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Notation

Symbols

N set of natural numbers
R set of real numbers
R+ set of positive real numbers
C set of complex numbers
t time
θ, θ̂ unknown parameter vector and its estimate, respectively
N number of measurements
C(A) class of all continuous real-valued functions on A
C1(A) class of all continuously differentable functions on A
ξN ( · ) exact design of an experiment
ξ( · ) continuous design of an experiment
I identity matrix
0 zero matrix
C error covariance matrix
K ≡ Cm( · ) observation covariance matrix
Co output covariance matrix

Operators and functions

supΨ( · ) least upper bound (supremum) of the functional Ψ
inf Ψ( · ) greatest lower bound (infimum) of the functional Ψ
E expectation
cov covariance
trace(A) trace of a matrix A
det(A) determinant of a matrix A
δ( · ) Dirac delta distribution
δk Kronecker delta
supp ξ support of a measure ξ
⊗ Kronecker product

Abbreviations

DPS Distributed Parameter System
FIM Fisher Information Matrix
LMI Linear Matrix Inequalities
LPS Lumped Parameter System
LSE Least Square Estimation
MIMO Multi-Input Multi-Output
PDE Partial Differential Equation
SDP Semi-Definite Programming





Chapter 1

INTRODUCTION

1.1. Introductory background

Modelling, as a method of analysing various phenomena, appears in many different
areas of scientific research. A model which constitutes a mathematical represen-
tation of an examined process or object plays the major role in such an analysis.
A wide range of techniques which can be used in constructing models and using
them to confirm physical observations and to predict future behaviours of real
systems leads to a deeper understanding of practical problems. From the mathe-
matical point of view, models can be classified according to their form as follows
(Niederliński, 1983; Sun, 1994; Karnopp et al., 2000):

• Deterministic and stochastic models (w.r.t. the model dependence on random
factors),

• Linear and non-linear models (w.r.t. the form of the model equations),

• Stationary and dynamic models (w.r.t. whether or not the state is time-
dependent)

• Lumped parameter and distributed parameter models (w.r.t. whether or not
the state depends on spatial variables).

One of the most general and important classes of systems is that of dynamic dis-
tributed parameter systems (DPS’s) also called spatio-temporal dynamic systems.
They are encountered in numerous practical engineering areas such as signal trans-
missions lines in electrical engineering (de Cogan and de Cogan, 1997) and struc-
tural mechanics in civil engineering or aircraft industry (Banks et al., 1996; Flatau
and Chong, 2002). From a global perspective, a rather logical consequence of the
observed increase in the modern systems complexity is the fact that lumped param-
eter descriptions often become unsatisfactory as they may not provide a sufficient
approximation of the investigated system. Thus, there exists a strongly motivated
necessity for applying a more sophisticated and efficient mathematical apparatus
and the development of new modelling techniques. Consequently, this leads di-
rectly to the description of the model at hand using partial differential equations
(PDE’s) with appropriate boundary and initial conditions. However, depending
on the situation, equivalent integral or mixed integro-differential systems of equa-
tions can be considered. Despite the sophisticated formulation in the spirit of the
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PDE’s, such models provide a high quality and efficiency of simulations and control
techniques.
Optimization and control of DPS’s are active and expanding research ar-

eas (Li et al., 1995; Uciński, 1999a; Lasiecka and Triggiani, 2000; Kowalews-
ki, 2001b; Kowalewski, 2001a; Robinson, 2001). At the same time, progress in
computational and applied mathematics combined with the availability of rapid-
ly increasing computer power steadily extend the range of applications that can
be simulated numerically. These developments lead to new challenges in the field
of modelling. Furthermore, the classes of naturally distributed engineering sys-
tems for which estimation and control is desired has recently been enlarged. As
an aftereffect, the DPS’s achieve now a very important position in systems anal-
ysis and control theory and establish a separate field of research with a plen-
ty of publications addressed to this area (Omatu and Seinfeld, 1989; Korbicz
and Zgurowski, 1991; Mitkowski, 1991; Kowalewski, 1991; Sokołowski and Zole-
sio, 1992; Curtain and Zwart, 1995; Malanowski et al., 1996; Zwart and Bontse-
ma, 1997; Gil, 1998; Grabowski, 1999; Uciński, 1999a; Luo et al., 1999; Lasiecka
and Triggiani, 2000; Kowalewski, 2001a; Robinson, 2001; Sasane, 2002).
In applications, two major problems can be addressed:

• forward problem, which consists in determining the system state when the
system parameters, spatial region, time observation interval, subsidiary con-
ditions and control variables are known,

• inverse problem, which consists in recovering some of the model parameters
from the collected observational data (e.g. system states and other available
information) provided that the model structure is given; it is also called
parameter identification.

The inverse problems in the context of DPS’s may consist in estimation of physical
parameters, forcing inputs or initial and boundary conditions. The main difficulty
is that often the estimation problem is ill-conditioned (in the Hadamard sense)
even if the forward problem is well-posed (Sikora, 2000; Sun, 1994; Isakov, 1998).
The outstanding importance of solving inverse problems is obvious since a simu-
lation model should be precisely calibrated based on the observations, otherwise
results obtained from solving the forward problem might be unreliable. Thus, close
attention should be paid to this subject, which requires more effective and robust
analysis methods.
The literature related to the subject of parameter estimation in DPS’s is very

rich. As classical surveys systematizing the various techniques in this field, we can
cite those by Kubrusly (1977) and Polis (1982), or a more recent book (Banks and
Kunisch, 1989) where a broad class of estimation techniques for DPS’s is presented.
The interested reader can be also referred to works (Kunisch, 1988; Uciński and
Korbicz, 1990; Chavent, 1991; Banks, 1992; Gibson et al., 2000). However, most
of contributions are focused on off-line approaches, and only few results concern
on-line methods (Aihara, 1997; Demetriou, 2000).
It is well known that the efficiency of various estimation algorithms for DPS’s

depends significantly on the manner in which the observations are gathered from
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the measurement environment. In most real situations, the measurements of the
state variables in the examined processes are spatially constrained. This may be
caused directly by physical restrictions of the system under consideration (e.g.,
actuators of the investigated plant), but more often this results from the measure-
ment instrumentation. Although distributed measurements over the entire spatial
domain are in general not available, there usually exists a possibility of taking
measurement continuously in time.
A fundamental problem in parameter estimation of DPS’s is to properly de-

sign the process of data acquisition from various sources. This task comprises the
determination of the allocation for a limited number of sensors over the spatial
domain in such a way as to maximize the estimation efficiency of the system
parameters. Most often, the dependence between the sensor placement and the
system performance is not intuitive and has counfounding nature. Due to the cost
of obtaining data, constraints associated with measurements and requirements of
increased efficiencies of identifiers, there is a dire necessity for developing some sys-
tematic methods of selecting appropriate sensor configurations and measurement
strategies.
It was already indicated that the motivations to study sensor location prob-

lem stem from real-world engineering problems. One of the most interesting one
is computer-assisted tomography which consist in reconstructing material param-
eters which characterize the inaccessible interior of an examined object based on
measurements taken at the boundary without any damage of the subject of exam-
ination (Williams and Beck, 1995; Sikora, 2000). Since the observations have to be
non-invasive, the problem of proper data acquisition becomes extremely difficult
and the locations of the measurement electrodes are of great significance as they
should provide possibly the most informative measurements.
Another inspiring application concerns optimization of air quality monitoring

networks since, due to the rapid development of industry around the world, air
pollution becomes a great societal problem. Protection and restitution of the nat-
ural environment requires a high accuracy of forecasts and diagnoses. To provide
them, a proper calibration of models which describe the pollutant emission pro-
cesses is necessary (van Loon, 1994; Sydow et al., 1997; Sydow et al., 1998; Berlin-
er et al., 2000). Usually, the changes in pollutant concentrations over a given
area are described by PDE’s of the advection-diffusion type. Since some coeffi-
cients of the equations are not measurable, accurate modelling becomes extremely
difficult. In addition to this, the monitoring stations are rather costly and the
problem of choosing an appropriate observation strategy is of great practical rel-
evance indicated in many publications (Sturm et al., 1994; van Loon, 1995; Andó
et al., 1999; Müller, 1998; Nychka et al., 1998; Berliner et al., 2000).
Similar problems can be found in many other engineering areas, e.g. in ground-

water sources management (Sun, 1994; Kovarik, 2000), in gathering measurement
data for calibration of models used in meteorology and oceanography (Daley, 1991;
Bennett, 1992; Hogg, 1996; Malanotte-Rizzoli, 1996), in automated inspection of
hazardous environments (Korbicz and Zgurowski, 1991; Korbicz et al., 1993), in
prediction of radioactive contamination (Isakov, 1998) and emerging smart mate-
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rial systems (Banks et al., 1996; Lasiecka, 1998).

1.2. State of the art for the sensor location problem

The sensor location problem has been attacked from various angles, but the results
communicated by most authors are limited to the selection of stationary sensor
positions and the context of state estimation (Kubrusly and Malebranche, 1985;
El Jai and Amouroux, 1987; Amouroux and Babary, 1988; El Jai and Pritchard,
1988; El Jai, 1991; Korbicz and Uciński, 1994). An extension of state estimation
methods to the parameter estimation problem is not straightforward and rather
difficult, since in the latter case the current state usually depends non-linearly on
unknown parameters (Korbicz and Uciński, 1994) (even if the PDE is linear in
these parameters), in contrast to the dependence of the current state on the initial
one, which is linear if only the system is linear. This essential difference makes the
task of parameter estimation much more difficult and for that reason the number
of corresponding results is much fewer (Uciński, 1999a; Uciński, 2000b).
From the perspective of the optimal sensor location problem for parameter

identification in DPS’s, the existing approaches can be classified into three main
groups:

• methods leading to state estimation,

• methods making use of random field theory,

• methods originating in optimum experimental design.

The methods of the first group transform the original problem into a state-estima-
tion one in such a way as to raise a possibility of applying well-developed methods
of optimal sensor location for state estimation. There is rich literature concern-
ing such problems. The interested reader can be referred to the (Kubrusly and
Malebranche, 1985; Malebranche, 1988; El Jai, 1991; Azhogin et al., 1988; Korbicz
et al., 1988; Korbicz and Zgurowski, 1991; Korbicz, 1991; Korbicz and Ucińs-
ki, 1994; Uciński, 1999b). The main drawback of such an approach is that simulta-
neous state and parameter estimation causes the strong non-linearity of the prob-
lem. Some attempts involving sequential linearizations at the consecutive state
trajectories (Malebranche, 1988) were conducted as well as suboptimal filtering
(Korbicz et al., 1988). Nevertheless, the approach depreciates due to the well-
known difficulties encountered in non-linear state estimation analysis and it can
be adopted only in simple situations.
The second group of methods are based on the application of the random field

theory. However, their usefulness in the context of DPS’s is rather limited, since
in general transformation between system descriptions in the form of PDE’s and
suitable random field characteristics is not simple. Additionally, such a conversion
relies only on statistics up to a given order (e.g. mean, covariance, skewness, kur-
tosis and higher order functions). Despite those limitations, methods of this group
can be successfully applied in specific cases (Kazimierczyk, 1989; Sun, 1994).
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The classical theory of optimum experimental design (Kiefer and Wolfowitz,
1959; Fedorov, 1972; Ermakov, 1983; Pázman, 1986; Atkinson and Donev, 1992;
Pukelsheim, 1993; Rafajłowicz, 1996; Fedorov and Hackl, 1997; Walter and Pron-
zato, 1997; Uciński, 1999a) and its extensions to dynamic systems (Mehra, 1976;
Goodwin and Payne, 1977; Titterington, 1980; Królikowski and Eykhoff, 1985;
Walter and Pronzato, 1997) constitutes a basis of the third class of methods.
Within this group of approaches the problem is cast as an optimization one, where
the performance index is defined in the form of some scalar measure operating on
the FIM, whose inverse, based on the Cramer-Rao inequality, plays the role of an
estimate of the parameter dispersion matrix. This leads to significant simplifica-
tion, because even if the precise dispersion matrix is difficult to obtain, the inverse
of the FIM can be computed with relative ease.

In the context of DPS’s the first formulation in this spirit was proposed by
Quereshi et al. (1980) whose approach based on the maximization of the determi-
nant of the FIM was used to find sensor locations and boundary perturbations in
dynamic DPS’s (a heat-diffusion process and a vibrating string), and Rafajłowicz
(1978) for optimization of both sensor positions and a distributed control for pa-
rameter estimation of static linear DPS. A generalization of Rafajłowicz’s approach
to hyperbolic linear systems with known eigenvalues and eigenfunctions was delin-
eated in (Rafajłowicz, 1981), whereas in (Rafajłowicz, 1983) an even more general
framework of DPS’s described in terms of Green’s functions was considered.

A natural generalization which imposes itself is to apply sensors which are
capable of tracking points providing at a given time moment best information
about the parameters. However, communications in this field are rather limit-
ed. Rafajłowicz (1986b) considers the determinant of the Fisher Information Ma-
trix (FIM) associated with the parameters to be estimated as a measure of the
identification accuracy and looks for an optimal time-dependent measure, rather
than for the trajectories themselves. The movable sensors problem was also con-
sidered in works (Rafajłowicz, 1988; 1989), however without direct reference to
parameter estimation. On the other hand, Uciński, apart from generalizations of
Rafajłowicz’s results, developed some computational algorithms based on the FIM
(Uciński, 1999a; Uciński, 2000b; Uciński and Korbicz, 2001). He reduces the prob-
lem to a state-constrained optimal-control one for which solutions are obtained
via gradient techniques capable of handling various constraints imposed on sensor
motions.

A quite new observational strategy, being interconnection of stationary and
movable sensors techniques, is scanning. In this measurement scheme only a subset
of sensors selected from among all available sensors, whose positions are fixed, take
measurements during a given time interval whilst the other sensors become inactive
(Demetriou, 2000) or their measurements are neglected. A reason for not using all
the available sensors could be the reduction of the observation system complexity
and the cost of operation and maintenance (van de Wal and de Jager, 2001). Such
a scanning strategy of taking measurements can be also interpreted in terms of
several sensors which are mobile. The problem has not received close attention yet
(though some attempts have been made in a related context of state estimation,
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see e.g. (Nakano and Sagara, 1988)). An extremely efficient approach based on
directly-constrained design measures was proposed in (Uciński and Patan, 2002a),
but the underlying assumptions involve its main limitation which consists in that
it can be used only when the number of sensors is relatively high. One of the major
difficulties in the sensor scheduling problem is its combinatorial nature. It is com-
pounded further if sensor switchings are allowed to take place in continuous time.
In (Lee et al., 2001) a similar problem was considered for state estimation. In that
work, the proposed solution was to make use of some recently obtained results in
discrete-valued optimal control. As was already mentioned, the number of sensors
is always limited. Nevertheless, the very important question, which accompanies
the inverse problems in all situations is the minimization of the number of sensors
which guarantees a satisfactory accuracy of parameter estimates.
Nevertheless, while applying various existing methods, some fundamental dif-

ficulties may be encountered, which make the problem extremely non-trivial. One
of them is the dependence of the optimal solutions on the parameters to be iden-
tified. In order to calculate optimal sensor configurations, the true values of the
estimated parameters should be known. Therefore, most of contributions in the
context of DPS’s are based on some a priori knowledge about the parameters (e.g.
some nominal values can be taken). Although there exist some approaches devel-
oped to overcome those difficulties (Walter and Pronzato, 1997; Uciński, 1999a),
they are not free from drawbacks. Another significant disadvantage of many results
present in the literature is the so-called clusterization phenomenon, i.e. a tenden-
cy of different sensors in an optimal solution to take measurements at the same
points. In addition to this, there is a lack of methods dedicated to correlated mea-
surements, because in this situation the problem is further complicated. Finally,
most of the contributions deal with the stationary sensors, but the development of
new technologies leads to modern observational systems, i.e. moving and scanning
sensors, which seems very attractive from the viewpoint of the degree of optimality.
In order to address those needs, there is a dire necessity for new approach-

es and adaptation of the existing efficient techniques. This constitutes the main
motivation to write this doctoral thesis.

1.3. Contributions of the dissertation to the state-of-the-art

The primary objective of this work is to significantly extend the existing results
and to develop new approaches to determining optimal observations strategies for
DPS’s, especially in the case of scanning sensors. Particularly, the problem is to
develop new or adopt existing algorithms for different strategies and measurement
error correlations. A secondary objective is to provide some efficient methods in
the case when a parametric uncertainty has to be taken into account.

The following main thesis of this work is proposed:
For a broad class of distributed parameter systems a significant im-
provement in the parameter estimation quality is possible through the
development of effective and robust methods in the sense of statistical
uncertainty, using stationary, scanning and movable sensors.
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In the process of testing this thesis, it was necessary both to develop a theoretical
foundation for our approach and to construct several new algorithms for various
types of computation. The following is a concise summary of the contributions
provided by this work to the state-of-the-art in sensor location methods:

Theoretical aspects

• generalization of the classical results of optimal experiment design to
MIMO systems with possible output correlation (stationary, moving
and scanning sensors),

• adaptation and generalization of some algorithms of nonlinear program-
ming and optimal experiment design to solve stationary sensor location
problems,

• development of efficient methods of activating scanning sensors, in the
cases of both fixed and optimal switching schedules,

• development of an approach to solve the sensor location problem in the
case of correlated observations,

• introduction of optimal sensor placement methods to model-based fault
diagnosis,

• adaptation of existing robust approaches to optimal sensor allocation
in the presence of model parametric uncertainties (sequential designs,
minimax and Bayesian criteria),

• adaptation and generalization of experimental design techniques in the
presence of model structural uncertainties,

Application aspects

• application of optimal observation strategies to computer-assisted to-
mography and structural mechanics (static DPS),

• application of optimal observation strategies to transmission lines and
advection-diffusion problems (dynamic DPS),

1.4. Dissertation outline

The organization of this dissertation follows a progression leading from basic the-
oretical and algorithmic foundations of sensor allocation strategies to the imple-
mentation of robust strategies for dynamic systems. This work is divided into six
chapters.

Chapter 1: It contains a brief introduction to the field of optimal observation
strategies for DPS’s. Moreover, the main objectives to be attained are formulated.
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Chapter 2: The class of the DPS’s underlying the subsequent analysis is intro-
duced and the optimal observation strategy problem is defined for specified real
situations of interest in the context of this work. Main impediments met when
solving the problem are delineated and illustrated with the appropriate exam-
ples. In the second part, as a connection to the next chapters, a generalization
of some classical results for continuous-time MIMO lumped parameter systems is
presented. The notion of continuous designs is introduced in the context of convex
design theory. The applicability of some characterizations of the optimal solutions
is discussed for both linear and nonlinear cases.

Chapter 3: Adaptation of continuous designs is made so as to set forth efficient
algorithms for finding optimal allocation schemes of stationary sensors in the class
of static DPS’s. Two special situations are distinguished, i.e. the case of the mea-
surements to be taken at a finite set of feasible locations and the case when the
set of admissible sensor locations is spatially continuous. For the first situation,
two subproblems are then taken into consideration, i.e. optimization of the spatial
effort and avoiding sensor clusterization. For the cases so formulated efficient al-
gorithms are proposed along with the appropriate characterization results. Some
illustrative examples of applying the proposed extended techniques are present-
ed based on the the computer-assisted tomography problem and experiments in
structural mechanics.

Chapter 4: The concepts from the previous chapter are generalized and used in
the context of spatio-temporal dynamic systems and continuous observations over
a given time observation interval. Furthermore, a moving sensor strategy is intro-
duced based on the so-called direct approach. From this point on, the scanning
sensor strategy is investigated with attention paid to two optimization techniques,
i.e. the ones with fixed and optimal switchings. In addition to that, the problem of
correlated observational errors is examined and an effective algorithm is provided
for such a case. As another important generalization, the introduction of sensor
location techniques into the field of model-based diagnostics is considered and
a suitable approach constructed based on structural hypothesis tests. The final
part of the chapter contains applications concerninig various problems of practical
importance, which are

• the signal propagation process in long-distance transmission lines,

• calibration of air pollution models, and

• groundwater modelling resources management.

Chapter 5: Extensions of some optimum experimental designs techniques are pro-
posed in the presence of parametric and structural uncertainties of the mod-
el. In the first part of the chapter, sequential design techniques combined with
clusterization-free designs are used to provide an efficient approach dedicated to
the scanning strategy with a fixed switching schedule. Then, alternative robust
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approaches are discussed. In particular, minimax and Bayesian designs are consid-
ered in this context. In the former case, the formulation in the sense of semi-infinite
programming with a suitable relaxation procedure is presented. In the latter case,
an approach based on statistical learning is adopted. The last part of the chapter
concerns the generalization of the T-optimum design criterion to MIMO spatio-
temporal dynamic systems. Moreover, a suitable iterative procedure known from
the discrimination experiments for lumped systems is successfully adopted.

Chapter 6: The original contributions of this work are summarized in the context
of some general context. Additionally, discussion of the possible further research
directions is presented.



Chapter 2

A GENERAL FRAMEWORK FOR SENSOR
LOCATION

2.1. System description

The aim here is to define the class of systems to be considered within the framework
of this dissertation. Attention is especially focused on the DPS’s whose mathemat-
ical models are described by the systems of n partial differential equations of the
general form:

D(x, t)∂y(x, t)
∂t

= G
(
x, t, y(x, t),∇y(x, t),∇2y(x, t); θ

)
, (x, t) ∈ Ω× T ⊂ Rd+1,

(2.1)
where

• Ω is a bounded simply-connected open domain with sufficiently regular bound-
ary ∂Ω,

• t signifies time,

• T = (0, tf ) means the observation interval (tf <∞ denotes a fixed observa-
tion horizon),

• x = (x1, x2, . . . , xd) stands for a spatial point belonging to the set Ω̄ = Ω∪∂Ω,

• y =
(
y1(x, t), y2(x, t), . . . , yn(x, t)

)
is the state variable with values in Rn,

and

• D and G stand for some known functions which map their arguments to
Rn×n and Rn, respectively.

Note that this general setting includes the case when the function G may contain
terms accounting for a priori known forcing inputs. The system (2.1) is supple-
mented with a suitable set of boundary conditions

E
(
x, t, y,∇y; θ

)
= 0, (x, t) ∈ ∂Ω× T, (2.2)

and initial conditions

F
(
x, y,∇y; θ

)
= 0, (x, t) ∈ ∂Ω× {0}, (2.3)
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0 x l

E R0

y x,t1( )

y x,t2( )

R,L,G,C

Fig. 2.1 . Non-homogeneous transmission line with a load of the resistance type.

where E and F are some known functions.
The model built on (2.1)–(2.3) contains the unknown parameter vector θ

whose values belong to a parameter space Θad. From the practical point of view,
the most significant and common situation corresponds to constant parameter
values, i.e. θad ⊂ Rm, and from now on, we shall also make the assumption that the
estimated parameters are constant. Note that the case of space-varying parameters
can be treated in this framework through the appropriate parametrization, e.g.
based on splines.

Example 2.1. As an example of the considered class of DPS’s, the signal propa-
gation process in a long-distance transmission line (e.g. a long electrical supply line
or a high-frequency integrated circuit) can be examined. The large scale of such
systems due to the wavelength of the propagated electromagnetic signal produces
considerable spatial effects which have to be taken into account. In the case of a
one-dimensional power supply line, the propagation phenomenon is described by
the set of equations (Kącki, 1995; de Cogan and de Cogan, 1997)

−∂y2
∂t
= L(x, t; θ)

∂y1
∂x
+R(x, t; θ)y1,

−∂y1
∂t
= C(x, t; θ)

∂y2
∂x
+G(x, t; θ)y2, x ∈ (0, l), t ∈ (0, tf ),

(2.4)

where y1(x, t) and y2(x, t) denote respectively the current intensity and voltage
along the line, l is the maximal length of the line, and R,G,L,C stand for the
spatial density of resistance, conductance, inductance and capacitance, respective-
ly. In the case when the line load is only of the resistance type (cf. Fig. 2.1), the
initial conditions are defined as

y1(x, 0) = g1(x), y2(x, 0) = g2(x), x ∈ (0, l) (2.5)

while the boundary conditions at the extremities of the line are

y1(0, t) = y10(t), y2(0, t) = y20(t),

C(x, t; θ)R0

(
∂y1
∂t

)
x=l
+
(
∂y1
∂x

)
x=l
+G(x, t; θ)R0 y1(l, t) = 0,

L(x, t; θ)
R0

(
∂y2
∂t

)
x=l
+
(
∂y2
∂x

)
x=l
+
R(x, t; θ)

R0
y2(l, t) = 0, t ∈ (0, tf )

(2.6)
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Although the physical interpretation of the quantities which describe the prop-
erties of the transmission channel (i.e. R,G,L,C and R0) is well established
(Kącki, 1995), their distributed nature makes grave difficulties for proper mod-
elling. Some of these coefficients are known and available from direct measurements
(e.g. R0), yet the others contain some components which are not measurable or
such a measurement could be very impractical. Therefore, a precise recovery of the
model coefficients becomes a very difficult task of great importance for accurate
simulation and prediction of the system behaviour.

F

Given the model structure (2.1)–(2.3) up to a finite number of constant pa-
rameters θ, the main purpose of parameter estimation is to reconstruct θ in such a
way that the model response imitates the behaviour of the real state of the system
ỹ as closely as possible. The crucial problem lies in the fact that usually not all
the components of the state ỹ are observable, especially in real data acquisition
systems. The techniques of taking measurements can be split into the following
four classes (Chen and Seinfeld, 1975):

(i) observations at discrete spatial locations at discrete time instants,

(ii) observations at discrete spatial locations over a continuous time interval,

(iii) spatial observations at discrete time instants,

(iv) spatial observations continuously in a given time interval.

In general, ‘ideal’ spatial measurements are obviously not possible, thus the last
two manners do not seem to be of serious relevance in practice. Note, however,
that recent great developments in the measurement techniques and instrumen-
tation have begun changing this situation. In many scientific areas, this type of
observation techniques is successfully exploited and their outcomes cannot be over-
estimated (e.g. astrophysical observations of the universe in infrared or microwave
ranges of the electromagnetic radiation, thermography in medical and industrial
diagnostics or meteorological observations of the atmosphere from satellites). On
the other hand, in the majority of engineering applications, measurements over
the entire spatial domain are impossible, and methods (I) and (II) still turn out to
be the most significant and applicable, and consequently they dominate in litera-
ture. This fact constitutes the main reason behind focusing our attention on these
strategies of data acquisition.

2.2. Optimal measurement problem

2.2.1. Observation strategies

In general, the observation strategy can be understood as any process of taking
measurements, but for the clarity for further considerations it is necessary to define
such a notion more precisely. Firstly, we should provide a more formal definition
of a measurement result.
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Definition 2.1. (Taylor and Kuyatt, 1994) The result of a measurement is
only an approximation or an estimate of the value of a specific quantity subjected
to the measurement, that is, the measurand (ISO, 1996), and thus the result is
complete only when accompanied by a quantitative statement of its uncertainty.

Here, it is very important to emphasize that the class of the measurements stud-
ied in this work belongs to the so-called external observations (also known as
Black-Box measurements (Braake et al., 1998)) made with non-inertial measuring
transducers whose influence on the system performance is negligible and may be
omitted. Furthermore, characteristics of real sensors often depend on both the spa-
tial coordinates and time, and the measurement is a result of measurand averaging
over some spatial domain. A common practice is, however, the assumption that
this dependence can be approximated by a number of pointwise measurements.
Thus, the resulting uncertainty about a measurement can be reduced to the com-
ponents which are evaluated by statistical methods (i.e. an uncertainty of type A
(Taylor and Kuyatt, 1994)). Otherwise, it is necessary to consider the components
of uncertainty evaluated by other means than the statistical analysis of a series of
observations (the so-called type B evaluation (Taylor and Kuyatt, 1994)). With
such a notion of observation being a result of the measurement, it is possible to
introduce the definition of the measurement space and the strategy of observations
which are used within the scope of this work.

Definition 2.2. The measurement space is the space induced by the subset of
the Cartesian product Ω̄× T in which the observations are available. A strategy
of observations is understood as any subset of the measurement space.

In practice, the following main strategies of taking measurements can be distin-
guished:

Using stationary sensors. In this case observations are made at a finite number
of locations continuously or discretely in time. Because the sensors positions
are fixed, the resulting measurements are somewhat averaged in the time
domain (of course, if the system state is time dependent). The main problem
we are faced with here is the choice of the optimal sensor locations in a given
admissible spatial domain.

Using moving sensors. Allowing for the mobility of the sensors, we can increase
their applicability and increase the capabilities in comparison with station-
ary sensors. In this way observations possess an additional degree of freedom
regarding potential optimality. It is a direct consequence of the possibility
of taking measurements at positions which are at given time moments the
most advantageous in the sense of a given performance index quantifying the
information about the estimated parameters. Let us note that non-mobile
sensors can be considered as movable sensors whose trajectories are reduced
to fixed points. Thus the use of movable sensors constitutes a generaliza-
tion including as a special case the use of stationary sensors. An observation
strategy here is a set of sensor trajectories representing changes in the mea-
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surement locations in time. The problem of designing optimal trajectories
becomes crucial for this case.

Scanning. This strategy constitutes a combination of the previous two cases with
a slight extension. In some situations, the observation system comprises mul-
tiple sensors whose positions are already specified and it is desired to activate
only a subset of them during a given time interval while the other sensors
remain dormant. Such a scanning strategy of taking measurements can be
also interpreted in terms of several sensors which are mobile, but, since in
general the number of activated sensors could vary in time, this technique
is not a discrete-time version of the movable sensor method. This strate-
gy is accompanied by the problem of determining the best spatio-temporal
schedule of taking measurements.

In practical situations, Definition 2.2 may seem too abstract, especially in
the case of moving observations when sensor trajectories should satisfy many con-
straints. However, such a formulation is convenient from the point of view of sta-
tistical analysis. Moreover, in particular situations some additional restrictions can
be made providing a suitable regularization of the observation strategy.

2.2.2. Parameter estimation

Different common real situations encountered in engineering practice imply that
the measurement process can be formally represented as follows:

S1. Stationary sensors, measurements discrete in time,

zj(tk) = H(y(xj , tk; θ), xj , tk)+ε(xj , tk),
k =1, . . . ,K, j = 1, . . . , N,

(2.7)

S2. Scanning sensors, measurements discrete in time,

zj(tk) = H(y(xj(tk), tk; θ), xj(tk), tk)+ε(xj(tk), tk),
k =1, . . . ,K, j = 1, . . . , N,

(2.8)

S3. Stationary sensors, measurements continuous in time,

zj(t) = H(y(xj , t; θ), xj , t) + ε(xj , t), t ∈ T, j = 1, . . . , N, (2.9)

S4. Movable sensors, measurements continuous in time,

zj(t) = H(y(xj(t), t; θ), xj(t), t)+ε(xj(t), t), t ∈ T, j = 1, . . . , N, (2.10)

where H( · ) is a given function mapping its arguments into Rr, zj(t) is an r-
dimensional output, xj and xj(t) ∈ X stand respectively for the locations of the
j-th stationary and movable sensor (at time instant t), X signifies the part of Ω
where the measurements can be made, and εj( · ) denotes the measurement noise.
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It is customary to assume that the noise is zero-mean, Gaussian, uncorrelated in
both time and space (Fedorov and Hackl, 1997; Kubrusly and Malebranche, 1985),
i.e. its statistics are defined as

E[ε(xj , t)] = 0, E[ε(xi, t)εT(xj , τ)] = δijδ(t− τ)C(xi, t), (2.11)

C(xi, t) ∈ Rn×n is a known positive-definite matrix, δij and δ( · ) stand for Kro-
necker’s and Dirac’s delta symbols, respectively. A more general situation when
the measurement noise is correlated in space and time domains will be considered
in more detail in Section 4.4.
The objective of the parameter estimation is to find the value of the unknown

parameter vector θ̂ ∈ Θad based on the appropriate set of process observations
(2.7)–(2.10) such that the predicted response of the model (2.1)–(2.3) is close
enough to the process observations (in the sense of some known quality measure).
The estimation problem is customarily converted into an optimization one and
then the minimization of a suitable weighted least-squares criterion J (θ) is carried
out. For situations S1–S4, we respectively have

C1. Stationary sensors, measurements discrete in time,

J (θ) = 1
2

N∑
j=1

K∑
k=1

‖zj(tk)−H(ŷ(xj , tk; θ), xj , tk)‖2C(xj ,tk), (2.12)

C2. Scanning sensors, measurements discrete in time,

J (θ) = 1
2

N∑
j=1

K∑
k=1

‖zj(tk)−H(ŷ(xj(tk), tk; θ), xj(tk), tk)‖2C(xj(tk),tk), (2.13)

C3. Stationary sensors, measurements continuous in time,

J (θ) = 1
2

N∑
j=1

∫
T

‖zj(t)−H(ŷ(xj , t; θ), xj , t)‖2C(xj ,t) dt, (2.14)

C4. Movable sensors, measurements continuous in time,

J (θ) = 1
2

N∑
j=1

∫
T

‖zj(t)−H(ŷ(xj(t), tk; θ), xj(t), t)‖2C(xj(t),t) dt, (2.15)

where ŷ(x, t; θ) is the solution to (2.1)–(2.3) for a given value of θ and

‖e(x, t)‖2A = eTA−1e,

for any positive-definite symmetric matrix A. Some relevant comments concerning
benefits and drawbacks of using the least-squares criterion with indications of
further references can be found in the monograph by Uciński (1999a).
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2.2.3. Problem formulation

It can be clearly seen that in each case the parameter estimate θ̂ = argminθ∈Θ J (θ)
depends strongly on the coordinates of the sites where the measurements are taken.
This fact allows us to consider the optimality of sensor locations leading to best
estimates of θ. To achieve such a purpose, it is necessary to establish some quality
measure of sensor configurations based on the accuracy of the parameter estimates
obtained from the observations. Usually such a measure is related to the Fisher
Information Matrix (FIM) commonly used in the classical theory of optimum
experimental design for Lumped Parameter Systems (LPS’s) (Fedorov and Hackl,
1997; Walter and Pronzato, 1997). The valuable property of the FIM is that its
inverse constitutes an approximation of the covariance matrix for the estimates
of the system parameters θ (Goodwin and Payne, 1977). More precisely, it is a
lower bound of the above mentioned covariance matrix and it is established by the
so-called Cramér-Rao inequality (Bard, 1974; Goodwin and Payne, 1977):

cov θ̂ ­M−1, (2.16)

whereM stands for the FIM (note that the above inequality should be interpreted
in terms of the Löwner ordering of symmetric matrices, i.e. the A ­ B means that
A − B must be non-negative definite). This leads to a great simplification since
the inverse of the FIM, which stands for the lower bound on the right-hand side of
(2.16) can often be easily computed, even in situations, when the exact dispersion
matrix of the given estimator is very difficult to obtain. The assumptions regarding
the noise statistics (2.11) yield the following formulae depending on the considered
situation (Uciński, 1999a):

M1. Stationary sensors, measurements discrete in time,

M =
N∑
j=1

K∑
k=1

GT(xj , tk)C−1(xj , tk)G(xj , tk), (2.17)

M2. Scanning sensors, measurements discrete in time,

M =
N∑
j=1

K∑
k=1

GT(xj(tk), tk)C−1(xj(tk), tk)G(xj(tk), tk), (2.18)

M3. Stationary sensors, measurements continuous in time,

M =
N∑
j=1

∫
T

GT(xj , t)C−1(xj , t)G(xj , t) dt, (2.19)

M4. Movable sensors, measurements continuous in time,

M =
N∑
j=1

∫
T

GT(xj(t), t)C−1(xj(t), t)G(xj(t), t) dt, (2.20)
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where

G(x, t) =
∂H(y, t; θ)

∂y

∣∣∣∣
y=y(x,t;θ)

∂y(x, t; θ)
∂θ

.

Analogously to the least-square criteria, the elements of M depend on the
sensor positions. Let us introduce the collection of variables

ξ̆N = {x1, . . . , xN} (2.21)

which we call informally the simplified design of the experiment. Additionally, the
design-dependent FIM M(ξ̆N ) will be subsequently briefly denoted by M .
Unfortunately, direct use of the FIM in optimization is inconvenient, because

the above-mentioned Löwner ordering of the information matrices constitutes in
general only a partial ordering over the set of all admissible components of ξ̆N . Thus
for a complete comparison of measurement allocations, we will have to introduce
a suitable scalar performance index based on the FIM, which should be minimized
by a suitable selection of the sensor locations. In literature one can find various
choices for such a criterion (Pázman, 1986; Walter and Pronzato, 1997; Fedorov
and Hackl, 1997):

• A-optimality criterion
Ψ(M) = trace(M−1),

An A-optimal design supresses the variance of the estimates (but the corre-
lation between the estimates is neglected),

• D-optimality criterion
Ψ(M) = − ln det(M),

A D-optimal design minimizes the volume of the uncertainty ellipsoid Eθ̂ =
{θ : (θ̂ − θ)TM−1(θ̂ − θ) ¬ m} for the parameters,

• E-optimality criterion
Ψ(M) = λmax(M−1),

where λmax( · ) stand for the maximal eigenvalue of its argument. An E-
optimal design minimizes the largest width of Eθ̂ along its principal direc-
tions,

• The sensitivity criterion

Ψ(M) = − trace(M).

This criterion does not possess a statistical interpretation, but it is sometimes
used due to its simple form and the fact that its minimization increases the
sensitivity of the outputs with respect to parameter changes.

In addition to its relative simplicity, the D-optimality has an important advantage
in contrast to the E- and A-optimality criteria, namely it is invariant under linear
output transformations and changes in the parameter scales (Walter and Pronzato,
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1997). The simplest is the sensitivity criterion, but in many cases it leads to a
singular FIM and serious problems with identifiability.
Obviously, there exist many more other performance indices, which are pro-

posed in various publications (e.g. a class based on the variance of the system
output prediction functions (Walter and Pronzato, 1997)). However, the most of-
ten used criteria are related to the eigenvalues of the FIM (e.g. minimizing the
D-optimality criterion amounts to maximizing the product of all eigenvalues of
M , while the use of the A-optimality criterion leads to minimizing the sum of the
reciprocals of the eigenvalues). Therefore, most of the performance indices men-
tioned here can be treated as members of a wide class of criteria (Fedorov and
Hackl, 1997; Walter and Pronzato, 1997) defined by the following functional:

Ψγ(M) =


[
1
m
trace(PM−1PT)γ

]1/γ
if detM 6= 0,

∞ otherwise,

where P ∈ Rm×m is a weighting matrix. Indeed, substituting P = I for γ = 1,
γ → ∞ and γ → 0, we obtain respectively the A-, E- and D-optimum design
criteria.

2.2.4. Main complications

After conversion of the original problem of choosing an optimal measurement strat-
egy to that of minimizing the appropriate performance index, one might think that
its solution is only a matter of application of some well-known nonlinear optimiza-
tion algorithms. Nevertheless, the practical problems clearly shows that such an
impression is extremely misleading. Severe difficulties are encountered, which make
the problem highly non-trivial and explain the scarcity of publications on this sub-
ject in contrast to a similar problem for state estimation. In what follows, the main
impediments in solving the prescribed problem will be indicated and discussed.

2.2.4.1. Loss of the estimator underlying properties

First of all, it should be emphasized that the approximation of the parameter
dispersion matrix by the inverse of the FIM, which is based on converting the
Cramer-Rao inequality into the equality, is legitimate only in situations when the
measurement errors have small magnitudes and are independently distributed,
the nonlinearity of the model with respect to the parameters is mild and the time
horizon is comparatively large (Walter and Pronzato, 1997). Although the first
assumption is rather justified in most real situations, the other two are rarely sat-
isfied. In fact, in more precise terms, the observational time horizon should satisfy
tf → ∞ (Rafajłowicz, 1986b; Walter and Pronzato, 1997). From the technical
point of view, an infinite observational horizon is impossible to implement and the
loss of the accuracy of the estimator should be observed. However, if the length of
the observation time interval is sufficiently large, this effect is commonly neglected
in applications.
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The greatest difficulty, which can be often encountered in practice, is a high
non-linearity of the model, and consequently the deterioration in the quality of
the estimator. This situation necessitates a more detailed comment and will be
discussed in further sections.

2.2.4.2. High dimensionality of the problem

In practical engineering systems, the number of allocated sensors in a given spatial
region may reach from dozens to several hundreds. As examples, consider the
following monitoring nets:

• Pacific Northwest Solar Radiation Network (University of Oregon) whose aim
is to monitor and predict solar resources; it contains 19 stationary stations
(Gueymard et al., 2000);

• China Environment Monitoring Centre Network which monitors the water
quality and temperature of the greatest Chinese rivers; it should contain up
to 98 (by the end of 2005) stationary automatic stations;

• Southern Great Basin Digital Seismic Network for permanent observations
of the seismic activity used in earthquake prediction; it has 30 stationary
observational stations (Romanowicz et al., 1994; Ichinose et al., 1998);

• Air Quality Network of Berlin, ‘BLUME’ constructed for measurements of
air pollution, identification of pollution sources, verification of the effect of
air pollution control and prevention to detect excessive smog levels within
the framework of smog alert plans; it contains 45 mobile and stationary
monitoring stations with 147 measurement devices (Fedra, 1999);

• research network in the Great Lakes in the USA for spatial predictions of
ozone concentration; it has approximately 160 monitoring stations (Nychka
et al., 1998).

Many additional examples can be provided. Since the position of each sensor is
determined by at least two spatial coordinates and the optimization problem is
multi-modal (when the global optimum is hidden in many local optima), severe
difficulties are usually experienced when trying to solve it as a classical non-linear
constrained programming task.

2.2.4.3. Phenomenon of sensor clusterization

Another acute problem is the potential sensor clusterization, i.e. the tendency
of different sensors to take measurements at the same location, which is rather
unacceptable in real situations. This phenomenon is a direct consequence of the
assumption of spatially independent measurement errors. As an illustration of the
clusterization effect, the following example can be considered.
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Example 2.2. In this example we examine again the transmission line of Exam-
ple 2.1 with a specified length l = ln(3), but attention will be focused only on the
voltage signal y. Assume that the line is homogeneous (densities of its electrical
parameters are constant along the line) without leakage conductance and induc-
tance, i.e. G = 0 and L = 0 (this corresponds to the so-called Thomson cable
(Kącki, 1995)). For notational simplicity, write down the time constant of the line
as RC = θ1. Thus the signal propagation is described by the following telegraph
equation of the parabolic type (de Cogan and de Cogan, 1997):

θ1
∂y

∂t
=
∂2y

∂x2
, x ∈

(
0, l), t ∈ (0, tf ). (2.22)

Consider the transient state of the transmission line over the observation horizon
tf = 1 in the case when the system at both ends is supplied by the voltage sources
whose characteristics are defined by the following boundary conditions:{

y(0, t) = θ2eθ1t,
y
(
ln(3), t

)
= 2θ2eθ1t, t ∈ (0, 1). (2.23)

and initial voltage distribution

y(x, 0) =
1
8
θ2
(
3 sinh(x) + 2ex

)
, x ∈ (0, ln(3)). (2.24)

The unknown values of the parameter vector θ = (θ1, θ2) have to be estimated
with the use of two stationary sensors. To find optimal locations x1 and x2, the
D-optimality criterion will be applied.
An exact analytical solution for this problem exists and has the form

y(x, t) =
1
4
θ2eθ1t sinh(x) + θ2eθ1t cosh(x). (2.25)

Since the measurements are continuous in time, the FIM can be obtained from
(2.19), in which C(x, t) is assumed to be the identity matrix and

GT(x, t)=
[
1
4
θ2teθ1t sinh(x)+θ2teθ1t cosh(x),

1
4
eθ1t sinh(x)+eθ1t cosh(x)

]
. (2.26)

A computation which can be performed using a computer-algebra system shows
that

det
(
M(x1, x2)

)
=
(

θ2
16θ21

)2 (
e4θ1 − 2e2θ1 − 4e2θ1θ21 + 1

)
·
((
sinh(x1)+4 cosh(x1)

)2
+
(
sinh(x2)+4 cosh(x2)

)2)2
.

(2.27)

The surface plot of detM(x1, x2) for θ = (0.05, 0.05) is shown in Fig. 2.2. An easy
verification shows that the maximum value of the D-optimality criterion corre-
sponds to the sensor locations

x1? = x2? = ln(3). (2.28)
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Fig. 2.2 . The surface plot of M(x1, x2) for Example 2.2 (θ = (0.05, 0.05)).

The conclusion that both the sensors must be placed at the same spatial point,
which illustrates the phenomenon of clusterization, is a direct consequence of the
assumptions made while constructing the simplified mathematical model of the
disturbances acting on the measurements.

F

In order to avoid this tendency, the problem usually can be transformed to a
combinatorial one (Uciński, 1995) when from among Na fixed a priori positions
the best N < Na ones are to be selected. In the case of movable sensors additional
constraints imposed on sensor trajectories are required, which highly complicates
the approach. Another technique dedicated especially for the scanning strategy
is to apply the idea of directly constrained design measures (Fedorov and Hackl,
1997; Uciński and Patan, 2002a) which will be presented in more details in Sections
3.2 and 4.3.

2.2.4.4. Relationship between the solution and estimated parameters

Perhaps the most serious obstacle, which has to be overcome while trying to design
an optimal measurement strategy is the dependence of the optimal solution on the
estimated parameters. Since it is clear that these parameters are unknown prior to
the experiment, in order to solve the problem, we need some preliminary estimate
of their values. An illustrative example for this complication is given below.

Example 2.3. Reconsider the one-dimensional homogeneous transmission line of
Example 2.1, but this time assume that the line is lossless, i.e. G = 0 and R = 0.
Moreover, assume that LC = θ2, where the physical interpretation of θ is the
velocity of the signal propagation along the line. The distribution of the voltage y
is thus given by the hyperbolic ‘wave’ equation

θ2
∂2y

∂t2
=
∂2y

∂x2
, x ∈ (0, π), t ∈ (0, π). (2.29)
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The line is supplied at each end by sinusoidal electromotive forces, which corre-
spond to the boundary conditions

y(0, t) =
1
4
cos(t), y(π, t) = sin(πθ) sin(t) +

1
4
cos(πθ) cos(t), t ∈ (0, π). (2.30)

The initial voltage distribution and the rate of changes along the line are respec-
tively given by

y(x, 0) =
1
4
cos(θx),

∂y(x, t)
∂t

∣∣∣∣
t=0
= sin(θx), x ∈ (0, π). (2.31)

The analytical solution to the problem so defined is the function

y(x, 0) = sin(θx) sin(t) +
1
4
cos(θx) cos(t). (2.32)

Our task here is to find the location x1 of only one sensor in such a way as to obtain
the most accurate estimate of θ. Because there is only one constant parameter, the
FIM is a scalar and each criterion applied leads to the same solution. The FIM
can be represented as

M(x1) =
∫ tf
0

(
∂u(x1, t; θ)

∂θ

)2
dt

=− 1
2
x2 cos(θx)2 cos(tf ) sin(tf ) +

1
2
x2 cos(θx)2tf

+
1
4
x2 cos(θx) sin(θx) cos(tf )2 +

1
32
x2 sin(θx)2 cos(tf ) sin(tf )

+
1
32
x2 sin(θx)2tf −

1
4
x2 cos(θx) sin(θx).

(2.33)

The surface and countour plots of (2.33) corresponding to tf = π are shown in
Fig. 2.3. The first observation is a multi-modal character of the problem as it was
elucidated earlier. The second finding constitutes the essence of this example as it
is clear that the optimal sensor position does depend on the value of the parameter
θ. The optimal sensor position x1?(θ) is marked with a dashed line on the contour
plot.

F

The dependence of the solutions on the unknown parameters is a significant
drawback which implies the necessity of applying some a priori statistical knowl-
edge about the parameter to be identified. Often some nominal values of physical
parameters are available, otherwise there is a need for some pilot experiments con-
ducted so as to obtain preliminary estimates of the parameters or for exploiting
the so-called sequential designs, which comprises repeated consecutive experimen-
tation and estimation steps. However, from the economical and technical points of
view such a procedure is often impractical and difficult to implement, especially
in the case of on-line algorithms. Alternatively, there are some robust-design tech-
niques, which minimize the amount of statistical information necessary to find an
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Fig. 2.3 . The surface and contour plots of M(x1; θ) in Example 2.3.

optimal solution on one hand, but on the other hand they significantly increase
the complexity of the approach. This leads to the average approach which takes in-
to account information about statistical distributions of unknown parameters and
minimax designs comprising the analysis in the worst conditions possible (Walter
and Pronzato, 1997).

2.3. Convex design theory for LPS’s

2.3.1. Linear models

Prior to the analysis of more complex situations which are of interest in the context
of the present work, it is useful to investigate first the less sophisticated case of
the system linear in its parameters. If we assume that the observation conditions
in the sense of the measurement locations are established arbitrarily before the
experiment, such a system can be treated as an LPS with sensor positions in the
role of its additional design parameters which are fixed and are not a subject of
estimation. To achieve a possibly high level of generality, additionally we assume
here that the system under consideration is of the MIMO type and evolves in a
continuous time domain (results for the discrete case could be provided in much
the same way).
Let us introduce the observation equation for the investigated system

z(t) = GT(t)θ + ε(t), t ∈ T = [0, tf ], (2.34)

where tf is a finite time horizon and θ ∈ Rm is an unknown parameter vector.
Matrix G is defined here as

G(t) =
[
F (x1, t) · · · F (xN , t)

]
, (2.35)

where
F (x, t) =

[
f1(x, t) · · · fn(x, t)

]
,
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xj ∈ X ⊂ Rd, j = 1, . . . , N stand for fixed design parameters and the set of func-
tions fi( · , · ), i = 1, . . . , n is known a priori. Moreover, ε is a Gaussian (zero-mean
and uncorrelated in time) stochastic process playing the role of the measurement
noise. Its covariance is defined by

E{ε(t)εT(τ)} = C(t)δ(t− τ), (2.36)

where δ means Dirac’s delta distribution. The positive-definite matrix C( · ) ∈
RNn×Nn is assumed here to have the following form:

C(t) = Cm(t)⊗ Co(t), (2.37)

where Cm(t) ∈ RN×N and Co(t) ∈ Rn×n are positive definite matrices defining
correlations between measurements at different settings of xj and between outputs
corresponding to a fixed setting xj , respectively (the symbol ⊗ denotes the Kro-
necker product of matrices). Furthermore, it is convenient to put the restriction
that the measurements corresponding to different values of xj are independent of
each other. From a practical point of view it seems to be a rather strong constraint,
but potential benefits justify this fact. Thus we make the standing assumption that

Cm(t) =

σ
2(x1, t) · · · 0
...

. . .
...

0 · · · σ2(xN , t)

 (2.38)

where σ(xj , t), j = 1, . . . , N can be interpreted as standard deviations of the mea-
surement errors for different xj ’s. Although the measurement covariance matrix
Cm(t) has diagonal form, there is no need to make additional assumptions on the
matrix Co(t).
In the remainder of this chapter we shall make the following two standing

assumptions:

(A1) X is compact,

(A2) ∀i, fi ∈ C(X × T ;Rm).

Based on the observations z( · ) and the known values of G( · ), the problem of
recovering θ reduces to determining the parameter vector θ̂ which minimizes the
weighted least-squares criterion

θ̂ = argmin
θ∈Θ

1
2

∫ tf
0

[
z(t)−GT(t)θ

]T
C−1(t)

[
z(t)−GT(t)θ

]
dt (2.39)

It is a rather simple matter to show that if only the information matrix

M =
∫ tf
0

G(t)C−1(t)GT(t) dt (2.40)

is non-singular, then the estimate (2.39) exists. Moreover, it is unbiased and its
covariance is given by the inverse of M (Uciński, 1999a). As it is clearly seen
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from (2.40), the information matrix depends on the parameters xj , j = 1, . . . , N
(through matrix G) but does not depend on the observations. The meaning of this
significant fact is that it is possible to design experimental conditions by choosing
xj , j = 1, . . . , N so as to maximize the information provided by the experiment
in the sense of the statistical accuracy of the estimate.
Note that the FIM can be transformed into a simpler form

M =
N∑
j=1

∫ tf
0

σ−2(xj , t)F (xj , t)C−1o (t)F
T(xj , t) dt =

N∑
j=1

Mj , (2.41)

where

Mj =
∫ tf
0

σ−2(xj , t)F (xj , t)C−1o (t)F
T(xj , t) dt. (2.42)

The above equation expresses the additivity of the FIM with respect to the indi-
vidual settings of xj , which is the crucial property for the approach presented in
what follows.
For convenience, introduce the so-called average (normalized) FIM

M̄ =
1
Ntf

M =
1
Ntf

N∑
j=1

∫ tf
0

σ−2(xj , t)F (xj , t)C−1o (t)F
T(xj , t) dt, (2.43)

which equalsM up to a constant multiplier. Since most of optimality criteria used
in practice satisfy the homogeneity condition

Ψ(κM) = γ(κ)Ψ(M), κ > 0

where γ( · ) is a non-decreasing function, without loss of generality it will be used
instead of M (for simplicity, the bar over M will also be omitted).
The introduction of an optimality criterion Ψ makes it possible to formulate

the optimum experimental design problem as the optimization one

ξ̆?N = argmin
ξ̆N

Ψ[M(ξ̆)], (2.44)

where ξ̆ = {x1, . . . , xN} and xj ∈ X, j = 1, . . . , N . A solution to the problem so
formulated leads to the notion of the so-called exact designs.
Owing to the assumption (2.38), we admit of replicated measurements, i.e.

some values xj may appear several times in the optimal solution (this is an in-
evitable effect of the independence of measurements). Consequently, it is sensible
to reformulate the problem so as to operate on the locations x1, . . . , x` (relabelled
different sensor locations) in lieu of x1, . . . , xN . To this end, we introduce r1, . . . , r`
as the numbers of replicated measurements corresponding to the points x1, . . . , x`.
In this formulation, the xi’s are said to be the design or support points, and
p1, . . . , p` are called their weights. The collection of variables

ξN =
{
x1, x2, . . . , x`

p1, p2, . . . , p`

}
, (2.45)
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where pi = ri/N , N =
∑`
i=1 ri, is called the exact design of the experiment. The

proportion pi of observations performed at xi can be considered as the percentage
of experimental effort spent at that point.
On account of the above remarks, we rewrite the FIM in the form

M(ξN ) =
∑̀
i=1

pi
1
tf

∫ tf
0

σ−2(xi, t)F (xi, t)C−1o (t)F
T(xi, t) dt (2.46)

Here the pi’s are rational numbers, since both ri’s and N are integers. This discrete
nature of N -observation exact designs causes serious difficulties, as the resultant
numerical analysis problem is not amenable to solve by standard optimization
techniques, particularly when N is large. A commonly used device for this problem
is to extend the definition of the design. WhenN is large, the pi’s can be considered
as real numbers in the interval [0, 1], not necessarily integer multiples of 1/N . This
assumption will be also made in what follows. Obviously, we must have

∑`
i=1 pi =

1, so we may think of the designs as probability distributions on X. This leads to
the so-called continuous designs which constitute the basis of the modern theory
of optimal experiments (Ermakov, 1983; Fedorov, 1972; Fedorov and Hackl, 1997;
Atkinson and Donev, 1992; Goodwin and Payne, 1977; Pázman, 1986; Walter and
Pronzato, 1997; Rafajłowicz, 1986b; Uciński, 1999a). It turns out that such an
approach drastically simplifies the design. Thus, we shall operate on designs of the
form

ξ =

{
x1, x2, . . . , x`

p1, p2, . . . , p`
;
∑̀
i=1

pi = 1

}
(2.47)

which concentrate Np1 measurements at x1, Np2 at x2, and so on.
At this point it is possible to further generalize the concept of the design to

all probability measures ξ over X which are absolutely continuous with respect to
the Lebesgue measure and satisfy by definition the condition∫

X

ξ(dx) = 1 (2.48)

Such a conceptual extension yields

M(ξ) =
∫
X

{
1
tf

∫ tf
0

σ−2(x, t)F (x, t)C−1o (t)F
T(x, t) dt

}
ξ(dx) =

∫
X

Υ(x) ξ(dx)

(2.49)
where

Υ(x) =
1
tf

∫ tf
0

σ−2(x, t)F (x, t)C−1o (t)F
T(x, t) dt (2.50)

and the integration in (2.48) and (2.49) is to be understood in the Lebesgue-
Stieltjes sense. The function σ(x, t) ∈ C(X × T ) playing the role of the standard
deviation is assumed to take only positive values.
Then we may redefine the optimal design as a solution to the optimization

problem
ξ? = arg min

ξ∈Ξ(X)
Ψ[M(ξ)], (2.51)
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where Ξ(X) denotes the set of all probability measures on X.

Remark 2.1. What is more, note that it is also possible and sometimes convenient
to study an even more general setting by introducing a fixed measure ξ(dt) of
observation effort in the interval T , i.e. to consider

M(ξ) =
∫
T

[∫
X

σ−2(x, t)F (x, t)C−1o (t)F
T(x, t) ξ(dx|t)

]
ξ(dt)

=
∫∫
X×T

σ−2(x, t)F (x, t)C−1o (t)F
T(x, t) ξ(dx,dt),

(2.52)

where the measure ξ( · |t) corresponds to a spatial measure at time t,∫
X

ξ(dx|t) = 1 a.e. on T , (2.53)

ξ(dt) =
∫
X

ξ(dx, dt). (2.54)

This means that we then focus on designs ξ being non-Cartesian product measures
(Rao, 1987), or in other words, we interpret sensor locations at given time moments
as conditional distributions.

2.3.2. Characterization of the optimal solutions

A number of characterizations of the optimal design ξ? can be generalized for the
studied case in a rather straightforward manner based on the results reported in
(Uciński, 1999a). First, let us prove some properties of the FIM given by (2.49):

Lemma 2.1. For any ξ ∈ Ξ(X) the matrix M(ξ) is symmetric and non-negative
definite.

Proof . See Appendix A.1. �

Let us introduce the notation M(X) for the set of all admissible information
matrices, i.e.

M(X) =
{
M(ξ) : ξ ∈ Ξ(X)

}
. (2.55)

Lemma 2.2. M(X) is compact and convex.

Proof . See Appendix A.1. �

Now we can state the following theorem which complements our knowledge
of the information matrices.

Theorem 2.3. For any matrix M0 ∈M(X) there exists a design ξ that contains
`0 ¬ m(m + 1)/2 + 1 support points and M(ξ) = M0. If M0 is a boundary point
of M(X) then `0 ¬ m(m+ 1)/2.

Proof . See Appendix A.1. �



38 2.3. Convex design theory for LPS’s

The great practical relevance of Theorem 2.3 cannot be overestimated. It
allows us to dramatically reduce the dimensionality of the search space for the
optimal solution. Our attention can be restricted to the designs with a limited
number of support points and the concept of continuous designs, despite its ab-
stract character, leads to a great simplification of the problem.
In order to derive necessary and sufficient conditions for the optimality of

designs, some additional properties of the optimality criterion Ψ( · ) are required:

(A3) ∀α ∈ [0, 1], Ψ[(1− α)M1 + αM2] ¬ (1− α)Ψ(M1) + αΨ(M2) (convexity),

(A4) M1 ¬ M2 ⇒ Ψ(M1) ­ Ψ(M2) (monotonicity with respect to the Löwner
ordering),

(A5) ∃q ∈ R, Ξq = {ξ : Ψ[M(ξ)] ¬ q <∞} 6= ∅,

(A6) ∀ξ ∈ Ξq, ∀ξ̄ ∈ Ξ(X), we have

Ψ[(1− α)M(ξ) + αM(ξ̄)] = Ψ[M(ξ)] + α
∫
X

ψ(x, ξ)ξ̄(dx) + o(α; ξ, ξ̄)

where the function o( · ; ξ, ξ̄) satisfies lim
α↓0

o(α; ξ, ξ̄)/α = 0.

Assumptions (A3) and (A4) are rather obvious and natural as they refer to
the attributes which raise a possibility of applying methods of convex optimiza-
tion. (A5) guarantees the existence of designs with finite values of Ψ. The most
restrictive seems Assumption (A6) as it requires the existence of a specific form of
the directional derivative. But note that we have

∂Ψ[(1− α)M(ξ) + αM(ξ̄)]
∂α

∣∣∣∣
α=0+

= lim
α→0+

Ψ[(1− α)M(ξ) + αM(ξ̄)]−Ψ[M(ξ)]
α

= trace
[ ◦
Ψ[M(ξ)](M(ξ̄)−M(ξ))

]
= trace

[ ◦
Ψ[M(ξ)]

∫
X

Υ(x) ξ̄(dx)
]
− trace

[ ◦
Ψ[M(ξ)]M(ξ))

]
=
∫
X

{
trace

[ ◦
Ψ[M(ξ)]Υ(x)

]
− trace

[ ◦
Ψ[M(ξ)]M(ξ)

]}
ξ̄(dx)

(2.56)

where
◦
Ψ[M(ξ)] =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ξ)

(2.57)

From (2.56) it can be clearly seen that if Ψ is differentiable with respect to the
elements its matrix argument, then Assumption (A6) is satisfied. Indeed, introduce
the following representation of ψ(x, ξ):

ψ(x, ξ) = ς(ξ)− φ(x, ξ), (2.58)
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where

ς(ξ) = − trace
[ ◦
Ψ[M(ξ)]M(ξ)

]
, (2.59)

and

φ(x, ξ) = − trace
[ ◦
Ψ[M(ξ)]Υ(x)

]
= − trace

{
1
tf

∫ tf
0

σ−2(x, t)FT(x, t)
◦
Ψ[M(ξ)]F (x, t)C−1o (t) dt

}
.
(2.60)

Now, we are ready to precise further characterizations of the optimal designs.

Theorem 2.4. Suppose that Assumptions (A1)–(A6) hold. Then an optimal de-
sign ξ? exists comprising no more than m(m+1)/2 support points. Moreover, the
set of optimal designs is convex.

Proof . See Appendix A.1. �

It is purposeful to formulate the necessary and sufficient conditions for the
optimality of the designs in the form of the following claim:

Theorem 2.5. Assume that (A1)–(A6) are satisfied. Then

(i) A design ξ? is optimal iff

min
x∈X

ψ(x, ξ?) = 0, (2.61)

(ii) The function ψ(x, ξ?) has the zero value almost everywhere in supp ξ?.

Proof . Because the explicit form of the FIM is not essential for the proof, the
result can be proved in much the same way as Theorem 2.3.2 in (Fedorov and
Hackl, 1997, p. 31). �

The last theorem highlights the great decisive meaning of the function ψ(x, ξ)
in convex design theory, as this function completely determines the location of
the support points for the optimal solution. Additionally, its local minima for any
arbitrary design ξ indicate points when the measurements provide the greatest
amount of information about the parameters being the subject of our interest (of
course, in the sense of a chosen criterion). Using the above result, it is possible to
construct a simple test for the optimality of designs. In particular,

1. If the sensitivity function ψ(x, ξ) is less than or equal to 0 for all x ∈ X,
then ξ is optimal.

2. If the sensitivity function ψ(x, ξ) exceeds 0, then ξ is not optimal.
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Applications of analytical methods for finding optimal designs are dedicated
only for simple cases. In general situations, there is a need for some iterative
numerical procedures. In order to state a useful theorem for checking the optimality
of designs, which will be called the equivalence theorem, we have to prove some
auxiliary results.

Lemma 2.6. For any design ξ ∈ Ξ(X), we have

(i)
∫
X

φ(x, ξ) ξ(dx) = ς(ξ), and

(ii) max
x∈X

φ(x, ξ) ­ ς(ξ).

Proof . Taking into account (2.60), we obtain∫
X

φ(x, ξ) ξ(dx) = −
∫
X

trace
[ ◦
Ψ[M(ξ)]Υ(x)

]
ξ(dx)

= − trace
[
◦
Ψ[M(ξ)]

∫
X

Υ(x) ξ(dx)
]

= − trace
[ ◦
Ψ[M(ξ)]M(ξ)

]
= ς(ξ)

(2.62)

This establishes (i). Then (ii) is a direct consequence of (2.62). �

Lemma 2.7. If ξ ∈ Ξq, ξ̄ ∈ Ξ(X) and ξα = (1− α)ξ + αξ̄, then

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

= ς(ξ)−
∫
X

φ(x, ξ) ξ̄(dx). (2.63)

Proof . From (2.56) we have

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+
= trace

[ ◦
Ψ[M(ξ)]

∫
X

Υ(x) ξ̄(dx)
]
−trace

[ ◦
Ψ[M(ξ)]M(ξ))

]
=
∫
X

{
trace

[ ◦
Ψ[M(ξ)]Υ(x)

]}
ξ̄(dx) + ς(ξ)

= ς(ξ)−
∫
X

φ(x, ξ) ξ̄(dx).

(2.64)

�

Now, we are capable of deriving our main result:

Theorem 2.8 (Generalized Equivalence Theorem). The following conditions
are equivalent:

(i) the design ξ? minimizes Ψ[M(ξ)],

(ii) the design ξ? minimizes max
x∈X

φ(x, ξ)− ς(ξ), and
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(iii) max
x∈X

φ(x, ξ?) = ς(ξ?)

All the designs which satisfy (i)–(iii) and their convex combinations have the same
information matrices equal to M(ξ?), provided that the criterion Ψ[ · ] is strictly
convex.

Proof . First, define ξα = (1− α)ξ? + αξ1, where ξ? ∈ Ξq, and ξ1 ∈ Ξ(X).

(i)⇒ (ii) If the optimal design ξ? minimizes Ψ[M(ξ)], then Ψ[M(ξ?)] ¬ Ψ[M(ξα)]
for any ξ1 ∈ Ξ(X), therefore

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

­ 0, ∀ξ1 ∈ Ξ(X). (2.65)

In particular substituting, ξ = ξ? and ξ̄ = ξx =
{
x
1
}
into (2.63), we get

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

= ς(ξ?)− φ(x, ξ?) ­ 0, ∀x ∈ X. (2.66)

In connection with the second part of Lemma 2.6 this establishes (ii).

(ii)⇒ (iii) Lemma 2.6 implies that maxx∈X φ(x, ξ) − ς(ξ) is bounded from be-
low by zero. From (2.66) it follows that this zero bound is achieved at any
design minimizing Ψ[M(ξ)] (the existence of such a design is guaranteed by
Theorem 2.4). This means that if ξ? is a design characterized in (ii), then
necessarily maxx∈X φ(x, ξ?)− ς(ξ?) = 0, which is exactly (iii).

(iii)⇒ (i) Let ξ? ∈ Ξ(X) satisfy maxx∈X φ(x, ξ?) = ς(ξ?). Setting ξα = (1 −
α)ξ? + αξ̄ for ξ̄ ∈ Ξ(X), from Lemma 2.7 we obtain

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+
= ς(ξ?)−

∫
X

φ(x, ξ?) ξ̄(dx)­ ς(ξ?)−max
x∈X

φ(x, ξ?)=0, (2.67)

which implies the optimality of ξ?.

The unicity of the information matrix for each optimal design follows from the
convexity of the setM(X) and the strict convexity of the function Ψ :M 7→ Ψ[M ]
(from classical optimization theory it is known that there exists at most one global
minimum of a strictly convex function over a convex set). �

Substituting a particular design criterion to Theorem 2.8, we obtain a special-
ized version of the equivalence theorem. There is no doubt that the most famous
classical result is the equivalence theorem defined for the case of the D-optimality,
formulated first in (Kiefer and Wolfowitz, 1959) for a static regression model. The
form of the appropriate sensitivity functions for most popular criteria are listed in
Table 2.1.
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Table 2.1. Components of the sensitivity function for the most common optimality
criteria.

Ψ[M(ξ)] φ(x, ξ) ς(x, ξ)

− ln detM(ξ) trace

{
1
tf

∫ tf
0

σ−2(x, t)FT(x, t)M−1(ξ)F (x, t)C−1o (t) dt

}
m

traceM−1(ξ) trace

{
1
tf

∫ tf
0

σ−2(x, t)FT(x, t)M−2(ξ)F (x, t)C−1o (t) dt

}
traceM−1(ξ)

− traceM(ξ) trace

{
1
tf

∫ tf
0

σ−2(x, t)FT(x, t)F (x, t)C−1o (t) dt

}
traceM(ξ)

2.3.3. Nonlinear models

From now on, we shall discuss a more complicated situation when the considered
system is not linear with respect to the parameters. This is a straightforward
consequence of the attempt of adopting results from preceding section in parameter
estimation of DPS’s, because even if a system of PDE’s constituting the model is
linear, the state depends on the parameters in a highly non-linear manner. This
creates grave difficulties and makes the closed-form solutions almost unavailable
in most practical situations.
The sought generalization in (2.34) can be achieved by replacing the term

GT(t)θ by the nonlinear multi-output system response

y(t; θ) =

 y(x
1, t; θ)
...

y(xN , t; θ)

 , (2.68)

where
y(x, t; θ) =

[
y1(x, t; θ) · · · yn(x, t; θ)

]T
. (2.69)

Analogously to (2.39), the least-squares estimator is then defined by

θ̂ = argmin
θ∈Θ

1
2

∫ tf
0
[z(t)− y(t, θ)]T C−1(t) [z(t)− y(t, θ)] dt. (2.70)

In contrast to the linear case, this estimator is generally biased and the analytical
form of the parameter covariance matrix, due to its dependence on θ, is extremely
difficult. Most of the results for this case have only asymptotic character (Banks
and Fitzpatrick, 1990; Fitzpatrick, 1991; Yin and Fitzpatrick, 1992; Fitzpatrick,
1995; Fitzpatrick and Yin, 1995).
To derive an expression for the dispersion matrix, it is customary to linearize

the system response in the vicinity of a prior estimate θ0 of the unknown parameter
vector θ. This estimate is assumed to be close enough to the true value of θ. Then,
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the system state can be approximated by expanding the function y(t; θ) in the
Taylor series and retaining only the linear terms:

y(t; θ) ∼= y(t; θ0) +
∂y(t; θ)
∂θ

∣∣∣∣
θ=θ0
(θ − θ0) (2.71)

where

∂y(t; θ)
∂θ

=


∂y(x1, t; θ)

∂θ
...

∂y(xN , t; θ)
∂θ

 (2.72)

and

∂y(x, t; θ)
∂θ

=


∂y1(x, t; θ)

∂θ1
· · · ∂y1(x, t; θ)

∂θm
...

. . .
...

∂yn(x, t; θ)
∂θ1

· · · ∂yn(x, t; θ)
∂θm

 (2.73)

is the Jacobian of the system response y with respect to the vector θ. Substituting
(2.71) into (2.34), we obtain the following observation equation

z(t) ≈ y(t; θ0) + ∂y(t; θ)
∂θ

∣∣∣∣
θ=θ0
(θ − θ0) + ε(t), (2.74)

or equivalently, after some rearrangement,

z′(t) = z(t)− y(t; θ0) + ∂y(t; θ)
∂θ

∣∣∣∣
θ=θ0

θ0 ≈ ∂y(t; θ)
∂θ

∣∣∣∣
θ=θ0

θ + ε(t). (2.75)

In this way, we get an analogue of the (2.34) for the nonlinear case. The respective
form form of the average FIM (approximation of the inverse of cov θ̂ up to a
constant multiplier) is then

M(ξN ) =
∑̀
i=1

pi
1
tf

∫ tf
0

σ−2(xi, t)F (xi, t)C−1o (t)F
T(xi, t) dt, (2.76)

where

F (xi, t) =
(
∂y(xi, t; θ)

∂θ

)T
θ=θ0

. (2.77)

It is clearly seen that information matrix (2.76) depends on the prior estimate
around which the model is linearized and it is valid only when the approxima-
tion (2.71) is accurate. In this sense the results obtained from such an approach
have only a local character. However, it can be shown that under rather mild
assumptions the estimator (2.70) is strongly consistent, i.e.

a.s. lim
N→∞

θ̂ = θ,
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where a.s. lim denotes the almost sure limit (convergence with probability one).
For detailed consistency results, the reader can be referred to (Fitzpatrick, 1991;
Fitzpatrick, 1995; Banks and Fitzpatrick, 1990; Fitzpatrick and Yin, 1995).
If both y(x, t) and F (x, t) are continuous in Ω̄ × T , then all the results from

Sections 2.3.1 and 2.3.2, are directly applicable without any changes. In particular,
the analogue of the FIM (2.78) can be written as

M(ξ) =
∫
X

Υ(x) ξ(dx), (2.78)

where X ∈ Ω̄ is the region of admissible sensor locations, and

Υ(x) =
1
tf

∫ tf
0

σ−2(x, t)
(
∂y(xi, t; θ)

∂θ

)T
θ=θ0

C−1o (t)
(
∂y(xi, t; θ)

∂θ

)
θ=θ0
dt. (2.79)

2.4. Concluding remarks

There is no doubt that the preparation of experimental conditions in the sense
of choosing a suitable observational strategy has a great influence on the expect-
ed accuracy of parameter estimates, especially in the context of DPS’s. In this
chapter, the class of spatio-temporal dynamic systems, on which attention of this
work is focused, was described along with the problem of choosing an optimal
observation strategy for parameter estimation within this class. The problem once
formulated and transformed to an optimization one is far form being trivial. In
spite of the elegant formulation based on the use of a performance index defined on
the Fisher information matrix, severe impediments exist such as the loss of some
underlying properties of the estimator being a consequence of the dependence of
the optimal solution on the estimated parameters, the sensor clusterization phe-
nomenon or a high dimensionality of the problem. Thus, the well-known non-linear
programming algorithms are neither directly applicable, nor provide effective so-
lutions for practical engineering applications. Bearing this in mind, the remainder
of this dissertation is dedicated to overcoming these difficulties to some extent.
In the second part of this chapter, the notion of continuous designs was intro-

duced, which dramatically reduces the problem dimensionality. Furthermore, the
generalization of some classical results from experimental design theory to multi-
response systems with possibly correlated outputs was presented for the purpose of
providing fundamental results which characterize the solutions and thus indicate
possible numerical procedures. The inherent nonlinearity of DPS’s with respect to
the estimated parameters is certainly a problem of paramount importance and one
of main complications in the delineated approach. However, under some assump-
tions, the results derived for linear-in-parameter systems can be extended to the
class of nonlinear models based on suitable approximations of the FIM.
Such a generalized classical theory paves the way to numerous applications of

DPS’s and, being crucial for specific problems, constitutes close connection with
the chapters which follow.



Chapter 3

OPTIMAL MEASUREMENT STRATEGIES FOR
STATIC DPS’S

This chapter is devoted to tailoring the optimum experimental design theory de-
lineated in the previous chapter to the subclass of DPS’s, which are independent
of time, i.e. to static DPS’s. Such systems appear in many engineering applications
and it is worth of paying them close attention since some solutions can be derived
and then extended to more general cases.
In the context of general DPS’s, determination of optimal designs in closed

form is rather limited to simplest problems. The most frequent situation is then
exploitation of iterative numerical routines, which offer a greater flexibility and an
ability for providing a sufficient approximation to the optimal solution.
The main idea here is to reformulate the problem in the spirit of optimization

of a scalar measure defined on the FIM related to the estimated parameters. Then
well-known methods of optimum experimental design for non-linear models can
be adopted to the setting of the sensor location problem at hand, or alternative-
ly, standard non-linear programming procedures could be employed. One of the
main objectives of this chapter is to elucidate how some extremely fast and effi-
cient numerical algorithms of optimum experimental design can be altered to the
framework of sensor location for static multiresponse DPS’s with an appropriate
theoretical substantiation.

3.1. Problem reformulation and notation

The appropriate mathematical description of the considered DPS subclass can be
obtained from (2.1) by assuming that D(x, t) = 0, i.e. it is a zero matrix. What
is more, as it has been mentioned above the system state does not depend on
time, even if there are some time-dependent components of the PDE (e.g. such
components could compensate one another and have no influence on the state).
Taking this into account, without loss of generality we can describe the models
under consideration in a simpler form given by the system of n (possibly non-
linear) partial differential equations

G
(
x, y,∇y,∇2y; θ

)
= 0, x ∈ Ω ⊂ Rd, (3.1)
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subject to the boundary conditions

E
(
x, y,∇y; θ

)
= 0, x ∈ ∂Ω, (3.2)

where all the symbols have the same meaning as defined in Section 2.1.
Fortunately, the connection between the optimal observation strategy problem

for the class of static distributed systems and the general optimum experimental
design theory is in those circumstances rather straightforward. In particular, the
vector of unknown parameters θ ∈ Rm has to be estimated based on the data
described by the simplified form of the observation equation (2.7):

zij = y(x
i; θ) + εij , i = 1, . . . , `, j = 1, . . . , ri. (3.3)

The measurements are taken at different locations xi, while εij denotes the spa-
tially uncorrelated Gaussian measurements noise satisfying

E{εij} = 0, E{εijεTqs} = σiδiqδjsCo, (3.4)

δij being the Kronecker delta, Co ∈ Rn×n a known positive-definite matrix respon-
sible for correlation between system outputs, and the σi’s the standard deviations
of the measurement errors. Note that replications are admitted, i.e. ri ­ 1 mea-
surements may be taken at a point xi.
If we assume that some, albeit rough, a priori estimate of the parameter

vector θ0 is available e.g. from preliminary experiments, and parameter estimation
is carried out with use of the least-squares method, the goal here can be defined
analogously to the one from Section 2.3.1. For the exact design of the experiment
ξN defined by (2.45) the specific form of the average-per-observation FIM is

M(ξN ) =
∑̀
i=1

pi
σ2i
G(xi)C−1o GT(xi), (3.5)

where pi = ri/N , N =
∑`
i=1 ri and

G(xi) =
(
∂y(xi; θ)

∂θ

)
θ=θ0

is the Jacobi matrix consisting of the sensitivity coefficients (Uciński, 1999a). Ap-
plying the concept of continuous designs we have also the appropriate counterpart
of (2.49):

M(ξ) =
∫
X

Υ(x) ξ(dx), (3.6)

where

Υ(x) =
∫
X

σ−2(x)G(x)C−1o GT(x) ξ(dx). (3.7)

The problem is to find a design

ξ? = arg min
ξ∈Ξ(X)

Ψ[M(ξ)], (3.8)
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where Ξ(X) is the set of all admissible designs (i.e. all probability distributions
on X, the spatial domain where measurements are allowed). In such a way direct
applicability of all theorems and concepts of Section 2.3.2 can be established with
minor changes.
Within the scope of the data acquisition methods which are of interest in

the context of this dissertation, two important situations have to be individually
characterized since the underlying theory and numerical techniques which can be
applied need some separate description and comments. To be more precise, the
next sections will be devoted to the case of a discrete finite set of admissible
support points X and as the second topic the support set of non-zero measure will
be considered.

3.2. Finite set of allowable measurement points

Our basic assumption in this section, is that the set of admissible support points
X, where the observations of the measurands are possible, is finite. Because the
number of locations from X is limited, then any design ξ ∈ Ξ(X) is uniquely
determined by the collection of the corresponding weights. Such a description is is
very convenient as the problem is reduced to the optimization of weights.

3.2.1. Optimization of the experimental effort

It was already mentioned, the weight assigned to a measurement point can be inter-
preted as the proportion of observations performed at this point, or the percentage
of experimental effort spent at it. The potential solutions are of considerable inter-
est while assessing which sensors are more informative than the others and allow
for complexity reduction of the measurement system.
In the case under consideration, i.e. the design for fixed sensor locations, the

problem (3.8) can be rewritten as

p? = argmin
p
Ψ[M(ξ)] (3.9)

subject to

p ∈ S =
{
p = (p1, . . . , p`) : pi ­ 0, i = 1, . . . , `;

∑̀
i=1

pi = 1
}

(3.10)

for the FIM M(ξ) given by (3.5) and with variable p ∈ R`. This is a finite-
dimensional optimization problem over the canonical simplex S.
Obviously, it is always possible to exploit some general constrained optimiza-

tion routines in order to solve the problem formulated above. However, due to a
relatively simple form of the constraints, a more straightforward procedure can
be proposed, which reduces to using a gradient projection method (Walter and
Pronzato, 1997). The first step is to find a feasible direction, i.e. the one which
guarantees a decrease in the value of the criterion Ψ and then a step is taken along
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this line. The result is projected on S, thereby obtaining a new feasible weight
vector. Generation of a new candidate point can be formalized as follows:

p
(k)
+ = ΠS[p(k) + ηδ(p(k))], (3.11)

where δ(p(k)) ∈ R` is the vector representing a feasible direction of weight modi-
fication and η is some coefficient which controls the correction process, and ΠS[ · ]
stands for orthogonal projection onto the convex set of admissible weights S.
The derivatives

∂Ψ[M(ξ)]
∂pi

= φ(xi, ξ), i = 1, . . . , ` (3.12)

are easy to calculate, so the very first idea is to choose the direction δ(p(k)) deter-
mined by the negative gradient −∇pΨ as in steepest descent. Also note that there
exist many possible choices of determining the step coefficient η. It can be taken
as a suitable constant or may be adapted in some manner, e.g. according to the
rules

ηk+1 =

{
γ1ηk if Ψ[M(ξ(k))] ¬ Ψ[M(ξ(k−1))],
ηk/γ2 otherwise,

(3.13)

where γ1 > 1 and γ2 > 1 are appropriate fixed parameters, or optimally, i.e.

ηk+1 = argmin
η
Ψ
[
M(ξ(k)+ )

]
, (3.14)

where ξ(k)+ denotes the ‘trial’ design with weights defined by (3.11).
Now, it is possible to formulate the following steepest-descent type algorithm:

Algorithm 3.1. Gradient projection weight optimization algorithm for a fixed finite
set of measurement points

Step 1. Guess a starting set of weights p(0)1 ∈ S. Choose some positive tolerance
ε� 1. Set k = 0.

Step 2. Compute

p(k+1) = ΠS

[
p(k) − ηk∇p Ψ

[
M(ξ)

]∣∣
p=p(k)

]
where

ηk+1 = argmin
η
Ψ
[
M(ξ(k)+ )

]
Step 3. If the condition

‖p(k+1) − p(k)‖ < ε

is satisfied then STOP, otherwise increment k by one and go to Step 2.
�
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At first sight, the gradient projection procedure above is rather easy in imple-
mentation due to its simplicity, but unfortunately it inherits all the drawbacks of
stepeest-descent-like algorithms. For example, the convergence rate dramatically
decreases in the vicinity of the minimum. This can be avoided to some extent with
a suitable choice of the correction step η. As for projection onto the canonical sim-
plex S, an algorithm can be developed which is almost as simple as a closed-form
solution. Indeed, the point p = ΠS[p+] is defined as the solution to the problem:
Minimize ∑̀

i=1

(pi − pi+)2 (3.15)

subject to

pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1. (3.16)

A very elegant and simple algorithm for solving this task was proposed by Tuenter
(2001). Without loss of generality, assume that p1+ ­ p2+ ­ · · · ­ p`+, since this
is only a matter of reordering the elements of p+. It can be shown that problem
(3.15)–(3.16) can be then reduced to a univariate one of the form: Minimize

fobj(q) =
1
q

(
1−

q∑
i=1

pi+

)2
+
∑̀
i=q+1

p2i+ (3.17)

subject to

q∑
i=1

(pi+ − pq+) ¬ 1, q ∈ {1, . . . , `}. (3.18)

It is a simple matter to check that the sequence

Sq =
q∑
i=1

(pi+ − pq+) (3.19)

satisfies the recursion formula

Sq = Sq−1 + (q − 1)(p(q−1)+ − pq+), S1 = 0. (3.20)

Then the objective function from (3.17) satisfies

fobj(q) = fobj(q − 1)−
1

q(q − 1)
(1− Sq)2, fobj(1) = 1− 2p1+ +

∑̀
i=1

p2i+. (3.21)

It is easily seen that the sequence {fobj(q)}`q=1 is non-increasing. Then the solution
can be determined by finding q? as the largest index q which fulfils Sq ¬ 1. Such
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an index exists, since S1 = 0, and it can be extremely easily determined from the
recursion formula (3.20). This defines the components of the sought projection

p?i =

pi+ +
1
q?

(
1−

q?∑
i=1

pi+

)
for 1 ¬ i ¬ q?,

0 for i > q?.

(3.22)

A detailed proof can be found in (Tuenter, 2001). In spite of the simplicity of
this briefly delineated algorithm, it still involves some additional numerical effort.
Moreover, the projection operator is not differentiable, so that the line search with
respect to η in (3.14) requires a non-derivative algorithm (e.g. a golden-search one).
Consequently, the effective usage of the proposed weight optimization algorithm
requires practical experience from the user to overcome several impediments.
All these considerations imply that it could be expedient to take into account

some other possible directions of weight modification, different from the gradient
projection one in order to derive simpler procedures with comparable efficiency.
One of such alternatives is the approach based on the mapping T : Ξ(X)→ Ξ(X)
defined by

T ξ =
{

x1, . . . , x`

p1φ(x1, ξ)/ς(ξ), . . . , p`φ(x`, ξ)/ς(ξ)

}
. (3.23)

From Theorem 2.8 it follows that a design ξ? is optimal if it is a fixed point of the
mapping T , i.e.

T ξ? = ξ?. (3.24)

Certainly, from Lemma 2.6 it follows that the sum of weights is invariant with
respect to T . Thus the projection problem no longer exist. As for the interpretation
of this function, consider the situation when a design ξ is not optimal. Then
the mapping T increases the weights of those support points of ξ at which the
sensitivity function takes a high values, i.e. φ(x, ξ) > ς(ξ) in such a way decreasing
its maximal values. This is attained at the cost of decreasing the weights for
support points with small values of φ(x, ξ) (where φ(x, ξ) < ς(ξ)).
Therefore, the following algorithm can be used as an implementation of the

above idea:

Algorithm 3.2. Feasible-direction weight optimization algorithm

Step 1. Guess a discrete starting design ξ(0) such that p(0)i > 0 for i = 1, . . . , `.
Choose some positive tolerance ε� 1. Set k = 0.

Step 2. If the condition

φ(xi, ξ(k))
ς(ξ)

< 1 + ε, i = 1, . . . , `.

is satisfied, then STOP.
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Step 3. Construct the next design ξ(k)+ by determining its weights according to
the rule

p
(k)
i+ = p

(k)
i

φ(xi, ξ(k))
ς(ξ(k))

, i = 1, . . . , `,

Step 4. For an appropriate value of 0 < αk < 1, set

ξ(k+1) = (1− αk)ξ(k) + αkξ(k)+

increment k by one and go to Step 2.
�

Note that the algorithm above is nothing but a feasible direction method, cf.
(Bertsekas, 1999). The convergence of the proposed iterative routine to the optimal
design depend on a suitable choice of the sequence {αk}. The possible selections
are as follows:

(a) the sequence αk satisfies the conditions

lim
k→∞

αk = 0,
∞∑
k=0

αk =∞, (3.25)

(b) αk is the solution of the problem

αk = arg min
α∈[0,1]

Ψ
[
(1− α)M(ξ(k)) + αM(ξ(k)+ )

]
, (3.26)

(c) αk is taken as the value of αk−1 divided repeatedly by γ < 1 until it satisfies

Ψ[M(ξk−1)] > Ψ[M(ξk)]. (3.27)

The following convergence result is valid.

Theorem 3.1. Assume that the optimality criterion Ψ[ · ] is strictly monotonous
in the sense that Ψ[M1] < Ψ[M2] provided that M1 ­ M2 for M1 6= M2. If{
ξ(k)

}
is a sequence of designs obtained according to Algorithm 3.2 and the

rule (3.26), then the sequence
{
Ψ[M(ξ(k))]

}
is non-increasing, and it converges to

min
{
Ψ[M(ξ)] : ξ ∈ Ξ(X)

}
.

Proof . See Appendix A.2. �

Generalization of the proof for the remaining cases is possible, although it is not
trivial.
Analysing Step 3 of this fixed-point based algorithm, after some rearrange-

ment we have

p
(k)
i+ = p

(k)
i + p

(k)
i

(
1

ς(ξ(k))
− 1
φ(xi, ξ(k))

)
︸ ︷︷ ︸

η

φ(xi, ξ(k)), i = 1, . . . , `. (3.28)
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It is thus clear that the descent direction in this case is not certainly the negative
gradient one. Notwithstanding this fact, such a direction automatically keeps the
design in the simplex S and in such a way the effort of mapping T is not disturbed
by any additional activity. Moreover, Step 4 can be omitted or at least simplified
for many particular criteria, which will be discussed later in this section. Practical
experiments show that the expected convergence rate can be in some situations
comparable or even better than in the case of Algorithm 3.1 and with a great
stability of performance. Besides the high efficiency coming from the numerical
simplicity, the ease of implementation should be noticed as a great benefit of the
procedure.
A decided advantage of both the delineated algorithms is simultaneous cor-

rection of all the weights, which leads to a significant increase in the convergence
rate. Moreover, their applicability can be extended to a wide class of experimental
design problems, in accordance with the following guidelines (Rafajłowicz, 1996):

1. The set of admissible support points X is finite. In this case the proposed
routine converges to the optimal design as described above.

2. The set X is a bounded subset of Rd. In such a framework the following
alternatives can be distinguished:

(a) If we know a small finite set Xd ⊂ X, which contains the optimal
locations of the support points, the proposed routine can be used to
find the optimal weights. The optimal design obtained for the set Xd
constitutes simultaneously the optimal one for the set X. The main
impediment is selection of a suitable subset Xd. For this purpose, other
algorithms can be successfully applied and such possibilities will be
discussed in Section 3.3.

(b) We can choose a finite set Xd ⊂ X with sufficiently distributed elements
over the set X. For this set the algorithm can be applied, in the same
manner as in Case 1. It guarantees that the resultant design is close
enough to the optimal one (for the set Xd, of course), but for the quality
assessment of the obtained solution an additional analysis is necessary.

From this point, some special cases require a more serious discussion as
they are very important in the framework of this dissertation. Algorithm 3.2,
being a generalization of the approach to the D-optimal criterion delineated in
(Rafajłowicz, 1986b; Pázman, 1986; Torsney, 1988), can be further improved when
applied to particular situations.

D-optimum experimental effort. For the D-optimum criterion and the case of only
one response (i.e. n = 1) it can be shown that the line search in Algorithm 3.2 is
not necessary. Therefore, it can be omitted in order to simplify the procedure. This
leads to the following scheme, whose convergence was proved in (Pázman, 1986;
Torsney, 1983; Torsney, 1988; Pukelsheim and Torsney, 1991) in the framework of
the classical optimum experimental design problem:
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Algorithm 3.3. Optimization algorithm for finding a D-optimum experimental effort

Step 1. Guess a discrete starting design ξ(0) such that p(0)i > 0 for i = 1, . . . , `.
Choose some positive tolerance ε� 1. Set k = 0.

Step 2. If the condition

φ(xi, ξ(k))
m

< 1 + ε, i = 1, . . . , `.

is satisfied, then STOP.

Step 3. Construct the next design ξ(k+1) by determining its weights according to
the rule

p
(k+1)
i = p(k)i

φ(xi, ξ(k))
m

, i = 1, . . . , `.

Increment k by one and go to Step 2.
�

In such a way, the efficient and extremely simple procedure known in optimum
experimental design for static systems can be used within the framework of the
sensor location for static DPS’s.
Nevertheless, the convex combination of designs which appears in Step 4 of

Algorithm 3.2 can still be exploited to significantly improve the convergence rate
since the transformation T does not guarantee the best correction of the weights.
To illustrate the performance of the foregoing iterative routines, we give the fol-
lowing example.

Example 3.1. Consider the finite set of possible support locationsX = {−2,−1, 0,
1, 2} and the following vector of basis functions:

fT(x) = [1, x2, e−x].

The task is to found an optimal experimental effort for the D-optimality criterion
using iterative procedures given by Algorithm 3.3 and its generalized version with
selection of the convex combination of designs according to formula (3.26). The
initial design was chosen in the form

ξ(0) =
{
−2 −1 0 1 2
0.3 0.3 0.2 0.1 0.1

}
,

for which detM(ξ(0)) = 12.209. Using the equivalence theorem it is easy to check
that the D-optimal design is

ξ? =
{
−2 −1 0 1 2
1
3 0 1

3 0
1
3

}
and detM(ξ?) = 1627 (e

4+ e−4)− 3227 ' 31.180. After four iterations, the algorithms
generated the following approximations of the D-optimal design:

ξ
(4)
1 =

{
−2 −1 0 1 2
0.33 0.05 0.26 0.03 0.32

}
, ξ
(4)
2 =

{
−2 −1 0 1 2
0.34 0.00 0.35 0.00 0.31

}
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Fig. 3.1 . Illustration of Example 3.1: (a) sensitivity functions for the initial and
D-optimal designs (dashed and solid lines, respectively), (b) the choice of the best
correction coefficient in the line search (at the first iteration)

Table 3.1. Consecutive steps of procedures from Example 3.1.

Iteration Algorithm 3.3 Algorithm 3.3 with α-correction
k detM(ξ(k)) αk detM(ξ(k))

0 12.209 – 12.209
1 24.210 1.264 24.780
2 25.933 1.265 26.927
3 27.365 2.764 30.381
4 28.510 2.956 31.013

detM(ξ?) ' 31.180

with determinants detM(ξ(4)1 ) = 28.510 and detM(ξ
(4)
2 ) = 31.013, respectively.

The detailed results are gathered in Table 3.1 and illustrated in Fig. 3.1(a), where
the sensitivity functions are presented for the initial and optimal solutions. It can
be seen that the sensitivity function attains its maximal value m = 3 at the points
X which have non-zero weights. For the non-optimal design, at some support
points the sensitivity function exceeds the number of parameters. Algorithm 3.3
with improvements has a high convergence rate at the expense of a lower numerical
efficiency connected with the finding of the optimal value for the coefficient α. An
analysis of Fig. 3.1(b) clarifies that if implementation of Step 4 of Algorithm 3.2
is justified from the computational point of view, then a significant increase in the
convergence rate can be achieved, otherwise it can be neglected and convergence
is still maintained although at the cost of its slowing down. The monotonicity of
the function detMα(ξ) on the unit interval suggests that it may be worthwile to
slightly extend the admissible interval in which the optimal coefficient α is sought.
But this should be done carefully as this interval has to provide nonnegative design
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weights. Another important observation is that the weights of the D-optimal design
are all equal to 1/m over the set of m support points, which is in the excellent
agreement with theory (cf. Silvey, 1980, p. 42).

F

Other criteria. Simplification of Algorithm 3.2 regarding criteria other than the
D-optimal one still demands a more careful analysis (Torsney, 1983; Torsney, 1988;
Pukelsheim and Torsney, 1991). In general, Assumptions (A1)–(A6) do not guar-
antee a generalization of the conclusions from the previous subsection to the whole
class of interesting criteria.
Namely, it can be proven that for various criteria satisfying (A1)–(A6) with-

out Step 4 of Algorithm 3.2 the convergence to an optimal solution cannot be
guaranteed. To demonstrate it, consider the following counter-example based on
the mapping T for the A-optimum criterion.

Example 3.2. Assume that the finite set of possible support locations is X =
{0, 1} and the vector of basis functions has the form

fT(x) = [1, x].

Consider the design

ξ(0) =
{
0 1
p 1− p

}
, p ∈ (0, 1)

with the information matrix

M(ξ(0)) =
[
1 1− p
1− p 1− p

]
.

Applying the mapping T (defined for the A-optimality) to the design ξ(0), we have

ξ(1) =


0 1(

p
trace[fT(0)M−2(ξ(0))f(0)]

traceM−1(ξ(0))

) (
(1− p) trace[f

T(1)M−2(ξ(0))f(1)]
traceM−1(ξ(0))

)
After some algebra, we get

ξ(1) =

 0 1(
2− 2p
2− p

) (
p

2− p

)
and the corresponding FIM takes the form

M(ξ(1)) =

 1
p

2− p
p

2− p
p

2− p

 .
If only p lies inside the interval (0, 1), then matrices M(ξ(0)) and M(ξ(1)) are
nonsingular. Now it is easy to check that

traceM−1(ξ(0)) =
2− p
p− p2

= traceM−1(ξ(1))
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so mapping T gives no decrease in the value of Ψ[M(ξ)] = traceM−1(ξ). Moreover,
further computations show, that

ξ(2) = T (T ξ(0)) = T ξ(1) = ξ(0).

If p 6= 2−
√
2 then oscillations between two non-optimal designs are observed and

consequently the mapping T does not lead to convergence. However, it can be
shown that the function traceM−1(αξ(k) + (1− α)ξ(k+1)) whose explicit form is

Ψ(α; p) =
(p− 2)(2α− 4αp+ αp2 + 2)

(2α− 4αp+ αp2 + p)(−2 + 2p+ 2α− 4αp+ αp2)

has a local minimum at the point

α? =

√
2(2− p)− 2
2− 4p+ p2

which lies inside the interval (0, 1).
F

The meaning of the above conclusion is that not for every criterion it is pos-
sible to extremely simplify the iterative procedure which determines the optimal
experimental effort. If this is not the case, then we can come back to Algorithm 3.2
in its general form.

Reduction of the measurement space. It is clear that the numerical complexity of
the considered class of algorithms depends linearly on the number of admissible
support points belonging to the set X, i.e. on the power of this set. Note that the
choice of the initial weights for Algorithm 3.3 is not crucial for the convergence, but
no weights can be equal to zero, because it would be then impossible to change
them. This simple observation may lead to a significant improvement, since if
during the run of the procedure a weight achieves a value close to zero, it is rather
impossible that it will be increased in next iterations. Deletion of such points
significantly decreases the number of admissible locations in consecutive steps of
the algorithm and thus it increases the efficiency. To assure that the weight values
sum up to unity, we modify them e.g. according to the formula

pi new = pi old +
σ

|Nm|
, i ∈ Nm (3.29)

where σ is the sum of the weights of deleted points, Nm is the set containing the
indices of the points which remain in the design and |Nm| is the cardinality of Nm.
Since this is connected with a very low numerical cost, the general effect is very
beneficial.
There exist other possibilities for a further reduction of the computational

burden while determining optimal sensor locations, but they are not that obvious
and easy to interpret. For example, based on some matrix algebra dependencies
it can be shown that for the D-optimality the following result can be helpful
(Pronzato, 2003):
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Proposition 3.2. Let X be some finite design space, X = {xi ∈ Rd, i = 1, . . . , `},
and ξ(k) be any design measure on X, with

εk = max
xi∈X

φ(xi, ξ(k))−m. (3.30)

Then any point xi such that

φ(xi, ξ(k)) < mr(εk) (3.31)

with

r(ε) = 1 +
ε

2
−
√
ε(4 + ε)
2

(3.32)

cannot be a support point of a D-optimum design measure on X.

Proof . The generalization of the proof given by Pronzato (2003) for the multi-
output case is straightforward and since the proof has a rather technical character,
it is omitted. �

When using any algorithm of D-optimum design, one can thus remove all the
points satisfying (3.31) from the design space X in each iteration. Clearly, the
acceleration that can be expected depends on the employed algorithm and the
cardinality of X. Removing support points based on Proposition 3.2 implies some
additional computations. Consequently, the best results can be obtained for the
high power of the set X, otherwise the gain might not compensate the additional
computational effort and a deceleration of the procedure may occur.

Approach based on Semi-Definite Programming (SDP). One more approach is pro-
posed here since it makes it possible to employ very powerful algorithms for con-
vex optimization based on Linear Matrix Inequalities (LMI’s) or, more generally,
on Semi-Definite Programming (SDP) which has recently become a dynamically
expanding research area. The SDP problem can be regarded as an extension of
linear programming where the component-wise inequalities between vectors are
replaced by matrix inequalities, or equivalently, the first orthant is replaced by
the cone of positive semidefinite matrices. Most interior-point methods for linear-
programming have been generalized to semidefinite programs (Sturm, 1997). As in
linear programming, these methods have polynomial worst-case complexity, and
perform very well in practice. SDP has been successfully applied in engineering
(from control theory to structural design) and combinatorial optimization (Boyd
et al., 1994; Sturm, 1997; Dullerud and Paganini, 2000; Du and Xie, 2002; Boukas
and Liu, 2003; Boyd and Vandenberghe, 2004).
Although potential applications of SDP in optimum experimental design were

indicated in (Vandenberghe and Boyd, 1998), the idea has not been pursued in
the optimum experimental design community. In what follows, we present how
to implement Vandenberge and Boyd’s concept in the context of sensor location
on finite support sets. Its decided advantage contrary to the standard experiment
design techniques is a possibility of solving problems for a wide class of design
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criteria, even for those which are non-differentiable (e.g. the E-optimality criteri-
on). In such a way this novel formulation creates a very attractive alternative for
classical approaches to the optimization of the experimental effort.
Particularly, the problem (3.9)–(3.10) can be formulated in terms of the SDP

(Boyd and Vandenberghe, 2004) as follows:

D-optimal design. For the determinant criterion, the considered convex weight
optimization problem can be formulated as follows: Minimize

Ψp(p1, . . . , p`) = ln detM−1(ξ) (3.33)

subject to

pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1, (3.34)

and

M(ξ) =
∑̀
i=1

piG(xi)GT(xi). (3.35)

With no loss of generality, all covariance matrices were set to identity. In some
situations it is convenient and just simpler to solve the problem operating on
the convex space of admissible information matrices M, rather than on the
design space Ξ(X) itself (e.g. if the number of parameters is low compared
with the cardinality of Ξ(X), i.e. m� `).

It can be shown (Vandenberghe and Boyd, 1996a) that by introducing the
Lagrange dual function

g(λ, ν) = min
pi, i=1,...,`

{
ln detM−1(ξ) +

∑̀
i=1

λipi + ν

(∑̀
i=1

pi − 1

)}
, (3.36)

where λ = (λ1, . . . , λ`) and ν are the Lagrange multipliers associated with
the inequality and equality constraints in (3.34), respectively, the problem
can be converted to the following dual problem (Vandenberghe and Boyd,
1996a; Boyd and Vandenberghe, 2004): Maximize

Ψ(M) = ln detM (3.37)

subject to

traceG(xi)MGT(xi) ¬ 1, i = 1, . . . , `, (3.38)

which is a convex problem with the variable M =M(ξ) defined on the cone
of positive definite matrices Sm+ . The interpretation of the dual problem in
the case of single output systems is very clear, namely the optimal solution
M? determines the minimum volume ellipsoid, centred at the origin, given
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by ΘD = {θ : θTM?θ ¬ 1}, that contains the points G(x1), . . . , G(x`). The
return to the primal problem can be done by the complementary slackness,

p?i
(
1− traceGT(xi)M?G(xi)

)
= 0, i = 1, . . . , `, (3.39)

that is, the optimal experiment strategy contains only those locations which
lie on the surface of the minimum volume ellipsoid ΘD.

A-optimal design. By analogy, for other criteria the suitable problem reformu-
lation can also be performed. Thus, the A-optimal experimental design prob-
lem can be cast as that of minimizing

Ψp(p1, . . . , p`) = traceM−1(ξ) (3.40)

subject to

pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1, (3.41)

where M(ξ) is defined by (3.35). This problem can be converted into the
following equivalent SDP one (Vandenberghe and Boyd, 1996b): Minimize

Ψu(u) =
∑̀
i=1

ui (3.42)

subject to

[
M(ξ) I
I diag(u)

]
¬ 0, pi ­ 0, i = 1, . . . , `,

∑̀
i=1

pi = 1. (3.43)

with variables u ∈ Rm and p ∈ R`.
The dual problem in this case has the following form (Vandenberghe and
Boyd, 1996b; Boyd and Vandenberghe, 2004): Maximize

Ψ(M) = (traceM1/2)2 (3.44)

subject to

traceG(xi)MGT(xi) ¬ 1, i = 1, . . . , `, M ¬ 0, (3.45)

where M = M(ξ) ∈ Sm+ . As for the D-optimal design, for single response
systems the optimal solution M? determines a minimal ellipsoid (in the
sense of its average widths along the principal directions) consisting points
G(x1), . . . , G(x`). The quantities p? andM? also satisfy the condition (3.39),
so the dual problem can be easily reverted to the primal one.
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E-optimal design. For E-optimal designs, the norm of the parameter covariance
matrix estimate is minimized, i.e. the maximum eigenvalue of the FIM in-
verse. Since the diameter of the parameter confidence ellipsoid is proportional
to ‖M−1(ξ)‖1/22 , the primal problem can be cast as follows: Minimize

Ψp(p1, . . . , p`) = ‖M−1(ξ)‖2 (3.46)

subject to

pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1. (3.47)

It can be reformulated as an SDP problem by considering minimization of
(Boyd and Vandenberghe, 2004)

Ψv(v) = v (3.48)

subject to

M(ξ) ­ vI, pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1. (3.49)

Then, the dual problem takes the form (Boyd and Vandenberghe, 2004):
Maximize

Ψ(M) = traceM (3.50)

subject to

traceG(xi)MGT(xi) ¬ 1, i = 1, . . . , `, M ­ 0, (3.51)

where M = M(ξ). This formulation of the E-optimum experimental design
enables us to employ efficient numerical algorithms for solving convex opti-
mization problems over LMI’s. This is extremely important because of the
fact that due to the non-differientiability of the criterion, no such algorithms
have been proposed in the optimum experimental design community.

Sensitivity criterion. For this very simple case the original problem constitutes
the SDP formulation per se (this is because it is a linear programming task):
Maximize

Ψp(p1, . . . , p`) = traceM(ξ) (3.52)

subject to

pi ­ 0, i = 1, . . . , `,
∑̀
i=1

pi = 1, (3.53)
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and the corresponding dual problem is as follows: Minimize

Ψv(v) = v (3.54)

subject to

m∑
j=1

Gj(xi)GTj (x
i) ¬ v − zi, i = 1, . . . , `, zi ­ 0, (3.55)

where Gj denotes the j-th row of the matrix G(xi).

At this juncture it could be expedient to present a suitable example to illustrate
the benefits of the SDP formulation of the problem. However, since the advantages
of such an approach lie in the powerful numerical algorithms dedicated to more
complex tasks, an appropriate example will be given in Section 3.4 devoted to
practical applications.

3.2.2. Clusterization-free designs

The assumption of independent observations is advantageous from a theoretical
point of view, but it can hardly be justified when in an optimal solution several
sensors are to take measurements near one another (this phenomenon was indi-
cated earlier as a sensor clusterization effect (Fedorov, 1996; Müller, 1998; Ucińs-
ki, 1999a)). Indeed, in the spatial data collection schemes there is usually no possi-
bility of replicated measurements, i.e. different sensors cannot take measurements
at one point without influencing one another. In addition to this, classical opti-
mum experimental design techniques do not take into account local correlations
which determine the spatial locations of measurements. Anyway, several sensors
situated in the close vicinity of one another usually do not give more information
than a single sensor.
In order to avoid such clustered sensor configurations, we can adopt the idea

of operating on the density of sensors (Fedorov, 1989; Cook and Fedorov, 1995;
Fedorov and Hackl, 1997) (i.e. the number of sensors per unit area), rather than
on the sensor locations, which is justified when the total number of sensors N
is sufficiently large. In contrast to the designs discussed in the previous section,
however, the crucial restriction is imposed that the density of sensor allocation
must not exceed some prescribed level. This corresponds to the condition

ξ(dx) ¬ ω(dx), (3.56)

where ω(dx) signifies the maximal possible ‘number’ of sensors per dx (Fedorov
and Hackl, 1997) such that ∫

X

ω(dx) ­ 1. (3.57)

Introducing a performance measure Ψ, the following optimization problem can be
formulated:

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)] (3.58)
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subject to

ξ(dx) ¬ ω(dx). (3.59)

Definition 3.1. The design ξ? corresponding to the solution of the problem
(3.58)–(3.59) formulated above is said to be a (Ψ, ω)-optimal design (Fedorov
and Hackl, 1997).

To precise some valuable properties of the designs so defined, in addition to
Assumptions (A1)–(A6) it is necessary to impose the following restriction:

(A7) ω(dx) is atomless, i.e. for any ∆X ⊂ X there exists a ∆X ′ ⊂ ∆X such that∫
∆X′

ω(dx) <
∫
∆X

ω(dx). (3.60)

In what follows, we write Ξ̄(X) ⊂ Ξ(X) for the collection of all the design measures
which satisfy the requirement

ξ(∆X) =

{
ω(∆X) for ∆X ⊂ supp ξ,
0 otherwise.

(3.61)

Definition 3.2. For any given design ξ, we will say that the function ψ( · , ξ)
defined by (2.58) separates sets X1 and X2 with respect to ω(dx) if for any two
sets ∆X1 ⊂ X1 and ∆X2 ⊂ X2 with equal non-zero measures we have∫

∆X1
ψ(x, ξ)ω( dx) ¬

∫
∆X2

ψ(x, ξ)ω( dx). (3.62)

It is then possible to formulate the main result which provides a characteri-
zation of (Ψ, ω)-optimal designs.

Theorem 3.3. Let Assumptions (A1)–(A7) hold. Then:

(i) There exists an optimal design ξ? ∈ Ξ̄(X), and

(ii) A necessary and sufficient condition for ξ? ∈ Ξ̄ to be (Ψ, ω)-optimal is that
ψ( · , ξ?) separates X? = supp ξ? and its complement X \X? with respect to
the measure ω(dx).

Proof . The results of the theorem are strongly related to the theory of moment
spaces and since for the case of static MIMO DPS’s investigated here the result
constitutes a direct adaptation of Theorem 4.3.1 of (Fedorov and Hackl, 1997,
p. 63), it is omitted. Comprehensive ideas of the proof can also be found in (Cook
and Fedorov, 1995, p.64). �

From a practical point of view, Theorem 3.3 means that at all the support
points of an optimal design ξ? the mapping ψ( · , ξ?) should be less than anywhere
else, i.e. preferably supp ξ? should coincide with minimum points of ψ( · , ξ?), which
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amounts to allocating observations to the points at which we know least of all about
the system response.
If we were able to construct a design with this property, then it would be qual-

ified as an optimal design. This conclusion forms a basis for numerical algorithms
of constructing solutions to the problem under consideration.
As regards the interpretation of the resultant optimal designs (provided that

we are in a position to calculate at least their approximations), one possibility is
to partition X into subdomains ∆Xi of relatively small areas and then to allocate
to each of them the number

N?(∆Xi) =
⌈
N

∫
∆Xi

ξ?(dx)
⌉

(3.63)

of sensors whose positions may coincide with nodes of some uniform grid (here dζe
denotes the least integer greater than or equal to ζ). This grid can consist e.g. of
points at which sensors may be located, which will be exploited in what follows.
Clearly, unless the considered design problem is quite simple, we must employ

a numerical algorithm to make the outlined concept useful. Theorem 3.3 allows
us to develop a simple iterative procedure for constructing optimal designs. Since
ξ?(dx) should be non-zero in the areas where ψ( · , ξ?) takes on a smaller value, the
central idea is to move some measure from areas with higher values of ψ( · , ξ(k))
to those with smaller values, as we expect that such a procedure will improve
ξ(k). This idea is implemented in the following iterative algorithm (Fedorov and
Hackl, 1997; Uciński, 1999a):

Algorithm 3.4. Clusterization-free sensing algorithm

Step 1. Guess an initial design ξ(0) ∈ Ξ̄(X). Set k = 0.

Step 2. Set Xk1 = supp ξ
(k) and Xk2 = X \Xk1 . Determine

xk1 = arg max
x∈Xk1

ψ(x, ξ(k)), xk2 = arg min
x∈Xk2

ψ(x, ξ(k)).

If ψ(xk1 , ξ
(k)) > ψ(xk2 , ξ

(k))+ ε, where ε� 1, then find two sets Sk1 ⊂ Xk1 and
Sk2 ⊂ Xk2 such that xk1 ∈ Sk1 , xk2 ∈ Sk2 and∫

Sk1

ω(dx) =
∫
Sk2

ω(dx) = αk

(i.e. the measures of Sk1 and S
k
2 must be identical) for some αk > 0. Otherwise

STOP.

Step 3. Construct ξ(k+1) such that

supp ξk+1 = Xk+11 = (Xk1 \ Sk1 ) ∪ Sk2 .

Increment k and go to Step 2.
�
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Convergence is guaranteed if the sequence
{
αn
}∞
n=0 satisfies the conditions

lim
k→∞

αk = 0,
∞∑
k=0

αk =∞, (3.64)

which is established in much the same way as in (Fedorov, 1989).
Within the framework of sensor placement, we usually have ω(dx) = %(x)dx,

where % is a density function. But in this situation we may restrict our attention to
constant %’s (in fact, there always exist a possibility of proposing an appropriate
transformation of coordinates). Moreover, while implementing the algorithm on
a computer, all integrals are replaced by sums over some regular grid elements.
Analogously, the sets X, Xk1 , X

k
2 , S

k
1 and S

k
2 then simply consist of grid elements

(or potential sensor locations). Consequently, the above iterative procedure may be
considered as an exchange-type algorithm with the additional constraint that every
grid element must not contain more than one supporting point and the weights
of all supporting points are equal to 1/N . In practice, αn is usually fixed and,
what is more, one-point exchanges are most often adopted, i.e. Sk1 =

{
xk1
}
and

Sk2 =
{
xk2
}
, which substantially simplifies implementation. Let us note, however,

that convergence to an optimal design is assured only for decreasing αn’s and
hence some oscillations in Ψ[M(ξ(k)] may sometimes be observed. A denser spatial
grid usually constitutes a remedy for this predicament (Müller, 1998).
As a verification and practical illustration of the the proposed approach, an

appropriate example should be considered to bring some overview of ideas and
performance of the algorithm.

Example 3.3. Consider the problem of determining the electrostatic potential y
on a disc centred at the origin with unit radius Ω = {(x1, x2) : x21 + x22 < 1} (cf.
Fig. 3.2) with homogeneous coefficient of dielectricity equal to θ1. The boundary
of the disc is grounded, i.e the potential is equal to zero. The density of the charge
in the domain can be modelled via a function q(x) = 1−7x21−x22−2θ22. This leads
to the problem of solving Poisson’s equation

∇ · (θ1∇y(x)) = q(x), x ∈ Ω, (3.65)

subject to the Dirichlet boundary conditions

y(x) = 0, x ∈ ∂Ω. (3.66)

We wish to find the best D-optimal design to identify the coefficient of dielectricity
and the free term of the force function or, more precisely, the vector of coefficients
θ = (θ1, θ2), based on the clusterization-free strategy. Our aim is to select the
best 51 sensor locations from among 149 admissible points which constitute the
(15×15)-point uniform grid lying inside the domain Ω (see Fig. 3.2, where the dots
represents the possible locations and the open circles actual sensor positions). The
clusterization-free sensing algorithm, once implemented using the Lahey/Fujitsu
Fortran 95 v.5.6 compiler and then applied to this problem, found a solution in
only 53 iterations for the accuracy ε < 10−5 in a negligible time (below 1 sec. on a
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Fig. 3.2 . D-optimal clusterization-free strategy for Example 3.3: (a) initial design,
(b) optimal solution.

PC equipped with Duron 900 MHz processor and running under Windows 2000).
The randomly generated initial design and the obtained best sensor placement are
shown in Figs. 3.2(a) and (b), respectively.
To compare the performance of routines, the weight optimization algorithm

has been also applied to the problem so defined. Starting from randomly gener-
ated weights, after only 95 iterations for an accuracy of ε ¬ 10−5 and the same
simulation environment, Algorithm 3.3 reached the approximated optimum design

ξ? ≈
{
(−0.714, 0.000) (0.000, 0.000) (0.714, 0.000)
0.250 0.500 0.250

}
(3.67)

in a blink of an eye, cf. Fig. 3.3. It is now clear that the sensors located in accor-
dance with the clusterization-free strategy tend to assemble in the vicinity of the
points calculated based on the replication design approach. In both the cases the
symmetry of the problem with respect to the coordinate axes is perfectly retained.
On the other hand, the problem defined by (3.65) and (3.66) possesses the

closed-form solution

y(x1, x2) = −
1
2θ1
(x21 + θ

2
2)(1− x21 − x22). (3.68)

Now, it can be easily shown that the design

ξ? =

(−
√
2
2 , 0) (0, 0) (

√
2
2 , 0)

1
4

1
2

1
4

 (3.69)

is D-optimal. Its comparison with (3.67) clearly proves the quality of the numerical
results and the efficiency of the proposed algorithms. Investigating further, we
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Fig. 3.3 . D-optimal experimental design with replications allowed.

deduce that due to the symmetry of the problem, any design of the form(−
√
2
2 , 0) (0, 0) (

√
2
2 , 0)

α 1
2

1
2 − α

 , 0 ¬ α ¬ 1
2

(3.70)

is also D-optimal! This is an immediate consequence of the fact that the solution
is not unique and the set of optimal designs is not necessarily finite. In addition
to that, there exists a D-optimal design with m = 2 support points and equal
weights, which is compatible with theory.

F

3.3. Continuous case

Although the algorithms proposed so far are quite efficient and simple, they op-
erate only on a finite set of available support points, and for some problems this
approach may be too restrictive, especially for the case when the measurement
domain is continuous. To increase the quality of the approximated solutions, some
systematic algorithms are necessary, which operate on the continuous set of points
where the measurements may be taken. Fortunately, the characterization consti-
tuting the general equivalence theorem from Section 2.3.2 indicates some ideas
useful in construction of sequential numerical algorithms. The underlying reason-
ing relies on a correction of a non-optimal design ξ(k) obtained after k iterations
by convex combination with another design ξ(k)+ , which hopefully improves the
current solution, i.e.

ξ(k+1) = (1− αk)ξ(k) + αkξ(k)+ (3.71)

for some convenient αk.
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In this manner the experimental effort related to the design ξ(k) is reduced,
and instead, the measurements at some locations corresponding to the design ξ(k)+
are taken. The question is: How to find a suitable design ξ(k)+ which would guarantee
a better value of the optimality criterion? The answer is indicated by Theorem 2.8.
First, recall the fact that the points of the optimum design ξ? coincide with the
maxima of the function ψ(x, ξ?). In such a way, by addition of an appropriate
design measure to the maxima of ψ(x, ξ), an improvement in the current design
can be expected. Indeed, if we take into account one-point designs ξ(k)+ = {x1}, then
combining Lemmas 2.7 and 2.6, we have that the directional derivative is negative,
i.e.

∂Ψ[M(ξ(k+1))]
∂αk

∣∣∣∣
αk=0+

= ς(ξk)− φ(x, ξk) < 0 (3.72)

which yields a decrease in the value of Ψ[M(ξ(k+1))] for a sufficiently small αk.

First-order algorithm for a general case. The sequential numerical design algo-
rithms based on the ideas indicated above, which have been continually refined
since the early 1960s, can be employed with some modifications to the sensor
locations problem for parameter estimation. The general form of the one-point
correction version of the delineated procedure can be embodied in the following
scheme (Ermakov, 1983; Rafajłowicz, 1996; Fedorov and Hackl, 1997; Walter and
Pronzato, 1997; Uciński, 1999a):

Algorithm 3.5. General first-order algorithm

Step 1. Let ξ(0) be any non-degenerate design measure. Set k = 0. Choose some
positive tolerance ε� 1.

Step 2. Find xk = argmax
x∈X

φ(x, ξ(k)).

Step 3. If φ(xk, ξ(k)) ¬ ς(ξ(k)) + ε then STOP.

Step 4. For an appropriate value of 0 < αk < 1, set

ξ(k+1) = (1− αk)ξ(k) + αkξ(xk)

where ξ(xk) is the design with only one support point xk and weight equal
to 1. Increment k by one and go to Step 2.

�

On the analogy of Algorithm 3.2 dedicated to finite measurement spaces, it can
be shown that the suitable choice of the sequence {αk} guarantees the convergence
of Algorithm 3.5. Common versions of the algorithm depending on the choice of
{αk} are (Fedorov and Hackl, 1997; Uciński, 1999a):

(a) Wynn’s formula

lim
k→∞

αk = 0,
∞∑
k=0

αk =∞, (3.73)
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(b) Fedorov’s formula

αk = argmin
α
Ψ
[
(1− α)M(ξ(k)) + αM(ξ(xk))

]
, (3.74)

(c) adaptation formula

αk =

{
αk−1 if Ψ[(1− αk−1)M(ξ(k)) + αk−1M(ξ(xk))],
γαk−1 otherwise,

(3.75)

where γ < 1 is suitably chosen.

Note that Algorithm 3.5 makes use of only information about the gradient of the
performance index and the rule (3.74) results in the steepest-descent algorithm.
The conclusion is that the convergence rate of the presented numerical technique
is comparable with its gradient counterparts from mathematical programming.
That is, typically, a significant decrease in the performance index measure in the
first few iterations is observed and then serious moderation of the convergence
rate occurs as the minimum is approached. Some second-order generalizations of
Algorithm 3.5 are possible for specific criteria (Ermakov and Zhigljavsky, 1987),
but they involve a high complexity of implementation and are connected with an
improvement in the design weights, rather than the support points and in this
context the characteristics of the first-order algorithm are satisfactory as the most
significant support points are usually found in just few iterations.
From the point of view of this dissertation the decided advantage of Algo-

rithm 3.5 is a possiblity of its extension to the field of optimum experimental
design for the wide class of DPS’s mentioned above. However, such an adaptation
and further efficiency improvements require a little more comprehensive disscusion
about the implementation details.

Implementation details. Despite the fact that the above procedure offers a higher
level of freedom regarding optimality in comparison with the algorithms dedicat-
ed to the discrete case, it still suffers from disadvantageous effects such as high
numerical complexity and clusterization of support points. Therefore the gener-
al first-order algorithm does not solve all the theoretical and technical problems
which can be encountered in the area of DPS’s and its applicability is far from
being trivial. While implementing the algorithm, various problems should be ad-
dressed. The main of them are listed below:

1. In literature some improvements of the first-order algorithm can be found,
whose intention is to increase the convergence rate.

(a) One of them is the idea of adding in each iteration all points which co-
incide with the maxima of φ(x, ξ(k)). Such an approach in the context
of DPS’s demands global maximization in multi-dimensional spaces.
Such an adaptation is connected with a dramatically increased numer-
ical complexity. Because of this, the multi-point correction is rather
unavailable and not suggested.
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Initialization

Support optimization

(Steps 1-4 of Algorithm 3.5)

Weight optimization

(Algorithm 3.2)

Termination condition STOP
T

F

Fig. 3.4 . Scheme of the two-phase design optimization algorithm.

(b) Inverting the underlying idea of Algorithm 3.5, it is possible to achieve
an additional decrease in the performance index by removing some de-
sign measure from noninformative support points of the design ξ(k) and
distributing this measure among the other design points. This leads
to an accelerated version of the algorithm consisting in the simultane-
ous addition of potentially significant support points and elimination of
worthless ones from the design.

(c) In order to increase the efficiency of deleting redundant support points
and to improve the quality of Step 4, the weight optimization algorithm
for the discrete case can be exploited as a complement for one of the
rules (3.73)–(3.75) since in Step 4 the design measure for a newly select-
ed point is uniformly subtracted from the current support points. This
leads to the procedure being a direct generalization of the two-phase
design optimization algorithm proposed by Rafajłowicz (1996) for the
D-optimum criterion in the case of the one-dimensional regression. The
general scheme of such a routine is illustrated in Fig. 3.4.

2. While implementing various versions of Algorithm 3.5, one may encounter
numerous technical problems. The main of them are the following:

(a) The added support points tend to cluster in the vicinity of the optimal
ones. One of the possible simple solutions is to represent all sites in a
given cluster as one support point placed in the centre of the cluster
with the weight equal to the sum of the weights for all clustered sites.

(b) Step 4 requires some comment concerning the choice of an optimal fac-
tor α in the variant of the stepeest descent rule. In a general case, when
multi-output systems are taken into account (or dynamic systems), the
situation is slightly different from the static case of linear regression for
which it is possible to determine a closed-form solution. Here an opti-
mal α has to be found numerically and, because the searching range is
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fixed, golden-section or Fibbonacci methods will cope quite fine with
this task.

(c) The removal of points with negligible weights is suggested in order to ob-
tain designs with relatively small numbers of support points (Rafajłowicz,
1996).

3. The crucial bottleneck of Algorithm 3.5 is Step 2, both from computation-
al and implementation point of view. First of all, complications are related
to the necessity of calculating a global maximum of φ(x, ξ) over all points
x ∈ X. Since this function has multimodal nature and convergence can be
guaranteed only if the added support point lies close to the global optimum,
realization of this task becomes very difficult. Therefore, an effective global
optimization procedure is required, which is crucial for efficient implemen-
tation. A major impediment while using PDE systems as DPS descriptions
is that this involves a high cost of gradient evaluation, or approximations
of the gradient may fail to be satisfactory (e.g. there may occur some scal-
ing problems or insufficient smoothness of the underlying functions). Based
on numerous computer experiments it was found that in order to overcome
those difficulties, some procedures of the stochastic type are especially suit-
ed for many practical problems. One of the examples which was successfully
exploited is the extremely simple Adaptive Random Search (ARS) strategy
proposed in (Walter and Pronzato, 1997). It is dedicated to situations where
the set of admissible measurement points X is a hypercube, i.e.

X = {x = (x1, . . . , xd) : xi min ¬ xi ¬ xi max}. (3.76)

The adaptive strategy can be split into two stages, which are repeatedly al-
ternated. The first is the variance selection phase which consist in selecting an
element from the sequence

{σ(i)}, i = 1, . . . , imax, (3.77)

where

σ(1) = xmax − xmin (3.78)

and

σ(i) = 10−i+1σ(1). (3.79)

In such a manner the range of σ ensures both proper exploration properties over
X and a sufficient accuracy of optimum localization. Because larger values of σ
decrease the possibility of getting stuck in local minima, they are used more often
(see Step 2.5) than the smaller ones.
The second phase (variance exploration) is dedicated to exploring the search

space with use of the most suitable value of σ(i) (in the sense of the best evaluated
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point from the first phase) and consists in repetitive random perturbation of the
best point obtained so far. After that the algorithm can be stopped or the first
phase is resumed.
In iteration j a perturbation of the point x(j) is made according to the rule

x
(j)
+ = ΠX(x

(j) + r(j)), (3.80)

where ΠX is the orthogonal projection operator onto X. The quantity r(j) is a
displacement vector randomly generated according to a multinormal distribution
N (0, cov r(j)), where

cov r(j) =


σ
(i)
1 · · · 0
...
. . .

...
0 · · · σ

(i)
d

 . (3.81)

where i is selected arbitrarily.
A detailed scheme of the ARS algorithm is as follows (J stands for the opti-

mization criterion):

Algorithm 3.6. ARS algorithm

Step 1. (Initialization) Choose x(0), kmax, imax, jmax, σ(1), and set xbest =
x(0), k = 1, i = 1.

Step 2. (Variance-selection phase)

2.1. Set j = 1, x(j) = x(0) and σ(i) = 10−i+1σ(1).

2.2. Perturb x(j) according to (3.80) to get a new trial point x(j)+ .

2.3. If J(x(j)+ ) ¬ J(x(j)) then x(j+1) = x
(j)
+ else x

(j+1) = x(j).

2.4. If J(x(j)+ ) ¬ J(xbest) then xbest = x
(j)
+ , ibest = i.

2.5. If j ¬ jmax/i then increment j and go to Step 2.2.
2.6. If i < imax then set i = i+ 1 and go to Step 2.1.

Step 3. (Variance-exploitation phase)

3.1. Set j = 1, x(j) = xbest, i = ibest and σ(i) = 10−i+1σ(1).

3.2. Perturb x(j) according to (3.80) to get a new trial point x(j)+ .

3.3. If J(x(j)+ ) ¬ J(x(j)) then x(j+1) = x
(j)
+ else x

(j+1) = x(j).

3.4. If J(x(j)+ ) ¬ J(xbest) then xbest = x
(j)
+ .

3.5. If j ¬ jmax then increment j and go to Step 3.2.
3.6. If n = nmax then STOP.

3.7. Set n = n+ 1, x(0) = xbest and resume from Step 2.1.
�
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Since the ARS does not take into account the information about the gradient
of the performance index, a significant numerical efficiency could hardly be expect-
ed. However, because of its valuable properties regarding global convergence and
simplicity (even for a high-dimensional search space) it seems to be more flexible
and suitable in the case of DPS’s than many classical nonlinear programming ap-
proaches. Numerous practical applications show that for static DPS’s such a non-
gradient optimizer is very efficient. Otherwise, if the operational characteristics are
not satisfactory, the performance of the ARS can be improved by combination with
various other techniques, or we can employ other optimization methods, which will
be indicated in the next chapter where spatio-temporal dynamic systems will be
considered.
One more technical adaptation is very important and requires some comment.

Usually, in practical engineering problems the continuous design space X is not
a hypercube, so it may seem that the application of the ARS algorithm is rather
restricted. But one valuable property of the function φ(x, ξ) comes in handy. From
Lemma 2.6 we have

max
x∈X

φ(x, ξ) ­ ς(ξ).

Taking this into account, it is easy to propose a suitable procedure. For example,
X can be embedded in some set H being a hypercube, i.e. X ⊆ H. Then some
suitable penalty function can be constructed, e.g. the modified criterion

J(x) =

{
φ(x, ξ) if x ∈ X,
ς(ξ) if x ∈ H \X

(3.82)

can be maximized. Since in the proposed stochastic approach the gradient is not
used, the possible non-continuity of the minimized function has no influence on
the performance.
It is difficult to even indicate all the existing improvements of the first-order

algorithms and their implementation problems in the limited area of this section.
Therefore, for a more detailed discussion the reader is referred to the relevant
literature (Ermakov, 1983; Torsney, 1988; Rafajłowicz, 1996; Rafajłowicz, 1998;
Fedorov and Hackl, 1997; Walter and Pronzato, 1997).

Rounding procedures. Note that except for the clusterization-free strategy, the
discussed types of algorithms are oriented to calculating only approximate (con-
tinuous) designs. Namely, in the concept of approximated design measures we
neglected the fact that in real experiments the number of measurements ri to
be taken at each support point xi is integer-valued and the value of the weight
pi = ri/N is rational. Nevertheless, the number of potential support points in the
spatial setting is usually quite large and the set of candidate points is continuous
(in the case of Algorithm 3.5) so that we can expect that some rounding procedure
(Pukelsheim and Rieder, 1992; Rafajłowicz, 1996) of the approximate designs cal-
culated by the proposed algorithms will yield sufficiently good exact designs. In
such circumstances satisfactory results can be achieved using the simple numerical
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rounding

r?i =

{
dpiNe if dpiNe − piN ¬ 0.5,
bpiNc otherwise,

(3.83)

where dae denotes the least integer greater than or equal to a and bac stands
for the greatest integer less than or equal to a. If

∑`
i=1 r

?
i = Nr 6= N then the

correction (N −Nr)/N can be made to the weight of an arbitrary chosen support
point, or alternatively, |N−Nr| points can be randomly selected and their weights
suitably updated.

3.4. Applications

3.4.1. Computer-assisted tomography

3.4.1.1. Background and problem description

The main aim of Computer-Assisted Tomography (CAT) is data acquisition from
an inaccessible interior of an object which is examined based on exterior measure-
ments (Black Box measurements) without any damage of the examined subject
(Williams and Beck, 1995; Sikora, 2000). In general, CAT exploits various phys-
ical phenomena and data media such as photons, magnetic fields, gamma rays,
X-rays, ultrasounds and finally electric currents or electron beams. Depending on
the phenomenon used, the data are processed with a computer system in such a
way as to obtain the appropriate map of the corresponding material parameters
(Sikora, 2000; West et al., 2000). For example, for X-rays it can be the coeffi-
cient of their suppression, for gamma rays the concentration of the radioactive
contrast injected into the object, and finally resistance or impedance in electrical
tomography.
Recently, due to its advantageous properties, Electrical Impedance Tompog-

raphy (EIT) has became a major trend in many process engineering applications
and scientific research. The EIT can be divided (Sikora, 2000) into resistive to-
mography when the examined objects are conducting (biomedicine and electronic
industry), capacitive tomography when they are insulators or dielectric materials
(energetic and refinery industry) and eddy-current tomography. The most signifi-
cant examples can be taken from chemical and pharmaceutical industries to exam-
ine the homogeneity of a product, analysis and diagnostics in material engineering
(Sikora, 2000), fluid-dynamic modelling (laminar and turbulent flows) (Lemonnier
and Peytraud, 1998; West et al., 2000; Kim et al., 2002) or groundwater contam-
ination control and monitoring of water reservoirs. Finally, medical applications
such as the clinical problem of left venticular failure (Noble et al., 1999) or di-
agnostics of brain aneurism (Sikora, 2000) can be citied. The main benefits from
using EIT are as follows:

• non-invasiveness of the low-density currents,

• high sensitivity,
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• maintenance security,

• small costs of instrumentation and its exploitation, and

• portability of devices.

However, the nonlinear trajectories of data carrier movements (e.g. electrons) in
EIT result in complex algorithms of image reconstruction.
The impedance tomography is a two-step process (Lemonnier and Peytraud,

1998; Sikora, 2000). The experiment provides the data which characterize the elec-
trical response of a two-phase medium and in the second step the distribution of
the electrical properties is reconstructed from these data. Consequently, two prob-
lems can be distinguished. The first is the so-called forward (or direct) problem,
which comprises the determination of the field potential distribution over a given
domain Ω with suitable boundary conditions and full knowledge about the consid-
ered domain. Since both the resistive and the capacitive tomography have similar
formulations, resistive EIT can be addressed here with no loss of generality. There-
fore, the forward problem is described in the simplest case by the Laplace equation
(Lemonnier and Peytraud, 1998; Kim et al., 2002)

∇ · (σ(x)∇y(x)) = 0, x ∈ Ω, (3.84)

where y is the electrical potential and σ is the conductivity coefficient. Equation
(3.84) is supplemented by Dirichlet boundary conditions at those point of the
boundary ∂Ω which are contiguous with the electrodes and von Neumann bound-
ary conditions on the rest of ∂Ω.
EIT inversion consist in solving the second problem, the so-called inverse

problem, defined for material parameters, (in this case the conductivity coefficient
of distributed type). For a given potential distribution over the boundary, a suit-
able form of σ(x) is constructed based on some lack-of-fit criterion defining the
discrepancy between the modelled and measured responses. The reconstruction
techniques can be split into three main groups (West et al., 2000):

• Pixel-based tomography, in which the picture is represented by an array of
pixel values. This technique has enjoyed much success in medical applica-
tions. However, it is well known that such an approach is ill-conditioned
and regularization is required. In the presence of significant measurement
noise such regularization may be very complicated and solutions cannot be
reliable. Additionally, it is difficult to obtain a large amount of linearly inde-
pendent measurements, which results in a relatively low picture resolution.
This substantially reduces the range of possible applications.

• The parametric-model approach. The object image can be modelled here to
produce a parameterization of the tomogram, thereby providing a suitable
regularization. The general philosophy is to incorporate those features of the
object for which the tomogram is elucidated. Thus, the parameters identified
during reconstruction are exactly those necessary for image interpretation.
In such a way, the computational effort is efficiently spent. Nevertheless, it
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Fig. 3.5 . Schemes illustrating differences between the reconstruction approaches:
(a) pixel-based and (b) parametric-model methods.

should be emphasized that the assumed model of the object is crucial for this
technique. Hence, it is necessary to properly analyse the industrial process
or the object properties.

• The general basis-function approach being an intermediate solution connect-
ing the two techniques mentioned above. The tomogram could be built upon
basis functions (Vauhkonen et al., 1997), which suit the geometry of the
problem or the geometry of boundaries and additionally provide some regu-
larization of the reconstruction problem. The weights of the basis functions
(e.g. wavelets) stand for the unknown parameters which have to be estimat-
ed, but have no particular interpretation in terms of the investigated object
characterizations.

Figure 3.5 illustrates the differences between the techniques listed above. The
pixel-based approach is directly linked to image reconstruction and visualisation.
The interpretation is often based on the displayed tomogram (e.g. in medical ap-
plications), however it is impractical in some applications such as automated pro-
cess control, especially where the tomograms have to be interpreted on-line. In
the parametric-model approach there is a direct connection between the inter-
pretation and reconstruction which makes this approach interesting in industrial
applications. Nevertheless, it is clear that the quality of parameter estimators has
a crucial significance for the reconstruction accuracy.
At this point it should be stressed that real applications involve most of-

ten fully three-dimensional models. This leads to the requirement of significant
computational power in the process of numerically solving the problems involved.
Notwithstanding those facts, such sophisticated situations do not possess the as-
set of illustrative presentation. On the other hand, the methodology used within
the framework of this thesis does not demand any changes when increasing the
problem dimensionality. This accounts for the fact that for a full presentation of
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properties characterizing both the problem of computer-assisted tomography and
approaches to solve it, 2D problems will be investigated below. The extension to
the third dimension thus becomes only a matter of computation power.

Boundary parameterization. Since the measurements cannot be taken inside the
object being the subject of examination, the measurement space is restricted at
least to its surface. Usually, the most significant observations can be expected in
the closest vicinity of the object, that is the measurement electrodes are placed on
the boundary of the examined system, which then automatically becomes the set
of admissible sensor locations. To avoid additional constraints of the design space
arising from the restrictions above and to simplify the numerical implementation,
a suitable parameterization of the boundary should be introduced. Generally, the
dimension of the measurement space X can be thus decreased (at least by one)
and additionally it is sometimes possible to provide several valuable properties
such as the compactness or convexity of X, which cannot be overestimated from
the point of view of implementation. As particular situations entirely determine
the form and properties of such mappings, they will be discussed in more detail
within the framework of specific examples.

3.4.1.2. Numerical experiments

Electrolysis process. The first example regarding the application of the proposed
methodology regards the optimal sensor location for parameter estimation in re-
construction of an electrolysis process. Consider two circular metallic conductors
which are placed on a plane of thin conductive medium with a spatially-varying
conductivity coefficient like a blotting paper with varying thickness wetted by a
weak electrolyte. The domain of interest Ω is shown in Fig. 3.6(a) and its boundary
Γ =

⋃3
i=1 Γi is split into three disjoint subsets:

Γ1 =
{
(−1.2, x2) : −0.6 ¬ x2 ¬ 0.6

}
∪
{
(1.2, x2) : −0.6 ¬ x2 ¬ 0.6

}
∪
{
(x1,−0.6) : −1.2 ¬ x1 ¬ 1.2

}
∪
{
(x1, 0.6) : −1.2 ¬ x1 ¬ 1.2

}
,

Γ2 =
{
(x1, x2) : (x1 + 0.6)2 + x22 = (0.25)

2
}
,

Γ3 =
{
(x1, x2) : (x1 − 0.6)2 + x22 = (0.25)2

}
.

(3.85)

A steady current flow through the plates in connection with the absence of external
current sources results in the physical model for this problem expressed in the form
of the Laplace equation

∇ ·
(
σ(x)∇y(x)

)
= 0, x ∈ Ω ⊂ R2, (3.86)

where y is the potential of the electric field in the conductive medium. The respec-
tive boundary conditions are

∂y(x)
∂n
= 0 if x ∈ Γ1 (on the outer boundaries),

y(x) = 10 if x ∈ Γ2 (for the left metallic plate),
y(x) = −10 if x ∈ Γ3 (for the right metallic plate).

(3.87)
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Fig. 3.6 . Domain Ω with admissible discrete sensor locations with the contour
plot of an electric potential function (θ = (0.4,−0.5, 0.6)) (a) and the surface plot
of the potential (b)

where ∂y/∂n denotes the derivative in the direction of the unit outward normal
to Γ.

Our task is to find a D-optimum design to reconstruct the spatial distribution
of the conductivity coefficient modelled in the form

σ(x) = θ1 + x22 exp
(
θ2(x1 − θ3)2

)
(3.88)

or, more precisely, to optimally estimate the vector of constant parameters θ =
(θ1, θ2, θ3). In order to obtain an approximation of the D-optimal design, Algo-
rithms 3.1, 3.3 and 3.4 for the discrete case and 3.5 for the continuous domain were
implemented in a computer program with the Lahey/Fujitsu Fortran 95 compiler
v.5.6 using a PC running Windows 2000.

The system equation accompanied by the sensitivity equations form a system
of elliptic PDE’s which has to be solved and the solution is to be stored in memory.
For this purpose, the procedures from the Matlab PDE Toolbox (Littlefield, 1997)
based on a Finite Element Method (FEM) solver (function assempde) were adopt-
ed with the initial estimate of θ0 = (0.4,−0.5, 0.6) taken as a nominal one. The
distribution of the electric potential is illustrated in Fig. 3.6. All covariance ma-
trices C(x) were then set to unity (a scalar system).

The measurement electrodes may be placed only on the outer boundary Γ1,
which automatically becomes the design space X. For this reason it is convenient
to derive its suitable parameterization. The simplest way to do so is to use the
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length λ ∈ [0, 7.2] of Γ1, i.e.

x1(λ) =


λ− 1.2 if 0 ¬ λ < 2.4,
1.2 if 2.4 ¬ λ < 3.6,
4.8− λ if 3.6 ¬ λ < 6.0,
−1.2 if 6.0 ¬ λ ¬ 7.2,

, x2(λ) =


−0.6 if 0 ¬ λ < 2.4,
λ− 3.0 if 2.4 ¬ λ < 3.6,
0.6 if 3.6 ¬ λ < 6.0,
6.6− λ if 6.0 ¬ λ ¬ 7.2.

(3.89)

Optimization of experimental effort. For the discrete case the set X of possible
locations for measurement electrodes was proposed as a uniform grid along the
length of the outer boundary Γ1 (cf. Fig. 3.6(a))

X =
{
x(λi) : λi =

7.2
98
(i− 1), i = 1, . . . , 98

}
.

This set will be used for all the routines dedicated for the discrete case in the
considered example. Those support points with uniform distribution of weights
p
(0)
i = 1/98, i = 1, . . . , 98 formed the starting design for weight optimization
procedures. Besides the implemented approaches, for the sake of comparison, the
problem was also treated as a nonlinear constrained optimization one and solved
numerically using the procedure DLCONF from IMSL Fortran 90 MP Library v.4.0
based on the sequential quadratic programming with linear constraints (Visual Nu-
merics, 1997). For this nontrivial experimental design problem, all procedures op-
erating on the finite measurement space lead to striking consistence of results. For
any applied algorithm the support points of approximated designs with weights
over the threshold value 0.01 were the same and slight differences concern only
the weight values. For example, the steepest descent weight optimization routine
(Algorithm 3.1) with the rule (3.14) (implemented using the golden-search rou-
tine) converged with the accuracy of ε ¬ 10−4 after 134 iterations to the following
approximation of the D-optimal design:

support weight

ξ∗ =



(−1.2,−0.6), 0.166292
(−1.2, 0.6), 0.166292

(−0.2545,−0.6), 0.100013
(−0.2545, 0.6), 0.100013
(−0.1818,−0.6), 0.067811
(−0.1818, 0.6), 0.067811
(0.3272,−0.6), 0.165885
(0.3272, 0.6), 0.165885


.

(3.90)

Figure 3.7 shows the corresponding results from which it can be easily seen that
the optimal design is concentrated at those points at which the so-called sensitivity
function φ(x, ξ∗) takes its maximal value in the discrete domain, which is equal to
the number of estimated parameters, i.e. m = 3. Our intuition suggests that we
could expect the symmetry of the problem along the axis x2 = 0 in the obtained
approximation to the optimal design and, in fact, (3.90) seems to satisfy such a
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Fig. 3.7 . D-optimal discrete measurement strategy (open circles indicate the D-
optimum sensor locations) (a), and the surface plot of the sensitivity function
(b).

conjecture since the points can be connected into pairs with approximately equal
weights and the same x1 spatial coordinates while the values of x2 are opposite (see
Fig. 3.7(a)). It is pointless to present here solutions from all algorithms as they
are very similar. More detailed results and the values of the D-optimum design
criterion are presented in Table 3.2. To increase the efficiency of the solution,
the steepest descent algorithm for the continuous measurement space was used
along with the ARS strategy of determining the significant design support and the
possibility of removing noninformative points. Starting from the design

ξ(0) =
{
(0.1, 0.6), (0.3, 0.6), (0.5, 0.6), (0.8, 0.6)
0.25, 0.25, 0.25, 0.25

}
, (3.91)

Table 3.2. Results in EIT for the electrolysis example.

Algorithm Accuracy Iterations Time detM(ξ?)

Steepest descent weight
optimization with golden search 10−4 74 ∼ 5 s 6.6124

Feasible-direction
weight optimization 10−4 301 ∼ 3 s 6.6180
Linearly constrained

sequential quadratic programming 10−4 – ∼ 10 s 6.6072
Two-phase support

& weight optimization with ARS 10−6 3 ∼ 20 s 6.6459
Clusterization-free method with

one-point correction 10−5 18 < 1 s 5.8706
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Fig. 3.8 . D-optimal continuous measurements allocation.

the algorithm attained the optimal solution in only three repetitions of the main
loop. The weight optimization phase was performed using Algorithm 3.3. The
approximated design was

ξ? =
{
(−1.1999, 0.6), (−0.2,−0.6), (0.3, 0.6)
0.3333, 0.3333, 0.3333

}
(3.92)

which is shown in Fig. 3.8. In this case the improvement is almost unnoticeable (by
means of the criterion value), which proves that the discretization of the boundary
was adequate to obtain a reasonably high quality of the solution. However, from
Fig. 3.8 a very important property of Algorithm 3.5 is seen, namely a tenden-
cy to minimize the redundancy of the design support. Indeed, the three support
points constitute the minimal number for this problem and since the correspond-
ing weights of the final approximation of an optimal design are practically equal,
one third of the sensors should be assigned to each support point.
At first sight, the symmetry of the problem (the axis of the symmetry is

shown as a dotted line in Fig. 3.8) is not retained. But if a new design is creat-
ed by symmetrically mirroring any support point with respect to the symmetry
axis, an equivalent approximation of the optimal design can be obtained. As an
example, consider the following design, which is symmetric in the sense of both
the support and weights:

ξ?2 =



(−1.1999, 0.6), 0.1667
(−1.1999,−0.6), 0.1667

(−0.2, 0.6), 0.1667
(−0.2,−0.6), 0.1667
(0.3, 0.6), 0.1667
(0.3,−0.6), 0.1667


. (3.93)

It is obtained from (3.92) by mirroring (the weight of each site was divided by 2).
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Fig. 3.9 . Initial (a) and D-optimal (b) designs for the clusterization-free algorithm.

The FIM for both the designs has exactly the same form:

M(ξ∗) =

 0.32690 0.09555 −0.03299
0.09555 0.09798 −0.07867
−0.03299 −0.07867 0.07423

 .
From a statistical point of view, such pairs of symmetrical support points are

rather disadvantageous since they provide identical information about the system.
Another observation is the possibility of the existence of more than one equivalent
approximation to the optimal design. The performance of the algorithm can be
reviewed in Table 3.2, from which it becomes clear that the possible improvement
in the solution, if any, is obtained at the cost of an increased complexity of the
algorithm. On the other hand, for 3D problems such a situation is very often
strongly justified.

Replication free optimization. As a last approach applied in our experiment, the
clusterization-free algorithm was used in the simplest form of a sequential one-
point exchange procedure. In this case, the aim was to choose 30 locations of
measurement electrodes from the set X defined at the beginning of the example.
An initial design was created by randomly selecting support points. The algorithm
calculated the solution very quickly (18 iterations for ε 6 10−5). The initial and
final distributions of the optimal support points are shown in Fig. 3.9. The quality
of the solution is evidently worse in the sense of the D-optimality criterion. It is a
direct consequence of the constraints imposed on the design measure. However, the
clusterization effect is avoided and the D-optimal observational strategy tends to
take the measurements in the vicinity of the best support points of the replicated
designs obtained earlier.

Material flaw detection. The next example concerns the EIT used for inspection
of objects regarding possible defects of their structures. This problem is widely
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Fig. 3.10 . The metallic core (a) and its cross-section plane with discrete available
sensor locations pointed out (b).

encountered in many practical problems (e.g. chemical, nuclear and building in-
dustries or medicine applications). The aim of the tomography here is to detect
possible inhomogeneities of a material, which suggest possible flaws.
Consider a metallic core with rectangular crack inside which is shown with its

cross-section in Fig. 3.10. During the experiment only one cross-section plane for
each reconstruction process is considered. The left and right boundaries Γ1 and
Γ2 (cf. Fig. 3.10(b)) are supplied with constant voltage to force the flow of a low
density steady current. Hence, the planar reconstruction forward problem can be
simplified to the form of the two-dimensional Laplace equation (3.86), subject to
the following boundary conditions:

∂y(x)
∂n
= 0 if x ∈ Γi, i ∈ {3, 4, 5},

y(x) = 5 if x ∈ Γ1,
y(x) = 0 if x ∈ Γ2,

(3.94)

where y stands for the electric potential.
The material homogeneity aberrations are assumed to be modelled with the

use of the exponential functions involved into conductivity parameter mapping
(Lemonnier and Peytraud, 1998):

σ(x) = σ0 +
Nf∑
j=1

σj(x), (3.95)

where

σj(x) = σj,max exp
(
− ‖(x− aj)‖2B

)
, j = 1, . . . , Nf . (3.96)
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Here σ0 is the value of the conductivity for normal conditions, Nf ∈ N signifies
the number of possible structural flaws, σj,max is the maximal amplitude of the
conductivity deviation caused by a particular defect, aj ∈ R2 can be interpreted as
the centre of such a defect and B ∈ R2×2 denotes the parameter vector describing
its spatial spread.
It is assumed that from previous experiments a rather rough location of only

one structural imperfection of the object is available with parametric characteri-
zation of its distribution over the domain. Hence, the corresponding reconstructed
conductivity coefficient can be expressed as

σ(x1, x2) = σ0 + σmax exp
(
− θ1(x1 − θ2)2 − θ3(x2 − θ4)2

)
(3.97)

where σ0 = 0.1, σmax = 0.2 and θ = (30.0, 0.3, 80.0, 0.7).
Our task here is to find the most informative strategy of data acquisition for

estimation of parameter vector θ applying this time different optimality criteria.
The measurements can be taken on the boundaries denoted by Γ3,Γ4 and Γ5,

but since the interior boundary Γ5 is virtually inaccessible, only Γ3∪Γ4 constitutes
the set of admissible sensor locations. Hence, it is easy to propose the following
boundary parameterization:

x1(λ) = cosλ, x2 = sinλ, (3.98)

with λ satisfying

arcsin 0.4 ¬ λ ¬ π − arcsin 0.4, or π + arcsin 0.4 ¬ λ ¬ 2π − arcsin 0.4 (3.99)

In this experiment, the set X of possible sensor locations was chosen as a
uniform grid of 20 sites along each boundary Γ3 and Γ4 (cf. Fig. 3.10(b)) which
results in the set of 40 points

X =
{
x(λi) : λi = arcsin 0.4 +

π − 2 arcsin 0.4
19

(i− 1),

λi+20 = π + λi, i = 1, . . . , 20
}
.

The relatively small cardinality of the admissible location set means that the
formulation of the problem in terms of the SDP approach is quite easy and conve-
nient. In order to account for different criteria (E, A, sensitivity) these problems
were reformulated as convex optimization tasks with LMI constraints. Then the
Matlab compatible SeDuMi v.1.02 SDP solver written by Sturm (1997) based on
the interior-point primal-dual approach was used in connection with additionally
implemented Matlab routines.
As a complement, also the weight optimization algorithm of Section 3.2.1 was

applied (in the case of D-optimality) with the initial design formed by a uniform
weight distribution over the finite set X. The PDE system was solved with the
Matlab PDE Toolbox and simulations were conducted in the hardware-software
computational environment established by a PC with Pentium IV 1.7GHz proces-
sor and 768MB RAM running Windows 2000. The results (after removing locations
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Fig. 3.11 . Optimal designs for various criteria: (a) D-optimum, (b) A-optimum,
(c) E-optimum and (d) sensitivity criterion.

with weight less than 0.01) are illustrated in Fig. 3.11. The points denote the pos-
sible sensor locations while open circles stand for the optimal ones. Additionally,
the star stands for the position of the material non-homogeneity centre. In spite of
the fact that a detailed interpretation of the sensor locations is not trivial, an intu-
itively clear observation of the tendency of taking measurements in a close vicinity
of the structural defect of the object can be made, where the measurements are
expected to be the most informative. Unfortunately, in the case of the sensitivity
criterion a common drawback of this quality measure occurs as the optimal design
is degenerated and concentrated in only one point. The A- and D-optimal locations
look very similar, but there exist a significant difference regarding design weights.
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Approximations of the optimal designs obtained from the exploited approaches
were:

• D-optimality (steepest descent weight optimization),

ξ?D =


(0.711, 0.700), 0.249892
(0.521, 0.852), 0.244113
(0.300, 0.952), 0.225804
(0.181, 0.982), 0.033782
(−0.300, 0.952), 0.246409

 ,

• A-optimality (SDP approach)

ξ?A =


(0.711, 0.700), 0.366007
(0.521, 0.852), 0.116856
(0.061, 0.997), 0.239722
(0.181, 0.982), 0.228461
(−0.300, 0.952), 0.047558

 ,

• E-optimality (SDP approach)

ξ?E =


(0.711, 0.700), 0.438980
(0.061, 0.997), 0.444876
(−0.181, 0.982), 0.063655
(−0.414, 0.909), 0.052488

 ,

• sensitivity criterion (SDP approach)

ξ?sens =
{
(0.414, 0.909), 1

}
.

The efficiency of the algorithms combined with a small-medium scale of the prob-
lem leads to a very short computation time (below 5 seconds in the worst case).

Table 3.3. Results and performance measures in EIT for the material flaw detection
example.

Criterion/Solver Accuracy Iterations Time

A-optimum
(SeDuMi) 10−4 24 ∼ 5 s

D-optimum (steepest descent
weight optimization) 10−4 86 ∼ 1 s
E-optimum
(SeDuMi) 10−4 16 ∼ 5 s

sensitivity criterion
(SeDuMi) 10−4 9 ∼ 1 s
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The results are compared in Table 3.3. Notice that the problem is extremely diffi-
cult in this case, since the most informative measurements can be taken inside the
object (this is a common situation), which may lead to the ill-conditioning of the
FIM (it can be very close to singularity).

3.4.2. Elasticity in the structural mechanics of smart materials

3.4.2.1. Background

As an auxiliary application, multi-output systems encountered in structural me-
chanics are considered for the purpose of a proper illustration of the proposed ap-
proaches. A variety of engineering applications for this class of problems establish
a motivation to pay close attention to such systems. Especially the field of smart
material systems (also referred to as intelligent, adaptive or controllable systems)
occupy now a prominent position in structural mechanics. This is a direct conse-
quence of the technological advances in material science in combination with the
increasing requirements on controller design, which have led to the development
of many structural systems employing advanced sensors and actuators (Flatau
and Chong, 2002). By utilizing the physical properties of smart materials, signif-
icant improvements in the system behaviour control can be achieved regarding
traditional servomechanisms. The smart material structures being the combina-
tion of advanced sensors, actuators and microprocessors have already revolution-
ized the design of many control systems and still promise an ongoing progression
in the future. They are generally created through a synthesis, but also through
their integration with conventional structural materials such as steel, concrete or
composites (Flatau and Chong, 2002). Smart materials can be divided into few
major groups according to their physical properties (Banks et al., 1996; Dorfman
et al., 2001; Flatau and Chong, 2002):

• piezoelectric and ferroelectric elements and magnetostrictive transducers,
which possess an ability to convert the electric charge, field and current (via
the induced magnetism), respectively, to mechanical forces and vice versa,

• electrorheological and magnetorheorogical fluids, which can change their
state of aggregation (between liquid and solid) in the presence of electric
and magnetic fields, dramatically altering basic material properties,

• electroactive polymers, which change their shape in response to applied fields,

• shape memory alloys being a class of metal compounds which possess the
capability to sustain and recover relatively large strains without undergoing
a plastic deformation and can generate force through temperature changing
across the transition state,

• fiber optic sensors using the refractive properties of light to measure me-
chanical strains.
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The development of intelligent structures that can monitor their own conditions,
detect impeding failures, control or heal damages, and adapt to changing envi-
ronments can be observed in numerous research areas and the range of important
practical applications for smart materials is extremely wide. Some significant ex-
amples are listed below (Gandhi and Thompson, 1992; Banks et al., 1996; Boresi
and Chong, 2000; Flatau and Chong, 2002):

• the design of smart spacecraft and aircraft skins embedded with fiber optic
sensors to detect structural flaws,

• semi-active vibration absorbers in civil constructions (bridges, buildings,
etc.) with both the actuating and sensor elements to counter violent vi-
brations,

• flying microelectromechanical systems with remote control for surveying and
rescue missions,

• stealth submarine vehicles with swimming muscles made of special polymers,

• design, modelling and development of active aperture antennas,

• ultra-precison shape-controlled positioners,

• remote sensing of damage in large civil structures, and

• design of robust helicopter rotors.

Such multidisciplinary mechanical and civil infrastructure systems encountered in
mechanical, electrical, civil, control, computer, aeronautical and aircraft engineer-
ing have collectively created a new entity at the interface of these research areas.
The different physical phenomena determining the advantageous features of

intelligent materials usually have distributed form by definition. Thus, a prop-
er analysis automatically requires suitable modelling with the use of the finesse
mathematical apparatus. The PDE or integro-differential equation systems thus
became a natural way to provide the relevant accuracy. For instance, a model of
structural elasticity can be derived in the form of Lamé’s PDE’s (Kącki, 1995;
Banks et al., 1996). Another example is a stress-strain relation described by the
Donell-Mushtari equations in weak (integral) or strong (differential) forms (Banks
et al., 1996). Due to the limited space, it is impossible to outline even rough funda-
mentals of the corresponding mathematical theory as it exceeds the scope of this
thesis. The literature on the problem is very extensive, and a detailed description
of smart materials and structures can be found e.g. in the pertinent monographs
(Banks et al., 1996; Boresi and Chong, 2000).

3.4.2.2. Numerical experiments

Transverse loads applied to a thin plate. Consider a thin sheet of material being
an extremely simple model of the aircraft lifting surface. This surface has a dis-
placement in the out-of-plane direction as a result of external and internal forces
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Fig. 3.12 . Domain Ω with a triangular finite element mesh (a), and the admissible
sensor locations for discrete approaches (b).

being a result of an applied load or the air resistance. The control of those pos-
sibly dangerous effects and a damage detection constitute the main application
area of smart materials in the aircraft industry and space technology (Boresi and
Chong, 2000).
In order to simplify such an extremely sophisticated problem and to expose

its illustrative properties as an example, think of a plate resting or clamped in
a frame, with various weights placed on the plate. Under these conditions, the
transverse displacement y1 satisfies the biharmonic equation (Kącki, 1995)

∇4y1(x) = f(x, y1(x)), x ∈ Ω (3.100)

which is equivalent to the pair of the second-order elliptic equations

∇2y1(x) = y2(x),
∇2y2(x) = f(x, y1(x)), x ∈ Ω,

(3.101)

where y2 is the surface curvature and f plays the role of an applied force distributed
over the domain Ω (note that in general it also depends on y1). The first of these
equations is a Poisson one involving the Laplacian of the original unknown y1.
The second gives the right-hand side of the biharmonic equation. Taken together,
they define two coupled second-order elliptic equations for the biharmonic system.
The simplest set of boundary conditions is that for a simply supported sheet of
material, with the displacement and the sheet curvature both equal to zero on the
boundary. That is equivalent to the boundary conditions

∇2y1(x) = 0, x ∈ ∂Ω,
∇2y2(x) = 0, x ∈ ∂Ω.

(3.102)
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(a) (b)

Fig. 3.13 . Contour plots of the transverse displacements (a) and the curvature
(b) for the aircraft example (θ = (−2.5, 0.7, 0.9,−0.8)).

Another set of conditions that is commonly applied is that for a clamped sheet with
zero Dirichlet conditions for the displacement and von Neumann natural conditions
for the curvature on the boundary. The domain Ω in the form of a plane-shaped
figure is shown in Fig. 3.12(a) with an unstructured triangular mesh.
The main purpose is the determination of the optimal sensor locations which

provide the best accuracy of the parameter estimates playing the major role in
external force control. The function f is assumed to be in the form

f(x, y1) = γy1(x) + θ1 + θ2x21 + θ3x
2
2 + θ4x

2
1x
2
2, (3.103)

where θ = (θ1, θ2, θ3, θ4) is an unknown vector of constant parameters and γ
stands for some known coefficient which represents the dependence between the
surface curvature and the displacement. The function f is expected to describe in
a reasonably simple form the downward displacements in the fuselage and upwards
displacements on the wings. The value of γ = 0.1 was assumed as a nominal one,
and the rough estimate θ0 = (−2.5, 0.6, 0.9,−0.8) was assumed to be derived from
a prior process analysis.
In this experiment the solution to the forward problem (3.101)–(3.102) was

generated by the Fastflo v.3.0 environment based on the FEM approach with sev-
eral procedures written for this purpose in Fasttalk language (a built-in feature
of Fastflo) especially dedicated to PDE’s. The simulations were performed with
the use of a low-cost PC (Pentium IV 1.7GHz processor, 768MB RAM) running
Windows 2000. The solution illustrated in the contour plots in Fig. 3.13 was then
transferred into the Fortran environment where the design optimization proce-
dures mentioned in the preceding sections were used, namely the weight optimiza-
tion routines, the clusterization-free strategy and the support-weight optimization
algorithm.
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Fig. 3.14 . Optimal designs: (a) D-optimum design in the discrete case, (b) A-
optimum design in the discrete case, (c) D-optimum design in the continuous case,
and (d) A-optimum design in the continuous case.

In order to apply the algorithms dedicated to a finite measurement space,
a suitable discretization of the domain Ω was provided, i.e. a set of admissible
sensor locations was constructed using those points of the uniform rectangular
(25 × 25) grid which lie inside Ω (cf. Fig. 3.12(b)). The feasible-direction weight
optimization procedure produced the solution after 137 and 272 iterations (for
the D- and A-optimum criteria, respectively) with accuracy ε ¬ 10−5 starting
from randomly generated weights. The 153-point discretized domain appears very
adequate as the results are almost identical to the continuous domain case taking
account of the problem symmetry with respect to the axis x2 = 0 (cf. remarks
regarding the electrolysis example). The approximations of optimal locations with
the corresponding experimental effort for both the discrete and continuous cases
are illustrated in Fig. 3.14.

The generalized first-order algorithm proved again its ability to minimize the
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redundancy of the resulting designs which were achieved in 6 (D-optimum) and 4
(A-optimum) repetitions of the main loop. Once more, the locations for those cri-
teria are very similar, but the experimental effort makes these approaches distinct.
The sensor locations reflect the fact that the most informative measurements can
be obtained at the centre of the fuselage with greatest downward displacements
and wings with greatest upward ones.
The cardinality of X is large enough to apply the clusterization-free strat-

egy for the sake of comparison. The forty-point designs obtained after only 32
(D-optimal) and 34 (A-optimal) iterations in almost non-measurable operational
time are shown in Fig. 3.15. This time the difference between D- and A-optimal
strategies became clearer, nevertheless the resemblance to the replicated designs
is rather obvious.
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Fig. 3.15 . (a) D-optimum and (b) A-optimum clusterization-free designs for the
aircraft example.

3.5. Concluding remarks

The results contained in this chapter show that some well-known methods of op-
timum experimental design for linear regression models can be easily extended
to the setting of the sensor location problem for multidimensional static DPS’s.
The advantage of introducing continuous designs lies in the fact that the prob-
lem dimensionality is dramatically reduced. Moreover, with some minor changes,
sequential numerical design algorithms, which have been continually refined since
the early 1960s, can be employed here. Unfortunately, this approach does not pre-
vent sensors from clustering which is a rather undesirable phenomenon in potential
applications if the measurements are to be taken simultaneously. Clusterization is
a consequence of the assumption that the measurement noise is spatially uncor-
related. This means that in an optimal solution different sensors often tend to
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take measurements at the same point, which is most often unacceptable from the
technical point of view.
Alternatively, we may seek to find an optimal design not within the class of all

designs, but rather in a restricted subset of competing replication-free designs. To
implement this idea, some recent advances in spatial statistics are employed, and
in particular Fedorov’s idea of directly constrained design measures is adapted
to our framework. As a consequence, this leads to a very efficient and particu-
larly simple exchange-type algorithm. Bear in mind, however, that this approach
should in principle be used if the number of sensors is relatively high in compari-
son with the number of admissible support points. If this is not the case, we can
resort to standard optimization routines. To the best of author’s knowledge, the
presented algorithms have not been applied yet to systems described by partial
differential equations, in spite of their decided advantages. The only exception
is the monograph (Uciński, 1999a) where an attempt was made to implement
the continuous first-order algorithm in the case of a parabolic equation and the
seminal works (Patan and Uciński, 2002; Uciński and Patan, 2002a; Uciński and
Patan, 2002c; Uciński and Patan, 2002b) which concern the different theoreti-
cal and practical aspects of the delineated algorithms. Especially, the SDP (or
even LMI) based approach has received no attention yet with respect to its tai-
loring to the area of static and dynamic DPS’s, especially for some classes of
non-differentiable criteria such as the E-optimality one.
The efficiency and usefulness of the proposed approaches was verified via com-

puter simulations for vital engineering problems of tomography (MISO systems)
and structural elasticity of smart materials (MIMO systems) proving their flex-
ibility and ability for providing accurate approximations of optimal solutions in
non-trivial practical situations. However, the very important problem of correlat-
ed measurements which appear in practical applications (especially in computer-
assisted tomography) was silently omitted as some approaches will be proposed in
a more general context.
Recapitulating, the following is a concise summary of contributions developed

in this chapter to the state-of-the-art in optimal sensor location for parameter
estimation in static DPS’s:

◦ A characterization of continuous designs in the problem of stationary sensor
allocation for static DPS’s is provided, which leads to a great reduction in
the problem dimensionality and complexity.

◦ It is clarified how to adapt some existing algorithms of nonlinear program-
ming and optimum experimental design for finding numerical approximations
to the optimum experimental effort for single and multi-output static DPS’s.
Particularly, the gradient projection and feasible-direction methods were tai-
lored to the optimization on a finite set of admissible locations. Additionally,
the SDP approach was presented here, which is a completely new technique
in the context of DPS’s. For the case of experimental effort optimization
on sets with non-zero measures the two-phase first-order algorithm with an
ARS global optimization strategy was adapted.
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◦ A characterization of the replication-free approach is provided, which allows
us to avoid the sensor clusterization effect. This technique with the cor-
responding exchange-type algorithm is adopted to the framework of static
DPS’s.

◦ The delineated algorithms were tested via computer simulations on engineer-
ing problems such as computer-assisted electrical impedance tomography and
the structural mechanics of smart materials.



Chapter 4

OPTIMAL MEASUREMENT STRATEGIES FOR
SYSTEMS WITH SPATIO-TEMPORAL DYNAMICS

In the field of spatio-temporal systems being a substantial generalization of the
systems considered up to now, the variety of possible observation strategies is
naturally much richer. On account of the explicit time presence in the stud-
ied processes, besides stationary observations, scanning and movable observation
strategies can be applied. Such a possibility is very interesting due to the greater
flexibility of the methods, because the appropriate strategy can be chosen as a
result of a compromise between practical conditions and the required accuracy.
However, most of the contributions to the measurement optimization problem
concern the choice of stationary sensor positions and there have been relative-
ly few contributions to the experimental design for those systems (for surveys,
see (Kubrusly and Malebranche, 1985; Rafajłowicz, 1986a; Uciński, 1992; Korbicz
and Uciński, 1994; Uciński, 2000c; Uciński, 2000b; Uciński and Korbicz, 2001)).
Of course, one may argue that there exist a few works dealing with the prob-
lem of determining sensor positions for optimal state estimation (Kubrusly and
Malebranche, 1985; Azhogin et al., 1988). At this point, however, it should be
noted again that the state estimation problem is essentially different from the op-
timal measurement problem for parameter identification since in the latter case
the current state depends strongly non-linearly on unknown parameters, while its
dependence on the initial state is linear. The sensor location problem was consid-
ered in various aspects (for reviews, we refer the reader to (Uciński, 1999a; Ucińs-
ki, 2000a; Uciński, 2000c; Kubrusly and Malebranche, 1985; Sun, 1994)).
For dynamic DPS’s the very first idea is to extend the approaches developed

for stationary sensors in previous chapter in the spirit of the classical optimum
experimental design theory for lumped systems (Fedorov and Hackl, 1997; Müller,
1998; Pázman, 1986; Walter and Pronzato, 1990). In spite of a great convenience
of such an approach, the main drawback of stationary sensors in the context of
spatio-temporal systems is the lack of flexibility regarding the system dynamics.
The measurements are taken during the whole observation horizon at the same
locations. Consequently, in many situations the observations may be inadequate
and the measurement data do not provide suitable information about the system
dynamics. This is the main reason why it is worth to pay closer attention to the
other strategies mentioned above, which are more flexible and have more capa-
bilities than non-mobile observations, since they exploit the time-measurement
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domain in a more effective manner, thereby offering additional degrees of freedom
regarding optimality. Hence, the sensors positions do not have to be assigned to
the most informative points in the average sense, but they can track the ones
which give at a particular time instant the most significant knowledge about the
estimated parameters of interest.
Potential vital applications where such strategies can be employed were in-

troduced in Section 2.2, e.g. the design of monitoring networks for air and water
pollution, the scanning strategies in the measurement of strain and stress (smart
structures) or various types of transmission lines. These are only some examples,
which can be found in an extremely wide family of real engineering problems
connected with dynamic DPS’s.
Allowing the sensors to change their positions lead directly to the moving

sensors strategy. But contributions to this field are rather limited and here the in-
teresting results from (Uciński, 1999a; Uciński, 2000b; Uciński and Korbicz, 2001)
based on the optimal control techniques can be distinguished. However, the prob-
lem and its solutions are far from being trivial. Thus, a slightly less sophisticated
strategy of scanning sensors appears to be very attractive as it leads to less complex
solutions and also offers an increased degree of optimality.
In such a way, the main objective here becomes a generalization of techniques

proposed in the preceding chapter and dedicated to stationary sensors towards
the class of dynamic DPS’s and showing how to adapt modified versions of the
corresponding algorithms. Moreover, complementary systematic approaches for
movable and scanning sensors will be introduced with special emphasis on the
latter technique.
Another problem arises when mutual relations not only between system out-

puts, but also between measurements made by different sensors cannot be ne-
glected. In practical applications this is very often the case, especially in the field
of DPS’s, since spatio-temporal observations are commonly determined by local
correlations, which are unaccounted for by standard optimal experimental design
techniques delineated in Section 2.3. This is a consequence of the fact that in this
case the problem formulation based on the FIM does not allow us to exploit the
convexity of the relevant optimality criteria, which precludes the construction of
simple sequential algorithms based on convex optimization theory. The problem is
extremely difficult, since the information from different locations cannot be sepa-
rated. A large majority of publications dedicated to optimal observation strategies
for parameter estimation in DPS’s simply neglect and omit such impediments, or
treat them in a simplified form (e.g. either time or spatial correlations are taken
into account). An additional objective here is to propose a suitable approach to
overcome those difficulties (at least to a certain degree).

4.1. Observations from stationary sensors

Dynamic DPS’s constitute a non-trivial generalization of the systems considered
in the previous chapter, as their states depend not only on the space variable, but
also on time t. If there are no particular assumptions on this time variable which



96 4.1. Observations from stationary sensors

would make it substantially different from the space variable, then the systems
with spatio-temporal dynamics can be considered exactly in the same manner as
static DPS’s. Consequently, the methodology developed in the previous chapter
is directly applicable with no changes at all and the observations can be treated
as pointwise measurements in the space-time continuum. Unfortunately, such an
assumption is very inadequate and impractical since in the measurement process
the time is beyond of the experimenter’s control in contrast to the spatial sensor
allocations x1, . . . , xN . This feature is crucial from the point of view of a further
analysis, because it entirely determines the properties of the possible observational
strategies. At this point, it should be noted that the variable t can be associated
with other variables such as temperature, gas pressure, radiation or any uncon-
trolled quantity. Depending on the situation, the results can be easily adopted
to a particular case since no more specific features related to physical quantities
such as time are assumed. Nevertheless, within the framework of this disserta-
tion attention is focused on time-dependent systems owing to their great practical
relevance.
In real-world problems, the data acquisition process often has to satisfy multi-

ple criteria. Usually the measurements should provide not only information about
system parameters, but also the character of the statistical trend in the system
behaviour or its dynamics should be sufficiently represented. In the light of the
dynamic character of the state dependence on time, it becomes clear that this can
be exploited in the observation process and sensors may take the measurements
according to the suitable strategy built on the system dynamics and the fact that
the measurements can be taken in continuous time (in contrast to the spatial do-
main). From this point of view, the following two possibilities of increasing the
quality of solutions (regarding their degree of optimality) can be distinguished:

• appropriately selecting spatial sensor locations, which are assumed to vary
in time,

• properly choosing the time schedule of taking measurements for each sensor.

Both the cases directly lead to more complex strategies of observations, namely
the use of mobile sensors in the former and scanning ones in the latter. Since a
more detailed analysis of those techniques is contained in the next part of the
chapter, at this point let us consider the simplest situation in which stationary
sensors are used to take measurements at specified time moments or continuous-
ly in time. Such a situation is most frequently encountered in practice, as it is
simple to implement. Monitoring networks used in real engineering problems (e.g.
atmospheric observations) are most commonly based on stationary sensors. For
this reason such an approach is worth of paying attention to.

4.1.1. Adaptation of the notion of continuous designs

For the class of dynamic DPS’s, their mathematical model follows from (2.1)–(2.3)
by assuming that matrix D(x, t) is non-zero. If the measurements are taken by N
stationary sensors and, for simplicity, the n-th dimensional system state y(x, t) is
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assumed to be directly measurable, then the measurements are governed by the
following observation equation derived from (2.9):

zj(t) = y(xj , t; θ) + ε(xj , t), t ∈ T, j = 1, . . . , N, (4.1)

where zj(t) is an r-dimensional output (in this case r = n), y(x, t; θ) ∈ Rn denotes
the system state at time t and a spatial point x ∈ X ∈ Ω ∪ ∂Ω, T = {tk, k =
1, . . . , tK : t1 ¬ t1 ¬ · · · ¬ tK} for the discrete case and T = [0, tf ] for the
continuous case. In general, the random measurements errors represented by the
random field εj( · ) may be correlated, but since this subject will be discussed
in a broaden context in Section 4.4, at this point let us assume, by analogy to
(2.37), that the errors are zero-mean and correlated only in output space, i.e. their
statistics are given by the relations

E[ε(xj , t)] = 0, E[ε(xq, t)εT(xs, τ)] = δqsδ(t− τ)C(xq, t). (4.2)

where 0 ¬ C(xj , t) ∈ Rn×n, δ( · ) and δqs being Dirac’s and Kronecker’s delta
functions, respectively.
If an observation strategy implies that the measurements are taken at any

time instant t ∈ T , then this fact will directly influence the form of the criterion
of parameter estimation. The generalized LS criterion takes the form

J(θ) =
1
2

N∑
j=1

AT
{
[zj( · )− ŷ(xj , · ; θ)]TC−1(x, · )[zj( · )− ŷ(xj , · ; θ)]

}
(4.3)

where AT is some known operator responsible for the suitable weighting of the
measurements over the set of the time instants at which the observations are made
and ŷ( · ; θ) is the solution to (2.1)–(2.3) corresponding to the parameter vector θ.
The form of (4.3) explicitly shows that the measurements are averaged in some
sense established by the weighting operator. Moreover, it is clear that they depend
upon the entire time schedule, rather than on the time itself. Such an observation
is of crucial importance here, since if there is no particular information concerning
the significance of measurements at specified time instants (they are uniformly
weighted), then the operator AT is equivalent to the mean over the set T and in
this context the observations have to be understood as averaged over time.
However, the arbitrary time schedule implies that the notion of exact and con-

tinuous designs can be adopted in a virtually unchanged form from static DPS’s.
In such a way, we shall operate only on sensor locations. Formally, after a suitable
relabelling of different sensor allocations, a design can be denoted exactly in the
same form as for static DPS’s (2.45), i.e.

ξN (T ) =
{
x1, x2, . . . , x`

p1, p2, . . . , p`

}
, (4.4)

where pi = ri/N , N =
∑`
i=1 ri, i = 1, . . . , `. By analogy to (2.45), the proportion

pi of the observations performed at xi can be considered as the percentage of the
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experimental effort spent at that point. In further considerations, the more concise
notation ξN will be used to denote the exact design. Similarly, ξ will stand for the
corresponding continuous design.
The above definition of the design is extremely convenient. It enables the

adaptation of the entire methodology developed for static DPS’s in Chapter 3
with relative ease. This results from the fact that the approaches presented for
static DPS’s are invariant with respect to the explicit form of the FIM. As a
result, the only adaptation needed is an appropriately defined form of the FIM.
The average-per-observation FIM can be written down as (Uciński, 1999a)

M(ξN ) =
∑̀
i=1

pi
1
K

K∑
k=1

GT(xj , tk)C−1(xj , tk)G(xj , tk), (4.5)

for the discrete case, and

M(ξN ) =
∑̀
i=1

pi
1
tf

∫ tf
0

GT(xj , t)C−1(xj , t)G(xj , t) dt, (4.6)

in the continuous case, where

G(x, t) =
(
∂H(y, t; θ)

∂y

)
y=y(x,t;θ)

(
∂y(x, t; θ)

∂θ

)
θ=θ0

(4.7)

is the matrix of the sensitivity coefficients corresponding to a prior estimate of
parameters θ0.
With the information matrices so defined the characterizations of the optimal

solutions presented in Section 2.3 are almost directly applicable to the considered
case, including all properties and theorems, and in particular the Equivalence The-
orem. What is more, the approaches and algorithms developed in Sections 3.2.1,
3.3 (effort optimization with first-order, feasible-direction and SDP routines) and
3.2.2 (clusterization-free approach) can be easily adopted to the case of the mea-
surements which are averaged over the time horizon, without major modifications.
The only complication becomes the increased numerical effort related to the cal-
culation of the informational matrices.
Bearing in mind that the use of stationary sensors taking measurements which

are averaged over time is one of the simplest solutions and this is because it is
most commonly encountered in real problems, it should be emphasized that there
exist some substantial drawbacks of such an approach. The main disadvantage is
that its flexibility is often insufficient to assure that the observational process will
fit enough to the system dynamics. In addition to this, for systems with spatio-
temporal dynamics the clusterization effect has a much more complex nature.
Generally, in the estimation of m unknown parameters, a one-point design might
result in a non-singular FIM in contrast to static MIMO DPS’s where the minimal
number of measurements which give a chance for estimation of m parameters
is equal to dm/re (dζe stands for the minimal integer number greater than or
equal to ζ). It is a direct consequence of the fact that averaging over time implies
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that the rank of the information matrix for a given spatial point xj can be equal
to the number of parameters, regardless of the choice of xj . This clarifies why
sensors tend to cluster more frequently in this situation. On the other hand, we
should remember that the minimal number of measurements so defined does not
guarantee a high quality of estimation. Finally, because of those impediments,
the applicability of the proposed algorithms needs a more careful analysis and
more flexible approaches are necessary, such as mobile or scanning sensors. This
constitutes the further part of the chapter where a suitable comparison of the
discussed strategies will be presented.

4.2. Spatially movable sensors

When adapting the idea of continuous designs to the field of movable observations,
it has to be emphasized that the connection between the classical experimental
design theory and the problem of determining optimal sensor movements is beyond
doubt rather complex. The main obstacle is the representation of the sensor motion
trajectories in the form of generalized conditional distributions, or more precisely,
Radon probability measures on the Borel sets of a given compact set of admissible
locations (Rafajłowicz, 1986b; Uciński, 1999a). Despite this impediment, however,
some relevant approaches can still be established and successfully applied.

4.2.1. Direct approach

The direct approach proposed by Rafajłowicz (1986b) for the scalar case has be-
come one of the very scare classical references on moving sensors. It was then
complemented by Uciński (1999a). In what follows, another generalization will be
presented. Denote by X the compact set, in which the state y ∈ Rn of a DPS can
be measured.

Definition 4.1. The mapping T 3 t 7→ x(t) ∈ X, where x( · ) is measurable in
the Lebesgue sense, stands for the trajectory of the sensor motion.

The term ‘trajectory’ is used to emphasize the dependence of x(t) on time.
Such trajectories are elements of the corresponding design space. For discrete-time
observations, i.e. T = {tk, k = 1, . . . ,K : t1 ¬ t1 ¬ · · · ¬ tK} the trajectory of the
j-th sensor may be interpreted as a vector containing a series of observations that
are taken at consecutive time moments tk, i.e.

xj = [xj(t1), . . . , xj(tK)]T. (4.8)

For the continuous observation interval T = [0, tf ], each trajectory is determined
by an observation curve for the j-th sensor

xj(t) ∈ X, a.e. on T. (4.9)

Now we can formulate our main objective, which is the design of an optimal
measurement strategy for estimation of the unknown system parameter vector
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θ ∈ Rm, while the observations are made by N pointwise sensors. Reasoning will
be provided for the continuous time domain, as it is a more general situation and
a suitable discretization a finite set T can be proposed with no difficulties. Thus,
the observation equation is then given by (2.10), which can be rewritten in the
following simplified form:

zj(t) = y(xj(t), t; θ) + ε(xj(t), t), t ∈ T, j = 1, . . . , N, (4.10)

where zj(t) is the r-dimensional output, y(x, t; θ) ∈ Rn denotes the system state
at time t and a spatial point x ∈ Ω ∪ ∂Ω, and εj( · ) denotes the measurement
noise, which is assumed to be a realization of a white Gaussian random field with
statistics defined by

E[ε(x, t)] = 0, E[ε(x, t)εT(χ, τ)] = δ(x− χ)δ(t− τ)C(x, t), (4.11)

where 0 ¬ C(x, t) ∈ Rn×n and δ( · ) stands for Dirac’s delta function. According to
(4.11), correlations between observations on the same trajectory may occur, but
observations from different trajectories are not correlated. This fact is crucial for
the approach as the additivity of the information matrices for measurements from
different trajectories is assured.
Another important assumption is that there exists a neighbourhood of some

known preliminary estimate θ0 of the unknown parameter θ where the state
y(x, t; · ) is continuously differentiable with respect to θ. In such a way, the average
Fisher information matrix is given by (Uciński, 1999a)

M =
1
Ntf

∫ tf
0


N∑
j=1

GT(xj(t), t)C−1(xj(t), t)G(xj(t), t)

 dt, (4.12)

where G(x, t) defined by (4.7) is required to be continuous in Ω̄× T .
On the other hand, the assumption of independent measurements leads direct-

ly to the clusterization effect for some time moments, i.e. at a given time moment
more than one sensor may take measurements at a point xj(t). Taking this into
account, by suitably relabelling the sensors (i.e. such that i1 6= i2 ⇒ xi1(t) 6=
xi2(t), 1 ¬ i1, i2 ¬ `(t) where `(t) is the number of different sensor locations at
time t) the following collection of variables may be introduced by analogy to exact
design for a specified time moment t:

ξN (t) =
{
x1(t) . . . x`(t)
p1(t) . . . p`(t)

}
, (4.13)

where pi(t) = ri(t)/N ,
∑`(t)
i=1 ri(t) = 1 and ri(t) denotes the number of sensors

occupying the position xi(t). Hence the FIM may be rewritten as

M(ξN ) =
1
tf

∫ tf
0


`(t)∑
i=1

pi(t)GT(xi(t), t)C−1(xi(t), t)G(xi(t), t)

 dt. (4.14)
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Analogously to the case of stationary sensors, the notion of the exact design can
be extended to the more general form of a probability measure ξ over X, which
can be considered as a function

ξ : T 3 t 7→ ξ(dx|t) ∈ Ξt(X) (4.15)

where Ξt(X) is the set of all probability measures on X. In our further consider-
ations, Ξ(X) will be understood as the family of all such mappings ξ.
This yields the following form of the FIM:

M(ξ) =
1
tf

∫ tf
0

{∫
X

GT(x, t)C−1(x, t)G(x, t) ξ(dx|t)
}
dt (4.16)

Introducing a fixed measure ξ(dt) of the observation effort in the interval T , we
arrive at a further generalization, i.e.

M(ξ) =
∫
T

{∫
X

G(x, t)TC−1(x, t)G(x, t) ξ(dx|t)
}
ξ(dt)

=
∫∫
X×T

GT(x, t)C−1(x, t)G(x, t) ξ(dx,dt),
(4.17)

with the marginal distribution defined as

ξ(dt) =
∫
X

ξ(dx,dt). (4.18)

Notice that the identity ξ(dt) ≡ dt/tf corresponds to the uniform distribution of
the experimental effort. In other words, ξ(dt) defines a ‘density’ of replications.
The problem of finding an optimal observation strategy problem can be re-

formulated as follows:
ξ? = arg min

ξ∈Ξ(X)
Ψ[M(ξ)], (4.19)

where ξ(dt) is assumed to be fixed a priori. Obviously, introduction of the measure

ξ(dt) =
1
tf
dt (4.20)

brings us back to (4.16). The time dependent measure ξ?(dx|t) can be considered
as the optimal generalized trajectory.
To transfer the results from the standard case (stationary sensors), condi-

tions (A3)–(A5) from page 38 are assumed to be satisfied and instead of (A6) the
following assumption is necessary:

(A8) ∀ξ ∈ Ξq = {ξ : Ψ[M(ξ)] ¬ q <∞},∀ξ̄ ∈ Ξ(X),

Ψ[(1−α)M(ξ)+αM(ξ̄)] = Ψ[M(ξ)]+α
∫∫
X×T

ψ(x, t, ξ)ξ̄ (dx, dt)+o(α; ξ, ξ̄)

where the scalar q is chosen so that Ξq 6= ∅.
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For differentiable criteria Ψ, we have

∆Ψ
(
M(ξ),M(ξ̄)

)
=
∂Ψ[(1− α)M(ξ) + αM(ξ̄)]

∂α

∣∣∣∣
α=0+

=trace
[ ◦
Ψ[M(ξ)]

(
M(ξ̄)−M(ξ)

)]
=
∫∫
X×T

{
trace

[ ◦
Ψ[M(ξ)]GT(x, t)C−1(x, t)G(x, t)

]
− trace

[ ◦
Ψ[M(ξ)]M(ξ)

]}
ξ̄(dx,dt),

(4.21)

where
◦
Ψ[M(ξ)] =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ξ)

Hence, the function ψ(x, t, ξ) takes the form

ψ(x, t, ξ) = ς(ξ)− φ(x, t, ξ), (4.22)

where

ς(ξ) = − trace
[ ◦
Ψ[M(ξ)]M(ξ)

]
(4.23)

and

φ(x, t, ξ) = − trace
[
GT(x, t)

◦
Ψ[M(ξ)]G(x, t)C−1(x, t)

]
. (4.24)

At this point, the following necessary and sufficient condition for optimality can
be formulated:

Theorem 4.1. A design ξ? is optimal iff∫
T

min
x∈X

ψ(x, t, ξ?) ξ(dt) = 0. (4.25)

Proof . See Appendix A.3. �

In such a way, it is possible to formulate the following version of the general
equivalence theorem:

Corollary 4.2. The following statements are equivalent

(i) the design ξ? minimizes Ψ[M(ξ)],

(ii) the design ξ? minimizes
∫
T

max
x∈X

φ(x, t, ξ) ξ̄(dt)− ς(ξ), and

(iii)
∫
T

max
x∈X

φ(x, t, ξ?)ξ̄(dt) = ς(ξ?)
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Corollary 4.2 constitutes a generalization of Rafajłowicz’s result for D-optimum
designs (Rafajłowicz, 1986b, Th. 1). Moreover, in (Rafajłowicz, 1986b) some fur-
ther sufficient optimality conditions are given, whose use allows us to reduce the
problem to a series of optimization problems for each time moment separately.

4.2.2. Parameterization of the trajectories

The main drawback of the approach delineated in the previous section is that
the resulting trajectories are only guaranteed to be measurable in the Lebesgue
sense, which may be insufficient in real applications. Such a complication can be
avoided by an appropriate parameterization of the trajectories. In such a way, some
conditions can be imposed on the regularity of the solutions and, additionally, the
dimension of the optimization problem can sometimes can be reduced.
To focus our attention, assume that the sensor trajectories can be approxi-

mated by the parametric curves of the form

xj(t) = κ(t, ζj), t ∈ T, (4.26)

where ζj is a constant parameter vector belonging to a compact set A ⊂ Rs.
Here κ denotes a known function which is assumed to be sufficiently flexible to
approximate the trajectory of the j-th sensor. Moreover, it is required that for any
values of ζj and t, functions κ( · , ζj) and κ(t, · ) be continuous. Restricting our
attention to the trajectories lying completely inside the set of admissible locations
X (i.e. each point of the trajectory belongs to X), we assume the existence of a
non-empty set

Z = {ζ ∈ A : κ(t, ζ) ∈ X,∀t ∈ T ), } (4.27)

which is rather natural and not particularly restrictive in practice. It can be easily
verified that Z is also compact.
From now on it is easy to derive the following form of the average FIM for N

moving sensors:

M =
1
Ntf

∫ tf
0


N∑
j=1

GT
(
κ(t, ζj), t

)
C−1

(
κ(t, ζj), t

)
G
(
κ(t, ζj), t

) dt. (4.28)

Obviously, from (4.28) it can be seen that the independent measurements taken by
different sensors is exploited here, thereby leading to the allowance of replicated
trajectories. By suitably relabelling and thus distinguishing ` different paths of
sensors, we get

M(ξN ) =
1
tf

∫ tf
0

{∑̀
i=1

pi(t)GT
(
κ(t, ζi), t

)
C−1

(
κ(t, ζi), t

)
G
(
κ(t, ζi), t

)}
dt,

(4.29)
with a new formulation of the design

ξN =
{
ζ1 ζ2 . . . ζ`

p1 p2 . . . p`

}
(4.30)
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pi = ri/N , ri being the number of sensors moving along the i-th curve.
In terms of the designs interpreted as generalized probability measures ξ for

all Borel sets of Z including single points, the counterpart of (4.29) can be defined
as

M(ξ) =
∫
Z

Υ(ζ) ξ(dζ), (4.31)

where

Υ(ζ) =
1
tf

∫ tf
0

GT
(
κ(t, ζ), t

)
C−1

(
κ(t, ζ), t

)
G
(
κ(t, ζ), t

)
dt. (4.32)

If the optimal design ξ? is understood as the one which minimizes the scalar
measure Ψ[M(ξ)], it is clear that the form of the reformulated problem is exactly
the same as that from Section 2.3.1 (p. 36) with ζ, Z and GT

(
κ(t, ζ), t

)
substituted

for x,X and F (x, t), respectively. As a result, the corresponding theory, character-
izations of solutions and other results remain valid in this context. Furthermore,
note that the dimension of this optimization problem is s, the dimension of vector
ζ.
In addition to the dimensionality reduction, the approximation (4.26) offers

a possibility of imposing various constraints on the trajectories. For instance, a
limited velocity of the motion of the i-th sensor can be expressed in the form of
the constraint

‖∂κ(t, ζi)/∂t‖1/2 ¬ Vi, t ∈ T (4.33)

whereas the bounded length of the same trajectory can be introduced as∫ tf
0
‖∂κ(t, ζi)/∂t‖dt ¬ Li. (4.34)

In spite of the relative simplicity of the ideas presented above, the main draw-
back of the outlined approach still remains a high computational cost. To provide
a sufficient approximation of the trajectories and to ensure their appropriate flex-
ibility (the family of admissible movement curves should be rich enough), the size
of the parameter vector ζ has to be much larger than in the case of stationary
sensors, where the size of the design variable was simply equal to the number of
spatial coordinates. Furthermore, the most cumbersome phase of the algorithm
presented in Section 3.3 is solving the global non-linear constrained programming
problem in each iteration. The problem becomes extremely hard in the context
of systems with spatio-temporal dynamics, since we are faced with the necessity
of solving both systems of PDE’s, and optimization problems of high complexity,
which demands multidisciplinary approaches.
Obviously, an efficient global optimizer should be employed and one of the

possible solutions is a combination of stochastic global optimizers with classical
methods of hard selection. In computer simulations performed in this work the
ARS strategy (cf. Section 3.3) was exploited in conjunction with the sequential
quadratic programming algorithm employed during the local search. The scheme
of such a hybrid algorithm is presented in Fig. 4.1. The aim of the ARS strategy
is to establish a rough estimate of the optimal trajectory lying in the convergence
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Fig. 4.1 . Hybrid ARS strategy enhanced with sequential quadratic programming.

region of the method used for local optimization. In such a way, emphasis should
be put on the exploratory performance of the algorithm, and not on the accuracy.
Then the sequential quadratic programming is applied to the solution produced
by the ARS with the goal of determining an accurate approximation of the opti-
mal solution. Nevertheless, having in mind that the ARS strategy is not dedicat-
ed to constrained optimization tasks the problem of the projection onto the set
of admissible trajectories appears, which may lead to an additional optimization
subproblem for some non-linear constraints.

Consequently, the computational burden connected with the proposed ap-
proach usually remains quite heavy. However, such a cost is unavoidable when
trying to increase the degree of freedom regarding optimality. It is then neces-
sary to search and to develop alternative approaches which would minimize the
numerical effort spent on finding a solution. In this context, some techniques of op-
timizing measurement schedules based on optimal-control theory are indicated in
(Uciński, 2000c; Uciński, 2000b; Uciński, 2001; Uciński and Korbicz, 2001; Ucińs-
ki, 1999a).

In order to illustrate the potential benefits of applying mobile sensors in im-
plementation of the observational strategies, let us consider the following example.

Example 4.1. For the sake of comparison with the case of stationary sensors, it is
worth to consider a less sophisticated problem which possesses a closed-form solu-
tion. For this reason, we study signal propagation over an infinite one-dimensional
transmission line over the time interval T = [0, 1] governed by the homogeneous
wave equation of the form

∂2y(x, t)
∂t2

= θ2∇2y(x, t), −∞ ¬ x ¬ ∞, 0 < t ¬ 1, (4.35)
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Fig. 4.2 . Propagation of a voltage impulse in the infinite transmission line from
Example 4.1.

subject to the initial conditions
y(x, 0) = exp(−20x2) −∞ ¬, x ¬ ∞,

∂y(x, t)
∂t

∣∣∣∣
t=0
= 0, −∞ ¬ x ¬ ∞.

(4.36)

The initial Cauchy problem above describes the propagation of a voltage impulse
with amplitude y and velocity θ along the line. From a practical point of view, the
assumption of an infinite length of the line is not too abstract as the distributed
nature of such a system appears when its dimensions are much greater than the
wavelength of the signal.
The considered problem posseses a closed-form solution of the fundamental

form
y(x, t) =

1
2
exp

(
− 20(x− θt)2

)
+
1
2
exp

(
− 20(x+ θt)2

)
. (4.37)

Moreover, the process is symmetric with respect to the central point x = 0. The
propagation of the signal is shown in Fig. 4.2.
Our task consists in finding a best allocation for stationary sensors and then

trajectories of mobile sensors which assure the best estimate of the velocity θ,
whose nominal value is assumed to be equal to θ0 = 1.0. As this velocity is finite,
the measurement space X can be arbitrarily bounded by the appropriate fixed
values xmin and xmax, such that X = {x : xmin ¬ x ¬ xmax}. The identification of
one unknown system parameter in this case can be performed with the use of only
one sensor, i.e. ` = 1. The form of the FIM in such a situation can be represented
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as

M(χ( · )) =
∫ tf
0

(
∂y(χ(t), t; θ)

∂θ

)2
θ=θ0
dt

=
∫ 1
0

(
20(χ(t)− t)t exp

(
− 20(χ(t)− t)2

)
− 20(χ(t) + t)t exp(−20

(
χ(t) + t)2

))2
dt.

(4.38)

Since we have only one parameter to be estimated, the FIM reduces to a scalar.
Thus, the minimum of any optimality criterion defined on the FIM corresponds
to the maximum value of the FIM. To determine an optimal trajectory χ( · ),
we have to solve the variational problem of maximizing of the functional (4.38)
with respect to the motion curve χ( · ). Unfortunately, the exact solution does
not posses a closed form, however it can be easily found numerically, since for
any time moment t the optimal sensor location corresponds to the maximum of
the integrand in (4.38). Moreover, from Fig. 4.2 it is clear that the signal is the
superposition of two interfering exponential impulses which start at the point
x = 0 and then propagate in opposite directions. If these symmetrical pulses are
relatively ‘narrow’, then after some short transient period the mutual interference
can be neglected, which dramatically simplifies this problem. In such a case the
optimal trajectories can be approximated by the functions which describe the
motion of the extrema of the sensitivity ∂y/∂θ for each single impulse separately.
It is easy to verify that these extrema of the signal (4.37) move according to

χ?(t) ≈ ±t±
√
2

2
√
20
, (4.39)

which constitutes the desired approximation of the optimal solution. Furthermore,
due to the symmetry of the problem, any design with support points being a
combination of the trajectories above is also optimal. The value of the optimality
criterion is in this case equal to M(χ?(t)) ≈ 2.7065.
A solution for the case of a stationary sensor can be obtained by reduction of

the trajectory to a constant function independent of time, i.e. χ(t) = χ. Then we
obtain the one-dimensional optimization problem of maximizing the FIM in the
form

M(χ) =
∫ tf
0

(
∂y(χ, t; θ)

∂θ

)2
θ=θ0
dt

=
1
640

(√
10π(3+80χ2)

(
erf(2

√
10−2χ

√
10) + erf(2

√
10+2χ

√
10)
)

+ (6− 160χ2)
√
10π erf(2

√
10) exp (−40χ2) +

(
6400χ2 − 6640

+ 6320 sinh (80χ)− 6640 cosh (80χ)
)
exp (−40χ2 − 40)

)
(4.40)

where

erf(α) =
2√
π

∫ α
0
exp (−ζ2) dζ
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stands for a so-called error function (Redfern, 1996).
It could hardly be expected that a solution in a simple closed form exists,

but a numerical solution to this problem can be achieved rather easily. Due to the
problem symmetry, any of the locations

χ? ≈ ±0.7371

is an approximate solution with the criterion valueM(χ?) ≈ 1.3763 which is almost
half of the corresponding value for the movable sensor strategy. It thus becomes
clear why it is worth of paying attention to an optimal exploitation of the sensor
motion dynamics through more flexible observation strategies.
In order to solve this problem numerically, the hybrid ARS strategy with

sequential quadratic programming was implemented in Fortran/Fujitsu Fortran
95 v.5.6 to establish the approximations of optimal sensors trajectories which as-
sure as accurate estimation of the parameter θ as possible. The time interval was
partitioned into 20 subintervals determined by the grid tk = k/2, k = 0, . . . , 20.
According to this partitioning, the trajectories were parameterized with the use of
linear splines, i.e. any trajectory was uniquely established with a vector of 21 spa-
tial positions corresponding to discrete time instants. From a randomly generated
two-point initial design, the algorithm achieved an approximation of the optimal
trajectory after only 3 iterations (about 10 on Pentium IV 1.7GHz, 768MB RAM
under Windows 2000) with accuracy ε ¬ 10−4. The results are shown in Fig. 4.3(a)
with one of possible analytical solutions. Open circles indicate consecutive sensor
positions at evenly distributed time intervals. The starting positions and weights
assigned to the trajectories are additionally indicated.
For comparison, the same problem was solved for the case of stationary sensors

with the use of a two-phase first-order algorithm with the ARS global optimizer
from Section 3.3 and the same accuracy of the solution. The resulting optimal
design obtained in two iterations was

ξ? =
{
−0.7382 0.738
0.4942 0.5058

}
(4.41)

and is shown in Fig. 4.3(b) together with the ‘exact’ solution.
In the problem above both the algorithms proved their advantages, but we

have to realize that the considered example is not too sophisticated. In more com-
plex situations, experiments reveal that the numerical effectiveness dramatically
decreases due to obvious reasons, especially in the case of mobile sensors owing to
the necessity of solving global optimization problems in high-dimensional search
spaces which result from trajectory discretizations.

F

Remark 4.1. There is another very important interpretation of the sensors weights
which has not been mentioned yet, although it has significance for movable observa-
tions and could be exploited here. Based on the generalized weighted least-squares
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Fig. 4.3 . Optimal solutions and their approximations: (a) mobile sensors, (b)
stationary sensors.

method where the performance index

J(θ) =
1
2

N∑
j=1

∫
T

wj [zj(t)− ŷ(xj(t), t; θ)]TC−1(xj(t), t)[zj(t)− ŷ(xj(t), t; θ)] dt

(4.42)
is minimized, each weight can be interpreted as the reciprocal of the variance of
the observation error along a given trajectory

wj = σ−2(xj(t), t), j = 1, . . . , N. (4.43)

Thus we may think of the weights as the sensitivities of the measurement devices.
Such an interpretation is not only very reasonable, but also very practical from an
engineering point of view, as it allows us to include such considerations into the
analysis of the experiment without essential changes.

4.3. Scanning sensors

Notwithstanding the fact that the optimal measurement problem for spatially
movable sensors seems to be very attractive from the viewpoint of the degree of
optimality, it is inherently connected to high computational costs and complex
implementations. Such circumstances bring about the necessity of searching for
alternative strategies of taking measurements which would offer an increased de-
gree of optimality and minimize the numerical effort. It has to be pointed out that,
in general, mobile observations can be proposed for a limited set of problems and
then they become the best strategy.
In some situations, however, the observation system comprises multiple sen-

sors whose positions are already specified and it is desired to activate only a
subset of them during a given time interval while the other sensors remain dor-
mant (Demetriou, 2000). A reason for not using all the available sensors could be
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the reduction of the observation system complexity and the cost of operation and
maintenance (van de Wal and de Jager, 2001). Such a scanning strategy of taking
measurements can be also interpreted in terms of several sensors which are mobile.
To the best the of author’s knowledge, the problem has received no attention yet
(though some attempts have been made in a related area of state estimation, see
e.g. (Nakano and Sagara, 1988; Korbicz, 1991)), except for the approaches pro-
posed in (Uciński and Patan, 2002a; Patan and Uciński, 2003). Therefore the aim
of the present section is to outline some constructive methodology to fill this gap.

4.3.1. Fixed switching schedule

4.3.1.1. Problem decomposition and notation

When the number of sensors is relatively high and the sensor switchings are arbi-
trarily fixed (i.e. the discretization of the time interval is known a priori), a first
idea is to decompose the problem into a series of subproblems defined for given
time instants and suitable adaptation of the clusterization-free strategy set forth
in Section 3.2.2.
The DPS under consideration is defined by (2.1)–(2.3) in a simply-connected

open spatial domain Ω ⊂ Rd, and its state at spatial point x ∈ Ω and time
instant t ∈ T = [0, tf ], tf < ∞, is an n-dimensional vector y(x, t; θ). As usual, θ
represents an unknown constant parameter vector which must be estimated using
observations of the system.
In what follows, we form an arbitrary partition of the time interval T by

choosing points 0 < t1 < t2 < · · · < tK = tf defining subintervals Tk = [tk−1, tk],
k = 1, . . . ,K. We then consider N moving sensors which possibly change their
locations at the beginning of each time subinterval but then remain stationary
till the end of this subinterval. In other words, the measurement process can be
formally represented in the form of the output equation (2.8), or assuming that
the state is directly measured, by its simpler version

zj(t) = y(xjk, t; θ) + ε(x
j
k, t), t ∈ Tk (4.44)

for j = 1, . . . , N and k = 1, . . . ,K, where zj(t) is an r-dimensional output, xjk ∈
X stands for the location of the j-th sensor on the subinterval Tk, X signifies
the part of Ω where the measurements can be made, and ε( · , · ) denotes the
zero-mean, Gaussian and white measurement noise defined with exactly the same
characteristics as for the case of mobile sensors (4.11).
Sensor positions which guarantee the best accuracy of the least-squares esti-

mates of θ are then found by choosing xjk for j = 1, . . . , N and k = 1, . . . ,K so
as to minimize a scalar measure of performance Ψ defined on the average FIM,
which takes here the form (Rafajłowicz, 1986b)

M =
1
N

K∑
k=1

N∑
j=1

Υk(x
j
k), (4.45)
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where

Υk(x)=
1
tf

∫
Tk

GT(x, t)C−1(x, t)G(x, t) dt, G(x, t)=
(
∂y(x, t; θ)

∂θ

)
θ=θ0

, (4.46)

θ0 stands for a prior estimate to the unknown parameter vector θ, G means the
Jacobi matrix of the sensitivity coefficients defined on the analogy of (4.7) and C
denotes the positive definite matrix responsible for the correlations between the
outputs, which is constructed in the same manner as in (4.11).
Owing to the assumption of independent measurements made by different

sensors (i.e. replicated observations), we may distinguish only different sensor lo-
cations in each time interval and define the exact design of the experiment for
subinterval Tk so that it consists of the following collection of variables:

ξNk =

{
x1k, x2k, . . . , x

`(k)
k

p1k, p2k, . . . , p
`(k)
k

}
, (4.47)

where `(k) and r1k, . . . , r
`(k)
k denote the number of different locations and the num-

bers of replications corresponding to the k-th time subinterval, respectively. Ob-
viously, for all k we have pik = r

i
k/N , N =

∑`(k)
i=1 r

i
k, i = 1, . . . , `(k).

On account of the above remarks, the FIM can be rewritten in the form

M(ξN ) =
K∑
k=1

`(k)∑
i=1

pikΥk(x
i
k). (4.48)

Relaxing the notion of the design, we obtain the equivalent notation in terms of
the probability measures ξk:

M(ξ) =
K∑
k=1

∫
X

Υk(x) ξk(dx), (4.49)

where
ξ = (ξ1, . . . , ξK) (4.50)

and, by definition, we have∫
X

ξk(dx) = 1, k = 1, . . . ,K. (4.51)

The integration in (4.51) and (4.49) is to be understood in the Lebesgue-Stieltjes
sense.
Then we redefine the optimal design as a solution to the optimization problem

ξ? = arg min
ξ∈Ξ(X)

Ψ[M(ξ)], (4.52)

where Ξ(X) denotes the set of all designs of the form (4.50).
To provide a suitable reasoning for the scanning approach, the validity of the

conditions (A1)–(A5) from pages 34 and 38 is assumed and in place of (A6) the
following counterpart is taken, which will be used in the remainder of this section:
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(A9) ∀ξ ∈ Ξq = {ξ : Ψ[M(ξ)] ¬ q <∞} 6= ∅, ∀ξ̄ ∈ Ξ(X):

Ψ[(1− α)M(ξ) + αM(ξ̄)] =

Ψ[M(ξ)] + α
K∑
k=1

∫
X

ψk(x, ξ) ξ̄k(dx) + o(α; ξ, ξ̄).
(4.53)

Just as in the previous considerations regarding stationary and mobile sensors,
Assumption (A9) simply amounts to the existence of the directional derivative
whose form must be on one hand specific, but on the other hand, for most practical
criteria such a condition is not particularly restrictive.
In fact, requiring Ψ to be differentiable with respect to the individual elements

of its matrix argument, we obtain

ψk(x, ξ) = trace
[ ◦
Ψ[M(ξ)]Υk(x)

]
︸ ︷︷ ︸

−φk(x, ξ)

− trace
[ ◦
Ψ[M(ξ)]Mk(ξk)

]
︸ ︷︷ ︸

−ςk(ξ)

, (4.54)

where
◦
Ψ[M(ξ)] =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ξ)

.

In order to establish the main result, which is only the matter of a suitable
formulation of the conclusions resulting from the considerations above, we first
give some auxiliary assertions being counterparts of Lemmas 2.6 (p. 40) and 2.7
(p. 40).

Lemma 4.3. For any design ξ = (ξ1, . . . , ξK) ∈ Ξ(X) and all k = 1, . . . ,K we
have

(i)
∫
X

φk(x, ξ) ξk(dx) = ςk(ξ), and

(ii) max
x∈X

φk(x, ξ) ­ ςk(ξ).

Proof . From (4.54), we obtain∫
X

φk(x, ξ) ξk(dx) = −
∫
X

trace
[ ◦
Ψ[M(ξ)]Υk(x)

]
ξk(dx)

= − trace
[
◦
Ψ[M(ξ)]

∫
X

Υk(x) ξk(dx)
]

= − trace
[ ◦
Ψ[M(ξ)]Mk(ξk)

]
= ςk(ξ).

(4.55)

This establishes (i). Then

ςk(ξ) =
∫
X

φk(x, ξ) ξk(dx) ¬
∫
X

max
x∈X

φk(x, ξ) ξk(dx) = max
x∈X

φk(x, ξ), (4.56)

which proves the second claim of the lemma. �
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Lemma 4.4. If ξ = (ξ1, . . . , ξK) ∈ Ξq, ξ̄ = (ξ̄1, . . . , ξ̄K) ∈ Ξ(X) and ξα =
(1− α)ξ + αξ̄, then

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

= ς(ξ)−
K∑
k=1

∫
X

φk(x, ξ) ξ̄k(dx),

where

ς(ξ) =
K∑
k=1

ςk(ξ).

Proof . Taking into account (4.53) and (4.54), we have

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

=
K∑
k=1

∫
X

{
trace

[ ◦
Ψ[M(ξ)]Υk(x)

]
− trace

[ ◦
Ψ[M(ξ)]M(ξk)

]}
ξ̄(dx)

= −
K∑
k=1

∫
X

φk(x, ξ) ξ̄k(dx) +
K∑
k=1

ςk(ξ).

(4.57)

�

Now, it is possible to formulate the Equivalence Theorem for the scanning
strategy

Theorem 4.5. The following statements are equivalent:

(i) the design ξ? = (ξ?1 , ξ
?
2 , . . . , ξ

?
K) minimizes Ψ[M(ξ)],

(ii) max
x∈X

φk(x, ξ?) = ςk(ξ?), k = 1, . . . ,K.

Proof . See Appendix A.3. �

Remark 4.2. The result above establishes the direct applicability of the theory
and algorithms developed for stationary sensors, since the problem can be decom-
posed to a finite set of ‘virtually independent’ problems, where continuous-time
observations are taken by stationary sensors over subintervals Tk. Indeed, it is not
difficult to construct simple sequential algorithms which exploit in each iteration
procedures from Chapter 3 separately for each consecutive time step (the only
element joining the subproblems is the common global FIM), determining a new
design ξ used in the next iteration. This raises attractive possibilities for paral-
lel implementations of the algorithm. Nevertheless, the assumption of a known
arbitrary switching schedule may be too restrictive in some situations.
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4.3.1.2. Problem reformulation and optimality conditions

In real engineering problems the scanning observation strategy is usually realized
with the use of dedicated scanning networks or sometimes even with mobile mon-
itoring stations. The assumption of independent observations, which is beneficial
from a theoretical point of view, cannot be justified when the clusterization of mea-
surements should be avoided, as usually the spatial data acquisition techniques do
not raise a possibility of replicated observations at a single site. Consequently, a
natural way to alleviate those impediments seems application of the extremely
efficient approach connected to the clusterization-free designs delineated in Sec-
tion 3.2.2, where the idea of operating on the density of sensors (i.e. the number
of sensors per unit area), rather than on the sensor locations has been exploited.
However, it has to be underlined once more that such an approach can be justified
only for a sufficiently large total number of sensors N .
Similarly to the designs discussed in Section 3.2.2, we impose the crucial

restriction that the density of sensor allocation must not exceed some prescribed
level, which in general can be defined separately for each observation subinterval
Tk. This can be expressed with the condition

ξk(dx) ¬ ωk(dx), k = 1, . . . ,K, (4.58)

where ωk(dx) signifies the maximal possible ‘number’ of sensors per dx (Fedorov
and Hackl, 1997) such that ∫

X

ωk(dx) ­ 1. (4.59)

Note that in the spirit of such a general formulation, the number of activated sen-
sors may vary in time, which is not a common situation in practice. However, since
a constant number of active sensors can be achieved by imposing the trivial con-
dition that for any two intervals Tk1 and Tk2 , k1, k2 ∈ 1, . . . ,K the corresponding
maximal densities are equal, i.e. ωk1(dx) = ωk2(dx), this presents no particular
difficulty. Moreover, the increased flexibility of the scanning strategy becomes in
such a way more exposed.
We are thus faced with the following optimization problem being the appro-

priate form of (3.58) and (3.59): Find

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)], (4.60)

subject to

ξk(dx) ¬ ωk(dx), k = 1, . . . ,K. (4.61)

The design ξ? above is then said to be a (Ψ, ω)-optimal design (Fedorov and
Hackl, 1997; Uciński and Patan, 2002a) on the analogy of Definition 3.1 (p. 62),
introduced in the context of directly constrained design measures.
Apart from Assumptions (A1)–(A5) and (A9), a proper mathematical formu-

lation calls for the following proviso:
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(A10) ωk(dx) is atomless, i.e. for any ∆X ⊂ X there exists a ∆X ′ ⊂ ∆X such that∫
∆X′

ωk(dx) <
∫
∆X

ωk(dx), k = 1, . . . ,K. (4.62)

In what follows, we write Ξ̄(X) ⊂ Ξ(X) for the collection of all the design
measures (4.50) which satisfy the requirement

ξk(∆X) =

{
ωk(∆X) for ∆X ⊂ supp ξk,
0 for ∆X ⊂ X \ supp ξk,

(4.63)

k = 1, . . . ,K.

Definition 4.2. For any given design ξ, the function ψk( · , ξ) defined by (4.54)
separates sets X1 and X2 with respect to ωk(dx) if for any two sets ∆X1 ⊂ X1
and ∆X2 ⊂ X2 with equal non-zero measures we have∫

∆X1
ψk(x, ξ)ωk(dx) ¬

∫
∆X2

ψk(x, ξ)ωk(dx). (4.64)

Then a suitable reformulation of the main result which characterizes the
(Ψ, ω)-optimal designs takes the following form:

Theorem 4.6. Let Assumptions (A1)–(A5),(A9) and (A10) hold. Then:

(i) There exists an optimal design ξ? ∈ Ξ̄(X), and

(ii) A necessary and sufficient condition for ξ? ∈ Ξ̄ to be (Ψ, ω)-optimal is that
ψk( · , ξ?) separates X?k = supp ξ?k and its complement X \X?k with respect to
the measure ωk(dx) for k = 1, . . . ,K.

This constitutes a direct generalization of Theorem 3.3 from page 62 and the
main ideas with suitable references for the proof are the same.

4.3.1.3. Scanning policy

A practical interpretation of Theorem 4.6 is that at all support points of an optimal
design component ξ?k the function ψk( · , ξ?) should take lower values than at other
points. This amounts to allocating observations in the vicinity of the points where
the least is known about the system response (automatically, measurements at
such locations will be the most informative).
One of the interpretations of the resultant optimal designs is obtained after

partitioning the domain X into subdomains ∆Xi (with relatively small areas).
Then, on the subinterval Tk, we allocate to each of them the number

N?k (∆Xi) =
⌈
N

∫
∆Xi

ξ?k(dx)
⌉

(4.65)

of sensors whose positions may coincide with nodes of some grid which further
could represent the possible locations of the scanning sensors.
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Making use of the above properties, there is a possibility to develop some nu-
merical algorithms of constructing approximated solutions to the analysed prob-
lem. Since ξ?k(dx) should be non-zero in the areas where ψk( · , ξ?) takes on smaller
values, the main idea is to move some measure from the areas with higher values
of ψk( · , ξn) to those with smaller values, as we expect that such a procedure will
improve ξn. This is embodied by the iterative algorithm presented below, being the
natural extension of the clusterization-free strategy algorithm presented in Section
3.2.2 to scanning observations (Uciński and Patan, 2002a):

Algorithm 4.1. Clusterization-free scanning strategy algorithm

Step 1. Guess an initial design ξ(0) ∈ Ξ̄. Set n = 0.

Step 2. For k = 1, . . . ,K separately set Xn1 (k) = supp ξ
(n)
k and Xn2 (k) = X \

Xn1 (k). Determine

xn1 (k) = arg max
x∈Xn1 (k)

ψk(x, ξ(n)), xn2 (k) = arg min
x∈Xn2 (k)

ψk(x, ξ(n)).

If ψk(xn1 (k), ξ
(n)) > ψk(xn2 (k), ξ

(n)) + ε, where ε � 1, then find two sets
Sn1 (k) ⊂ Xn1 (k) and Sn2 (k) ⊂ Xn2 (k) such that xn1 (k) ∈ Sn1 (k), xn2 (k) ∈ Sn2 (k)
and ∫

Sn1 (k)
ωk(dx) =

∫
Sn2 (k)

ωk(dx) = αn

(i.e. the measures of Sn1 (k) and S
n
2 (k) must be identical) for some αn > 0.

Otherwise, set Sn1 (k) = Sn2 (k) = ∅. If ψk(xn1 (k), ξn) < ψk(xn2 (k), ξ
n) + ε for

all k = 1, . . . ,K, then STOP.

Step 3. Construct ξ(n+1) such that

supp ξ(n+1)k = Xn+11 (k) = (Xn1 (k) \ Sn1 (k)) ∪ Sn2 (k).

for k = 1, . . . ,K. Increment n and to go Step 2.
�

The convergence of the algorithm is guaranteed if the sequence
{
αn
}∞
n=0 sat-

isfies the conditions

lim
n→∞

αn = 0,
∞∑
n=0

αn =∞. (4.66)

The maximal numbers of sensors allocated to the spatial element dx can be usually
expressed as ωk(dx) = %k(x)dx, k = 1, . . . ,K, where the %k’s play the roles of
density functions. But then it is always possible to propose an appropriate change
of coordinates which allows us to restrict attention to constant %k’s.
The proposed approach inherits all of more and less valuable characteristics of

the adopted clusterization-free strategy. For instance, a computer implementation
forces the replacement of all integration operators by summing over some suitable
regular grid elements. Furthermore, the sets X, Xn1 (k), X

n
2 (k), S

n
1 (k) and S

n
2 (k)
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Fig. 4.4 . Membrane and potential sites where the sensors can be placed in the
Example 4.2.

then simply consist of grid elements (in this case these are the potential sensor
locations). As a result, a rather abstract form of the above iterative procedure is
reduced to an exchange-type algorithm with the additional constraint that every
grid element must not contain more than one support point in each time subinterval
and the weights of all supporting points are equal. An additional assumption is that
the αn’s are fixed and one-point exchanges are most often adopted, i.e. Sn1 (k) ={
xn1 (k)

}
and Sn2 (k) =

{
xn2 (k)

}
, which leads directly to an extremely simple and

efficient implementation. On the other hand, the convergence to an optimal design
is assured only for a properly decreasing sequence {αn}∞n=0 and since it is not
generally true for fixed αn’s, some minor oscillations in Ψ[M(ξ(n))] may occur
when the density of the spatial grid is not sufficient.

Example 4.2. As an example, consider a vibrating T-shaped membrane shown
in Fig. 4.4. The membrane is fixed on the top and bottom boundaries, and is free
elsewhere. The amplitude y(x, t) of the transverse vibrations over a given time
interval T = [0, 10] is described by the hyperbolic equation

∂2y(x, t)
∂t2

= ∇ ·
(
γ(x)∇y(x, t)

)
+ 20 exp

(
− 50[x2 − (0.2t− 1)]2

)
in Ω, (4.67)

subject to the boundary and initial conditions

y(x, t) = 0 on {Γ1 ∪ Γ2} × T,

∂y(x, t)
∂n

= 0 on {Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ6} × T,

y(x, 0) = 0 in Ω,

∂y(x, 0)
∂t

= 0 in Ω.

(4.68)

The coefficient of the transverse elasticity has the distributed form

γ(x) = θ1 + θ2x21 + θ3x2, (4.69)
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Fig. 4.5 . Consecutive sensor configurations for the D-optimality criterion in the
T-shaped membrane example.

where parameter values θ1 = 100.0, θ2 = 5.0 and θ3 = 25.5 were assumed to
be nominal and known prior to the experiment. Our purpose is to construct a
D-optimal scanning strategy for determining most accurate estimates of the true
parameters θ1, θ2 and θ3 when applying N = 40 scanning sensors and the partition
of T defined by the switching points tk = k/2, k = 0, . . . , 20. The resulting optimal
solution is shown in Fig. 4.5, where open circles indicate the actual sensor positions.

The initial design was generated by randomly selecting its support points. A
simple one-point correction algorithm was employed (ε = 10−2) which produced
the solution after only 53 iterations, practically within 10 s on a low-cost PC
(Pentium II, 300 Mhz, using the Lahey/Fujitsu Fortran 95 compiler).

As regards the forcing term in our model, it approximates the action of a
line source whose support is constantly oriented along the x1-axis and moves with
constant speed from the bottom to the top boundary of Ω. This is reflected by the
consecutive configurations of the scanning sensors which also advance upwards.

F
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4.3.2. Optimal switching schedule

Although the approach based on directly-constrained design measures proposed
in the preceding section turns out to be extremely efficient in practice, its main
limitation is that it can be used only when the number of sensors is relative-
ly high (Uciński and Patan, 2002a). One of the major difficulties in the sensor
scheduling problem is its combinatorial nature. It is compounded further if the
sensor switchings are allowed to take place in continuous time, i.e. they are not
established arbitrarily. In (Lee et al., 2001) a similar problem was considered for
state estimation. In that work, the proposed solution was to make use of some
recently obtained results on discrete-valued optimal control problems. By intro-
ducing the transformation described in (Lee et al., 2001), it was shown that the
original discrete-valued control problem with variable switching times can be trans-
formed into an equivalent continuous-valued optimal control problem which can
then be solved using readily available optimal-control techniques. The aim of the
considerations presented in what follows and originally developed in (Patan and
Uciński, 2003) for the scalar case is to outline how this approach can be adopted
to calculating optimal switching schedules for parameter estimation. This does not
constitute a trivial task, as the natures of the sensor location problems for state
and parameter estimation are of different character.

4.3.2.1. Optimal sensor scheduling problem

The considered class of MIMO spatio-temporal systems is described just like in
the previous section, i.e. it is defined by (2.1)–(2.3) with the same notation and
assumptions regarding spatial and temporal domains.
In what follows, we suppose that there are N stationary sensors located at

given points x1, . . . , xN of Ω ∪ ∂Ω. The additional assumption that at a given
time moment only one sensor may be active while the others remain dormant
simplifies considerations and provides the clarity of analysis and discussion. A
sensor activation schedule can be represented by a function (Lee et al., 2001)

u : T → Λ = {1, . . . , N}. (4.70)

In particular, u(t) = j means that the j-th sensor is used at time t. Hence the set
of admissible sensor schedules is given by the set

U = {u : T → Λ | u( · ) is measurable}. (4.71)

Each sensor makes noisy observations of the state continuously in time, which can
be formally represented as

z(t) =
N∑
j=1

χ{u(t)=j}(t)
[
y(xj , t; θ) + εj(t)

]
(4.72)

for t ∈ T , where

χ{u(t)=j}(t) =

{
1 if u(t) = j,
0 otherwise,

(4.73)
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and εj( · ) denotes the measurement noise assumed to be zero-mean, Gaussian, and
uncorrelated in both time and space.
Sensor positions which guarantee the best accuracy of the least-squares esti-

mates of θ are then found by choosing u( · ) ∈ U so as to minimize some scalar
measure of performance Ψ defined on the average FIM given in this situation by
(Quereshi et al., 1980)

M =
N∑
j=1

∫ tf
0

χ{u(t)=j}(t)G
T(xj , t)C−1(xj , t)G(xj , t) dt, (4.74)

where G stands for the matrix of sensitivity coefficients defined by (4.7) and C is
some known positive definite matrix of the same structure as in (4.11).
Thus we formulate the sensor location problem as the optimization one

Ψ
[
M(u( · ))

]
−→ min (4.75)

with respect to u( · ) ∈ U .

4.3.2.2. Equivalent Mayer problem

Note that the sensor selection problem (4.75) can be cast as an optimal-control
problem in Mayer form. Indeed, defining the quantity

Π(t) =
N∑
j=1

∫ t
0
χ{u(τ)=j}(τ)G

t(xj , τ)C−1(xj , τ)G(xj , τ) dτ, (4.76)

we get
M = Π(tf ). (4.77)

Thus the finding of u( · ) ∈ U minimizing Ψ
[
M(u( · ))

]
amounts to the following

problem:

Problem 1. Choose u?( · ) ∈ U to minimize the performance index

J(u( · )) = Ψ[Π(tf )], (4.78)

subject to the constraint in the form of the nonlinear differential equation

d
dt
Π(t) =

N∑
j=1

χ{u(t)=j}(t)G
T(xj , t)C−1(xj , t)G(xj , t),

Π(0) = 0.

(4.79)

Problem 1 is an optimal control one in which the main difficulty is that the
range set of the control is discrete and hence not convex. Furthermore, choosing
the appropriate elements from the control set in an appropriate order is, in fact,
a nonlinear combinatorial optimization problem.
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4.3.2.3. A computational procedure based on the CPET

A first approach to handle Problem 1 is to view this optimal discrete-valued con-
trol problem as that of determining the switching points of the optimal discrete-
valued control directly, but this may lead to serious numerical difficulties since
the switchings (i.e. possible discontinuities) may occur at any time in the interval
[0, tf ]. A novel problem transformation called the Control parameterization En-
hancing Technique (CPET) was proposed in (Lee et al., 1999) to address these
difficulties. Under the CPET, the switching points are mapped onto the integers,
and the transformed problem is just an ordinary optimal control problem with
known and fixed switching points. It can then be readily solved numerically by
numerous existing techniques.
As in (Lee et al., 2001), where the CPET was employed to construct an

optimal sensor schedule for finding optimal mean-square estimates of the system
state, we set Q = rN2, where r is an assumed maximum number of times any
sensor i ∈ Λ is being selected. We introduce a new time scale variable s which
varies from 0 to Q. Let V denote the class of non-negative piecewise constant scalar
functions defined on [0, Q) with fixed interior knot points located at {1, 2, . . . , Q−
1}. The CPET transformation from t ∈ [0, tf ] to s ∈ [0, Q] is defined by the
differential equation

dt
ds
= v(s), t(0) = 0, (4.80)

where the scalar function v( · ) ∈ V is called the enhancing control which satisfies∫ Q
0
v(s) ds = tf . (4.81)

Furthermore, we introduce a fixed function µ : [0, Q]→ Λ,

µ(s) = (i mod N) + 1, s ∈ [i, i+ 1), (4.82)

for i = 0, 1, . . . , Q−1. The idea of this CPET transformation is to let any u(t) ∈ U
be naturally represented by a v(s) ∈ V whenever this fixed µ(s) is defined.
Substituting (4.80) into (4.78)–(4.79) and setting P (s) = Π(t(s)), we obtain

the following equivalent problem:

Problem 2. Find a v ∈ V such that the cost functional

J (v( · )) = Ψ[P (Q)] (4.83)

is minimized, subject to the constraints

d
ds
P (s) = v(s)

[
N∑
j=1

χ{µ(s)=j}(t)G
T(xj , t(s))C−1(xj , t(s))G(xj , t(s))

]
,

P (0) = 0.

(4.84)

and (4.81).
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Problem 2 can be solved with relative ease, as the switching points of the orig-
inal control are mapped onto the set of integers in chronological order. Piecewise
integration can now be easily performed since discontinuity points in the s-domain
are known and fixed.

Theorem 4.7. Assume that the maximum number of selections (or activations)
of any sensor j ∈ Λ is finite and equal to r. Then Problems 1 and 2 are equivalent
if Q ­ rN2.

Proof . This result may be proved in much the same way as the corresponding
theorem in (Lee et al., 2001) and thus the proof is omitted. �

Remark 4.3. Note that the delineated method can be extended to the case of
several scanning sensors with no major difficulties. The only change we need to
make is the definition of Λ. In particular, if n sensors are to be used, there are
altogether N ′ =

(
N
n

)
ways of activating n sensors from a total of N sensors. Then,

we can define Λ = {1, . . . , N ′} and the meaning of each j ∈ Λ is to be understood
as one of the sensor combinations.

Remark 4.4. Another question is the determination of an optimal number of
switchings, as in the above algorithm a fixed maximal number of switchings is
assumed. A heuristic approach proposed in (Lee et al., 1999) to circumvent this
problem is the following: Starting with a fixed r, we solve Problem 1. We then
increment the number of switchings and solve Problem 1 again. If there is no de-
crease in the optimal cost, we adopt the previous value of r to be the optimal
number of switchings, otherwise we increase r further.

Example 4.3. As an illustrative example to verify the performance of the pro-
posed approach, consider the air pollutant transport process over a given area.
At the initial time instant, a pollutant is emitted to the atmosphere from the left
side of a spatial domain Ω shown in Fig. 4.3 together with the velocity field of
the transport medium, which was assumed to be a solid rotation field. The prob-
lem considered here is similar to the Molenkamp-Crowley advection test combined
with a diffusion process (Berkvens et al., 1999).

The concentration y(x, t) of substances over a given unit time interval T =
[0, 1] is described by the following advection-diffusion equation:

∂y(x, t)
∂t

+∇ ·
(
v(x)y(x, t)

)
= ∇ ·

(
d(x)∇y(x, t)

)
, x ∈ Ω

subject to the boundary and initial conditions:

∂y(x, t)
∂n

= 0, (x, t) ∈ ∂Ω× T,

y(x, 0) = 20e−50[(x1−0.3)
2+x22], x ∈ Ω,

The distributed diffusion coefficient was modelled in the following form:

d(x) = θ1 + θ2x21 + θ3x
2
2 + θ4x1x2, (4.85)
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where the parameters θ = (0.08, 0.03, 0.02, 0.05) were assumed to be nominal. The
aim of the experiment was to find an optimal sensor activation policy for determin-
ing the most accurate estimate of the true parameter vector θ. At one time instant
only two sensors from among four possible data sources (see Fig. 4.3) could be ac-
tivated. The consecutive combinations of activated sensors are coded as successive
integers (see Table 4.1) which also stand for the levels of the input control signal
uc. A computer program was implemented in the Matlab 6.1 environment using

Table 4.1. Combinations of activated sensors

uc Active sensors

1 I, II
2 II, III
3 III, IV
4 I, IV
5 I, III
6 II, IV

a standard PC (Pentium IV processor, 1.7GHz, 768MB RAM) running Windows
2000. The system of state and sensitivity PDE’s was first solved with the use of
another program written in Matlab with the aid of PDE Toolbox routines (using
a triangular grid with 1500 nodes and 21 divisions of the time interval). The sensi-
tivity coefficients were then linearly interpolated and stored. Finally, to solve the
constrained optimization problem (4.83)–(4.84) the fmincon routine from the Mat-
lab Optimization Toolbox was employed. The constraints in the form of the ODE
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Fig. 4.7 . D-optimal sensor switching policy of Example 4.3.

system (4.84) were implemented using the ode45 routine from the Matlab ODE
suite (piecewise integration over each interval of the s-domain where the solution
is continuous). Let us note here that the integral equation (4.81) was transformed
to its differential form and added to the constraints. The maximal number of
switchings used in our simulations was assumed to be equal to 2 (this means that
any sensor combination could be activated maximum twice). The CPET approach
produced the following control signal within approximately 3 minutes:

uc(t) =



1, 0.00 ¬ t < 0.26,
2, 0.26 ¬ t < 0.52,
3, 0.52 ¬ t < 0.65,
4, 0.65 ¬ t < 0.88,
1, 0.88 ¬ t < 0.98,
4, 0.98 ¬ t < 1.00.

This solution is plotted in Fig. 4.7. Figure 4.8 illustrates the optimal sensor acti-
vation policy versus contour plots of pollutant concentration, where open circles
indicate the active sensor locations and points indicate the available sensor posi-
tions.

F

4.4. Optimal measurement strategies for correlated observations

Until now, one of the most characteristic properties of spatial data acquisition
techniques, namely the fact that observations made at different sites are often
determined by local correlations, was consequently omitted, which is on one hand
very convenient and leads to elegant solutions, but on the other hand, it is not



4. Optimal measurement strategies for dynamic DPS’s 125

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(a) t = 0 (b) t = 0.26

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(c) t = 0.52 (d) t = 0.65

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(e) t = 0.88 (f) t = 0.98

Fig. 4.8 . Contour plots of pollutant concentrations and consecutive sensor switch-
ings in Example 4.3.
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justified in a high number of applications. In addition to this, usually there is no
possibility of using replicated measurements. In fact, most often in practice the
experimental conditions are extremely difficult to reconstruct or such a procedure
is unacceptable (a good example here is the process of pollutant emission to the
natural environment). This fact is of crucial importance as the classical concept
of design measures is not applicable to this case.

The situation for dynamic DPS’s is even more complicated since the measure-
ments are usually taken according to some regular schedule or they are continu-
ously recorded. Thus, random errors can be correlated both in time and space.
Obviously, such simultaneous correlation dependencies involve an extremely diffi-
cult nature of the problem. For this reason, to the best of the author’s knowledge,
most contributions are focused only on the spatially or time correlated measure-
ments separately with no attention paid to the correlated outputs.

To deal with the problem, two main approaches can be distinguished. The
first idea is to exploit some well-known numerical techniques of constrained op-
timization where suitably defined additional constraints representing admissible
distances between observations in time and space are imposed. Direct application
of optimization techniques by no means excludes the clusterization effect, but when
the number of sensors is quite high, the problem complexity considerably increases.
In terms of the interpretation and applicability, such an approach is very attractive
in the context of mobile sensors (Uciński, 1999a). The second approach consists in
taking into account the mutual correlations between all measurements by appro-
priately modifying the information matrix. This alternative approach constitutes
the subject of the next section.

4.4.1. Correlated measurement errors

For simplicity, the considerations are limited to stationary sensors with the obser-
vations taken in accordance with some discrete time schedule. Generalizations to
more general models and observation strategies (i.e. scanning and movable sen-
sors) can be made with minor difficulties of technical nature. Let us assume that
the random errors in the model (2.7) are correlated and the covariance structure
is known (either the covariance matrix C or the covariance kernel is given). If the
system state y is directly measurable, this is equivalent to the output equation

zj(tk) = y(xj , tk; θ) + ε(xj , tk), j = 1, . . . , N, k = 1, . . . , q, (4.86)

where zj( · ) is an r-dimensional output, tk ∈ T = [0, tf ] and the zero-mean random
field ε( · ) representing measurement errors is described by the known continuous
covariance kernel

E[ε(x, χ)εT(t, τ)] = K(x, χ, t, τ). (4.87)
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The generalized least-squares estimate of the unknown parameter vector θ from
the set of experimental observations (4.86) is given by

θ̂ = argmin
θ∈Θ

r∑
i1=1

r∑
i2=1

N∑
j1=1

N∑
j2=1

q∑
k1=1

q∑
k2=1

w`1`2
[
zj1i1 (tk1)− yi1(x

j1 , tk1 ; θ)
]

×
[
zj2i2 (tk2)− yi2(x

j2 , tk2 ; θ)
] (4.88)

where `1 = rq(j1−1)+ r(k1−1)+ i1, `2 = rq(j2−1)+ r(k2−1)+ i1, 1 ¬ `1, `2 ¬
L = rNq.
The weights w`1`2 constitute the elements of the inverse of the covariance

matrix

C−1 =W =

w11 · · · w1L
...
. . .

...
wL1 · · · wLL

 =
K(x

1, x1) · · · K(x1, xN )
...

. . .
...

K(xN , x1) · · · K(xN , xN )


−1

(4.89)

where

K(x, χ) =

K(x, χ, t1, t1) · · · K(x, χ, t1, tK)
...

. . .
...

K(x, χ, tK , t1) · · · K(x, χ, tK , tK)

 , K(x, χ, t, τ) ∈ Rr×r.

Notice that if any two sensors are placed at the same location, then the corre-
sponding columns (and rows) of C are identical, which leads to the singularity of
the covariance matrix. Since the replications of the measurements are no longer
justified, the following compact notation for the design of experiment will be sub-
sequently used in the further analysis

ξ = {x1, . . . , xN}. (4.90)

In the case considered, the Fisher Information Matrix (FIM) takes the form

M(ξ) = FTC−1F, (4.91)

where

F=

F (x
1)
...

F (xN )

 , F (x)=
∇

T
θ y(x, t1, θ

0)
...

∇Tθ y(x, tK , θ0)

 , ∇θy(x, t, θ0)=
∂y(x, t, θ

0)/∂θ1
...

∂y(x, t, θ0)/∂θm

 (4.92)
and θ0 stands for a prior estimate of the unknown parameter vector θ.
Unfortunately, the information matrix (4.91) does not inherit the advantages

of its predecesor (2.17). The valuable property of the additivity of information ma-
trices corresponding to single observations is no longer valid. Thus, the information
pieces from individual observations cannot be separated and therefore direct appli-
cation of the results from convex optimization is rather impossible. Furthermore,
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as was already mentioned, the classical definition of the design measures as the
proportion of the experimental effort is generally impractical. From among all de-
signs, the one which minimizes the performance index Ψ has to be selected. This
can be formulated as the optimization problem

ξ? = arg min
ξ∈Ξ(X)

Ψ[M(ξ)] (4.93)

which, besides a similar notation, does not have much in common with (2.51).
For example, it is not convex any more and direct application of the numerical
algorithms known from convex optimization is impossible.

4.4.1.1. An exchange-type procedure for computation of optimal designs

Practical determination of optimal designs in the context of correlated measure-
ments creates significant problems of numerical nature. For that reason, there are
few available results on this subject, in which the contributors try to imitate some
iterative methods of optimal design construction for the uncorrelated case. Usu-
ally the authors assume the correlation-free framework with many well-developed
techniques of finding acceptable designs. Since correlations between observations
in real spatio-temporal dynamic systems are rather natural, such an assumption
can often hardly be accepted.
For calculation of exact designs, it is possible to adapt the exchange-type

numerical scheme proposed by Brimkulov et al. (1986) which originally was used
for the determination of the D-optimum sampling points for parameter estimation
in linear models of random fields.
A generalized version of this algorithm is outlined below. Starting from an

arbitrary initial N -point design ξ(0), in each iteration this procedure generates a
new support point which is included into the current design instead of an existing
point which will be deleted, in such a way as to maximize the resulting decrease
in the performance index Ψ of the FIM. For iteration ` the following notation is
used: F (`) is the current matrix of sensitivity coefficients in (4.92), W (`) stands
for the current weighting matrix (4.89), M (`) means the resulting FIM and D(`)

stands for its inverse. In addition to that, Λ = {1, . . . , N} and ξ(`)xj�x denotes the
design in which the support point xj is replaced by x.

Algorithm 4.2. Exchange-type algorithm for correlated measurements

Step 1. Select an initial design ξ(0) =
{
x1(0), . . . , xN(0)

}
such that t(0)i 6= t

(0)
j for

i, j ∈ Λ and i 6= j. Calculate the matrices F (0), W (0) and M (0). If M (0) is
singular (i.e. detM (0) = 0), then select a new initial design and repeat this
step.

Step 2. Calculate D(0). Set ` = 0.

Step 3. Determine
(j∗, x∗) = arg min

(j,x)∈Λ×X
∆(xj , x),
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where ∆(xj , x) =
{
Ψ[M(ξ(`)xj�x)]−Ψ[M(ξ

(`))]
}
/Ψ[M(ξ(`))].

Step 4. If |∆(xj∗ , x∗)| ¬ δ, where δ is some given positive tolerance, then STOP.
Otherwise, set ξ(`+1) = ξ(`)

xi∗�x∗ and determine F
(`+1), W (`+1), M (`+1) and

D(`+1) corresponding to ξ(`+1). Set `← `+ 1 and go to Step 3.
�

From the point of view of nonlinear programming, treating the design prob-
lem as an optimization one with a collection of decision variables ξ = {x1, . . . , xN}
and the performance index Ψ[M(ξ)], the algorithm outlined above is very simi-
lar to the Gauss-Seidel algorithm (Findeisen et al., 1980). The only difference lies
in the update which takes place only for the coordinate xj for which the result-
ing decrease in Ψ[M(ξ)] is the largest. In the classical Gauss-Seidel relaxation
scheme (also known as the block coordinate ascent method, cf. Bertsekas, 1999),
each iteration consists of N one-dimensional search steps with respect to variables
x1, . . . , xN taken in cyclic order. If an increase in Ψ[M(ξ)] is attained for some
j after performing the search, then the corresponding variable xj is immediately
updated. Consequently, the presented simple exchange routine has similar prop-
erties regarding convergence to the Gauss-Seidel algorithm and in particular only
convergence to a local minimum is assured. From a practical point of view, in order
to obtain an approximation to a global minimum, several restarts of the algorithm
from different initial designs are necessary.
In spite of the great simplicity of Algorithm 4.2, its main inconvenience results

from the fact that the form of the FIM is much more cumbersome that in the
case of independent measurements and automatically the computational effort of
updating matrices in Steps 3 and 4 is not acceptable in most practical situations.
Fortunately, for particular criteria (e.g. D-optimality) there exist possibilities of
optimizing those updates through elimination of matrix inversions, which leads to
a dramatic reduction in the computational cost.

4.4.1.2. Implementation details for the D-optimum criterion

When the goal is to determine a D-optimum design using Algorithm 4.2, the speed
can be substantially improved by suitable optimization of the computations. This
may be achieved through elimination of time-consuming matrix inversions and
calculation of the determinants following the ideas from (Brimkulov et al., 1986).
Implementation of the optimization appearing in Step 3 of Algorithm 4.2

requires multiple repetition of the passage from design ξ(`) to ξ(`)xj�x. Such a task

can be split into two stages: the removal of location xj from ξ(`) and then the
inclusion of a new point x in place of the deleted one. Obviously, both the stages
imply suitable updates in all the matrices corresponding to the current design.
But before we will give the appropriate update formulae, it is necessary to prove
some valuable results which lead to the extreme efficiency of the considered stage
of the algorithm.
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First, consider the inclusion of a new point x into the actual design. In order
to determine the updated version of the FIM (for N + 1 spatial locations) define

V (x) =
[
K(x, x1), . . . ,K(x, xN )

]T
, B(x) = −C−1N V (x), (4.94)

Γ (x) = [K(x, x)− V T(x)C−1N V (x)]−1, G(x) =
[
FT(x) + FTNB(x)

]
, (4.95)

where CN and FN play the roles of the covariance and sensitivity matrices defined
for the design ξ = {x1, . . . , xN}, respectively. Now we are able to formulate the
following result

Proposition 4.8. Let MN be the information matrix for the design ξN = {x1,
x2, . . . , xN}. Then the information matrix for the design ξN+1 = ξN ∪{x} is given
by the formula

MN+1 =MN +G(x)Γ (x)GT(x).

Proof . See Appendix A.3. �

Remark 4.5. Note that C−1N+1 decomposes into

C−1N+1 =

 VN L(x)

LT(x) Γ (x)

 . (4.96)

Making use of (A.22), we can express CN and MN by the elements of CN+1 and
MN+1, respectively:

CN = VN −B(x)Γ (x)BT(x) = VN − L(x)Γ−1(x)LT(x) (4.97)

MN =MN+1 −G(x)Γ (x)GT(x), G(x) = FT(x) + FTNL(x)Γ
−1(x) (4.98)

In order to construct a numerical procedure for determining optimal exper-
iment designs, it is necessary to establish relationships between the information
matrices after removing a support point and adding a new one to the design. As-
sume that a point xr ∈ ξN = {x1, . . . , xN} is to be replaced by a new point xa.
Then, without loss of generality, we can assume that xr = xN . In fact, it is always
possible to rearrange the points in the design and all matrices (by swapping appro-
priate rows and columns) in such a way as to obtain the location xr in the N -th
position. Such an interchange makes the resulting formulae clearer and more ele-
gant, while simplifying the implementation. Denote by ξ̃N =

{
ξN \ ξ(xN )

}
∪ ξ(xa)

the resulting design. Then Proposition 4.8 yields the following relation between
the information matrices M̃N and MN corresponding to the designs ξ̃N and ξN :

M̃N =MN −G(xN )Γ (xN )GT(xN ) +G(xa)Γ (xa)GT(xa). (4.99)

Based on this result, it is possible to formulate a more precise relation in terms of
the performance index Ψ, in particular for the determinants of both the designs.
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Proposition 4.9. Let M̃N be the FIM for the design ξ̃N = {x1, . . . , xN−1, xa}
and MN be the FIM for ξN = {x1, . . . , xN}. Then

det(M̃N ) = det(MN ) det(I +Υ),

where

Υ =

 DaΓ (xa) ıDarΓ (xN )

ıDTarΓ (xa) −DrΓ (xN )

 , ı =
√
−1

and

Da = GT(xa)DN+1GT(xa), Dr = GT(xN )DNGT(xN ),

Dar = GT(xa)DN+1GT(xN ), DN =M−1N .

Proof . See Appendix A.3. �

Remark 4.6. From (A.29) it follows immediately that(
det(M̃N )− det(MN )

)
/det(MN ) = det(I +Υ)− 1. (4.100)

Moreover, the inverse of M̃N can be expressed as

D̃N = M̃−1N =
[
MN +GΓGT

]−1
= DN −DNG(Γ−1 +GTDNG)−1GTDN .

(4.101)

So it is clear that in order to compute the performance ratio ∆(xj , x) and suitable
updates of the matrices in Step 3 which are time-consuming operations, we may
operate on matrices whose size is N/2 times smaller in the case of calculating
determinants and N times smaller while inverting them as a whole.

Based on the above results, we are capable of precisely establishing the nec-
essary calculations during the passage from the design ξ(`) to ξ(`)

xN�x, which guar-
antees the extreme reduction in the computational burden.
The detailed scheme of the computations is as follows:

Stage 1: Deletion of xN from ξ(`). Write F (`) as

F (`) =

 Fr

F (xN )

 , (4.102)

where Fr ∈ RrK(N−1)×m and F (xN ) ∈ RrK×m. Deletion of xN from design ξ(`)
implies removing F (xN ) from F (`), so that we then have Fr instead of F (`). Con-
sequently, some updates of matrices W (`) and M (`) are also necessary. Namely,
decomposing the symmetric matrix W (`) according to Remark 4.5 as

W (`) = C−1 (`) =

 Vr L(xN )

LT(xN ) Γr(xN )

 , (4.103)
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where Vr ∈ RrK(N−1)×rK(N−1), L(xN ) ∈ RrK(N−1)×rK , Γr(xN ) ∈ RrK×rK , and
setting

Gr(xN ) = FT(xN ) + FTr L(x
N )Γ−1r (x

N ), (4.104)

we are able to calculate the following counterparts of W (`) and M (`):

Wr=Vr− L(xN )Γ−1r (xN )LT(xN ), Mr=M (`)−Gr(xN )Γr(xN )GTr (xN ). (4.105)

Stage 2: Inclusion of x into the design resulting from Stage 1. At this stage a new
sensitivity matrix Fa(x) is constructed

Fa(x) =

 Fr

F (x)

 , (4.106)

where F (x) is defined according to (4.92). Such an augmentation influences the
form of the matrices Wr and Mr obtained at Stage 1. Analyzing the proof of
Proposition 4.8, it is easy to deduce the respective updated versions Wa(x) and
Ma(x). Rewritting (4.94) and (4.95) as follows:

V (x) =
[
K(x, x1), . . . ,K(x, xN−1)

]T
, B(x) = −WrV (x), (4.107)

Γa(x) = [K(x, x)−V T(x)WrV (x)]−1, Ga(x) =
[
FT(x) + FTr B(x)

]
, (4.108)

we obtain

Wa(x) =

 Wr +B(x)Γa(x)BT(x) B(x)Γa(x)

Γa(x)BT(x) Γa(x)

 , (4.109)

Ma(x) =Mr +Ga(x)Γa(x)GTa (x). (4.110)

Remark 4.7. It is not clearly seen, but it can be easily verified that Ga(xj) = 0
for j = 1, . . . , N − 1. In combination with (4.109), this confirms the fact that an
additional observation at the same point does not provide more information about
the estimated parameters and inclusion of such a point into the design does not
alter the information matrix. Consequently, the resulting optimal design should
be automatically replication-free.

Once the point xN has been replaced by x, the ratio ∆(xN , x) in Step 3 of
Algorithm 4.2 can be calculated based on Proposition 4.9 as

∆(xN , x) = det

I +
 Da(x)Γa(x) ıDar(x)Γr(xN )

ıDTar(x)Γa(x) −DrΓr(xN )

− 1, (4.111)

where ı =
√
−1 and

Da(x) = GTa (x)D
(`)GTa (x), Dr = GTr (x

N )D(`)GTr (x
N ),

Dar(x) = GTa (x)D
(`)GTr (x

N ).
(4.112)
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A result of performing Step 3 is the pair of points xj
∗ ∈ ξ(`) and x∗ ∈ X which

ensure the largest increase in the performance ratio (this amounts to minimization
of the D-optimality criterion) in the current iteration. In such a way, the update
of the matrices in Step 4 looks as follows:

F (`+1) = Fa(x∗), W (`+1) =Wa(x∗), M (`+1) =Ma(x∗), (4.113)

D(`+1) = D(`) −D(`)G(Γ−1 +GTD(`)G)−1GTD`, (4.114)

where

G =
[
Ga(x) ıGr(xN )

]
, Γ =

[
Γ (x) 0

0 Γ (xN )

]
, ı =

√
−1. (4.115)

Finally, the new value for the criterion (D-optimality) is equal to

det(M (`+1)) = det(M (`)) det(I +∆(xN , x∗)). (4.116)

Thus, applying the above formulae the efficiency of the algorithm can be signif-
icantly improved and its performance imitates Fedorov’s exchange algorithm for
determining exact designs for the uncorrelated case (Fedorov, 1972).

4.4.2. A final comment on the correlation structure

The results discussed in the previous section are essentially based on a priori
knowledge of the covariance structure for measurement errors. Such a situation is
possible, but rather uncommon in practice, and thus the form of the correlations
has to be estimated. Nevertheless, there are several classes of processes for which
it is possible to construct the covariance kernel in closed form or the corresponding
eigenvalues and eigenfunctions are known, which allows us to expand the kernel
into a series. For example, the spatial kernel for the Brownian motion is described
by (Butkovskiy, 1982)

k(x, χ) = min(x, χ), 0 ¬ x, χ ¬ 1,

and its eigenvalues and eigenfunctions are

λi = (i− 1/2)−2π−2, fi(x) =
√
2 sin

(
(i− 1/2)πx

)
, i = 1, 2, . . . ,

respectively. Another example is the Poisson kernel, whose shape can be controlled
by a parameter β (Butkovskiy, 1982)

k(x, χ) =
1− β2

1− 2β cos 2π(x− χ) + β2
, 0 ¬ x, χ ¬ 1, 0 ¬ β ¬ 1

and

λ0 = 1, λ2i−1 = λ2i = βi,

f0(x) = 1, f2i−1 =
√
2 cos(2iπx), f2i(x) =

√
2 sin(2iπx), i = 1, 2, . . .
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However, for most real-world problems it is impossible to represent the co-
variance kernels in a simple closed form. Then a standard approach is to use some
approximations based on the series expansion. It can be shown that under very
mild conditions the series

kn(x, χ) =
n∑
i=1

λifi(x)fi(χ), x, χ ∈ X,

where λi and fi(x) are respectively the eigenvalues and eigenfunctions of the co-
variance kernel k(x, χ), is uniformly and absolutely convergent (Kanwal, 1971).
Therefore for a sufficiently large n the kernel kn(x, χ) can be a sufficient approx-
imation of k(x, χ). For instance, the covariance kernel for two dimensional trans-
port problems including heat convection or diffusion over a finite domain can be
expressed as (Butkovskiy, 1982)

k(x, χ) = 4
∞∑
i=1

∞∑
j=1

λij sin(iπx1) sin(jπx2) sin(iπχ1) sin(jπχ2), (4.117)

whereX = {x : 0 ¬ x1, x2 ¬ 1}. The corresponding eigenvalues and eigenfunctions
are

λij = exp [−σ2π2(i2 + j2)], fij(x) = 2 sin(iπx1) sin(jπx2), i, j = 1, 2, . . .

and σ is some constant. When X becomes infinite with respect to any coordinate,
the above-mentioned physical processes lead to Gaussian-type kernels, which are
in particular of the isotropic form (Nychka and Saltzman, 1998)

k(x, χ) = σ2 exp (−‖x− χ‖/β)

or its extension allowing for the use of different marginal variances

k(x, χ) = σ(x)σ(χ) exp (−‖x− χ‖/β).

This type of kernels will be subsequently exploited within the framework of some
applications considered in this work.
Allowing for correlations between the measurement errors in time domain

further complicates the situation, but qualitatively it does not change much from
a methodological point of view. Nevertheless, the practical engineering problems
often rule out any possibilities of obtaining closed forms of covariance kernels
and more complex approaches are necessary. To resolve those difficulties, suit-
able techniques of the direct estimation of the covariance matrix can be proposed
(Fedorov, 1996) which complement the delineated methodology. Of course, we have
to remember that if the expected measurement error is only of instrumental na-
ture, the ‘white noise’ becomes automatically the most reasonable model with a
known covariance kernel which is still of interest for many practical applications.

Example 4.4. At this juncture, trying to give some representative and illustra-
tive example, consider an atmospheric pollutant transport-chemistry process over
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a unit circle. In contrast to Example 4.3, however, assume that the velocity of
the transport medium is zero everywhere. Instead, we take into account an active
source of pollution and reaction, which leads to the decay of pollutant concentra-
tion y(x, t). The entire process over the observation interval T = [0, 10] is modelled
with the following diffusion-reaction equation:

∂y(x, t)
∂t

= θ1
[
∇2y(x, t) + 4y(x, t)− 4θ2e−4θ1t

]
, x ∈ Ω = {x : x21 + x22 < 1},

(4.118)

where the second term on the right-hand side is responsible for the reaction and the
last term represents some exponential source of contamination over Ω. Equation
(4.118) is supplemented by suitable boundary and initial conditions

y(x, t) = 0, (x, t) ∈ ∂Ω× T, (4.119)

y(x, 0) = θ2(1− x21 − x22), x ∈ Ω. (4.120)

This time the task consists in determining the locations of an arbitrary number
of stationary sensors for estimation of the diffusion coefficient θ1 and the relative
amplitude of the source θ2. The measurements are assumed to be corrupted by the
noise which is zero-mean and correlated in time and space with covariance kernel
k(x, χ, t, τ) = exp(−ρt|t− τ |) exp(−ρx‖x− χ‖).
The problem (4.118)–(4.120) has the closed-form solution, i.e.

y(x, t) = θ2(1− x21 − x22)e−4θ1t. (4.121)

The nominal parameter values θ1 = 0.05 and θ2 = 0.02 were used. The central
symmetry of the problem and the fact that the sensitivities ∂y/∂θ1 and ∂y/∂θ2
take their maximal values at point (x1, x2) = (0, 0) suggest that a one-point design

ξ? = {(0, 0)} (4.122)

is D-optimal for the stationary sensor strategy on the assumption of independent
measurements. Indeed, passing the polar coordinates it can be verified that the
determinant of the FIM in the case of a one-point design takes the form

det(M(ξ)) =
1
4
e−8− 9

2
e−4+

1
4
−r2+18e−4r2−27e−4r4+3

2
r4−r6+1

4
r8

−e−8r2+3
2
e−8r4−e−8r6+18e−4r6+1

4
e−8r8− 9

2
e−4r8,

(4.123)

where r =
√
x21 + x

2
2 and 0 ¬ r ¬ 1. Function (4.123) takes its maximal value at

r = 0, which corresponds to the centre of the circular domain which is the most
informative point for observations, and it can be easily checked that (4.122) is
optimal.
In order to find optimal locations for taking measurements, a program based

on the developed algorithm was written in Matlab v. 6.5. R12.1 and run on a
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Fig. 4.9 . D-optimum sensor allocation for N = 5 and 15 measurements for small
(ρx = 100), medium (ρx = 5) and considerable (ρx = 1) spatial correlations,
respectively.
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PC equipped with Duron 900MHz CPU and running Windows 2000. The two-
dimensional search for a candidate to include into the current design was imple-
mented using the routine fmincon from the Optimization Toolbox.
The influence of the mutual correlations of observations on the sensor alloca-

tion was tested by varying the coefficient ρx. For clarity, the correlation in time
was assumed to be negligible (i.e. ρt = 100). The results obtained for relative small
and medium numbers of measurements are presented in Fig. 4.9.
An analysis of the obtained results leads to the conclusion that the level of

correlation directly affects the distances between the sensors which are increasing
when the correlation is more intense. If the correlation is small, then the measure-
ments tend to cluster in the vicinity of the optimal design support for the case
of independent measurements. Another important remark is that the higher the
correlation, the lower the criterion value. This effect results from a more global
character of the mutual influence between random error realizations in the case
of higher correlation values. Due to the interference with the estimation of the
unknown parameters, the valuable information in observations is reduced. Note
that due to the problem symmetry every solution constructed by rotation of those
presented in Fig. 4.9 by any angle is an equivalent approximation of the optimal
sensors allocation. This phenomenon also affects the performance of the algorithm
and for numerical reasons in the case of N = 15 measurements the solutions are
not as regular as in the simplest case when N = 5.

F

4.5. Optimal experiment design in model-based diagnostics

Nowadays, we can observe an extremely fast development of methods of fault
detection and isolation (FDI) for dynamical systems. There exist a wide variety
of different techniques with many potential applications and rich literature. For
surveys, the interested reader is referred to (Isermann, 1997; Frank and Köppen-
Seliger, 1997; Chen and Patton, 1999; Patton and Korbicz, 1999; Duch et al., 2000;
Patton et al., 2000; Chiang et al., 2001; Korbicz et al., 2001; Korbicz et al., 2004).
Nevertheless, there is a lack of effective methods specialized in dynamic DPS’s.
Furthermore, within the framework of FDI systems, the optimization of the data
acquisition process which increases the reliability of the diagnosis is most often
neglected and the contributions are very scarce. Some approaches to fill this gap
are indicated in the works (Patan and Patan, 2001; 2003) related to LPS’s and in
(Uciński, 2003; Kuczewski et al., 2003; Kuczewski et al., 2004; Demetriou, 2000)
in the context of fault diagnosis in DPS’s.
A proper recognition of an abnormal behaviour of the examined object leads

to the necessity of the very precise fitting of a nominal model corresponding to the
conditions of normal work of real physical phenomena associated with it, as well
as the need for the appropriate models of abnormal work. In the context of ana-
lytical models, the diagnosis is a practical realization of a proper selection of the
appropriate model structure in accordance with the current system performance
mode. On the other hand, in any possible working conditions the calibration of a
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model is strongly dependent on the strategy of taking measurements. In such a
way, the problem of sensor location becomes one of the most important ones for
fault detection in DPS’s. This task comprises minimization of the diagnosis uncer-
tainty through selection of the appropriate strategy of taking measurements for a
limited number of transducers located in a given spatial area. In the background of
diagnostic problems, the main difficulty is a definition of suitable relations between
the quality of the system diagnosis and the observational strategy. In this section,
we shall indicate how classical hypothesis testing can be used in the model-based
diagnosis and especially fault detection with the use of the approach set forth by
Uciński (2003) in order to construct a qualitative criterion of sensor allocation
based on the notion of Ds-optimum designs.

4.5.1. A parameter estimation approach to fault detection in DPS’s

Parameter estimation is one of the fundamental methods from among all analyti-
cal techniques of fault detection (Korbicz et al., 2004). Its role is of significance in
situations, when the abnormal system state appears not only in the form of output
changes but also as fluctuations of model parameters. This is a very common situ-
ation in practice if only the parameters have a physical interpretation built upon a
proper analysis of various quantities which are crucial for the considered process.
Unfortunately, they are usually directly non-measurable and application of effec-
tive parameter estimation algorithms is required in order to obtain their estimates.
The very basic idea is a comparison of such estimates with some known nominal
values of parameters treating possible differences as residuals which contain infor-
mation about potential faults. Then based on some thresholding techniques the
appropriate decision making system can be constructed (Korbicz et al., 2004).
Consider the process, whose nominal mode y(x, t) of work is described by

the mathematical model (2.1)–(2.3) with θ = θnom, where θnom is some vector of
constant parameters which are characteristic for this state. Assuming for simplicity
that the process states are observed directly over some finite time horizon using
N stationary sensors, the observations can be presented in the form

zj(t) = y(xj , t; θnom) + ε(xj , t), t ∈ T = [0, tf ], j = 1, . . . , N, (4.124)

ε( · , · ) being the measurement noise uncorrelated in space and time such that

E[ε(xi, t)εT(xj , t)] = σ2δijδ(t− τ).

A further assumption is that the estimation of the unknown parameter vector
θnom is performed via minimization of the least-squares criterion

J(θ) =
N∑
j=1

∫ tf
0
‖zj(t)− ŷ(xj , t; θ)‖2 dt, θ ∈ Θad (4.125)

where Θad is the set of admissible parameters and ŷ( · , · ; θ) denotes the solution
to (2.1)–(2.3) corresponding to a given parameter θ. A vector θ̂ minimizing J(θ)
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stands for the estimate of the true value of θnom. Generally, in practical situations
only a subset of all parameters can be used for diagnosis. If such a situation takes
place, then without loss of generality the parameters of interest can be distin-
guished by partitioning the parameter vector into

θT =
[
θ1 . . . θs θs+1 . . . θm

]
=
[
αT βT

]
(4.126)

where α is a vector of s parameters which are essential for a proper detection and
β is the vector of some parameters which are a part of the model but are not
significant for detection (although they can be used for fault isolation or are some
representation of the model uncertainty). Based on the observations, it is possible
to test the simple hypothesis

H0 : α = αnom, (4.127)

where αnom is the nominal value for the vector α corresponding to the normal
system performance.
The ‘continuous’ generalization of the likelihood function for the considered

experiment takes the following form (Goodwin and Payne, 1977):

L(z; θ) =
(
1
2πσ2

)N/2
exp

{
− 1
2σ2

N∑
j=1

∫ tf
0
‖zj(t)− ŷ(xj , t; θ)‖2 dt

}
. (4.128)

Setting Θ0 = {θ ∈ Θ : α = αnom}, we can define the following generalized likeli-
hood ratio:

λ(z) =
sup
θ∈Θ

L(z; θ)

sup
θ∈Θ0

L(z; θ)
= exp

{
− 1
2σ2
(J(θ̂)− J(θ̃)

}
(4.129)

where
θ̂ = argmin

θ∈Θ
J(θ), θ̃ = arg min

θ∈Θ0
J(θ). (4.130)

It should be pointed out that a number of different variations in the maximum
likelihood ratio exist. One variation is to swap the numerator and the denominator.
Another is to calculate the supremum over Θ0

C (AC denotes a complement of the
set A) in the denominator of (4.129) instead of Θ (Lehmann, 1986).
The likelihood ratio test is widely used in statistics. The reason is partly that

it is the optimal test in the case when both the null and alternative hypotheses
are simple, i.e. Θ0 and ΘC0 reduce to one-element sets (cf. the Neyman-Pearson
lemma (Garthwaite and Jolliffe, 1995)). The proofs for optimality also exist for
many other cases whereH0 is simple (Garthwaite and Jolliffe, 1995). In many cases
where a theoretical justification is missing, the likelihood ratio can still be shown
to be very good in practice (Lehmann, 1986). Nevertheless, there also exist few
situations for which the likelihood ratio is not adequate. Commonly the generalized
log-likelihood ratio is used, because it can be shown that assuming the validity of
the null hypothesis H0 the sequence {2 lnλ(y)} for N →∞ is weakly convergent
to a χ2 random variable on s degrees of freedom (Goodwin and Payne, 1977). The
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meaning of this fact is that we can compare the observed value of 2 lnλ(y) with
some threshold kγ obtained from the cumulative χ2 distribution on s degrees of
freedom where kγ is such that 100(1−γ)% of the distribution lies to the left of kγ .
The decision rule for a given significance level γ, which represents a fixed range of
model uncertainty, takes the following form:

S =

{
S1 if 2 lnλ(y) > kγ (reject H0)
S0 if 2 lnλ(y) < kγ (accept H0)

(4.131)

The potential rejection of H0 indicates an essential deviation of the vector α from
the nominal value of this parameter and is a base for detection of abnormal states
in the system.

4.5.2. Ds-optimum detectability problem

The basic concepts presented in the previous section are probably well known to
statisticians and decision theorists. However, because of their usefulness for fault
diagnosis problems, they deserve some attention. When the null hypothesis H0 is
true, we do not want to reject H0. The mistake in rejecting H0 when H0 is true is
called the Type I error. Similarly, accepting H0 when the alternative hypothesis of
the form H1 : α = α1 6= αnom is true is called the Type II error (Domański, 1990).
In fault diagnosis, there is a connection between these errors and the probability
of a false alarm, missed detection, and missed isolation. We will not go into the
details here but this connection will be discussed in the following. At this point, it
is at least clear that to achieve low probabilities of false alarms, missed detection,
and missed isolation, we have to keep the probabilities of Type I and II errors low.
Thus the probabilities of Types I and II are a kind of performance measure for a
single hypothesis test. It is not possible to minimize both the errors simultaneously
(Domański, 1990). Therefore, a classical approach is to minimize the Type II error
with a prescribed level of the Type I error.
If only a subset of s parameters is of interest, with the parameter vector

partitioning given by (4.126), the power of the presented hypothesis test can be
increased by maximization of the Ds-optimality criterion (Goodwin and Payne,
1977) of the following form:

Ψs[M ] = det[Mαα −MαβM−1ββM
T
αβ ], (4.132)

where M ∈ Rm×m is the FIM corresponding to the vector θ, which can be parti-
tioned into blocks

M =

[
Mαα Mαβ

MTαβ Mββ

]
(4.133)

and

Mαα ∈ Rs×s, Mαβ ∈ Rs×(m−s), M−1ββ ∈ R(m−s)×(m−s).
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In the case considered the information matrix is defined as a simpler analogue of
(2.19)

M =
1
N

N∑
j=1

Υ(xj), (4.134)

where

Υ(x) =
1
tf

∫ tf
0

GT(x, t)G(x, t) dt, (4.135)

and

G(x, t) =
(
∂y(x, t; θ)

∂θ

)
θ=θnom

. (4.136)

Maximization of the criterion (4.132) can be achieved by a suitable sensor alloca-
tion. The process is equivalent to minimizing the determinant of the estimate of
the covariance matrix for vector α. Furthermore,

Ψs[M ] =
detM
detMββ

. (4.137)

At this point, the problem of increasing the reliability of the diagnosis can be for-
mulated as the problem of maximizing Ψs[M ] with respect to the sensor locations
xj , j = 1, . . . , N belonging to an admissible set of locations X.

Remark 4.8. Denoting by ξ some arbitrarily chosen design measure and introduc-
ing the decomposition

M−1 =

[
Dαα Dαβ

DTαβ Dββ

]
(4.138)

whereDαα ∈ Rs×s, Dαβ ∈ Rs×(m−s), D−1ββ ∈ R(m−s)×(m−s), from the Equivalence
Theorem for Ds-optimum designs (Fedorov, 1972) an analogue of the variance of
the prediction can be established from the system response. In particular, we have
the following form of the sensitivity function and its components:

ψ(x, ξ) = ς(ξ)− φ(x, ξ), (4.139)

ς(ξ) = trace
[ ◦
Ψ[M(ξ)]M(ξ)

]
= s, (4.140)

φ(x, ξ) = trace
[ ◦
Ψ[M(ξ)]Υ(x)

]
, (4.141)

where
◦
Ψ[M(ξ)] =

∂Ψ(M)
∂M

=

Dαα Dαβ

DTαβ Dββ −M−1ββ

 . (4.142)

At this point it is clear that those simple modifications of the sensitivity function
pave the way for the applicability of a wide range of methods. For example, all
approaches dedicated to the stationary sensors case developed in Chapter 3 can
be used directly without further improvements.
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4.5.3. Fault isolation using structured hypothesis testing

In order to propose an extension of the delineated approach for providing the
fault isolation stage of the diagnosis, we propose to use the principle of structured
hypothesis tests which assume that all of the individual tests ρi are hypothesis tests
(Nyberg, 1999). Then the diagnosis system consists of a finite set of hypothesis tests
and a decision logic. The classical, statistical or decision theoretic definition of the
hypothesis test is adopted, e.g. see (Berger, 1985; Lehmann, 1986). This means
that a hypothesis test is a procedure to select between exactly two hypotheses
characterized by θ ∈ Θ0 and θ ∈ ΘC0 based on sample data. This is in contrast
to ‘multiple hypothesis testing’ that is often found in literature (Basseville and
Nikiforov, 1993).
Denote by Fi, i = 0, . . . , Q all available system work modes, where F0 is the

mode of the normal work. Introducing the collection of sets

M0 = {F0}, Mi = {F0, Fi}, i = 1, . . . , Q, (4.143)

the null hypothesis for the i-th test, i.e. H0i , can be defined as the belonging of
the fault mode, present in the process, to a specific set Mi. Then the alternative
hypothesis H1i is that the present fault mode does not belong to Mi, and thus it
must belong to the complement MCi . In this way, each individual hypothesis test
contributes with a piece of information about which fault modes can be present.
The task of the decision logic module is a suitable combination of any piece of
partial information in order to make a diagnosis decision.
If Fq is an actual system-fault mode, then the i-th hypothesis test comprises

the null and alternative hypotheses which can be written down as{
H0i : Fq ∈Mi if some fault mode in Mi can explain the observations,
H1i : Fq ∈MCi otherwise.

An alternative is to use the definition of the sets Θi which are the sets of admissible
parameters describing each mode of system work separately. The hypotheses can
now be expressed as{

H0i : θ ∈ Θi if some value of θ ∈ Θi can explain the observations,
H1i : θ /∈ Θi otherwise.

The commonly used convention in the hypothesis testing literature is that when
H0i is rejected, we assume that H

1
i is true. But when H

0
i is not rejected, then in

particular nothing special is assumed for the present.
For each hypothesis test ρi, it is necessary to find a test quantity and a

rejection region. Test quantity is a function which maps the observations of system
outputs y and eventually measurable inputs u into some scalar measure of model
uncertainty. Based on such a performance index the decision system is able to
formulate a partial diagnosis through some thresholding techniques. The typical
scheme of hypothesis testing is illustrated in Fig. 4.10. In many textbooks the
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i-th Hypothesis Test

Test

Quality Ti

Threshold
Ji

u

y
Si

Fig. 4.10 . Block structure of the hypothesis test.

test quantity Ti(u, y) is also called the test statistic (Domański, 1990; Basseville
and Nikiforov, 1993; Nyberg, 1999). It can be interpreted as a random variable,
which is often identified with a residual generator or the sum of squared prediction
errors of a parameter estimator. In many applications, a deterministic view is taken
and Ti(u, y) is not seen as a random variable but just as a function of the data
(Nyberg, 1999; Patan and Patan, 2003). In the considered case it was shown that
the likelihood ratio analogous to (4.129) can be used, i.e.

Ti(u, y) ∼
sup
θ∈Θ

L(z; θ)

sup
θ∈Θi

L(z; θ)
, i = 1, . . . , Q. (4.144)

Formally, the general decision rule for hypothesis test ρi is defined as

Si =

{
S1i if T (u, y) > Ji (reject H0i )
S0i if T (u, y) < Ji (accept H0i )

(4.145)

The rejection region of each test is thereby implicitly defined by a threshold Ji
which can be arbitrarily established according to some significance level (i.e. the
error of Type I) by analogy to (4.131). The meaning of such a decision rule is that
we have to design a test quantity Ti(u, y) which is at least below the threshold if
the observations fit to the hypothesis H0i , i.e. a fault mode in Mi can explain the
data. On the other hand, if the data arising from the observations match a fault
mode which is not in Mi, Ti(u, y) should be large or at least above the threshold.
In terms of the traditional terminology, the fault modes in Mi are said to be
decoupled (Nyberg, 1999).

Remark 4.9. Due to non-trivial problems with restoration of initial and boundary
conditions in the case of abnormal system work, it is not difficult to see that for
proper detection and isolation of faults, the observation system should perform
the data acquisition in a complex manner. This means that it is necessary to
construct solutions separately for each mode of work and then combine them into
one complex system. For this reason the clusterization-free approach seems to be
more adequate, as in practice a part of sensors might be used simultaneously to
isolate different faults of the system.

The proposed approach can be considered as a first attempt to establish an
interconnection between parameter-estimation based FDI for DPS’s and the sensor
location problem. It should be emphasized that still some open problems remain
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which need close attention. One of the most important questions is the lack of on-
line identification methods for spatio-temporal systems. The existing approaches
rely on a set of linearizations which often hide the complex nature of the considered
problem and consequently lead to excessive modelling errors and unacceptable
false alarms. Another essential impediment is application of fixed thresholds which
represent arbitrarily chosen ranges of model uncertainty (or measurement noise). A
low level of such a threshold would lead to a greater number of false alarms, while
a too high one would decrease the sensitivity of the detection system. Problems
of this kind still require further developments of effective and qualitative FDI
techniques, but this subject lies beyond the scope of this dissertation.

4.6. Applications

4.6.1. Transmission lines

4.6.1.1. Background

Transmission lines appear in many different contexts arising from the examples
in previous chapters where practical engineering applications were indicated. A
classical instance of physical realization for transmission lines are long-distance
electrical supply lines, but nowadays, due to a dramatic increase in the timing
frequencies in the modern technologies of integrated circuits like processors, they
become another strong demonstrative example of transmission lines with distribut-
ed nature. In general, a transmission line is an entity which is characterized by its
inseparable electrical properties, namely inductance, capacitance and resistance,
which are distributed along its dimensions. Strictly speaking, in any real electrical
component there will always occur some time delays. Those quantities will depend
on the system dimensions, so it is useful to use distributed densities (linear, surface
or spatial depending on the system dimensionality).
The time taken for an electrical signal to traverse the line is determined by the

local velocity of light, which strongly depends on the permittivity of the material
of which the line is made. An analysis of transient states in the line is equivalent
to investigating propagation of the electrical signal y(x, t) (a voltage or a current
intensity) and determination of those signals leads directly to solving systems of
partial differential equations. These, in turn, can be defined in the form similar to
(2.4), but usually it is more convenient to study only one signal separately.
Apart from physical interpretations of line properties, an electrical impulse

travelling on a network of lossy transmission lines obeys the telegraph equation
stemming from fundamental laws of electromagnetics. The most general form of
the equation describing the underlying signal propagation in a given domain Ω is
(Polyanin, 2002)

∂2y(x, t)
∂t2

+ ϑ1(x, t)
∂y(x, t)
∂t

= ϑ2(x, t)∇2y(x, t)− ϑ3(x, t)y(x, t) + f(x, t), x ∈ Ω.
(4.146)

The first term on the left-hand side of this equation represents lossless propagation
of a wave or an impulse. The second terms on both the sides account for the
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effects of power dissipation in the distributed resistance. The last term on the
right-hand side is responsible for possible force inputs. Introducing the notions
of spatio-temporal densities of resistance R(x, t), inductance L(x, t), capacitance
C(x, t) and leakage conductivity G(x, t), the distributed parameters in (4.146) can
be rewritten as

ϑ1 =
GL+RC

LC
, ϑ2 = (LC)−1, ϑ3 =

RG

LC
.

Additionally the quantity
√
ϑ1(x, t) can be interpreted as the directional velocity

of the wave propagation which, in general, can be anisotropic.
The telegraph equation is not easy to treat in a general way and modellers usu-

ally tend to consider special situations when some terms in (4.146) become insignif-
icant. The instances commonly encountered in practice are as follows (Kącki, 1995):

• Thomson’s cable, i.e. inductionless line (L = 0) without leakage conductiv-
ities (G = 0); in such circumstances the telegraph equation reduces to the
equation of the parabolic type

R(x, t)C(x, t)
∂y(x, t)
∂t

= ∇2y(x, t) + f(x, t), (4.147)

• Lossless line, i.e. R = 0 and G = 0; then the considered process is governed
by the hyperbolic ‘wave’ equation

L(x, t)C(x, t)
∂2y(x, t)
∂t2

= ∇2y(x, t) + f(x, t), (4.148)

• Homogeneous line, where the parameters R,L,G,C = const, i.e. they are
independent of time and space.

It becomes now clear that the initial conditions most often formulated in problems
related to transmission lines can be of two types (Kącki, 1995), namely only the
distribution of y(x, t) along the line at the initial time instant is given, which can
be written as

y(x, 0) = ϕ(x), x ∈ Ω, (4.149)

or additionally the rate of signal changes along the line is given, that is(
∂y(x, t)
∂t

)
t=0
= ψ(x), x ∈ Ω. (4.150)

A definition of boundary conditions requires more attention, because they
strongly depend on supply sources and the type of load which is used on the
boundaries. Furthermore, their strict form is also forced by the physical interpre-
tation of the quantity y. For example, if a line is an open circuit (insulated) at
some point belonging to the boundary, the suitable boundary condition will be(

∂y(x, t)
∂n

)
x=xb

= 0, xb ∈ ∂Ω, t ­ 0,
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Fig. 4.11 . The conductor and a grid of detectors.

if y is interpreted in terms of a voltage signal, and

y(xb, t) = 0, xb ∈ ∂Ω, t ­ 0

for y being the current intensity. In the case of a short-circuit at the point xb, the
two equations above should be exchanged according to the voltage and current
signals, respectively.
If a transmission line is loaded at boundaries, then the boundary condition

is determined by the system of internal connections between the elements R0, L0
and C0 of the receiver. In such a way, there exist an infinite number of possible
formulations of boundary conditions as there are an infinite number of electrical
circuits characterized by the lumped parameters R0, L0 and C0 which can be
connected to the line as loads. The situation will be even more complicated if
a receiver belongs to the class of DPS’s. A suitable instance was presented in
Example 2.1.

4.6.1.2. Numerical experiments

Signal propagation. As the first application example of the methodology developed
within the scope of this chapter, we study the propagation of a disturbance in a thin
square-shaped conducting plate with rounded corners. On its surface a collection
of measurement sensors were placed forming a uniform grid of size 15×15 shown in
Fig. 4.11. The material of the plate is non-isotropic and is assumed to be a lossless
environment (a signal leakage and power supression are assumed to be negligible)
because of a relatively small scale of object. Thus, the transmission of the voltage
signal y(x, t) over the conductor in time interval T = [0, 1] can be described by
the wave equation of the form

∂2y(x, t)
∂t2

= v(x)2∇2y(x, t), x ∈ Ω, t ∈ T, (4.151)
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where v(x) is the velocity of signal propagation inside the medium being the re-
ciprocal of the product of the surface densities of inductance L(x) and capacitance
C(x), which have distributed character and should be appropriately modelled. To
this end, the following parametrization for the velocity is assumed:

v(x) = θ1 + θ2x21 + θ3x
2
2, (4.152)

where θ = (θ1, θ2, θ3) is the vector of unknown parameters which are of interest
as they define a parametric map of suitable material properties. As a preliminary
estimate of θ, the vector (1.0, 0.5, 3.0) was assumed.
The boundaries of the conductor are insulated and at the initial time instant

at the centre of Ω a disturbance is generated which is further transmitted to the
rest of the area. This is reflected by the following boundary and initial conditions:

∂y(x, t)
∂n

= 0, (x, t) ∈ ∂Ω× T,

y(x, 0) = e−50(x
2
1+0.5x

2
2), x ∈ Ω,(

∂y(x, t)
∂t

)
t=0
= 0, x ∈ Ω.

First, the wave equation (4.151) and the respective sensitivity equations were
solved with the use of the Matlab PDE Toolbox for the time domain divided into 20
subintervals and a spatial mesh composed of about 2500 triangles and 1300 nodes.
The solution is presented in Fig. 4.12 where the process dynamics can be easily
observed. It can be seen that the disturbance propagates with slightly different
velocities and amplitudes with respect to the direction.
To determine an optimal scanning strategy in order to maximize the estima-

tion accuracy of θ, the clusterization-free scanning strategy with fixed switching
schedule (Algorithm 4.1) was adopted as the most adequate and implemented as
a Fortran routine (compiler Lahey/Fujitsu v.5.7). The switching table was deter-
mined arbitrarily as the sequence of points synchronized with the solution of the
PDE’s system, i.e. tk = k/20, k = 0, . . . , 20. The task was to choose N = 50 mea-
surements sites in each consecutive time step from among all 213 available sensor
positions. The starting design was randomly generated and the desired accuracy
was set at the level of ε ¬ 10−4. The algorithm found the approximated D-optimal
design in only 72 iterations which took less than 10 s on a PC equipped with a
Duron 900Mhz processor and running Windows 2000. The results are shown in
Fig. 4.13. The activated sensors tend to take measurements at the wave front of
the spreading disturbance.
For comparison with other possible observation strategies, two more algo-

rithms were used, namely the a two-phase procedure (Algorithm 3.5) for determin-
ing the allocation of stationary sensors in the continuous domain and an enhanced
two-phase procedure with a combined ARS–SQP approach for finding sensor mo-
tion trajectories. In both the cases the assumed accuracy of the solution was equal
to ε ¬ 10−4 and the starting designs contained 3 randomly generated support
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Fig. 4.12 . Impulse propagation in a lossless transmission line.

elements with equal weights. For the case of stationary sensors, a solution was
obtained after 4 iterations which took 20 s. It has the following form:

ξ? =
{
(0.00, 0.00) (0.15, 0.02) (1.00, 0.00)
0.31 0.14 0.55

}
(4.153)

For mobile sensors additional constraints were imposed on the maximal length
of trajectories which must not exceed a value of 1.1 (this slightly is more than
the radius of the circle inscribed into the domain). The starting points of the
trajectories were also optimized and each trajectory was parametrized with linear
splines according to the division of the time domain. No particular constraints were
imposed on the motion dynamics of the sensors. The algorithm for determining
D-optimal sensors motion curves converged in 5 iterations of the main loop (35 s).
The solution consists of two symmetrical trajectories

ξ? =
{
x1( · ) x2( · )
0.46 0.54

}
(4.154)

Both results are compared in Fig. 4.14 where circles and triangles on the right panel
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Fig. 4.13 . Selected D-optimal switchings for the scanning strategy in the signal
propagation example.

denote selected consecutive locations of movable sensors at evenly distributed time
instants. The locations of stationary sensors are indicated with open circles on the
left panel.

As the velocity of the signal propagation and its magnitude is the greatest in
direction of the x1 axis, the behaviour of movable sensors can be easily explained,
because they move to the areas where the changes of the wavefront are the great-
est. However, the location of the stationary sensors is not that easy to interpret.
The intuition completely fails in this case and this strategy seems to be the least
adequate as the process dynamics can hardly be retrieved from the observations.
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Fig. 4.14 . D-optimal strategies for the transmission line example: (a) stationary
sensors, (b) movable sensors.

4.6.2. Calibration of air-pollution models

The air quality has become an important societal issue. As air pollutants, we
can enumerate gases, liquids, or solid substances suspended in the atmosphere
in concentrations which may affect the natural environment including human,
animal or vegetation health. Most commonly encountered air-pollution problems
are urban smog, acid deposisions, global ozone reduction and a global climate
change. The urban smog has recently become one of the most important questions
of atmospheric modelling as both an environmental and a social problem. It is
characterized by the local buildup of high concentrations of gases and particles
caused by industry or traffic emissions, smokestacks, other human-made sources,
or formed by secondary processes in the atmosphere.
Atmospheric problems belong to extremely difficult modelling tasks. There

exist numerous causes of such a situation. One of them is a high number of dif-
ferent processes which constitute the complicated dynamics of changes in the air
environment including (Jacobson, 1999):

• dynamical and thermodynamical processes (changes in the wind speed and
direction, air pressure, temperature and density; turbulences),

• transport processes (emissions; transport, dry deposition and sedimentation
of gases, aeorosols and cloud drops; energy transport),

• gas processes (gas photochemistry, gas-to-particle conversion),

• radiative processes (infrared and solar radiative transfer),

• aerosol/cloud processes (nucleation; coagulation; condensation/evaporation;
deposition/ sublimation; reversible and irreversible kinetic chemistry),
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Table 4.2. Scales of atmospheric problems (Jacobson, 1999).

Scale Dimension [m] Exemplary processes

Molecular � 2× 10−3 Molecular diffusion, molecular viscosity

Micro 2× 10−3–2 · 103 Eddies, car exhaust, cumulus clouds

Meso 2× 103–2 · 106 Gravity waves, thunderstorms and tornados,
urban air pollution and local winds

Synoptic 5× 102–107 Weather fronts, tropical storms, hurricanes,
high- and low-pressure systems

Planetary > 107 Global wind systems, global warming,
stratospheric ozone reduction

and many more. Additionally, all of the above-mentioned processes are coupled
through various interactions among them, which further complicate the analysis.
Another considerable cause is the variety of spatial scales of atmospheric prob-

lems, from the molecular to the planetary scales. The particular processes are sum-
marized in Table 4.2 adopted from Jacobson (1999). This gives only a very rough
overview of problems which may be encountered, but just enough to understand
the complexity of the subject.
Due to the rapid development of industry around the world, the problem of

protection and restitution of the natural environment becomes of crucial impor-
tance. In this context, optimization of air quality monitoring networks is one of
the most interesting questions (Munn, 1981). In general two main streams of the
considered tasks may be distinguished (Jacobson, 1999):

(a) Forecast problems, where the main aim is to provide the expected levels of
pollutant concentrations which allow us to prevent or minimize the further
release of dangerous substances. The time derivative should be found based
on the so-called prognostic equation. Examples of such equations are the
species continuity equations or the thermodynamic energy equation.

(b) Diagnostic problems, where emphasis is laid on the detection of some existing
abnormal situations. This involves the analysis of the so-called diagnostic
equation in which the time derivative does not have to be solved. The state
and hydrostatic equations are examples of such diagnostic equations.

Apart from the type of problems motivating a forecast, or a suitable diag-
nosis, the appropriate air-pollutant model over a given urban area is necessary.
The propagation process of air-pollutants emitted to the atmosphere is caused
by the advection transport of those substances in air masses and, as a result, of
the diffusion being the effect of air turbulent pulsations. All processes take place
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in mesoscale (see Tab. 4.2). Besides diffusion in a small scale, fluctuations of the
velocity and the direction of winds in short- and long-time scales are of impor-
tance. The averaged streams of the substances spreading in air masses usually
have convection and advection components, and their averaged fluctuation mo-
tions may be interpreted as diffusion in the background of the basic average move-
ment. Taking into account the kinetic chemistry of pollutants, this leads directly
to air-pollution models in the form of systems of advection-diffusion-reaction equa-
tions (Marchuk, 1985; Zlatev, 1995; Hundsdorfer, 1996; Sydow et al., 1997; Sydow
et al., 1998; Jacobson, 1999) describing the concentrations y(x, t) of the interacting
substances

∂yk(x, t)
∂t

+∇ ·
(
v(x, t)yk(x, t)

)
= ∇ ·

(
d(x, t)∇yk(x, t)

)
+ fk(x, t, y1, . . . , yr), k = 1, . . . , r, x ∈ Ω, t ∈ T

(4.155)

subject to the set of boundary and initial conditions

∂yk(x, t)
∂n

= 0 for (x, t) ∈ ∂Ω× T if v · n ­ 0

yk(x, t) = 0 for (x, t) ∈ ∂Ω× T if v · n < 0
yk(x, 0) = yk0 (x) for x ∈ Ω.

The quantity v(x, t) represent the velocity field vector of the transport medium
such as water or air. Usually it is directly measurable, or can be computed based on
meteorological or hydrodynamical data. From this point of view, a suitable mod-
elling of the velocity over a given domain Ω in time interval T does not present
essential difficulties. But the diffusion coefficient d(x, t) which may contain param-
eterizations of the turbulences being the result of small spontaneous fluctuations
which dissipate and create conditions for other disturbances, is generally non-
measurable. Thus the appropriate modelling becomes a very difficult problem.
Finally, the terms fk( · ) describe the nonlinear chemistry coupling the different
species together with emmissions (sources) and depositions (sinks).
In most air pollution models the transport is dominated by the advection term,

and there can be strong local sources. Moreover, the reaction terms are usually very
stiff, i.e. some reactions take place on very small scales in comparison with the the
overall time scale. In such a way the calibration of the diffusivity tensor in (4.155) is
extremely difficult and requires parameter estimation based on observations from
a monitoring network. Since the cost of instrumentation (monitoring stations) is
rather high, the problem of working out a proper strategy for the measurement
process becomes very important. The necessity of optimal control of observational
systems is often indicated in works concerned with air-quality monitoring networks
(Sturm et al., 1994; Nychka et al., 1998; Müller, 1998).

4.6.2.1. Numerical experiments

Calibration of smog prediction models. One of the most interesting instances of
air-pollutant monitoring is prediction of smog, being a mixture of many gases,
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Fig. 4.15 . Considered urban area with two emission sources and the available
scanning grid.

aerosols and water vapour. In order to construct a proper prognosis of pollutant
concentrations, we need a suitable prediction model, and in this case it may be
established in the form of a PDE system describing the transport-chemistry of
many components. Such a model should be accurately calibrated as it will directly
influence the efficiency of the forecast. To slightly simplify the situation, consider
the transport-chemistry of only two air pollutants over a given urban area, which
are mutually interconnected with a consecutive reaction of the reversible type
(Atkins, 1998)

P1
k1


k2
P2, (4.156)

where P1 and P2 denote chemical compounds, and k1 and k2 are the rates of the
forward and reverse reactions, respectively.
The entire process can be described by the system of advection-diffusion-

reaction equations

∂y1(x, t)
∂t

+∇ ·
(
v(x, t)y1(x, t)

)
= ∇ ·

(
d1(x)∇y1(x, t)

)
− k1y1(x, t) + k2y2(x, t),

∂y2(x, t)
∂t

+∇ ·
(
v(x, t)y2(x, t)

)
= ∇ ·

(
d2(x)∇y2(x, t)

)
+ k1y1(x, t)− k2y2(x, t),

(4.157)
where y = (y1, y2) is the vector of concentrations observed in the normalized time
interval T = [0, 1]. The spatial variable x belongs to the urban area rescaled to
the domain Ω with the boundary Γ shown in Fig. 4.15. The last terms on the
right-hand side with coefficients k1 and k2 are responsible for the changes in the
concentrations due to the reaction (4.156).
At the initial time instant, two sources of pollutants (indicated with stars

in Fig. 4.15) located at points S1 = (0.2, 0.4) and S2 = (0.3, 0.5) emit different
substances to the atmosphere, which spread all over the domain Ω due to the
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Fig. 4.16 . Temporal changes in the wind velocity field.

combination of diffusion and advection processes. The velocity vector v varies in
space and time, and changes according to the following model of the velocity field:

v(x, t) = (y + 1/4,−x+ t), (4.158)

which is illustrated in Fig. 4.16.
The contamination mentioned above can be expressed by the following bound-

ary and initial conditions:

∂y1(x, t)
∂n

= 0 if (x, t) ∈ Γ× T,

∂y2(x, t)
∂n

= 0 if (x, t) ∈ Γ× T,

y1(x, 0) = 20e−50[(x1−0.2)
2+(x2−0.4)2] if x ∈ Ω,

y2(x, 0) = 10e−40[(x1−0.3)
2+(x2−0.5)2] if x ∈ Ω.

(4.159)

In our simulation study the following form of the distributed diffusion coeffi-
cients was assumed:

d1(x) = θ1 + θ2x1x2,
d2(x) = θ3 + θ4x1x2,

(4.160)

where the nominal vector of parameter values θ = (0.04, 0.015, 0.03, 0.025) was
assumed to be taken from preceding experiments and the reaction rates were pre-
determined as k = (k1, k2) = (0.1, 0.05). The purpose was to find a D-optimal
sensor allocation strategy for determining the most accurate estimates of the true
parameters θi, i = 1, . . . , 4. The experiment consisted in comparison of the strate-
gies employing stationary, movable, and scanning sensors. To this end, the hard-
ware/software simulation environment was established by a PC equipped with
Pentium IV 1.7GHz processor, 768MB RAM and running Windows 2000. The so-
lutions of the PDE’s were obtained with a Matlab Toolkit written by the author
especially for this purpose with the aid of the PDE Toolbox (we employed 30 di-
visions of the time interval and a triangular spatial mesh consisting of about 400
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Fig. 4.17 . D-optimal locations of stationary sensors (a) versus movable sensors
trajectories (b).

nodes and 800 triangles). All design optimization algorithms were implemented
using the Fortran 95 Lahey/Fujitsu v.5.7 compiler.
In the first examined case (i.e. the stationary sensors), Algorithm 3.5 was used

for a continuous support set and, starting from a randomly generated four-point
initial design, after 7 iterations for accuracy ε ¬ 10−6, the ultimate design

ξ? =
{
(0.000, 0.306) (0.385, 0.408) (0.692, 0.449)
0.31 0.30 0.39

}
was obtained. It corresponds to the criterion value det(M(ξ?)) = 7.4139E 22. The
solution is shown in Fig. 4.17(a).
As the second simulated strategy, application of movable sensors was studied.

In order to simplify the calculations, the trajectories were discretized by introduc-
ing 10 divisions of the observation interval and then interpolating them with linear
splines. Although such an approach produces non-smooth curves, it reduces the
number of components for individual support elements (for each spatial location
at a given time instant we need only two spatial coordinates) and is the simplest
in implementation. The starting positions of motion curves also were optimized
and the only constraint imposed on the trajectories was that their maximal length
should not exceed unity. The algorithm started from a four-trajectory initial de-
sign and after 10 iterations (which took about 8 min) was terminated with the
design presented in Fig. 4.17(b) for the same accuracy as for stationary sensors. It
is clear that the sensors move to the areas where the greatest changes in pollutant
concentrations occur, which approximately follow the wind direction. In contrast
to the stationary sensors, the results are much more intuitive, which also affects
the value of the criterion (det(M(ξ?)) = 3.6475E 23). The accuracy is significantly
greater, which confirms our earlier theoretical hypotheses.
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Fig. 4.18 . D-optimal sensor allocations for selected time moments in the air-
quality monitoring example from Section 4.6.2.1.
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Finally, for the same task the scanning strategy was investigated with the
assumption that the sensors may be placed on the uniform grid of size 20×20 (see
Fig. 4.15) and for the partition of T defined by the switching points tk = k/30,
k = 0, . . . , 30. From among 400 admissible sites the task was to choose the best
60 points over any resulting time subinterval. After 304 iterations (ε ¬ 10−5),
in less than 10 seconds the one-point correction algorithm produced a solution.
The results are shown in Fig. 4.18, where open circles indicate the actual active
sensor locations and points stand for the available locations. The corresponding
value of the criterion in this case was equal to det(M(ξ?)) = 9.2249E 22. The
accuracy of solving a relatively large system of 10 PDE’s (2 system responses
and 8 sensitivities of the observed states) is slightly affected by a reasonably low
density of the finite element approximation mesh which was used (258 nodes and
412 triangles). Consequently, the sensor configurations in the first iterations are
also a little perturbed, which can be observed in Fig. 4.18(a).

4.6.3. Managing groundwater resources

Groundwater modelling is another interesting and motivating application which
can be considered in the context of the practical usefulness of the developed
methodology. Groundwater is one of the natural resources which sustained exten-
sive damage in the past decade due to the man’s industrial activities (Sun, 1996;
Kovarik, 2000). The significance of this problem cannot be overestimated since
even ordinary events of day-to-day human life (e.g. solid and liquid waste dumps,
storing and processing the chemicals) may cause pollution of soil or surface water.
The pollutants spread through a covering layer and after some time they reach
and pollute the groundwater (Sun, 1994; Sun, 1996; Rijtema and Elias, 1996; Ko-
varik, 2000). In recent years the problem is not only to find a well with a given
amount of water discharge, but also to fulfil some quality requirements (Sun, 1996).
A high cost and long period of time for remediation of pollution (compared

with that for surface water) results in the fact that groundwater contamination
is one of the most serious environmental problems that may damage the human
health and cause the water shortage. In the protection and improvement of ground-
water quality, two challenging problems may be encountered (Sun, 1996):

• for uncontaminated resources, it is required to predict and control the po-
tential sources of pollution,

• for contaminated resources, it is required to provide suitable remediation
processes.

Both the cases imply directly the necessity of predicting the pollutant distribution
in groundwater. Since field experiments cannot be exploited for this purpose, the
only tool which remains is mathematical modelling. But the main impediment
which appears is the high complexity of the analysis, since there are many pro-
cesses involved in the transport and dynamics of resources, such as hydrodynamic
flow and dispersion, mass transport in porous media, sorption and decay of sub-
stances and many more. The whole field of the groundwater modelling theory and
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Table 4.3. Applications of groundwater modelling

Model Example

Groundwater Water supply, connection between ground
flow and surface water, regional aquifier analysis,

artificial recharge, drainage and dewatering

Heat/Energy Geothermal utilization, heat and cold storage under
transport the ground, heat pollution in groundwater

Mass transport Groundwater contamination, sea water intrusion,
soil reformation, radionuclide waste repositories,
impact of river pollution on groundwater,

Media Weather fronts, tropical storms, hurricanes,
deformation high- and low-pressure systems

its potential applications extensively enlarges (the most significant examples are
contained in Tab. 4.3) but the detailed analysis of the subject is beyond the scope
of this dissertation, so the interested reader can be referred to the relevant compre-
hensive literature (Dagan, 1989; Bear et al., 1993; Sun, 1994; Sun, 1996; Rijtema
and Elias, 1996; Kovarik, 2000).
In general, there exist several classes of models which are exploited in various

contributions, but one of the most commonly used ones is the model based on
the hydrodynamic dispersion (Dagan, 1989; Bear et al., 1993; Sun, 1996; Kovarik,
2000). This is based on the description with the use of the set of hydrodynamic
PDE’s of advection-diffusion type similar to (4.155):

∂yk(x, t)
∂t

+∇ ·
(
v(x, t)yk(x, t)

)
= ∇ ·

(
d(x, t)ρ∇(yk(x, t)/ρ)

)
+ fk(x, t, y), k = 1, . . . , r, x ∈ Ω, t ∈ T,

(4.161)

with exactly the same notation as in the case of (4.155), with additional variable
ρ which denotes the density of the fluid. Generally, the variation in the concen-
tration may affect the density and viscosity of the fluid. Further, changes in those
variables may cause the state of the flow field to change. In other words, all the
above-mentioned variables are interconnected and therefore a single equation of
hydrodynamic dispersion is not enough to describe the process in the general case.
To solve the problem of groundwater quality in a saturated domain Ω in a given
observation interval T , additional differential equations are required, namely the
continuity equation

∂ρ

∂t
+∇ · (ρv(x, t)) = 0, (4.162)
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the kinetic equations

vi(x, t) = −
kij
µν

(
∂p

∂xj
+ ρg

∂z

∂xi

)
, i, j = 1, . . . , d (4.163)

and the hydrodynamic state equations

ρ = ρ(y, p), µ = µ(y, p), (4.164)

where p is the pressure, ρ and µ denote respectively the density and viscosity
of the fluid, the kij ’s are the components of the hydraulic conductivity tensor, ν
stands for the effective porosity and d is the spatial dimensionality of the problem.
From a hydraulic point of view, the boundaries can be split into three groups
(Kovarik, 2000):

• Impermeable boundaries, where there is neither groundwater inflow, nor out-
flow. This part is characterized by Neumann conditions, with zero derivative
of the concentration in the directions of the unit outward normal of ∂Ω.

• Permeable boundaries, where the groundwater flows in and out, and this
makes the choice of boundary conditions difficult. This choice depends on
the experience of the hydrologists. If the boundary is the river or a lake
bank, Dirichlet conditions are often used, but such a condition is very strong
because it presumes an ideal interaction between the water level in the river
and the groundwater surface. Thus, alternatively, mixed boundary conditions
are sometimes used.

• A boundary with phreatic surface, where the pressure on a free surface equals
the atmospheric pressure (which can be neglected). This leads to the constant
boundary condition in the Dirichlet form.

Since the groundwater is a limited resource, it should be exploited with a
maximum economic benefit while maintaining a minimum environmental damage.
This can be obtained only through an intelligent management and utilization. The
cost of the experiment is usually very high and causes the necessity to consider
additional problems related to the optimal strategy of the measurement process.
For example, the optimization of the number and locations of observational wells
should be taken into account, as well as the observational frequency (Sun, 1994)
and decisions on the variables which have to be directly measured.
Finally, we have to emphasize that although most often a full 3D model is

advisable, it is obvious that some problems can be solved succesfully in two di-
mensions reducing to a great extent the computational effort. There exist suitable
transformations of three-dimensional groundwater flows to two dimensions, which
are possible to apply in many cases (Kovarik, 2000).

4.6.3.1. Numerical experiments

Control of observation well exploitation. Consider a confined aquifer lying on a river
bank. The other boundaries are assumed to be of impermeable type or the flow
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Fig. 4.19 . The general overview of a confined aquifer (a) and the velocity field
with locations of observation wells from Section 4.6.3.1.

throughout them is negligible. There are five possible locations for the observation
wells, O1 to O5. The situation is shown in Fig. 4.19. The river is a source of
pollution, which spreads over the aquifer due to the hydrodynamic transport and
dispersion. For illustrative convenience, a two-dimensional model will be considered
as the description of the contamination process. Similar problems can be found in
(Sun, 1994; Kovarik, 2000) together with more sophisticated practical applications.
In contrast to the atmospheric pollution, the transport of substances in porous
media takes place in a much larger scale of time. The duration of such processes
may be equal to months and even years, so the pollution effects are also more
permanent. In such a way, from a numerical point of view, it is convenient to
suitably normalize the time scale.

This leads to the model for changes in the pollutant concentration y(x, t) over
the domain Ω in a unit time interval T given by

∂y(x, t)
∂t

+∇ ·
(
v(x)y(x, t)

)
=∇ ·

(
d(x)∇y(x, t)

)
, x ∈ Ω, t ∈ T = [0, 1]. (4.165)

From the equation above it can be seen that the pollutant is assumed not to
affect the density of groundwater, i.e. it is approximately constant in time. An
additional assumption is that the bank of the river is contaminated all along its
length adjacent to the domain Ω with the same constant rate. Moreover, an initial
contamination of the aquifer with the considered substance can be neglected. Thus
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(4.165) can be supplemented with the following boundary and initial conditions:

y(x, t) = 10, (x, t) ∈ Γ1 × T, (river bank)
∂y(x, t)
∂n

= 0, (x, t) ∈ Γ2 × T, (impermeable boundary)

y(x, 0) = 0, x ∈ Ω.

(4.166)

Since exploratory wells of observation and pumping types are very expensive,
the monitoring of water quality should be optimized in order to reduce the number
of data sources and to properly use the available data. Because in our case the
possible number of observation wells is rather small, the application of the scanning
strategy with an optimal switching schedule seems to be the most appropriate
approach.
The parametric form of the distributed hydrodynamic dispersion was assumed

as
d(x) = θ1 + θ2 tanh(θ3x2), (4.167)

where the elements of the vector θ0 = (0.15,−0.02, 2.00) were taken as the nominal
values of the parameters. The velocity of the transport medium was taken in the
simple closed form

v = (vx1 , vx2) = (0.1x1 + 0.4, −0.3x2 − 0.1x1 − 0.2), (4.168)

which is illustrated in Fig. 4.19(b).

Table 4.4. Combinations of the activated observation wells

Active wells Control uc
O1, O2 1
O1, O3 2
O1, O4 3
O1, O5 4
O2, O3 5
O2, O4 6
O2, O5 7
O3, O4 8
O3, O5 9
O4, O5 0

The main aim of the experiment was to find an optimal sensor activation
policy for determining the most accurate estimates of the true parameters θ1 to
θ3. As the number of the exploited wells should be minimal, a reasonable choice
it to use at every time instant only two from among the five available locations
(cf. Fig. 4.19). The set of ten combinations of active wells, which were coded as
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Fig. 4.20 . D-optimal control signal for activation of observation wells.

successive integers being the levels of the input control signal uc, is gathered in
Table 4.4.
In this example the implementation was performed entirely in the Matlab 6.5

environment. The PDE’s were solved using exactly the same routines as in the
previous application example with a finite-element approximation of the domain
(483 nodes, 893 triangles) and 40 divisions of the time interval. Finally, the proce-
dure based on the CPET approach with the fmincon Matlab function in the role
of the optimizer produced the following control signal (cf. Fig. 4.20) describing the
changes in the active well locations:

uc(t) =


1 if 0.000 ¬ t < 0.479,
2 if 0.479 ¬ t < 0.626,
8 if 0.626 ¬ t < 0.849,
0 if 0.849 ¬ t ¬ 1.000.

The maximal number of switchings was assumed to be equal to 2 and the time of
calculations was about 12 minutes.
Figure 4.21 illustrates the optimal sensor activation policy versus contour plots

of the pollutant concentration, where open circles indicate the actually exploited
observation wells. The sensor activation strategy can be interpreted based on the
observation that the measurements are taken possibly close to the forehead of the
‘pollutant wave’ moving from the river bank to the right boundary of the aquifer.
This fact is reflected by the sensor activation schedule as the greatest changes in
the concentration occur there.

4.7. Concluding remarks

Observation strategies for DPS’s involving stationary sensors with time-continuous
or time-discrete measurements are commonly exploited techniques in engineering
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Fig. 4.21 . Consecutive switchings of the activated observational wells versus
contour plots of the pollutant concentration.

applications due to their attractive properties such as the low complexity of the
observational system and a wide variety of methods. In this chapter it was shown
that construction of appropriate information matrices leads to a generalization
of the methodology and algorithms developed for multi-output static DPS’s in
Chapter 3, including optimization of the experimental effort (well-known nonlinear
programming procedures and the novel SDP approach) as well as clusterization-
free designs. Nevertheless, such strategies are not always adequate to dynamic
DPS’s because of their low flexibility to fit into the system dynamics, which results
in a significant decrease in the estimation quality.
A remedy is to employ more sophisticated measurement strategies, which

may influence the experiment conditions operating directly on the time variable
or indirectly through the dynamics of sensor motions. Both the approaches may
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significantly increase the possibilities to efficiently exploit the dynamics of the
considered system. In first part of the chapter, the advantages of applying mobile
sensors were delineated based on the direct approach (Rafajłowicz, 1986b; Uciński,
1999a) whose origin is in the classical methods of optimum experiment design.
The key idea is to convert the problem to operating on design measures, rather
than on the trajectories themselves. Such an approach seems to be attractive
as some well-known classical design algorithms can be adopted. Consequently,
the appropriate procedure based on Fedorov’s first-order algorithm is proposed in
this work. However, it should be emphasized that the applicability of the direct
approach for more complicated tasks is limited since difficult numerical problems
can be encountered, which is connected to discretizations of the trajectories and
the necessity of solving global optimization problems. On the other hand, only a
few alternatives exist in this field (Uciński, 1999a).
The second possibility is the scanning strategy, which can be split into two

subcases, namely the situation when the time schedule of sensor switchings is fixed
a priori and when it also constitutes a design variable. Within the framework of this
chapter, a computationally attractive approach was proposed for the optimal place-
ment of scanning sensors in both the situations. In the former case, our solution
extends some ideas employed for constructing replication-free designs proposed by
Fedorov (Fedorov and Hackl, 1997; Cook and Fedorov, 1995; Fedorov, 1989) who
restricted his attention solely to static systems. Accordingly, much more efficient
scanning measurement policies can be determined compared with the stationary
sensor strategies which have been considered in the literature so far. In spite of its
somewhat abstract assumptions, the resulting algorithm of exchange type is very
easy to implement, which leads to extremely good performances.
Bear in mind, however, that the clusterization-free approach should in prin-

ciple be used if the number of sensors is relatively high. If this is not the case,
we can resort to standard discrete optimization routines which ensure that the
constraints on the design measure are satisfied.
In order to select an optimal switching table, a computational scheme based

on the control parameterization enhancing technique was proposed in order to
determine optimal schedules of scanning sensors which measure the state of a given
DPS. The aim of this monitoring network is to accurately determine estimates of
the unknown system parameters. Consequently, the highly combinatorial nature of
the original problem is alleviated in a sense. The point is not in the computational
effort, but in the possibility of applying widely available non-linear programming
algorithms to the resulting transformed optimal control problem.
Furthermore, the question of correlated observations, being one of the most

serious problems which may appear in applications, was discussed. The local and
global mutual correlations between measurements are usually neglected and there
are very few contributions devoted to this subject. One possible approach is to
directly introduce additional constraints into the problem which concern the ac-
ceptable minimal distances between sensors. Although this technique seems to be
very attractive due to its simple formulation, it is practically impossible to consid-
er global correlation relations. Instead, we set forth an alternative approach which
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is based on including mutual correlations between the measurements directly into
the information matrix. Then an efficient exchange-type procedure dedicated to
the multi-response DPS’s was developed. It constitutes a broad generalization of
the algorithm proposed by Brimkulov et al. (1986). However, we still should bear in
mind that numerical problems may occur due to the singularity of the covariance
matrix and the notion of the pseudoinverse must then be used (Pukelsheim, 1993).
This problem can be accounted for with relative ease by some minor changes in
the implementation. Nevertheless, the ultimate algorithm is very simple to imple-
ment and additional improvements discussed in the chapter extremely increase its
efficiency.
In the last part of the chapter, sensor location techniques were proposed for

the model-based diagnostics of DPS’s based on the structural hypothesis testing.
To the best of the author’s knowledge, such an approach is one of the first attempts
addressed to this area. In spite of the initial state of the investigations in the field,
the results could hardly be overestimated in numerous applications, e.g. in air
pollution systems or in hazardous environments.
The following stands for a concise summary of contributions developed in this

chapter to the state-of-the-art in optimal sensor location for parameter estimation
in spatio-temporal systems:

◦ Generalization of the results and algorithms from previous chapter to dy-
namic DPS’s in the case of stationary sensors.

◦ Derivation of optimality conditions for non-parameterized and parameter-
ized trajectories, and application of the two-phase first-order algorithm with
adaptive random search (Walter and Pronzato, 1997) and sequential quadrat-
ic programming to construct optimal trajectories of mobile sensors,

◦ Development of expeditious methods of activating scanning sensors, and
specifically:

• introduction of an approach based on clusterization-free designs for an
arbitrarily fixed switching schedule,

• transformation of the problem to an equivalent Mayer formulation of
optimal control in the case of an optimized switching schedule, which
can then be solved using the CPET approach.

◦ Development of an approach to solve the sensor location problem in the
case of correlated observations. Specifically, a method which includes mutual
correlations between measurements directly into the measurement covariance
matrix is proposed and a relaxation algorithm is developed for solving the
resulting computational problem.

◦ Introduction of optimal sensor placement methods to model-based fault de-
tection. Adaptation of the parametric approach to describe system modes
of work and the development of methods for the reliability maximization of
fault detection and isolation based on structured hypothesis testing.



Chapter 5

SENSOR LOCATION IN THE PRESENCE OF
PARAMETRIC AND STRUCTURAL MODEL

UNCERTAINTIES

In Section 2.2.4 we indicated that, in general, for a nonlinear parameterization
of the system responses optimum experimental conditions strongly depend on the
unknown parameter values which only have to be estimated. This causes one of
the main complications related to the determination of the optimal experimental
conditions. A common approach is then to design the experiment for some reason-
able nominal parameter values whose knowledge is a prerequisite for applying the
locally optimal sensor location methods described in the previous chapters. Since
the uncertainty of those nominal values is not taken into account, the practical
application of such procedures is limited to situations when the system responses
change slowly in the set of admissible parameters.
Often, the parameter estimates at hand are far from their true values, and

in addition to this, properties of locally optimal sensor locations can be very sen-
sitive to changes in these parameters (Ford et al., 1989). Neglecting the problem
of the parametric uncertainty may make the solution far from the optimal one.
Consequently, this may lead to the question about the practical usefulness of the
non-linear experimental design (Walter and Pronzato, 1990).
To overcome those difficulties, several attempts have been made in the litera-

ture regarding general optimum experimental design theory either by application
of the sequential approach (Fedorov, 1972; Ford et al., 1989; Walter and Pronza-
to, 1990; Walter and Pronzato, 1997), modification of the obtained locally optimal
designs (Landaw, 1980), introduction of designs in the average sense (Pronzato
and Walter, 1985; Walter and Pronzato, 1997; Uciński, 1999a; Uciński, 1999b)
or so-called minimax designs (Pronzato and Walter, 1988; Walter and Pronza-
to, 1997; Uciński, 1999a; Uciński, 1999b). However, none of the listed techniques
is without drawbacks and the problem still remains open.
Another and even more difficult situation which can be encountered in practice

is that the form of the model is far from being known with such a certainty as
it was assumed in the previous chapters. Sometimes several alternative models
are proposed for the same physical situation but it is unknown which is the most
adequate one. For example, such a situation is typical in fault diagnosis where
different modes of the system work are described by different models, but the
actual one is unknown and has to be detected (Korbicz et al., 2004). We have
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to conduct experiments that will allow us to select the model which best fits the
data. This leads directly to model discrimination designs (Fedorov, 1972; Bard,
1974; Atkinson and Fedorov, 1975; Atkinson and Donev, 1992; Burke et al., 1994;
Fedorov and Hackl, 1997; Uciński and Bogacka, 2002; Kuczewski and Uciński, 2003;
Kuczewski et al., 2004) which make it possible to find solutions in the presence of
structural model uncertainties.
The main goal of this chapter is to briefly present the existing methods which

take into account model uncertainties and to show how to adapt them in the frame-
work of the sensor location problem. To the best of our knowledge, in the context
of the scanning measurement strategies such robust approaches have received no
attention yet, whereas for stationary and movable sensors the only attempts were
made by Uciński (1999a; 1999b). In addition to this, the introduction of the dis-
crimination experiments into the field of DPS’s is provided where very few con-
tributions exist (Kuczewski and Uciński, 2003; Kuczewski et al., 2003; Kuczewski
et al., 2004) contrary to the corresponding theory for LPS’s.

5.1. Sequential design techniques

Since it is clear that for any design ξ the FIM elements depend on the true vector of
parameters θtrue which is obviously unknown, determination of an optimal design
requires finding some compact domain Θad containing θtrue and where M(ξ, θ)
varies insignificantly for θ ∈ Θad. In the case when initial information about the
parameters is missing, the only solution is to conduct an additional analysis for
predetermination of the region Θad. Nevertheless, it is impossible to construct an
optimal design for such an experiment without sufficient knowledge about param-
eters, because most often optimal sensor locations depend on θ. This leads directly
to the very reasonable idea of repetition of the experimental and estimation steps
several times. This is equivalent to the division of the resources (e.g. the time hori-
zon) into small parts which are related to the corresponding consecutive stages of
the experiment. A general scheme is shown in Fig. 5.1. Each stage consists of

EXPERIMENT - ANALYSIS - DESIGN

6

Fig. 5.1 . A general scheme of sequential design.

three sequential tasks: first a measurement process is conducted (some prelimi-
nary nondegenerate design can be used in the first stage), then the obtained data
are used for parameter estimation or an additional analysis and, at last a locally
optimal sensor placement is determined based on the updated calculated parame-
ter estimates. The sequential experiment finishes as a prescribed level of accuracy
regarding parameter estimates is achieved or, alternatively, the maximum number
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of stages is exceeded.
Owing to its simplicity, the idea of sequential designs is relatively easy to im-

plement and could be used in conjunction with a wide class of design optimization
algorithms without substantial difficulties. Because the analytical determination of
optimal designs is possible only in simple cases, this property is of great practical
relevance. Nevertheless, some non-trivial problems sometimes appear which have
to be taken into account, cf. (Ford et al., 1989):

• How many stages of the experiment should be chosen to guarantee the pre-
scribed accuracy?

• What is the character of the dependence of the final design upon initial
parameter estimates?

• Is the sequential procedure convergent, and if so, does the convergence can
be understood in the approximation sense (i.e. does the generated design
asymptotically tend to the locally optimal one for the true parameter values
θtrue)?

Some existing results being partial answers to the questions mentioned above
and which justify sequential techniques can be found in (Fedorov, 1972; Ford et al.,
1989; Walter and Pronzato, 1990; Walter and Pronzato, 1997). However, it should
be noted that this approach often becomes impractical, due to a possibly too long
experimental time and a too high experimental cost which are required. But the
main disadvantage seems to be the fact that sequential designs necessitate the
experimentation stage to be renewable. Since for some classes of systems this is
rarely possible (e.g. biological systems) it is clear that such an approach cannot
be treated as a universal remedy for the discussed shortcomings of local designs.

5.1.1. Sequential designs for the scanning strategy

Some of the approaches considered within the framework of this dissertation are
especially suited for adaptation when implementing sequential designs strategies.
The most important of them is scanning which provides by definition the division
of the experimental resources (time interval) into separate parts. This fact can
often be exploited to extend the approach using sequential techniques in such a
way as to obtain a higher level of robustness to parametric uncertainty.
Theorem 4.5 for a fixed time switching schedule in the scanning strategy

makes it possible to decompose the problem into a set of subproblems concerning
determination of particular components of the design ξ = (ξ1, . . . , ξK), cf. (4.50),
corresponding to the consecutive time subintervals Tk, k = 1, . . . ,K. On one hand
this offers a possibility of parallelization of numerical procedures (see Remark 4.2),
but on the other hand, a sequential version of the algorithm can be proposed which
is very convenient in this case. Providing for each design step an additional estima-
tion phase which is supposed to improve our knowledge about the system param-
eters, we obtain the general scheme of such a procedure shown in Fig. 5.2 (Patan
and Uciński, 2004). In such a way, typical conditions in the scanning measurement
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Tk+1 ← Tk

Fig. 5.2 . Sequential design for scanning strategy.

strategy make it possible to apply the sequential design technique to implement
alternate experimental and estimation stages in a very natural manner. Then our
basic idea is to extend the results to the so-called clusterization-free designs set
forth in Section 4.3.1 taken in conjunction with some techniques taken from the
sequential design theory. The resulting extended multi-point correction algorithm
of exchange type is described in the following.

5.1.1.1. Robust scanning algorithm

The activation policy of scanning sensors implies that no replications of measure-
ments are allowed during each phase of the experiment and at most one observation
may be made at each available sensor position. In this situation, as a particular
implementation of the multi-correction version of Algorithm 4.1, we can use the
approach which consists in selecting in every time step the best N -element subset
S∗ of a given P -element set X of all potential points where measurements may
be taken, provided that N < P . This idea is realized with the following iterative
routine (Patan and Uciński, 2004):

Algorithm 5.1. Sequential multi-point correction algorithm

Step 1. Select the number K of sequential design stages. Introduce the partition
t0 = 0 < t1 < · · · < tK = tf of the time interval T = [0, tf ]. Construct the
subintervals Tk = [tk−1, tk], k = 1, . . . ,K. Guess an initial N -element set
S01 ⊂ X = {x1, . . . , xP }. Set R01 = X \ S01 , k = 1. Choose some positive
tolerance ε� 1.

Step 2. If k > K then STOP, otherwise set s = 0, construct the design ξsk by
setting

w
(k)
s,j =

{
1/N if xj ∈ Ssk,
0 if xj ∈ Rsk,

and conduct the corresponding experiment. Solve the problem

θ̂k = arg min
θ∈Θad

P∑
j=1

w
(k)
s,j

∫
Tk

‖zj(t)− y(xj , t; θ)‖2 dt.

Step 3. Set Rsk = X \ Ssk.
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Step 4. Determine M(ξsk; θ̂k) and for j = 1, . . . , P calculate

ψ(xj , ξsk) = trace
[ ◦
Ψ(ξsk)Υ(x

j)
]
− 1
K
trace

[ ◦
Ψ(ξsk)M(ξ

s
k; θ̂k)

]
,

where
◦
Ψ(ξsk) =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ξs

k
;θ̂k)

,

and

Υ(x) =
1
tf

∫
Tk

GT(x, t)C−1(x, t)G(x, t) dt, G(x, t) =
(
∂y(x, t; θ)

∂θ

)
θ=θ̂k

.

Step 5. If max
xj∈Rs

k

ψ(xj , ξsk) < min
xj∈Ss

k

ψ(xj , ξsk) + ε, then set S
0
k+1 = S

s
k, increment k

by one and go to Step 2.

Step 6. Sort the values of the function ψ obtained in Step 4 in non-increasing
order and relabel points xj as vr in order to have

ψ(v1, ξsk) ­ ψ(v2, ξsk) ­ . . . ­ ψ(vP , ξsk).

Step 7. Construct Sj+1k = {v1, . . . , vN}. Increment s by one and go to Step 3.
�

Based on the notion of clusterization-free designs in the k-th stage of the
experiment, this exchange-type algorithm constructs a sequence of sets Ss con-
verging to a set S∗k which is optimal in the sense of the criterion Ψ (Section 4.3.1).
As was already mentioned, the procedure described above constitutes an extension
of the practical realization of Algorithm 4.1 originally proposed in (Uciński and
Patan, 2002a).
In spite of a reasonably simple scheme, the efficiency of this iterative routine

depends strictly on the effectiveness of the solution to the estimation problem from
Step 2, which constitutes the major drawback of the proposed approach. It is a
direct consequence of the lack of on-line identification methods for DPS’s, which
was already indicated in Section 4.6. But it should be pointed out that in spite of
this inconvenience, in order to construct an appropriate design in each consecutive
time step only a rough estimate of the unknown parameters is necessary, and
the solution of the estimation problem does not have to possess a high accuracy,
which raises possibilities of accelerating this phase in any experimental stage. On
the other hand, the high accuracy of parameter estimation is the main goal of the
approach, and therefore apart from design phase, the high accuracy of estimation
must simultaneously be provided. Moreover, for some problems the duration of the
studied process is sufficiently long (e.g. for groundwater modelling the pollution
transport takes months or even years) to apply an efficient off-line estimation
algorithms.
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Fig. 5.3 . Domain with admissible sensor locations (a) and a wind velocity field
(b).

Example 5.1. In order to test the proposed algorithm, consider the transport-
chemistry problem of air pollutants over a given area similar to Example 4.3. The
wind power and direction are assumed to be described by the symmetric solid
rotational velocity field of the form

v(x) =
(
2π cos

(
x1 −

π

2

)
sin(x2),−2π sin

(
x1 −

π

2

)
cos(x2)

)
, (5.1)

which is illustrated in Fig. 5.3 along with the possible sensor locations over the area
Ω = [0, 2π]× [−π/2, π/2]. At the initial time instant, a contamination substance is
emitted to the atmosphere near the centre of the top boundary of Ω. The changes
in the pollutant concentration y(x, t) over a normalized unit time interval T =
[0, 1] are in such a situation described by the following advection-diffusion process
equation:

∂y(x, t)
∂t

+∇ ·
(
v(x)y(x, t)

)
= ∇ ·

(
d(x)∇y(x, t)

)
, (x, t) ∈ Ω× T, (5.2)

supplemented with the boundary and initial conditions:

∂y(x, t)
∂n

= 0, (x, t) ∈ ∂Ω× T,
y(x, 0) = 10e−50[(x1−π)

2+(x2−1)2], x ∈ Ω.
(5.3)

Our aim is to determine optimal experimental conditions in the sense of a D-
optimum activation policy for scanning sensors in order to estimate the unknown
parameters of the spatially-varying diffusion coefficient

d(x) = θ1 + θ2(x1 − π)2 + θ3x2. (5.4)

Sensors may be placed on the uniform grid of size 30× 20 (cf. Fig. 5.3(a)) and the
partition of T is defined a priori by the switching points tk = k/20, k = 0, . . . , 20.
The initial design was formed from randomly generated N = 40 points. The al-
gorithm was implemented with the use of the Lahey/Fujitsu Fortran 95 compiler
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Fig. 5.4 . Selected consecutive stages of the sequential scanning configurations
with the contour plots of pollutant concentrations.

and a PC (Pentium IV, 1.7 GHz). All covariance matrices were set to identity and
the estimation phase was performed using simulated output data with the noise of
normal distribution and the variance equal to 2% of the simulated output). The
true value of the parameter vector was assumed to equal θtrue = (0.1, 0.05, 0.05).
The ultimate consecutive sensor configurations are shown in Fig. 5.4, where open
circles indicate the activated sensor locations. As can be easily seen from Fig. 5.4,
the symmetry of the problem along the x1 axis is retained and the sensors are acti-
vated near the region where the greatest changes in the concentrations take place.
Moreover, the updates of the parameters lie in the vicinity of the postulated true
values. For the estimation phase the sequential quadratic programming procedure
DNCONF from the IMSL library (v.4.0) was used. Despite the time consuming esti-
mation of system parameters, the computational time for the finite-element grid
consisting of 1600 nodes was approximately 1 minute.

F

5.2. Optimal designs in the minimax sense

5.2.1. Problem formulation

When trying to develop more systematic approaches to tackle the parametric un-
certainty of the model than sequential designs, one of the possible solutions is to
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optimize the performance of the experiment for the worst possible case in the set
of admissible parameters Θad. The most attractive property of this idea is that
any further hypothesis about the distribution of the parameters is not needed.
Focusing all attention and effort on providing possibly maximum information to a
parameter vector θ which is the most difficult to identify in Θad, the problem can
be brought down to the minimization of the criterion

JMM(ξ) = max
θ∈Θad

J(ξ, θ) = max
θ∈Θad

Ψ[M(ξ, θ)]. (5.5)

The most popular choice in the literature seems minimization of the MMD-optimality
criterion (Walter and Pronzato, 1997; Uciński, 1999d; Uciński, 1999a)

JMMD(ξ) = max
θ∈Θad

[
− ln detM(ξ, θ)

]
. (5.6)

The minimax criterion (5.5) defines the optimal design as

ξ?MM = arg min
ξ∈Ξ(X)

{
max
θ∈Θad

Ψ[M(ξ), θ]
}
, (5.7)

where Θad is assumed to be compact. To characterize the minimax designs, assume
that both Ψ( · , · ) and ∂Ψ( · , · )/∂M are continuous. Moreover, conditions (A3)–
(A5) from page 38 are assumed to be satisfied together with the following assertion:

(A11) ∀ξ ∈ Ξq(θ) = {ξ : Ψ[M(ξ, θ)] ¬ q <∞}, ∀ξ̄ ∈ Ξ(X):

Ψ[(1−α)M(ξ, θ)+αM(ξ̄, θ)] = Ψ[M(ξ, θ)]+α
∫
X

ψ(x, ξ, θ)ξ̄(dx)+ o(α; ξ, ξ̄)

where the scalar q is chosen to assure that Ξq(θ) 6= ∅ and lim
α→0

o(α; ξ, ξ̄)/α = 0

uniformly in Θad.

This allows us to formulate the following result, being the necessary and
sufficient condition for the optimality of a minimax design:

Theorem 5.1. A design ξ?MM is optimal iff there exist a probability measure ω
?

defined on Θad(ξ) =
{
θ̂ : Ψ[M(ξ, θ̂)] = max

θ∈Θad
Ψ[M(ξ, θ)]

}
such that

min
x∈X

∫
Θad(ξ)

ψ(x, ξ?M , θ)ω
?(dθ) ­ 0.

Proof . The proof is based on the results of game theory in conjunction with
some properties of the max functions. Nevertheless, since the explicit form of the
function ψ is not essential here, the proof for the MIMO systems proceeds in the
same way as in Theorem 2.6.1 from (Fedorov and Hackl, 1997, p. 42). �

Clearly, the practical application of Theorem 5.1 is by no means more difficult
than the corresponding conditions for locally optimal designs. The optimization
of the minimax criteria provides reasonably good results for the worst possible
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values of parameters, which potentially may occur more than once, but for the
other parameter vectors the quality of the optimal design might be questionable.
As a final comment, let us indicate one more drawback of the minimax designs,
namely that invariant criteria with respect to transformations of θ for calculation
of locally optimal designs may not maintain this valuable property with respect
to the minimax approach (Ford et al., 1989).

5.2.2. Minimax optimization via relaxation

There exist very few efficient numerical algorithms devoted to solving general min-
imax problems, and in addition to this, most of them are limited to the situations
where the optimization is performed over finite sets. Since both ξ and θ belong to
infinite sets, the solution of the problem (5.5) becomes a rather hard task except
for rare situations where for some regression models theMMΨ-optimal design can
transformed into a conventional Ψ-optimal one (Pronzato and Walter, 1988). How-
ever, in (Uciński, 1999a) the considered optimization problem (5.5) is proposed to
be exchanged with minimization of a scalar α, with respect to

max
θ∈Θad

Ψ[M(ξ, θ)] ¬ α. (5.8)

This is equivalent to the set of constraints

{Ψ[M(ξ, θ)] ¬ α, θ ∈ Θad} (5.9)

which is obviously infinite.
The so redefined problem can be solved with the use of some numerical pro-

cedures for inequality constrained Semi-Infinite Programming (SIP) (Polak, 1997;
Reemtsen, 2001). In this vein, an intuitive approach can be proposed for construc-
tion of a finite set containing representative values of θ, which is equivalent to
relaxing the problem by taking into account only a finite number of constraints
(5.9). This is embodied in the simple relaxation algorithm proposed by Shimizu
and Aiyoshi (1980) and its well performance was proven in non-linear experimental
design problems for LPS’s (Pronzato andWalter, 1988; Walter and Pronzato, 1997)
and DPS’s (Uciński, 1999c). The general form of this procedure can be represented
by the following scheme (Uciński, 1999a):

Algorithm 5.2. Minimax optimization algorithm via relaxation

Step 1. Set k = 1. Choose an initial parameter vector θ1 ∈ Θad and define the
first set of representative values Θkrep = {θ1}.

Step 2. Solve the current relaxed problem

ξ(k) = arg min
ξ∈Ξ(X)

{
max
θ∈Θkrep

Ψ[M(ξ, θ)]

}
.

Step 3. Solve the maximization problem

θk+1 = arg max
θ∈Θad

Ψ[M(ξ(k+1), θ)].
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Step 4. If
Ψ[M(ξ(k), θk+1)] ¬ max

θ∈Θkrep
Ψ[M(ξ(k), θ)] + ε,

where ε is a predefined small positive constant, then STOP, otherwise Θk+1rep =
Θkrep ∪ {θk+1}, increment k, and go to Step 2.

�

Shimizu and Aiyoshi (1980) showed that the above routine terminates in a
finite number of iterations for any ε. As was mentioned earlier, the usefulness of
the algorithm was confirmed for the case of stationary sensors (Uciński, 1999c). To
the best of the author’s knowledge, however, the procedure has not been verified
yet in the case of scanning sensors. Its applicability to mobile sensors is rather
limited due to problems with solving the minimax optimization problem in Step 2.
Some indications of possible alternatives can be found in (Uciński, 1999a; Uciński,
1999b; Uciński, 1999d). At this juncture, it would be beneficial to present some
illustrative example. But in order to compare different approaches, the results of
the corresponding experiments will be postponed to the end of the next section.

5.3. Optimal designs in the average sense

5.3.1. Problem statement

A common opinion is that methods based on the minimax interpretation of the
parametric robustness of design lead to overly conservative solutions (Vidyasagar,
2001). This flaw stems from the worst-case nature of the associated performance
index. Indeed, it is possible that a design ξ1(θ) will be preferred to a design ξ2(θ),
even though the former seems to be worse than the latter for ‘most’ realizations of
θ. Therefore, if a minimax performance index is used, then all the efforts will be
spent on determining the worst-case situation, which might be a non-representative
case.
Sometimes, it is more reasonable to waive such strong requirements and con-

sider designs which are satisfactory for ‘most’ realizations of θ ∈ Θad. This leads
directly to designs in the average sense. When the set Θad of possible values of θ
is compact, then a very logical way to capture this idea is to employ an approach
based on a probabilistic description of the prior uncertainty of the unknown system
parameters. This uncertainty is assumed to be characterized by the distribution µ
which is deduced from the a priori knowledge about the considered system (e.g.
it results from previously made observations collected on similar systems). This
distribution represents additional experimenters’ knowledge which is accessible a
priori and regards the confidence level about representative values of the unknown
parameters. For such an interpretation of the statistical relations between the pa-
rameters and the system behaviour, it is possible to define the criterion to be
minimized as the expectation of the corresponding ‘local’ performance index, i.e.

JE(ξ) = E
θ

{
ΨE[M(ξ, θ)]

}
=
∫
Θad
ΨE[M(ξ, θ)]µ(dθ). (5.10)
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A common assumption is to choose the measure µ as

µ(dθ) = p(θ) dθ, (5.11)

where p denotes the probability density function for θ. In real-world problems the
direct transformation of the a priori knowledge about parameters into a statistical
distribution in closed form is rather difficult, or such knowledge is far from being
complementary. Then, commonly encountered examples of p can be applied (Sun,
1994; Uciński, 1999a):

• In the case when the parameter vector θtrue is known with probability very
close to unity, the prior distribution

p(θ) = δ(θ − θ0),

can be used, where δ( · ) is the Dirac delta function.

• In the case when θ is limited to the region Θad, but no further information
is provided, the uniform distribution on Θad may be assumed, i.e.

p(θ) =

{
1/V (Θad) for θ ∈ Θad,
0 otherwise,

where V (Θad) denotes the volume of Θad in the Lebesgue sense.

• In the case when the θ distribution can be estimated with the accuracy
up to characteristics of second order (e.g. the expected value E(θ) and the
covariance matrix cov(θ) are available), but there is no other information,
the following multidimensional normal distribution can be assumed:

p(θ) = (2π)−m/2
(
det(cov θ)

)−1/2
exp

(
−1
2

(
θ − E(θ)

)T
(cov θ)−1

(
θ − E(θ)

))
.

The appropriate regularization and normalization should be imposed if val-
ues of p(θ) in the vicinity of the Θad limits are not negligible.

According to (5.10), a design that is optimal in the average sense can be defined
as

ξ?E = arg min
ξ∈Ξ(X)

∫
Θad
ΨE[M(ξ, θ)]µ(dθ), (5.12)

and is often called a Bayesian design. As the integral in (5.12) plays the role of
a linear operator, Theorems 2.5 (p. 39) and 2.8 (p. 40) can be relatively easily
reformulated by introducing the following functions:

ψ(x, ξ) =
∫
Θad

ψ̂(x, ξ, θ)µ(dθ), (5.13)

φ(x, ξ) =
∫
Θad

φ̂(x, ξ, θ)µ(dθ), (5.14)

ς(ξ) =
∫
Θad

ς̂(ξ, θ)µ(dθ), (5.15)
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where ψ̂(x, ξ, θ), φ̂(x, ξ, θ) and ς̂(ξ, θ) are the equivalents of (2.58)–(2.60), respec-
tively, calculated for a particular realization of the parameter vector θ. In such
a way, the optimality conditions and equivalence results can be generalized to
the case of Bayesian designs. As regards the existence of optimal solutions, The-
orem 2.4 can also be adopted, but with the essential difference that the maximal
number of support points cannot be guaranteed to be less than or equal to the
value of m(m + 1)/2. This is a consequence of the fact that Caratheodory’s the-
orem cannot be directly applied since ΨE depends on different matrices M(ξ, θ)
for different vectors θ (Uciński, 1999a).
Since analytical solutions can be obtained only for very simple cases, efficient

numerical techniques are required. Unfortunately, Theorem 2.8 rewritten in this
new framework yields efficient solutions only in the case when the distribution
µ is discrete with a reasonably moderated number of support points. The main
complication in applying any numerical approach from the previous chapters arises
from the fact that in order to solve the problem (5.12), respective expectations
have to be evaluated, which leads to time-consuming calculations of the multi-
dimensional integrals (cf. (5.13)–(5.15)). However, to overcome those difficulties,
some stochastic algorithms can be applied to avoid direct numerical evaluation of
the statistical expectations, which will be briefly presented in the next section.
At this point, it should be emphasized that the class of Bayesian criteria is

much wider than the corresponding class of their local counterparts. For example,
only for D-optimality there exist various choices of suitable functions (Walter and
Pronzato, 1997), e.g.

• ED-optimality criterion

JED(ξ) = E
θ

{
− detM(ξ, θ)

}
,

• EID-optimality criterion

JEID(ξ) = E
θ

{
[detM(ξ, θ)]−1

}
,

• ELD-optimality criterion

JELD(ξ) = E
θ

{
− ln detM(ξ, θ)

}
.

The above criteria usually lead to different optimal solutions, and therefore their
practical usefulness depends on some prior experience of the experimenter. The
advantages and disadvantages of particular variants are presented in (Walter and
Pronzato, 1997).

5.3.2. Bayesian optimization via statistical learning

5.3.2.1. Background

As was indicated earlier, a direct application of numerical algorithms developed
in the previous chapters to solving (5.12) is highly complicated by the necessi-
ty of tremendous calculations related to the evaluation of the expectations of a
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local optimality criterion. However, the situation when a criterion is not given
explicitly or its evaluation requires great computational efforts is standard for
stochastic-approximation techniques. For that reason, those methods seem attrac-
tive as they iteratively yield approximated solution without determination of the
functional to be optimized. Such an approach was introduced and successfully
applied to the finite-dimensional case by Walter and Pronzato (1987; 1997) and
extended to the sensor location problem for DPS’s by Uciński (1999a), where a
simple classical Robbins-Monro algorithm (Pflug, 1996; Spall, 2003), also known
as the stochastic-gradient algorithm, was used. For instance, in the case when
s = supp ξ is optimized, we obtain the following iterative scheme (Uciński, 1999a):

sk+1 = ΠSad

(
sk − γk

(
∂Ψ[M(s, θk)]

∂s

)T
s=sk

)
, k = 0, 1, . . . (5.16)

where θk is randomly generated according to the prior distribution µ and ΠSad
stands for the orthogonal projection onto the set Sad. The decreasing sequence
{γk} has to satisfy the following conditions:

γk ­ 0,
∞∑
k=0

γk =∞,
∞∑
k=0

γ2k <∞. (5.17)

It can be shown that the validity of some classical assumptions (Ermakov and
Zhigljavsky, 1987; Kushner and Yin, 1997; Spall, 2003), where the system state y
is sufficiently smooth, ensures the almost sure convergence of the above algorithm.
However, within the framework of this work, another alternative approach

will be proposed, which is based on the statistical learning theory. It was originally
developed in the context of the robust controller design (Vidyasagar, 1997; 1998;
2001). This constitutes the subject of the next subsections.

5.3.2.2. Relations between various types of minima

First, assume that the criterion Ψ[M(ξ, θ)] can take only non-positive values (this
assumption is not too restrictive, as e.g. the D-optimality criterion satisfies it).
Then, consider a measure of the system performance for vector θ and design ξ
which takes values from the unit interval. This can be achieved by the following
transformation of Ψ:

ΨE[M(ξ, θ)] =
1

1−Ψ[M(ξ, θ)]
. (5.18)

Once a probability measure µ is chosen, the objective function to be minimized
can be defined as

JE(ξ) = E{Ψ[M(ξ, θ)]}, (5.19)

which implies that a design ξ is occasionally permitted to be inadequate for con-
ditions which are not likely to occur, i.e. which are associated with low probability
values. In such a way the problem of determining a Bayesian design is reduced to
finding the minimum of a function J(ξ) : Ξ(X)→ [0, 1]. As was already mentioned,
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finding the exact value of this minimum J? belongs to extremely cumbersome prob-
lems. This leads to the idea of ‘nearly’ minimizing J( · ), and consequently to the
necessity of introducing the concept of a ‘near minimum’ which would increase
its applicability. Let us start with the most simple definition of such a quantity
(Vidyasagar, 2001):

Definition 5.1. Let J : Ξ(X)→ R and suppose that ε > 0 is a given number. A
number J0 ∈ R is said to be a Type 1 near minimum of J( · ) to accuracy ε, or an
approximate near minimum of J( · ) to accuracy ε if

inf
ξ∈Ξ(X)

J(ξ)− ε ¬ J0 ¬ inf
ξ∈Ξ(X)

J(ξ) + ε (5.20)

An approximate near minimum is probably most commonly identified with
the notion of a ‘near’ minimum. Nevertheless, for the robust approach considered
in the average sense, the determination of even an approximation to J? is related
to a high computational cost, which makes its practical application almost impos-
sible. Therefore, it is necessary to look for other notions of near minima, which
will be more useful. One of possibilities is provided with the following definition
(Vidyasagar, 2001):

Definition 5.2. Let J : Ξ(X) → R, and assume that ν is a given probability
measure on Ξ(X), and that α > 0 is a given number. A number J0 ∈ R is said
to be a Type 2 near minimum of J( · ) to level α, or a probable near minimum of
J( · ) to level α, if J0 ­ J?, and in addition

ν{ξ ∈ Ξ(X) : J(θ) < J0} ¬ α.

In other words, J0 is a probable near minimum of J( · ) to level α if there
exists a set S with probability ν(S) ¬ α, such that

inf
ξ∈Ξ(X)

J(ξ) ¬ J0 ¬ inf
ξ∈Ξ(X)\S

J(ξ). (5.21)

Examples of some algorithms for finding Type 2 near minima can be found in
(Tempo et al., 1997), for the case where the probability distribution is continuous
and in (Vidyasagar, 1997) where this assumption is removed. However, the main
impediment becomes the fact that those algorithms require the performance index
J(θ) to be computable for any given ξ ∈ Ξ(X). To relax this requirement, the
following ultimate notion of near minimum can be proposed (Vidyasagar, 2001):

Definition 5.3. Let J : Ξ(X) → R, and suppose that ν is a given probability
measure on Ξ(X), and that ε, α > 0 are given numbers. A number J0 ∈ R is said
to be a Type 3 near minimum of J( · ) to accuracy ε and level α, or a probably
approximate near minimum of J( · ) to accuracy ε and level α, if J0 ­ J? − ε, and
in addition

ν{ξ ∈ Ξ(X) : J(ξ) < J0 − ε} ¬ α.
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This can be interpreted as the existence of an ‘exceptional’ set S ⊆ Ξ(X) with
probability ν(S) ¬ α such that

inf
ξ∈Ξ(X)

J(ξ)− ε ¬ J0 ¬ inf
ξ∈Ξ(X)\S

J(ξ) + ε (5.22)

It becomes clear that a probably approximate near minimum (Type 3) is a combi-
nation of Type 1 and 2 near minima according to the relationships between them
established by formulae (5.20)–(5.22).

5.3.2.3. A general approach to finding approximate near minima

Although evaluation of the expectations (5.19) is an excessively costly task, it is
possible to approximate them to an arbitrarily chosen accuracy. This is achieved
by approximating the expectations by sample means based on a series of randomly
generated parameters. More precisely, assume that θms = [θ1, . . . , θm]T ∈ Θmad is a
collection of independent identically distributed (i.i.d.) samples from Θad, generated
according to the probability measure µ. With such a multisample θms, for any
design ξ it is possible to define the empirical mean of the criterion J( · ) as

Ĵ(ξ) = Ê{Ψ[M(ξ; θ)]; θms} =
1
m

m∑
j=1

Ψ[M(ξ; θj)], ξ ∈ Ξ(X). (5.23)

Defining the quantity

q(m, ε) = µm
{
θms ∈ Θmad : sup

ξ∈Ξ(X)
|Ê{Ψ[M(ξ; θ)]; θms} − J(ξ)| > ε

}
, (5.24)

it can be said with the confidence 1 − q(m, ε) that every single empirical mean
approximates the corresponding true value J(ξ) with accuracy ε. Choosing m
large enough such that q(m, ε) < δ, where the parameter δ is given a priori,
it can be said with confidence 1 − δ that the function Ĵ(ξ) is a sufficiently close
approximation to the original criterion J(ξ). This implies that the exact minimizer
of the former function is an approximate near minimizer of the latter to accuracy
ε, cf. (Vidyasagar, 2001) for a detailed discussion.
Note that there always exists a nonzero probability, i.e. q( · ), that the algo-

rithm may fail to produce an approximate near minimum of J( · ). By increasing
the number m of generated samples θ, this probability can be established on an
arbitrarily small level, although, it always is positive.
Going further, another problem can be considered, namely how to determine

a probable near minimum of Ĵ( · ), which is equivalent to the question about ade-
quate estimates of the number of samples for θ and ξ, i.e. m and n, respectively.
From the discussion presented in (Vidyasagar, 1997; 2001), it is clear that such a
probable near minimum of the approximated function Ĵ( · ) would simultaneously
be a probably approximate near minimum of the original objective function J( · ).
It turns out that there exist a couple of approaches for this purpose which

can be found e.g. in (Tempo et al., 1997; Vidyasagar, 1997; 1998). Especially, one
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particular algorithm developed by Vidyasagar (2001) for determining probably
approximate near minima is in the focus of our interest. Suppose that ε, α, δ > 0
are given. The objective is to construct a probably approximate (Type 3) near
minimum of J(ξ) = Eθ{Ψ[M(ξ; θ)]} to accuracy ε and level α, with confidence
1− δ.

Algorithm 5.3. Statistical learning algorithm for determination of Type 3 near min-
ima

Step 1. Select integers m,n such that

n ­ ln(2/δ)
ln[1/(1− α)]

and m ­ 1
2ε2
ln
(
4n
δ

)

Step 2. Generate i.i.d. samples ξ1, ξ2, . . . , ξn according to ν and θ1, . . . , θm ac-
cording to µ. Define

Ĵi =
1
m

m∑
j=1

Ψ[M(ξi; θj)], i = 1, . . . , n

and
Ĵ0 = min

1¬i¬n
Ĵi.

Then with confidence 1− δ, it can be said that Ĵ0 is a probably approximate
near minimum of J( · ) to accuracy ε and level α.

�

A full proof of the claim in Algorithm 5.3 can be found in (Vidyasagar, 1997;
2001). Algorithm 5.3 is extremely easy to implement and in addition to that, it
does not require any assumptions about the character of the criterion J apart
from the requirement that its range is a subset of the interval [0, 1]. However, the
disadvantage of the considered procedure is the dependence of the number m of
θ-samples on the number of ξ-samples, i.e. n. Another drawback is the necessity
of the normalization (5.18) (this is because we must have 0 ¬ J(ξ) ¬ 1 for any
ξ ∈ Ξ(X)), which results in a very flat surface of the criterion in the vicinity of
the minimum. In such a way, a practical realization of the routine requires small
values of parameters ε, δ, α which leads to very high values of repetition numbers
m and n. Consequently, the resulting computational effort may be comparable
with standard methods.
At this point it would be advantageous to present some appropriate exam-

ple in order to clarify differences between the delineated approaches. Bearing in
mind that robust designs imply serious difficulties from the viewpoint of numer-
ical complexity, we shall study a less cumbersome instance with only one spatial
dimension.
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Example 5.2. Consider a one-dimensional homogeneous and inductance-free trans-
mission line of length π. The propagation of the voltage signal y over the time
horizon T = [0, 1] is described by the parabolic equation

∂y(x, t)
∂t

= θ1∇2y(x, t) + θ2y(x, t), (x, t) ∈ Ω× T = [0, π]× [0, 1]. (5.25)

The ends of the line are short-circuited and the initial signal distribution along the
line is known, which is reflected by the following boundary and initial conditions:{

y(0, t) = y(π, t) = 0, 0 ¬ t ¬ 1,
y(x, 0) = sin(x) + sin(2x), 0 ¬ x ¬ π. (5.26)

The solution of the considered problem can be found in closed form as

y(x, t) = e(θ2−θ1)t sin(x) + e(θ2−4θ1)t sin(2x). (5.27)

In our example the unknown parameter vector θ = (θ1, θ2) was assumed to
belong to the compact set Θad = [0, 1]2 with the uniform distribution of θ. To
simplify our problem, the set of admissible support points was restricted to the
uniform grid resulting from 29 divisions of Ω (i.e. evenly distributed 30 nodes). In
such a way, the potential measurement sites were the elements of the set

X = {xj : xj = jπ/29, j = 0, . . . , 29}. (5.28)

The main objective was to estimate θ as accurately as possible, based on mea-
surements taken at points from X. To this end, ED- and MMD-optimum design
procedures were implemented in the Lahey/Fujitsu Fortran 95 programming envi-
ronment and run on a PC (Pentium IV, 1.7GHz, 768 MB RAM). More precisely,
Algorithm 3.3 for optimizing experimental effort was adopted with direct numeri-
cal evaluation of the expectations (integration of the criterion was performed with
use of the procedure DTWODQ from the IMSL Fortran 90 ver. 4.0 Library which
embodies the adaptive integration based on the Gauss-Kronrod rule). Such an
approach was compared with Algorithm 5.3 based on the estimation of mathe-
matical expectations. Furthermore, to provide a more comprehensive context, the
minimax relaxation (Algorithm 5.2) was used to obtain an approximation to the
robust design in the minimax sense. For all procedures, the initial design was ran-
domly generated and in the final solutions the points with weights below 0.01 were
removed and their experimental effort uniformly distributed among the other sup-
ports. In the case of the relaxation procedure proposed by Shimizu and Aiyoshi,
the starting set of representative values of θ was chosen as Θ1rep = {(0.5, 0.5)} and
the final design was obtained for the worst case corresponding to θ = (0.3, 1.0).
All results are presented in Table 5.1.
To fully understand the obtained results, note that the similarity of the designs

in the minimax and average senses is not just a coincidence. The set Θad was
specially prepared so as to provide such results. In fact, extremely cumbersome
calculations made with the help of any reasonable computer-algebra system (e.g.
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Table 5.1. Comparison of robust approaches

Algorithm Iterations Time Approx. solution

Weight optimization with
numerical integration (ε = 10−2)

273 ∼ 2 h
{
0.975 2.167
0.50 0.50

}
Statistical learning

(δ = 0.02, α = 0.02, ε = 10−2)
n = 228

m = 107275
∼ 50 min

{
0.975 2.167
0.49 0.51

}
Minimax relaxation (ε = 10−2) 3 ∼ 5 min

{
0.975 2.167
0.50 0.50

}

Maple Rel. 9 was used here) show that for both average and minimax designs it
is possible to obtain closed-form solutions which have the same form, i.e.

ξ?E = ξ
?
M =

{
arctan(

√
2) π − arctan(

√
2)

1
2

1
2

}
(5.29)

Unfortunately, due to the limited space here, it is not possible to present the
detailed calculations (e.g. the closed form of the ED-optimality criterion possess-
es several hundreds of components). However, this fact proves the quality of the
obtained approximations as the support of any design represents the discrete loca-
tions fromX which are the closest to the optimal values. It becomes clear that from
a practical point of view the integration is a critical operation which extends the
time of computations. The approach via statistical learning might be some kind of
remedy, but it requires broad experience regarding selection of suitable values for
the algorithm parameters. Sometimes a too restrictive demand of high accuracy
and confidence levels leads to very large sizes of the samples and the advantages of
such an approach are not obvious. On the other hand, the minimax optimization
algorithm leads to global optimization problems with respect to the design space
and the parameter space, which are very difficult to analyse. For searching the
parameter space and seeking an approximate global optimum, once more the ARS
approach proved its usefulness. In such a way, for this demonstrative problem the
minimax approach appears as the one with the lowest operational time.

F

5.4. Discrimination between rival model structures

5.4.1. Introduction

The process of proper model calibration should contain two components: the selec-
tion of a model structure and estimation of the relevant parameters. Until now, we
have limited our considerations to the latter problem, and have focused attention
on the accuracy of the identifiers, while simultaneously neglecting the model struc-
ture error. Nevertheless, in real-world engineering problems, the error arising from
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an improper model structure often dominates the measurement and computation
errors.
Being the initial part of modelling and simulation of many physical phenome-

na, the structure identification of complex process models constitutes an essential
part of that methodology. Usually the choice of a particular model structure is
ambiguous, since the mechanisms of many complex processes are not fully known.
A detailed analysis of the considered phenomenon often leads to a simplified mod-
el of the investigated system, but occasionally several plausible models can be
used. A specially designed experiment to discriminate between those rival models
constitutes a good source of information about the model fit. Moreover, the very
important aspects of the model level of complexity and cost of the experiment can
be included into the criterion of the best model choice.
Motivations to develop some discrimination techniques come from practical

problems. A representative example is the prediction of the pollution level in
groundwater resources (Sun, 1994; 1996) where facing the extremely complicat-
ed structures of real aquifers the problem of proper selection of the complexity
level for the conceptual model cannot be omitted. As it was mentioned earlier, the
phenomena of that kind are modelled with the aid of partial differential equations
of advection-diffusion-reaction type, where the main difficulty is that only a part
of model parameters (e.g. wind velocities) belong to the set of measurable quan-
tities. In contrast, the diffusion coefficients or parameters occurring in chemical
reactions cannot be directly measured. This inconvenience, which results from the
fact that we deal with a conjunction of a few complicated phenomena (transport,
diffusion and chemical reactions in the considered case), significantly complicates
the appropriate modelling of such systems and requires various simplifying as-
sumptions when constructing an applicable model. Other pertinent examples can
be found in the modelling of atmospheric pollutant transport problems (Kuczewski
et al., 2004) or fault diagnosis in dynamical systems (Patan and Patan, 2003).
The main and most important aspect of structure discrimination is the in-

troduction of an appropriate quantitative criterion used to compare the quality
of different designs. However, the high level of complexity in the case of the ex-
perimental design for discrimination between models has limited its application
to relatively simple models of static systems. Various criteria were considered in
(Atkinson and Fedorov, 1975; Burke et al., 1994; Stewart et al., 1988). Recently the
criterion, called the T-optimality criterion, introduced by Atkinson and Fedorov
(1975) was generalized to discrimination between two rival multiresponse dynamic
models given in the form of ordinary differential equations with observations cor-
rupted by white noise (Uciński and Bogacka, 2002; Kuczewski and Uciński, 2002).
Within the scope of this work, the approach based on T-optimum designs is

generalized to find optimal stationary sensor locations, which allows us to perform
the most reliable discrimination between two models of a process with spatiotem-
poral dynamics (Kuczewski et al., 2003; 2004). The proposed iterative numerical
procedure for computing optimum designs consists in solving a maximin problem
where global optimization techniques have to be employed. The generalization to
the case of several plausible models can be made without major difficulties.
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5.4.2. Design problem in context

The class of systems considered here is, in general, the same as that established in
Section 2.1, i.e. it is described by (2.1)–(2.3) in a simply-connected bounded open
domain Ω ⊂ Rd with sufficiently smooth boundary ∂Ω.
For simplicity, only stationary sensors will be studied and the measurements

are assumed to be independent of one another. This leads to the observational
process described by the following equation:

zji (t) = y(x
j , t) + εi(xj , t), t ∈ T = [0, tf ], j = 1, . . . , `; i = 1, . . . , rj , (5.30)

where ` denotes the number of measurement sensors, xj ∈ Ω stands for sensor
locations (xj 6= xi for j 6= i) and εi(xj , t) represents the statistical uncertainty
resulting from possible measurement errors. We make the assumption that the
errors εi(xj , t) can be described by a spatially uncorrelated Gaussian stochastic
process. Moreover, the measurements can be taken repeatedly at a particular lo-
cation, which is taken into account in (5.30) by introducing the replication term
rj ,

∑`
j=1 rj = N .
According to (2.1)–(2.3), since the uncertainty of the boundary and initial

conditions (i.e. functions E and F) does not differ from the uncertainty of the
system equation structure, it is very convenient to restrict our attention to the main
assumption of the proposed approach, which is the conformity of the examined
model structure G with G1( · , θ̃1) or G2( · , θ̃2) , where functions G1 and G2 are
given a priori, and θ̃1 ∈ Θ1 ⊂ Rm1 and θ̃2 ∈ Θ2 ⊂ Rm2 stand for vectors of
unknown but constant parameter values (Θ1 and Θ2 are some compact sets). The
aim of the experiment is to determine which of the models G1 and G2 is compatible
with the investigated phenomenon.
The proposed solution can be delineated as follows (Kuczewski et al., 2004;

Fedorov and Hackl, 1997): The least-squares estimate of parameters θ̃k in the
considered case can be expressed by the equation:

θ̂k = arg min
θk∈Θk

∑̀
j=1

rj∑
i=1

wj

∫
T

‖zji (t)− ηk(x
j , t; θk)‖2dt, (5.31)

for k = 1, 2, where wj = rj/N, ηk(xj , t; θk) is the solution of (2.1)–(2.3) with
G( · ) = Gk( · , pk), and ‖ · ‖ stands for the Euclidean norm.
Without loss of generality, we can assume that the first of the considered

models G1 is ‘true’, i.e. it is compatible with the investigated phenomenon. This
assumption entails the condition of the knowledge of the parameter vector θ̃1 (this
value can be obtained as a result of a pilot experiment or some nominal values
can be used if accessible). Then the problem of the best model selection reduces to
maximization of the following criterion subject to weights wj and spatial locations
xj (Fedorov and Hackl, 1997):

T 012(ξN ) = min
θ2∈Θ2

∑̀
j=1

rj∑
i=1

wj

∫
T

‖η(xj , t)− η2(xj , t; θ2)‖2 dt, (5.32)
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where η(x, t) = η1(x, t; θ̃1), and the set of variables

ξN=
{
x1, . . . , x`

w1, . . . , w`

}
(5.33)

is called the N-observation normalized exact experimental design. The quantities
xj and wj are called the support and weights, respectively.
The criterion (5.32) defines some measure of the discrepancy between the

responses of both the models. Then the resultant optimum design has an effect on
the maximum lack of fit of model G2 in the sense of the sum of the squared errors
calculated for optimum estimates of the θ2 parameter vector. It is intuitively clear
that the solution strongly depends on which model is assumed to be ‘true’, as
well as on the true values of the parameters in this model (θ̃1 in the considered
case). We wish to choose a design which is optimal for some particular value of
θ̃1 in the hope that it is not too bad whatever the true θ̃1 happens to be. The
dependence of the optimal solution on the model parameters is an unappealing
characteristic of nonlinear experimental designs. In such a way we are faced again
with the parametric uncertainty of the model and methods presented in preceding
sections could be used in order to surmount this difficulty.
Allowing for replicated observations at the support points xj entails serious

difficulties, as the resultant numerical analysis problem is not amenable to be
solved by standard optimization techniques, particularly when N is large. This
is caused by the discrete nature of the N -observation exact designs, since the
weights wj are rational numbers. To alleviate this inconvenience, once again the
notion of the design can be relaxed to all probability measures ξ over X which
are absolutely continuous with respect to the Lebesgue measure and satisfy by
definition the normalization condition

∫
X
ξ( dx) = 1, which leads to continuous

designs which dramatically simplify the problem. The ‘continuous’ equivalent of
the criterion (5.32) can be then expressed for the considered case as follows:

T12(ξ) = min
θ2∈Θ2

∫
X

{∫
T

‖η(x, t)− η2(x, t; θ2)‖2 dt
}
ξ( dx) (5.34)

and the design
ξ? = arg max

ξ∈Ξ(X)
T12(ξ) (5.35)

is called locally T12-optimum.

5.4.3. Optimality conditions and numerical construction of T 12-optimum
designs

In order to derive necessary and sufficient conditions for the optimality of designs,
the following assumptions are required:

(B1) Sets X i Θ2 are compact,

(B2) η is a continuous function on X × T ,
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(B3) η2 is a continuous function on X × T ×Θ2.

Then, the results presented in (Atkinson and Fedorov, 1975) can be easily gener-
alized to prove the following claim (Uciński and Bogacka, 2002):

Theorem 5.2. If the optimization problem (5.34) possesses a unique solution
θ?2 ∈ Θ2 for a design ξ?, then the necessary and sufficient condition for the T12-
optimality of ξ? is∫

T

‖η(x, t)− η2(x, t; θ?2)‖2 dt ¬ T12(ξ?), ∀ x ∈ X. (5.36)

For each support point in ξ? the inequality is replaced by equality in (5.36). More-
over, the set of all possible optimum designs ξ? is convex.

Below we present a numerical scheme of computing locally T-optimum con-
tinuous designs, which constitutes a generalization of the iterative procedure set
forth by Atkinson and Fedorov (1975) in the case of static systems. However, its
usefulness was also shown in the case of discrimination between multiresponse
dynamic system models described by ordinary differential equations (Kuczewski
and Uciński, 2002) and for DPS’s (Kuczewski et al., 2004). The procedure can be
schematically depicted as the sequence of the following steps:

Algorithm 5.4. Two-model discrimination algorithm

Step 1. Choose an initial nonsingular design ξ(0). Set s = 1.

Step 2. In the s-th iteration, find

θ̂
(s)
2 = arg min

θ2∈θ2

∑̀
j=1

wj

∫
T

‖η(xj , t)− η2(xj , t; θ2)‖2dt

x(s) = argmax
x∈X

∫
T

‖η(x, t)− η2(x, t; θ̂(s)2 )‖2dt

Step 3. If φ(x(s))−∆(ξ(s)) ¬ ε, where

φ(x) =
∫
T

‖η(x, t)− η2(x, t; θ̂(s)2 )‖2dt, ∆(ξ) =
∑̀
j=1

wjφ(xj),

then ξ? = ξ(s) and STOP, otherwise go to Step 4

Step 4. Choose αs from 0 ¬ αs ¬ 1 and determine the convex combination of
designs:

ξ(s+1) = (1− αs)ξ(s) + αsξ(x(s)),

where ξ(x(s)) stands for the design concentrated only at one point x(s) with
unit weight. Set s = s+ 1 and return to Step 2.

�
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The choice of the sequence {αs} is ambiguous (Atkinson and Fedorov, 1975)
and should be detailed. The simulation presented in what follows was performed
with αs = 1/(1 + `), where ` denotes the size of the design, but the optimal value
of coefficient αs can be easily found in each iteration, e.g. with the golden search
method. Although the number of support points in the optimum design is not set
a priori, the algorithm possesses the property of finding designs which are optimal.
To achieve this, techniques of avoiding the clusterization phenomenon have to be
used.
The simplest possibility is the periodical exchange of clusters for single points

with the averaged position and summed weights within cluster components. An-
other solution consists in retaining in the design only those members of clusters,
which came up at the latest, since they represent the most valuable information
— the longer the process runs, the better solutions the iterative procedure pro-
duces (of course if the whole iterative process converges). Finally, the points with
relatively small weights should be removed from the resultant design. Thresholds
steering the maximum cluster diameter, the minimum weight of the support points
and the accuracy ε should be selected experimentally.
The most important part of the algorithm, which directly affects the conver-

gence of the proposed procedure, is the solution of the global optimization problem
which appears in Step 2 of the scheme. It is the most time-consuming part of the
algorithm as well, since the system state is given implicitly as the solution of a
particular PDE and each evaluation of the cost function for different model param-
eters is related to the necessity of solving the underlying PDE. Getting stuck in a
local minimum usually leads to premature convergence or the lack of convergence
at all. Therefore, an effective implementation of some global optimization method
is of crucial significance in the implementation of the presented approach.

Example 5.3. In order to illustrate the properties of the proposed algorithm, a
computer experiment was performed. For this purpose, the process of pollutant
transport-diffusion over a given area Ω was considered. Assume that the pollutant
concentration y over the time interval T = [0, 1] is described by the model in the
form of the advection-diffusion equation

∂y(x, t)
∂t

+∇ · (v(x)u(x, t)) = ∇ · (d1(x)∇y(x, t)) , (x, t) ∈ Ω× T, (5.37)

subject to initial and boundary conditions

y(x, 0) = 100e−100(x
2
1+x

2
2), x ∈ Ω,

∂y(x, t)
∂n

= 0, (x, t) ∈ ∂Ω× T.
(5.38)

The diffusion coefficient was assumed in the form:

d1(x) = 0.1 + 0.1x41 + 0.1x
4
2.

The velocity of the transport medium was modelled as a radial field directed
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outwards with a source situated at point P = (0, 0):

v(x) =

(
x31√
(x21 + x

2
2)
,

x32√
(x21 + x

2
2)

)
. (5.39)

The domain Ω, boundary ∂Ω, contour of the initial concentration of the substance
y(x, 0) and the gradient of the transport medium velocity are shown in Fig. 5.5. The
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Fig. 5.5 . Setting of Example 5.3: the considered domain, its boundary, initial
concentration of a pollutant (contour plot) and velocity field.

alternative model has no advection component, so only diffusion of the pollutant
is considered. The model is expressed by the equation

∂y(x, t)
∂t

= ∇ · (d2(x)∇y(x, t)) inx ∈ Ω (5.40)

with boundary and initial conditions (5.38) in the same domain and the same
observation horizon as in the previous model (5.37). The diffusion coefficient of
the alternative model has the form preserving symmetry:

d2(x) = θ1 + θ2(x41 + x
4
2). (5.41)

The values of the alternative model parameters were assumed to satisfy θ1, θ2 ∈
[0.01, 0.2]. A program for computing the optimum design was written completely
in the Matlab 6.5 environment. Solutions of the advection-diffusion-reaction PDE’s
were obtained using the finite-element method with a separate program based on
the Matlab PDE Toolbox.
The resulting optimum design includes two points and has the form

ξ? =
{
(−0.4002,−0.0110), (0.0120, 0.3890)

0.2097, 0.7903

}
and the parameters of the alternative model with respect to ξ? have the values:
θ?2 = (θ

?
2,1, θ

?
2,2) = (0.1004, 0.1048). The obtained sensitivity function

φ(x) =
∫
T

‖η(x, t)− η2(x, t; θ̂2)‖2dt (5.42)
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Fig. 5.6 . Contour plot of the sensitivity function φ(x) with optimum sensor
locations (a) and a 3D plot of the sensitivity function φ(x) (b).

defining the discrepancy between the responses of the models for the optimum
sensor location is shown in Fig. 5.6. It is worth of noticing that the support points
are located at the maxima of the φ(x) function which is consistent with the outlined
theory. As can be seen in Fig. 5.6, the sensitivity function is symmetric, which
results from the problem symmetry. The function has four maxima, where the
values of the T12 criterion equal one another, but the sensors are located only
at two of them. This situation is caused by unavoidable numerical inaccuracies
of computations (even the smallest possible float difference between the values of
the appropriate criterion decides which of the points will be included into design
during the present iteration of the algorithm).

F

5.5. Concluding remarks

Within the scope of this chapter it was expressed than the parametric and struc-
tural model uncertainties are major impediments encountered in the problem of
optimal sensor location for DPS’s, which makes it extremely nontrivial. However,
in the former case it was shown that difficulties arising from the dependence of
the optimal solutions on the parameters to be identified can be circumvented to
some extent by the introduction of the so-called sequential and robust designs.
In the first part of the chapter, an approach was proposed based on a combi-

nation of two concepts: sequential designs and the scanning strategy with a fixed
time switching schedule. Although sequential designs constitute a well-known tech-
nique, the resulting time and cost of the experiment may be too long or too large.
Moreover, it is often difficult to obtain strong results in a mathematical sense.
However, from a practical point of view the approach is very simple for imple-
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mentation and very easy to combine with other approaches. Furthermore, in some
processes, the partitioning of resources (e.g. time discretization), being the most
characteristic property of sequential designs, is given by definition. This is used to
provide a characterization of a simple and effective computational scheme based
on the concepts of clusterization-free and sequential designs. However, such an ap-
proach inherits some drawbacks which have to taken into account, i.e. the necessity
of consecutive parameter estimation in each stage of the experiment, which is a
main difficulty in the light of the lack of on-line identification methods for DPS’s.
Alternatively, as more systematic approaches, designs in minimax and average

senses can be introduced on the analogy of the standard procedure in optimum
experimental design for nonlinear regression models. Despite the critical impor-
tance of the problem, to the best of the author’s knowledge the only contributions
to this issue in the context of DPS’s are works of Uciński (1999a; 1999d; 1999b).
Suitable characterizations of the optimality conditions for continuous designs, as
well as some known numerical algorithms for obtaining approximate solutions are
discussed. A proper choice between these two approaches is equivalent to the se-
lection of the most adequate practical conditions which have to be satisfied during
the experiment. If there is no arbitrary knowledge about the distribution of the
unknown parameters and the worst possible performance of the experiment should
be optimized, then minimax designs can be a right choice. Another situation when
the prior distribution of the parameters to be estimated is available and we are
interested in a design whose performance is good enough for the great majority of
parameter realizations, the best suited will be a design in the averaged sense. The
algorithms described in the middle part of this chapter make it possible to apply
both the approaches mentioned above, with a reasonable numerical effort. Espe-
cially, the use of the statistical learning approaches leads to essential improvements
in the determination of the designs in the average sense.
The problem of structural uncertainty is even more meaningful, and at the

same time, more difficult. However, in a situation when some finite set of models
describing the examined phenomenon is known and the goal is to choose the best
fitted one, it was shown that this problem can be addressed using the concept
of designs dedicated to model discrimination. In the final part of this chapter,
a generalization of the T-optimality criterion fitting to the considered case of
discrimination between two DPS’s models was presented. The proposed iterative
procedure for computing optimum designs consists in solving a maximin problem
where global optimization techniques have to be employed. This requires an ef-
ficient global optimizer, or alternatively, a parallel realization of the algorithm.
Furthermore, note that generalizations to the case of several plausible models can
be made without major difficulties.
Summarizing, the following is a short list of contributions of this work to the

state-of-the-art in robust optimum experimental design:

◦ A new technique was developed, being the conjunction of the clusterization-
free designs for the scanning strategy and sequential design techniques. This
is embodied in a very simple and efficient exchange-type numerical proce-
dure. In addition to that, it is clarified how to adapt some existing algorithms
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delineated in the previous chapters, which establishes a promising attempt
to optimally locate scanning sensors in parameter estimation of distributed
systems with respect to parametric uncertainties.

◦ A characterization of the robust designs in the minimax and average senses
with appropriate discussion was provided. As a novelty proposed to extend
the issue of determination of robust designs in the average sense, the proce-
dure based on statistical learning theory was adopted, which is an alternative
to the standard methods aimed at the local case since it allows for avoiding
the multi-dimensional integration.

◦ The T-optimum design criterion and optimum design characterizations were
generalized to the MIMO spatio-temporal dynamic systems. Moreover, a
suitable iterative procedure known from the discrimination experiments for
lumped systems was successfully adopted.

At this moment, despite a critical character of the problem, no technique ex-
ists which is free form drawbacks and there is no doubt that the subject of robust
experimental design is still open for research. However, with some approaches pro-
posed in this chapter, the gap in the methodology of preparing the data acquisition
process for parameter estimation in DPS’s is filled at least to some extent.



Chapter 6

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

There is no doubt that optimization and control of DPS’s are intensively expanding
research areas with a high number of potential applications. The process of data
acquisition, being an integral part of control design, is fundamental as in distribut-
ed systems it exerts a strong influence on the accuracy of estimation, the quality
of control and prediction of system behaviour. But the problem of sensor location
for parameter estimation in DPS’s is very difficult since its intrinsic non-linearity
rather excludes simple methods. Furthermore, most often, the dependence between
the observations and the system performance is not intuitive and has counfounding
nature. Despite these facts, the problem has been considered by many authors and
a number of relevant contributions have already been reported in the literature.
In addition to this, some new approaches to determining optimal sensor locations
are still proposed in order to provide a more general context, a wider range of po-
tential criteria and better understanding of interconnection between the optimal
locations and the quality of the identifiers. On the other hand, engineers expect
efficient techniques which are easy to implement and provide benefits overcoming
the cost of application.
In such a way, although various results for the sensor location problem ex-

ist, they are rarely applied in practice by engineers. This seems to be a direct
consequence of the complexity of most sensor location approaches which lead to
sophisticated and inefficient algorithms. Moreover, the existing methods are often
intricate and difficult in implementation. However, taking into account that the
progress in computational mathematics combined with the rapidly increasing com-
puter power steadily extend the range of potential applications, there is a strong
necessity to develop more effective systematic approaches which pave the way to
the algorithms of great efficiency and reasonable complexity.
In the light of the conclusions above, the original objective of the research

reported in this dissertation was to develop effective and reliable methods to solve
the sensor location problems encountered in practical applications for a wide class
of DPS’s. In order to accomplish this task the appropriate theoretical substantia-
tion for the adopted approach was developed. Furthermore, some known methods
have been generalized and several new algorithms have been constructed. The fol-
lowing is a final concise summary of the contributions provided by this work to
the state-of-the-art in optimal sensor location for parameter estimation in DPS’s:
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◦ Systematizes and generalizes the classical results of optimal experiment de-
sign for stationary sensors to MIMO systems with possible output correla-
tion.

◦ Adapts some algorithms of nonlinear programming and optimal experiment
design to solve the stationary sensor location problems. In particular, it
provides:

• adaptation of gradient projection and feasible-direction methods,
• transformation to a semi-definite programming task and application of
some well-developed SDP algorithms and LMI techniques, which are,
to the best of the autor’s knowledge, a completely new technique in the
context of the sensor location problem for parameter estimation.

The delineated algorithms were tested via computer simulations on engineer-
ing problems such as computer-assisted electrical impedance tomography and
structural mechanics.

◦ Derives optimality conditions for non-parameterized and parameterized tra-
jectories, and applies the two-phase first-order algorithm with adaptive ran-
dom search (Walter and Pronzato, 1997) to construct optimal trajectories of
mobile sensors,

◦ Develops expeditious methods of activating scanning sensors, and in partic-
ular:

• introduces an approach based on clusterization-free designs for an ar-
bitrarily fixed switching schedule,

• transforms the problem to the equivalent Mayer problem of optimal
control in the case of an optimized switching schedule; it is then solved
using the CPET approach.

These scanning techniques, as well as the approaches employing mobile and
stationary sensors, were validated and compared on simulations of dynamic
processes of signal propagation in transmission lines and atmospheric and
groundwater pollution.

◦ Develops an approach to solve the sensor location problem in the case of
correlated observations. Specifically, a method which includes mutual cor-
relations between measurements directly into the measurement covariance
matrix is proposed and a relaxation algorithm is developed for solving the
resulting computational problem.

◦ Introduces methods of optimal sensor placement to the model-based fault di-
agnosis. It adapts the parametric based approach to describe system modes
of work and develops methods of the reliability maximization of fault detec-
tion and isolation based on structured hypothesis testing.
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◦ Develops some approaches to optimal sensor allocation in the presence of
model parametric and structural uncertainties:

• Develops a new technique, which is a conjunction of the clusterization-
free designs for the scanning strategy and sequential design techniques.
In addition to this, it provides an extremely efficient exchange-type
numerical procedure.

• Provides a characterization of robust designs in the minimax and aver-
age senses with the appropriate discussion. As a novelty here, an original
application of statistical learning theory should be stressed, which is an
alternative to standard methods from the local case multi-dimensional
integration is avoided.

• Generalizes the T-optimum design criterion and optimum design char-
acterizations to MIMO spatio-temporal dynamic systems. Moreover, a
suitable iterative procedure known from the discrimination experiments
for lumped systems was successfully adopted.

As was pointed out in (Uciński, 1999a), the decided advantage of the approach
suggested in this work is its independence of a particular form of the PDE’s system
which is used as a model of the considered spatio-temporal process. The only
requirement then becomes the existence of sufficiently regular solutions to the
state and sensitivity equations.
From an engineering point of view, the proposed approach leads to more

transparent solutions and many efficient and easy-to-implement numerical proce-
dures. The author strongly believes that these advantages establish a firm position
of such a methodology regarding applications in engineering. In addition to this,
note that few alternatives exist in the literature. Nevertheless, there still remain
open problems which require closer attention and indicate possible applications.
In what follows, a brief discussion of possible areas for further investigation is
presented.

Application for time-delayed systems. As the specific form of partial differential
equations is not crucial for the approach, it seems natural to extend the pro-
posed methodology to the case of systems with possible time delays. A compre-
hensive treatment of such DPS’s from an optimal control perspective is given
in (Kowalewski, 2001a). However, the main problem which has to be addressed
while trying to derive such a generalization is to answer the question whether
or not the approach based on FIM is still applicable. The works of Fitzpatrick
(1990; 1995; 1995) indicate some conditions of the estimator consistency which
can be used to establish the desired applicability for particular cases.

Further development of the approaches robust to the structural model uncertainty. In
the model-based systems analysis, a proper calibration of the model involves two
stages, namely an appropriate selection of the model structure and then the esti-
mation of its parameters. Although the former stage is of great practical relevance,
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the problem of the model quality assessment is usually omitted due to its difficulty.
However, for some problems regarding DPS’s, where the model responses are of
considerable importance, some systematic approaches are required as the model
structure plays a major role in the process of building the prediction of system
outputs.

Further development of approaches for correlated measurements. It is clear that in
real-world problems the independence of the observations often cannot be suffi-
ciently justified and mutual correlations between measurements should be taken
into account. Since the classical concept of the design measures is not applicable in
this case, this fact is of crucial importance as it significantly increases the problem
complexity. In Section 4.4, an exchange-type relaxation algorithm was adopted and
its efficiency for the D-optimality criterion was dramatically improved. Attempts
to extend those concepts to other criteria would be quite natural. The close con-
nection of correlated measurements with practical problems makes such results
very desirable.

Simultaneous estimation and experimental design. Most of the approaches consid-
ered within the scope of this dissertation concern implementation of the sensor
allocation strategies before conducting the experiment, i.e. they work off-line. The
only exception are the sequential design techniques discussed within the framework
of parameter uncertainties. From a practical point of view, it would be interest-
ing to investigate the problem of simultaneously taking measurements, estimat-
ing the parameters and updating the locations of scanning or movable sensors.
But, as was indicated earlier, the main obstacle is the lack of on-line estimation
methods for DPS’s and the relevant literature is very limited (Demetriou and
Rosen, 1993; Demetriou, 2000; Aihara, 1997). Nevertheless, potential applications
make this research direction extremely important.

Model based fault diagnosis. Recently, the modern diagnostics is a dynamically
developing and, at the same time, very important research field with numerous
engineering applications. In Section 4.5, a first attempt to the model based di-
agnosis in distributed systems was delineated. In spite of the very rich literature
for LPS’s, the number of contributions for DPS’s is very limited. Moreover, the
above-mentioned lack of on-line estimation methods appears again as a crucial
difficulty here. Nevertheless, due to the importance of this subject, there is a need
for further developments and increasing the reliability of the diagnosis through the
appropriate sensor location is a very challenging area for investigations.



Streszczenie

Temat rozprawy dotyczy ważnego problemu optymalizacji czasoprzestrzennego
rozmieszczania czujników pomiarowych w układach o parametrach rozłożonych,
które sformułowano już u schyłku lat sześćdziesiątych, jednak do dziś brak jest
uniwersalnych i łatwych do zastosowania rozwiązań. Istotna trudność wynika z
konieczności stosowania metod analizy nieliniowej, bowiem nawet w sytuacji gdy
równanie różniczkowe cząstkowe jest liniowe ze względu na identyfikowane parame-
try, jego rozwiązanie jest na ogół nieliniową funkcją tych parametrów. Stosunkowo
dużo miejsca w literaturze poświęcono rozmieszczaniu zadanej liczby czujników
stacjonarnych, w pewnych sytuacjach możliwe jest jednak stosowanie czujników
mogących wykonywać pomiary również w trakcie ruchu lub przy zastosowaniu tzw.
„skanowania” czyli odpowiedniej aktywacji czujników pomiarowych. Taki sposób
obserwacji wydaje się dość atrakcyjny zarówno z praktycznego punktu widzenia,
gdyż czujniki nie są związane z ustalonymi punktami pomiarowymi i mogą prze-
mieszczać się do obszarów, które dostarczają w danej chwili więcej informacji o
obserwowanym obiekcie, jak również z punktu widzenia teorii sterowania, gdyż
prowadzi do wielu interesujących problemów wymagających nieklasycznych roz-
wiązań.
Do podstawowych celów pracy należało istotne rozszerzenie istniejących re-

zultatów oraz opracowanie nowych podejść do określania optymalnych strategii
obserwacji w estymacji dla układów o parametrach rozłożonych. W tym kontekście
poruszane są m.in. problemy generalizacji istniejącej metodologii na rzecz wielo-
wyjściowych układów z dynamiką czasoprzestrzenną oraz rozwinięcie efektywnych
algorytmów określania optymalnych strategii obserwacji w oparciu o bezpośrednio
ograniczone miary planów. Ponadto opracowano niezwykle skuteczne podejścia
do określania optymalnych harmonogramów aktywacji czujników skanujących w
przypadku ustalonych i optymalnych momentów przełączeń.
Drugoplanowe cele dotyczyły dostarczenia odpowiedniej metodyki postępowa-

nia w przypadku występowania niepewności parametrycznej modelu. Rozważane
są tutaj nowatorskie techniki adaptujące kryteria bayesowskie i minimaksowe oraz
zastosowanie planowania sekwencyjnego do realizacji strategii on-line z użyciem
czujników skanujących. Inne istotne uogólnienia zawarte w pracy dotyczą technik
planowania eksperymentu w przypadku skorelowanych szumów pomiarowych oraz
ich zastosowanie w diagnostyce uszkodzeń.
Wszystkie wymienione podejścia zostały przetestowane i porównane na bazie

symulacji numerycznych dotyczących ważkich i potencjalnych problemów prak-
tycznych tj. impedancyjnej tomografii komputerowej i mechaniki strukturalnej
oraz w problemach estymacji parametrów w liniach transmisyjnych i do kalibracji
modeli rozprzestrzeniania się zanieczyszczeń w powietrzu i wodach gruntowych.



Appendix A

PROOFS OF SOME THEORETICAL RESULTS

A.1. Proofs of Theorems from Chapter 2

Proof of Lemma 2.1

The symmetry of the matrix is a direct consequence of the definition (2.49) since
the matrix C−1o (t) is symmetric. The proof of the non-negative definiteness starts
with the observation that C−1o (t) is positive definite for any t, therefore it can
be represented in the form C−1o (t) = A(t)AT(t), where A(t) is a lower-triangular
square matrix. From this it follows that

∀b ∈ Rm, bTM(ξ)b =
∫
X

{
1
tf

∫ tf
0

σ−2(x, t)bTF (x, t)A(t)AT(t)FT(x, t)b dt
}
ξ(dx)

=
∫
X

{
1
tf

∫ tf
0

σ−2(x, t)‖α(x, t)‖2 dt
}
ξ(dx)

(A.1)

where α(x, t) = AT(t)FT(x, t)b. Since the integrand is non-negative, the integral
itself must be non-negative, which completes the proof. �

Proof of Lemma 2.2

According to the assumptions concerning σ(x, t) it is clear that σ−2(x, t) ∈ C(X×
T ). In combination with (A2) this means that the function Υ(x) in (2.49) is contin-
uous in X. The compactness of M(X) is thus a direct consequence of assumption
(A1) as shown in (Uciński, 1999a, Lem. 3.2, p. 42).
To prove the convexity, let us introduce the design

ξ = (1− α)ξ1 + αξ2, (A.2)

where ξ1, ξ2 ∈ Ξ(X) and α ∈ [0, 1]. Now, constructing the convex combination of
the matrices corresponding to ξ1, ξ2 we have

(1− α)M(ξ1) + αM(ξ2) = (1− α)
∫
X

Υ(x)ξ1(dx) + α
∫
X

Υ(x)ξ2(dx)

=
∫
X

Υ(x)[(1− α)ξ1(dx) + αξ2(dx)] =M(ξ)
(A.3)

According to (2.55), M(ξ) ∈M(X) which proves the second part of the lemma.�
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Proof of Theorem 2.3

To derive the discussed property of the information matrices, we need the following
classical result (Fedorov, 1972; Pukelsheim, 1993).

Theorem A.1 (Carathéodory’s theorem). Let S be the the set of all possible
sµ =

∫
S0
sµ(ds), where µ is any probability measure defined on S0 and s ∈ S0 ⊂ Rd

(S is the convex hull of the S0). Then each point of S can be represented in the
form

sµ =
d0∑
i=1

µisi, (A.4)

where si ∈ S0 and d0 ¬ d+ 1. If sµ is the boundary point of S, then d0 ¬ d.

The main idea of the proof can be found in (Fedorov and Hackl, 1997, Th.
2.3.1, p. 30), however it is expedient to present it here as this result is essential in
our considerations.
The set M(X) is the convex hull of the set S0 = {Υ(x) : x ∈ X}. The

dimension of this set is d = m(m+ 1)/2 due to the symmetry of the matrix Υ(x)
(it is sufficient to use only elements lying over and on the main diagonal). Applying
the Carathedéodory theorem, we may represent M0 as a convex combination of
no more than d0 points from S0:

M0 =
d0∑
i=1

piΥ(xi),
d0∑
i=1

pi = 1 (A.5)

where d0 ¬ d+ 1 in a general case and d0 ¬ d for boundary points. Choosing

ξ =
{
x1 · · · xd0

p1 · · · pd0

}
,

we have M0 =M(ξ) (2.46) and this is precisely the assertion of the theorem. �

Proof of Theorem 2.4

The existence of an optimal design ξ? follows from the compactness of M(X)
(see Lem. 2.2) and the existence of designs with finite measure Ψ, cf. (A5). From
the monotonicity of the criterion Ψ in (A4) it follows that M(ξ?) has to be a
boundary point of M(X). Indeed, if we assume that M(ξ?) is an interior point of
M(X) then there exists α > 1 such that αM(ξ?) ∈ M(X). Consequently, there
exist some design ξ, whose information matrix is given by αM(ξ?) (cf. Th. 2.3).
But then we have

Ψ[M(ξ?)] > Ψ[M(αξ?)] = Ψ[M(ξ)]

and this contradicts the optimality of the design ξ?. Thus, if M(ξ?) is a boundary
point of M(X), from the second part of Theorem 2.3 we obtain the existence of a
design with no more than m(m+ 1)/2 support points.
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For the second part of the assertion, assume that ξ?1 and ξ
?
2 are optimal and

ξ? = αξ?1+(1−α)ξ?2 . From the convexity of Ψ( · ) (A3) and the setM(X), we have

Ψ[M(ξ?)] = Ψ[αM(ξ?1) + (1− α)M(ξ?2)] ¬ αΨ[M(ξ?1)] + (1− α)Ψ[M(ξ?2)]
= α min

ξ∈Ξ(X)
Ψ[M(ξ)] + (1− α) min

ξ∈Ξ(X)
Ψ[M(ξ)] = min

ξ∈Ξ(X)
Ψ[M(ξ)],

that is to say, ξ? is an optimal design. �

A.2. Proofs of Theorems from Chapter 3

Proof of Theorem 3.1

Since we deal with a feasible-direction method, the convergence analysis proceeds
in much the same way as in the clasical framework of this category of methods,
cf. (Bertsekas, 1999, p. 213). We must only show that the direction, i.e. M(ξ(k)+ )−
M(ξ(k)) is also a descent direction, i.e.

∂

∂α
Ψ
{
M(ξ(k)) + α

[
M(ξ(k)+ )−M(ξ(k))

]}∣∣∣∣
α=0+

< 0. (A.6)

To this end, let us notice that for any design ξ ∈ Ξ(X) such that M(ξ) > 0, we
have

ς(ξ) > 0.

Indeed, the function Ψ[ · ] is convex if and only if (Bertsekas, 1999, Prop. 3.3, p.
675)

Ψ[M(ξ) +A] ­ Ψ[M(ξ)] + trace
{ ◦
Ψ[M(ξ)]A

}
, ∀A ­ 0. (A.7)

This gives

− trace
{ ◦
Ψ[M(ξ)]A

}
­ Ψ[M(ξ)]−Ψ[M(ξ) +A] > 0, (A.8)

for all non-zero A ­ 0, which is valid due to the assumed monotonicity of Ψ[ · ].
According to Lemma in (Pukelsheim, 1993, p. 9), this is equivalent to the condition

−
◦
Ψ[M(ξ)] > 0. (A.9)

This clearly forces

ς(ξ) = − trace
{ ◦
Ψ[M(ξ)]M(ξ)

}
> 0. (A.10)
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We are now in a position to show our claim. It follows that

∂

∂α
Ψ[(1− α)M(ξ(k)) + αM(ξ(k)+ )]

∣∣∣
α=0+

= trace
{
◦
Ψ[M(ξ(k))][M(ξ(k)+ )−M(ξ(k))]

}
= trace

{
◦
Ψ[M(ξ(k))]

∑̀
i=1

p
(k)
i

φ(xi, ξ(k))− ς(ξ(k))
ς(ξ(k))

M(ξ(k))
}

= −
∑̀
i=1

p
(k)
i

φ(xi, ξ(k))− ς(ξ(k))
ς(ξ(k))

φ(xi, ξ(k)) = −E
[
φ(x, ξ(k))− ς(ξ(k))

ς(ξ(k))
φ(x, ξ(k))

]

= −
E
[
φ2(x, ξ(k))

]
− ς(ξ(k)) E

[
φ(x, ξ(k))

]
ς(ξ(k))

= −
E
[
φ2(x, ξ(k))

]
− E2

[
φ(x, ξ(k))

]
ς(ξ(k))

= −
var
(
φ(x, ξ(k))

)
ς(ξ(k))

< 0

(A.11)

provided that not all M
(
ξ(xi)

)
, i = 1, . . . , ` are equal. Here we have treated the

weights p(k)i , i = 1, . . . , ` as a probability distribution on the set of support points
xi, i = 1, . . . , `. �

A.3. Proofs of Theorems from Chapter 4

Proof of Theorem 4.1

Since the explicit form of the FIM is not crucial for the proof, the considered
generalization to the multi-response systems can be obtained by following the
reasoning of the relevant result from (Uciński, 1999a, Thm. 4.1, p. 79). First, the
convexity of Ψ yields a necessary and sufficient condition for optimality of ξ?:

inf
ξ̄∈Ξ(X)

∆Ψ
(
M(ξ?),M(ξ̄)

)
= inf
ξ̄∈Ξ(X)

trace
[ ◦
Ψ[M(ξ?)]

(
M(ξ̄)−M(ξ?)

)]
= trace

[ ◦
Ψ[M(ξ?)]

(
M(ξ?)−M(ξ?)

)]
= 0.

(A.12)
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Setting x?(t) = arg min
x∈X

ψ(x, t, ξ?), we get

∫
T

ψ(x?(t), t, ξ?) ξ(dt) =
∫
T

{∫
X

ψ(x, t, ξ?)δ
(
x− x?(t)

)
dx
}
ξ(dt)

­ inf̄
ξ

∫
T

{∫
X

ψ(x, t, ξ?) ξ̄(dx|t)
}
ξ(dt)

­ inf̄
ξ

∫
T

{∫
X

min
x∈X

ψ(x, t, ξ?) ξ̄(dx|t)
}
ξ(dt)

= inf̄
ξ

∫
T

ψ(x?(t), t, ξ?)
{∫
X

ξ̄(dx|t)
}
ξ(dt)

=
∫
T

ψ(x?(t), t, ξ?) ξ(dt)

(A.13)

Hence

inf̄
ξ

∫
T

{∫
X

ψ(x, t, ξ?) ξ̄(dx|t)
}
ξ(dt) =

∫
T

ψ(x?(t), t, ξ?) ξ(dt). (A.14)

Combining the last equation with (A.12) and (4.21) gives (4.25), which completes
the proof. �

Proof of Theorem 4.5

At the beginning, introduce the design ξα = (1−α)ξ?+αξ̄, where ξ? = (ξ?1 , . . . , ξ?K) ∈
Ξq, and ξ̄ = (ξ̄1, . . . , ξ̄K) ∈ Ξ(X).

(i)⇒ (ii) If ξ? = arg min
ξ∈Ξ(X)

Ψ[M(ξ)], then

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

­ 0, ∀ξ̄ ∈ Ξ(X). (A.15)

From Lemma 4.4, setting ξ = ξ? and ξ̄ such that

ξ̄k =
{

ξ?k if k 6= i,{
x
1
}
if k = i,

(A.16)

we get

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

=
K∑
k=1

ςk(ξ?)−
K∑
k=1
k 6=i

∫
X

φk(x, ξ?)ξ?k(dx)− φi(x, ξ?)

=
K∑
k=1

ςk(ξ?)−
K∑
k=1

∫
X

φk(x, ξ?)ξ?k(dx)− φi(x, ξ?)

+
∫
X

φi(x, ξ?)ξ?i (dx) = ςi(ξ
?)− φi(x, ξ?) ­ 0

(A.17)
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The result is
φi(x, ξ?) ¬ ςi(ξ?), (A.18)

which clearly forces
max
x∈X

φi(x, ξ?) ¬ ςi(ξ?). (A.19)

Part (ii) of Lemma 4.3 now yields the desired conclusion

(ii)⇒ (i) Let ξ? ∈ Ξ(X) satisfy (ii). We have

∂Ψ[M(ξα)]
∂α

∣∣∣∣
α=0+

=
K∑
k=1

[
ςk(ξ?)−

∫
X

φk(x, ξ?)ξ̄k(dx)
]

­
K∑
k=1

[
ςk(ξ?)−max

x∈X
φk(x, ξ?)

]
= 0,

(A.20)

which completes the proof. �

Proof of Proposition 4.8

We write CN for the measurement covariance matrix corresponding to the design
ξN . The respective covariance matrix CN+1 for the design ξN+1 = ξN ∪ {x} takes
the following form:

CN+1 =

 CN V (x)

V T(x) K(x, x)

 . (A.21)

Applying the Frobenius formula (Ermakov and Zhigljavsky, 1987, Thm. 1.16,p. 301)
for inverting the block matrix CN+1, we obtain

C−1N+1 =

 C−1N +B(x)Γ (x)BT(x) B(x)Γ (x)

Γ (x)BT(x) Γ (x)

 . (A.22)

Since FTN+1 =
[
FTN FT(x)

]
, from (A.22) we get

MN+1 =FTN+1C
−1
N+1FN+1 =

MN︷ ︸︸ ︷
FTNC

−1
N FN +

[
FTNB(x)Γ (x)B

T(x)FN

+ FT(x)Γ (x)BT(x)FN + FTNB(x)Γ (x)F (x) + F
T(x)Γ (x)F (x)

]
=MN +

[
FT(x) + FTNB(x)

]
Γ (x)

[
F (x) +BT(x)FN

]
=MN +G(x)Γ (x)GT(x),

(A.23)

what is the desired conclusion. �
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Proof of Proposition 4.9

Formula (4.99) can be rewritten as

M̃N =MN +GΓGT, (A.24)

where

G =
[
G(xa) ıG(xN )

]
, Γ =

[
Γ (xa) 0

0 Γ (xN )

]
, ı =

√
−1. (A.25)

The determinant of the block matrix (cf. Fedorov, 1972, Thm. 1.1.13, p. 16) can
be calculated as

det

([
MN G

GT Γ−1

])
= det(MN ) det(Γ−1 +GTM−1N G). (A.26)

But the same determinant can be rewritten as

det

([
MN G

GT Γ−1

])
= det(Γ−1) det(MN +GΓGT). (A.27)

Combination of (A.26) and (A.27) yields

det(M̃N ) = det(MN +GΓGT) = det(MN ) det(Γ−1 +GTM−1N G)/det(Γ−1)

= det(MN ) det(Γ−1Γ +GTM−1N GΓ )

= det(MN ) det(I +GTM−1N GΓ ).
(A.28)

Finally, taking into account (A.25), we get

det(M̃N )

= det(MN ) det

I +
 GT(xa)

ıGT(xN )

M−1N [
G(xa) ıG(xN )

] Γ (xa) 0

0 Γ (xN )


= det(MN )

I +
 GT(xa)DNG(xa)Γ (xa) ıGT(xa)DNG(xN )Γ (xN )

ıGT(xN )DNG(xa)Γ (xa) −GT(xN )DNG(xa)Γ (xN )


(A.29)

which completes the proof. �
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Birkhäuser.

Banks H. T., Smith R. C. and Wang Y. (1996): Smart Material Structures: Mod-
eling, Estimation and Control. — Research in Applied Mathematics, Paris:
Masson.



206 BIBLIOGRAPHY

Bard Y. (1974): Nonlinear Parameter Estimation. — New York, San Francisco,
London: Academic Press.

Basseville M. and Nikiforov I. (1993): Detection of Abrupt Changes. — New York:
Prentice-Hall.

Bear J., Tsang C.-F. and de Marsily G. (1993): Flow and Contaminant Transport
in Fractured Rock. — New York: Academic Press.

Bennett A. F. (1992): Inverse Methods in Physical Oceanography. — Cambridge
Monographs on Mechanics and Applied Mathematics, Cambridge: Cambridge
University Press.

Berger J. O. (1985): Statistical Decision Theory and Bayesian Analysis. —
Springer-Verlag.

Berkvens P. J. F., Botchev M. A., Lioen W. M. and Verwer J. (1999): A Zooming
Technique for Wind Transport of Air Pollution. — Technical Report MAS-
R9921, Centrum voor Wiskunde en Informatica, Amsterdam.

Berliner M. L., Nychka D. and Hoar T. (eds) (2000): Studies in the Atmospheric
Sciences. — Vol. 144 of Lecture Notes in Statistics, Berlin: Springer-Verlag.

Bertsekas D. P. (1999): Nonlinear Programming. — Optimization and Computa-
tion Series, 2-nd edn, Belmont: Athena Scientific.

Boresi A. P. and Chong K. P. (2000): Elasticity in engineering mechanics. — New
York: John Wiley & Sons.

Boukas E. and Liu Z. (2003): Deterministic and Stochastic Time Delay Systems.
— Control Engineering, Birkhäuser.
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