitudesrfeth

harmonic,N=[N. N, N, N is the shape functions vector consisting of thé-we
known Hermite polynomials:

33X 2x° 2x° X
M T T Ty T
(2)
3 2 x* X

3= —

Vo b b

For another boundary conditions of a finite stripeanay use more complex
trigonometrical functions in equation (1), i.e. foclamped edges

w (x, y)=iN LR B;(l—cosznTnyj. The total displacements at theh nodal line
n=1

may be derived as the sum of amplitudes obtainedraarbitraryn-th element
of the harmonic series:
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had . n ks . n oW
W=D W BmT"y L 9=Dq, E*kany CaE 3)
n=1 n=1

Using the displacement functions (1) in the minimtian procedure for the
potential energy formula:

°w
oxoy

u, :%H)[— Mx(w)‘ZTVZV -M y(w)‘(337\'2\'+ 2M (W) ——+ SX(W)Z—\:(deXd% 4)

we obtain the set of infinite number of linear eizs:
SK'E+ Y6 E =P, (5)
| =—c0 | =—0

where: M, (w), M (w), M, (w) are appropriate bending momeng,(w) is
the axial force, q'=[w @ w, @] and P=[T m T m| are the

displacement and force vectors feth strip, respectivelyK' is the stiffness
matrix andG' is the geometrical matrix of the finite strip ekemt

2.1. Theeement geometrical matrix

The geometrical matrixG for the finite strip of widthb (see Fig. 2) can be
derived from the expression:

bL
G' =[[B" (BB dy L8, (6)
00

N N'X _ O Oy
v oo o)

o, are membrane stresses (constant across the Ipieitedss) produced by the

in-plane forces acting at the finite strip bordddsing the equation (2) in the
equation (6) leads to the geometrical matrix for @rth) finite element:

72 6 -72 &

LS | & -6 -

T 120b|-72 -6 72 -6b

b -2° -6b &°

where:

’ (8)

whereh is the plate thickness.
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2.2. Thedement stiffness matrix

The element stiffness matrix for a four-degreerektiomI-th strip can be
derived from:

b L
K'=[[B (DB dydx, 9)
00
where:
D, D, O
D=|D, D, 0
0 0 D,/2

The above mentioned flexural stiffness parametaraifi orthotropic plate are:
— Exh3 — Eyh3
x = 2y Oy T 2y’
121-vy) 120-vy)

(10)
o vidbrn) | b-viio.+o)
2 2
In the case of an isotropic plate these coeffici€h®) have simpler form:
D=DX=DY=%,D1=vp[D,DXy=(1—v§)ED, (11)
where:E is the Young's modulus ang is the Poisson's ratio.
After some operations the stiffness matrix takesftnm:
K,=a, K, +a,K,+a;K,+a,K, (12)
whereK; are number matrices:
(156 22 54 -13] (6 3 -6 3p]
2% 4p2 1D —3p? 3b 2b®> -3b b?
“*l s 1 156 -om| C |-6 -3 6 -3 (39
-1 -3° -2 47 | 13 b®> -3b 2b*]
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(36 1&% -36 3 (36 3 -36 3b]
1&% 42 -3 -b? 3  4? -3b -b?

“7 a6 -m 36 —im| ‘ |-36 -3 36 -3| D
| 3 -b® -1& 4b* | 3 -b®> -3pb 4b*

a; are coefficients depending on physical and geooattparameters of the
considered structure:

4 2 2
a2LbD LD a‘LD a:LD n7r
a =" g,=—2 g="2""2L g, ="""X g =", 14
17 84c 25 p 7 3 Y 3 "L (14)

2.3. Theequilibrium equations

The equilibrium equations are derived applyingfihi#e element methodology.
Having derived the element geometrical (8) andfngtffs (12) matrices the
equilibrium equations for the-th harmonic element, after assembling two
adjacent element-th and(R+1)-th (Fig. 3) are of the form:

T,atT,u=hR
(15)
m,,+tm ,=m

whereT, ; andm ; are forces derived for each element using equgipn

Fig. 3. Forces acting at a nodal line

For a regular system the equilibrium conditions) (@&n be written in the form
of difference equations equivalent to the FEM mairmulation [9]:

p.£% +po]ow, -, (E- £y =, R 6
B, (- ), + .6 8]0, =B,

where:
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B, =sin(yp,an) B =sin(y,.a,) , B, =420, , a :ﬁ ,
B = 6(901 -a,—-6a,;-6a, —12ag) ,
3, =b(L3x, -3a, - 30, -3a, -6a,) , (17)
B :bz(—3a1+a2 -a;-a, —Zag) :
B, = 20 (o, +3ar, +3a, +3a, +6a)
E" is the shifting operator (see [1]):
E(f, )= ..,
(18)
R=r=E+E"-2)
is the second-order difference operator
Kt =[E+E*-2f =1 +1,-2f (19)

a; are the functions of harmonic numbegiven by (14),P, and m, are the
forces and moments acting at the nodal lingvith co-ordinatesy, and y,,,

respectively). After elimination of the slope fuioct ¢, the equilibrium

conditions are transformed into one fourth-orddfedénce equation with one
unknownw, (nodal transverse displacement amplitude fonttte harmonic):

(B +B8+8] w =, +B ] +p 8, [E-E7)mn (20)
where:

By =BoBs BZ:BOBS+I31B4+4I3§ ' B4=|31|33+|3§ (21)

For the regular infinite plate strip, equation (Zequivalent to the set of
infinite number of equilibrium conditions derivedsing the finite strip
methodology (FSM). The solution of this equatiomtdies one to determine the
state of deformation of the entire considered stinec

3. THE FUNDAMENTAL SOLUTION

Solution of the finite difference equilibrium eqioat (20) yields the
fundamental functions for the considered systemoriter to solve the static
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problem of the structure loaded by the folge=Rd, ,=PI[d , (M, =0, J,,
— Kronecker delta) we use the discrete Fouriestam inx direction [10]:

Flf]=Fla)=>f, e,
. 22)
Fo{f@)= 1 =g | Tl)e™ ma.

Applying both transforms (22) to the equilibriumueadgion (20) yields the
formula:

Slcos(cx +S )cos(rcx)
Jcosz )+ B, coda)+C,, -l

(23)

where:
B, =(B,-4B,)/(2B,) . C, = (4B, - 2B, +B,)/(4B,).
S =BB,/(2B,) . S, =(B, - 28,)8,/(4B,).

The solution, i.e. the nodal displacement amplitnaiey be expressed in the
form of the following recurrent relation:

(24)

=Plan s m )
where
F(r)=2"tc(r +1)—U2r_3 c(r-1)+
1 (26)
-3 -4
2( ) Jz < _s)-;(r 2 }z -5+
)=z eh)-| e -2
(27)
+;[r jzf-s c(r —4)—;{r ;4}” c(r-6)+..

The integrals occurring in the above formula:
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_r cos'(a)
Cln)= ~([ cos’(a)+ B, cosa)+C, do (28)

can be easily solved in an analytical way. The fdam(25) expresses the
deflection amplitude along the nodal lindor an arbitraryn-th element of the

harmonic series in a closed analytical form. Framequilibrium equations (16)
the following relations for the transverse slopghiudes are obtained:

_-—EEEEL-+J§£ 2Bl BO ,
g, B, 2B,

(29)
_2B;-B B
0, =—>—20,-0,_-2W,-W_)
1 [33 1 [33 ( 1 1)
The functions of displacements at the nodal tiaee in the form of the sums:
N N
W(r,y)=ZWr(n)E'kinnTW. o(r,y)=>_6,(n)Bin—= [ly (30)
n=1 n=1

whereN is the number of harmonic elementg(n) and 6, (n) are amplitudes

obtained from (25) and (29), respectively.

The fundamental functions (30) for the infiniteistenable one to solve
the static problem of a rectangular plate withtérdimensions, according to the
indirect BEM.

4. NUMERICAL EXAMPLES

A problem of the initial stability of rectangulatapes subjected to uniformly
distributed loadingg and compressive force, is considered. All types of
boundary conditions are introduced in the analysis.

The plate properties are as follows: Young's mod@g 205 GPa, Poisson’s
ratiov = 0.3. The number of finite strips chosen for dé¢ization was 6 and 12.
Analytical solutions for the problem of initial &iity of Kirchhoff plates were
evaluated basing on the procedures given by Girknj8h Timoshenko and
Woinowsky-Krieger [13] and Timoshenko and Gere [12]

4.1. The square simply-supported plate

The square plate, simply-supported on all edgessabgkcted to the uniformly
distributed transverse loading and constant loadgting in plane is considered.
The plate dimensions afe= I, =1,= 1.0 m, the plate thickne$s= 0.02 m, the
uniformly distributed transverse Ioadlpgz 100 kN/nd and the constant loading
acting in-planeN, (Fig. 4).
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Fig. 4. Square, simply-supported plate subjecteti@ainiformly distributed loading
and constant loading in-plaig

The values of critical forces obtained using thalyical solution given in
[12] and applying the BEM formulation presentedShare shown in Table 1. In
the considered approach the plate boundary wadethinto ten elements.

Table 1. The values of critical force

Ner Analytical BEM
[KN/m] solution solution
1 5928.993 5978.358
2 9264.052 9450.545
3 16.469.42 17102.466

The results obtained for the first critical foroe gresented in Table 2.
The calculations were carried out for various valeé in-plane loading. The
constant loadingj, was assumed to be lower than the critical force.

Table 2. Deflection and bending moment at the paint

Ny w, /(pl*) M2 /(pl?)

0.0 0.004081 0.049700
0.25° Ng, 0.006903 0.070470
0.50" N, 0.012212 0.123610
0.75" N¢ 0.052933 0.533570
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4.2. The square plate, simply-supported on two opposite edges with

two clamped edges
In this example the square plate, simply-suppodedwo opposite edges with
two clamped edges, subjected to the uniformly ithisted transverse loading and
constant loading acting in plane is considered. glage dimensions ate=1,=1,
= 1.0 m, the plate thickness= 0.02 m, the uniformly distributed transverse
loadingp = 100 kN/mi. The calculations were carried out for a few valoé
constant loadN, , which acts in plane (Fig. 5).

The value of the critical force for the considerpthte obtained
analytically [12] and derived applying BEM procedui5] equalsN,, = 10090
kN/m and N, = 11635 kN/m respectively. The values of deflection and begdin
moment at the middle point of the plate are shawhable 3.
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Fig. 5. Square plate, simply-supported on two oftp@siges with two
edges clamped, subjected to the uniformly distabuoadingp
and constant in plane loadihg

Table 3. Deflection and bending moment at the paint

Ny w, D/(pl*) M2 /(pl?)
0.0 0.002174 0.03430
0.25° Ng, 0.002792 0.04477
0.50 N 0.003891 0.06335
0.75° Ng 0.006397 0.10553
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4.3. Therectangular plate, ssimply-supported on all edges

The rectangular plate, simply-supported on all edgebjected to the uniformly
distributed transverse loading and constant loaditing in-plane is considered

(Fig. 6).

—L

Fig. 6. Rectangular, simply-supported plate, subgkto the uniformly distributed
loadingp and constant in-plane loadihyg

The plate dimensions ard =0.51, = |, = 1.0 m, the plate thickness
h=0.02 m, the uniformly distributed transverse logdp = 100 kN/mi. The
value of constant loadinly, , which acts in-plane depends on the critical dorc

(see Tab. 4).
Table 4. Deflection and bending moment at the paint

Ny w, D/(pl*) M2 /(pl?)
0.0 0.01017 0.04434
0.25° Ng, 0.01358 0.05194
0.50 N, 0.01726 0.06208
0.75° Ng 0.02340 0.07025

In this case the value of the critical force wasivie applying BEM
methodology [5]. For the considered plate the aaltiforce equalsN,, = 5983
kN/m. The value of deflection and bending moment atrtinddle point of the
plate are shown in Table 4.

4.4. Therectangular plate, smply-supported on two opposite edges

and with two free edges
The rectangular plate, simply-supported on two sfipoedges with two free
edges is considered. Apart from the uniformly distied transverse loading=
100 kN/nf , the constant loall, acts in-plane (Fig. 7). The plate dimensions are
ly=2.0 ml,= 1.0 m, the plate thicknesshs= 0.02 m.
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Fig. 7. Rectangular plate, simply-supported on opposite edges

and with two free edges, subjected to the unifordibyributed loading
and constant in-plane loadifyg

The results derived using the BEM procedure givel®] yield the critical
force valueN,, = 403 kN/m The fundamental functions obtained using the FSM
enable to derive the deflections and bending mosniemtthe considered plate at
the middle poinfA (Table 5).

Table 5. Deflection and bending moment at the paint

Ny w, /(pl*) M2 /(pl?)
0.0 0.19830 0.46548
0.25° N 0.28101 0,70641
0.50° N 0.48291 1,29549
0.75 N, 172861 4,93285

As it was expected the values of deflection anddinmoment at the middle
point for each example plate increase with the ginaf the in-plane loading.

5. CONCLUDING REMARKS

In this paper the static analysis of thin plateshva transverse and in-plane
loading was considered. The equilibrium conditidos an infinite strip were

derived in the form of one difference equation. Sbhkution of this equation, i.e.
the fundamental function for an infinite plate girivas derived basing on the
finite strip method (FSM). This method is an impait alternative to the most
popular Finite Element Method, because it doesregtire a high number of
degrees of freedom. The fundamental solution dérimethis way, can be used
to solve the static problem of a finite plate. Mwrer, plates simply supported
on their opposite edges and loaded in-plane aremamty applied as bridge
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structures, as box or plate elements. The numergsllts demonstrate the
effectiveness and efficiency of the proposed method
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ZASTOSOWANIE FUNKCJI FUNDAMENTALNYCH W ANALIZIE STATYCZNEJ
PLYT CINKICH OBCIAZONYCH POPRZECZNIE | W PLASZCZXNIE

Streszczenie

W pracy przedstawiono anajizstatyczim plyt cienkich, obecizonych zaréwno
poprzecznie jak i w plaszcayie, z wykorzystaniem metody pasm sk&ponych.
Zgodnie z zasadami metody pasm rmskaonych, cigly i nieograniczony uktad
aproksymowany jest nieskozomy liczba identycznych elementéw, ktérymi pasma
skaiczone swobodnie podparte na przeciwleglych bokatlewiadomymi g tzw.
amplitudy ugéc¢ i katdw obrotu na liniach eztowych, czyli na brzegach swobodnych
pasma skficzonego. Po okékeniu macierzy sztywnii i macierzy geometrycznej
elementu skiczonego wyprowadzone zostatozmécowe réwnanie réwnowagi, ktére
obowiazuje dla kadej linii weztowej pomedzy elementami. Gltownzalet, tej metody
jest maliwosé¢ przedstawienia warunkéw réwnowagi dla catego raamago uktadu w
postaci jednego réwnania rekurencyjnego. Razanie wpomnianego réwnania dla
regularnego, dyskretnego pasma plytowego nazywase funkci fundamentaln
Rozwiazanie fundamentalne otrzymane w ten sposob zostaj&orzystane do
rozwigzania problemu statyki ptyty o skozonych wymiarach, w sposéb analogiczny
jak metoda elementéw brzegowych w statyce uktadidghych. Podstawow korzyscia
wynikajaca ze stosowania metody elementéw brzegowych (BEME anetody pasm
skaaczonych (FSM) jest mniejszy naktad obliczeniowy werdwnaniu z innymi,
podobnymi metodami.





