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CONTROLLABILITY OF SECOND-ORDER SEMILINEAR 
INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS 

JERZY KLAMKA * 

In the paper, the approximate controllability of semilinear abstract second-order 
infinite-dimensional dynamical systems is considered. It is proved by using 
the frequency-domain and functional-analysis methods that the approximate 
controllability of second-order semilinear dynamical system can be verified by 
the approximate controllability conditions for a simplified suitably-defined first­
order linear dynamical system. General results are then applied to a semilinear 
mechanical flexible-structure vibratory dynamical system. Some special cases 
are also considered. Moreover, remarks and comments on the relationships be­
tween different concepts of controllability are given. The paper extends the 
results presented in (Klamka, 1992; Triggiani, 1978) to a more general class of 
second-order abstract dynamical systems. 

1. Introduction 

Controllability is one of the fundamental concepts in mathematical control theory 
(Klamka, 1991). Roughly speaking, controllability generally means that it is possi­
ble to steer a dynamical system from an arbitrary initial state to an arbitrary final 
state by using a given set of admissible controls. In the literature, there are many 
different definitions of controllability which depend on the class of considered dy­
namical systems (Bensoussan et al., 1993; Klamka, 1991; 1993a; 1993b; Kobayashi, 
1992; Narukawa, 1982; 1984; Triggiani, 1975a; 1976; 1978). For infinite-dimensional 
dynamical systems it is necessary to distinguish between the notions of approximate 
and exact controllability (Klamka, 1991; 1993b; Triggiani, 1975a; 1975b; 1976; 1977; 
1978). This follows directly from the fact that in infinite-dimensional spaces there ex­
ist linear subspaces which are not closed . The controllability theory for various types 
of abstract linear control systems is well-known (Chen and Triggiani, 1990b). On the 
other hand, in the case of semilinear infinite-dimensional control systems there exist 
rather restrictive and complicated sufficient conditions for exact or approximate con­
trollability (Chen and Triggiani, 1989; 1990a; Huang, 1988; Narukowa, 1982; O'Brien, 
1979; Rubio, 1995; Zhou, 1984). 

The main purpose of the present paper is to study the approximate controllabil­
ity of semilinear infinite-dimensional second-order dynamical systems with damping 
using general results given in the papers (Naito, 1987; 1989; Naito and Park, 1989; 
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Seidman, 1987). For such dynamical systems direct verification of approximate con­
trollability is a rather difficult and complicated task (Klamka, 1992). Therefore, using 
the frequency,..domain methqd (Kobayashi, 1992) and fixed-point theorems (Seidman, 
1987), it is shown that the approximate controllability of second-order semilinear 
dynamical system can be checked by the approximate controllability conditions for 
a suitably-defined simplified first-order linear dynamical system. The general results 
are then applied for studying the approximate controllability of a semilinear mechan­
ical flexible-structure vibratory dynamical system (Kunimatsu and Ito, 1988). 

2. System Description 

Let V and U denote separable Hilbert spaces. Let A: V=:> D(A)-+ V be a linear, 
possibly unbounded, self-adjoint and positive-definite linear operator with a domain 
D(A) which is dense in V and a compact resolvent R(s; A) for all s in the re­
solvent set p(A). Then A has the following properties (Bensoussan et al., 1993; 
Klamka, 1991; Kunimatsu and Ito, 1988; Triggiani, 1975a; 1976): 

1. It has only a pure discrete point spectrum ap(A) consisting entirely of isolated 
real positive eigenvalues 

0 < S1 < S2 < · · · < Si < · · · , lim Si= +oo 
i-)-oo 

Each eigenvalue Si has finite multiplicity ni < oo, i = 1, 2, 3, ... equal to the 
dimension of the corresponding eigenmanifold. 

2. The eigenvectors Vik E D(A), i = 1, 2, 3, ... , k = 1, 2, 3, ... , ni form a com­
plete orthonormal set in the separable Hilbert space V. 

3. A has spectral representation 

i=oo k=n; 

Av = L Si L (v, Vik)VVik for v E D(A) 
i=l k=l 

4. The fractional powers A a, 0 < a :::; 1 of the operator A can be defined as 

i=oo k=ni 

Aav = L sf L (v, Vik)VVik for v E D(Aa) 
i=l k=l 

5. The operators A a, 0 < a :::; 1 are self-adjoint, positive-definite with dense 
domains in V and generate analytic semigroups on V. 
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Let us consider a semilinear infinite-dimensional control system described by the 
abstract second-order differential equation with dumping 

ii(t) + 2 ( c2 A + c1A112) v(t) + ( d2 A + d1A1/2) v(t) + h( v(t)) = Bu(t) (1) 

In the sequel, we shall also consider the corresponding linear infinite-dimensional 
control system described by the following abstract second-order differential equation: 

ii(t) + 2 (c2A + c1A112
) v(t) + ( d2A + d1A112

) v(t) = Bu(t) (2) 

where c1 ~ 0, c2 ~ 0, d1 (unrestricted in sign) and d2 > 0 are given real constants. 

It is assumed that the operator B : U -+ V is linear and its adjoint operator 
B* : V -+ U is A112-bounded (Bensoussan et al., 1993; Chen and Russell, 1982; 
Kobayashi, 1992), i.e. D(B*) ::> D(A112), and there is a positive real number M 
such that 

IIB*vllu :S M (llvllv + IIA
1
1

2
vllv) for v E D (A

1
1
2
) 

Moreover, it is assumed that the admissible controls u E Lfoc([O, oo), U). 

It is well-known (Chen and Russell, 1982; Chen and Triggiani, 1989; 1990a; 
1990b; Fujii and Sakawa, 1974) that the abstract ordinary differential equation (1) 
with initial conditions 

v(O) E D(A), v(O) E V 

has for each h > 0 a unique solution v(t;v(O),v(O),u) E C(2)([0,ti],V) such that 
v(t) E D(A) and v(t) E D(A) for t E (0, tl]. Moreover, for v(O) E V there exists 
the so-called "mild solution" for (1) in the product space W = D(A112

) x V with 
the inner product and norm respectively defined as 

(w,q)w = (w1,q1)v + (w2,q2)v, llwllw = llw1llv + llw2llv 

for each w = (w1, w2) E W and q = (q1, q2) E W. 

Let us assume that the nonlinear operator h : V -+ V satisfies the following 
conditions (Yamamoto and Park, 1990): 

(i) It is uniformly bounded on Va = D(A)a C V for some a C [0, 1), i.e. there 
exists a positive constant M such that llh(v)llv"' :S M for each v E Va. 

(ii) It is Lipschitz-continuous in v, i.e. there exists a positive constant L such that 

llh(vl)- h(v2)llv"' :S Lllv1- v2llv"' for each V1 E Va and V2 E Va. 

In order to transform the second-order equation (1) into a first-order equation in the 
Hilbert space W, let us substitute (Bensoussan et al., 1993; Chen and Russell, 1982; 
Chen and Triggiani, 1989; 1990a; 1990b; Huang, 1988; Triggiani; 1978): 

v(t) = w1(t), v(t) = w2(t) 

Then the semilinear equation (1) becomes 

w(t) = Fw(t) + Gu(t) + H ( w(t)) (3) 
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where F: W ::> D(F)--+ TV, G: U-tW, H: T¥0 --+ Wa, T¥0 = Va X V0 , 

w(t) =I w,(t) I' F= I 0 I 

W2(t) -d2A- d1A1I 2 -2c2A- 2c1A 112 

G=l ~I' H(w) = I 
0 

I -h(wi) 

Similarly, the linear ·equation (2) can be expressed in the following form: 

w(t) = Fw(t) + Gu(t) (4) 

Since the operators A and A 112 are self-adjoint, we can obtain for the operator 
F its adjoint operator F* as follows: 

-d2A ~ d1A1I 2 

-2(c2A + c1A1I2) 

Remark 1. It should be pointed out that if ci + c~ > 0, then the operators F and 
F* generate analytic semigroups of bounded linear operators on the Hilbert space 
D(A112

) x V (Chen and Russell, 1982; Chen and Triggiani, 1989; 1990a; 1990b; 
Huang; 1988; Kunimatsu and Ito, 1988). However, in case c1 = c2 = 0, the operator 
F generates a group of bounded linear operators which cannot be analytic since the 
linear operator F is unbounded (Triggiani, 1976). These statements are important 
for controllability investigations. 

In the sequel, for comparison we shall consider instead of the linear second-order 
equation (2) also the simplified first-order linear differential equation 

v(t) = A 0 v(t) + Bu(t) for 0 < a < oo (5) 

In the next sections, we shall also study a semilinear first-order dynamical system 
with finite-dimensionaJ control space U = IRm. 

For convenience, we shall introduce the following notation: 

where bj E V, Uj(t) E Lfoc([O,oo),IR) for j = 1,2,3, ... ,m. Let us observe that 
in this special case the linear operator B is finite-dimensional and therefore it is 
compact (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1975b; 1977). 
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Using the eigenvectors Vik, i = 1, 2, 3, ... , k = 1, 2, 3, ... , n-i, we introduce for the 
finite-dimensional operator B the following notation (Klamka, 1991; Triggiani, 1976). 

(bi,Vii)v (b2,Vil)v 

(bl,vi2)v (b2,Vi2)v 

(bj, Vil) V 

(bj,Vi2)v 

(bm, vil)v 

(bm, Vi2)v 

(6) 

Bi, i = 1, 2, 3, ... are nix m-dimensional constant matrices which play an important 
role in controllability investigations (Klamka, 1991; 1992; 1993b; Triggiani, 1976). In 
the case when the eigenvalues Si are simple, i.e. ni = 1 for i = 1, 2, 3, ... , Bi are 
m-dimensional row vectors. 

3. Approximate Controllability 

For infinite-dimensional dynamical systems we may introduce two general kinds of 
controllability, i.e. approximate (weak) controllability and exact (strong) controllabil­
ity (Bensoussan et al., 1993; Klamka, 1991; 1993b; Triggiani, 1975a; 1976). In the 
paper (Klamka, 1995) necessary and sufficient conditions for approximate controlla­
bility of the linear-second order dynamical system (2) were formulated and proved 
using frequency-domain methods. 

In the present paper, we shall concentrate on approximate controllability for the 
semilinear second-order dynamical system ( 1). 

Definition 1. (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1976) The dynami­
cal system (1) is said to be approximately controllable in the time interval [0, t 1] if 
for any initial condition w(O) E V x V, any given final condition Wf E V E V and 
each positive real number c: there exists an admissible control u E £ 2 ([0, t 1], U) such 
that 

(7) 

Definition 2. (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1975a) The dy­
namical system (1) is said to be approximately controllable in .finite time (or briefly 
approximately controllable) if for any initial condition w(O) E V x V, any given fi­
nal condition w f E V x V and each positive real number c:, there exist a finite 
time t1 < oo (depending generally on w(O) and w1 ) and an admissible control 
u E £ 2 ([0, t 1], U) such that the inequality (7) holds. 
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Remark 2. It should be stressed that in the case where the semigroup associated 
with the dynamical system (2) is analytic, approximate controllability in finite time 
coincides with approximate controllability in each time interval [0, t 1] (Bensoussan 
et al., 1993; Klamka, 1991; Triggiani, 1975a; 1976). 

Remark 3. It should be mentioned that in the case where the semigroup associated 
with the dynamical system (2) is compact or the control operator is compact, the 
linear dynamical system (2) is never exactly controllable in an infinite-dimensional 
state ?pace (Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1975b; 1977). 

Now, let us recall some well-known lemmas (Kobayashi, 1992; O'Brien; 1979) 
concerning the approximate controllability of linear infinite-dimensional dynamical 
systems, which will be useful in the sequel. 

Lemma 1. (Kobayashi, 1992) The linear first-order dynamical system (4) is approxi­
mately controllable if and only if for any complex number z there exists no non-zero 
wE D(F*) such that 

I 
F*- zl I w =0 

G* 
(8) 

Similarly7 the linear first-order dynamical system (5) is approximately controllable if 
and only if for any complex number s there exists no non-zero v E D(Aa) C V such 
that 

I 

pa- si I v=O 
B* 

(9) 

Lemma 2. (O'Brien, 1979) The linear first-order dynamical system (5) is approxi­
mately controllable if and only if it is approximately controllable for some a E (0, oo). 

Lemma 3. (Klamka, 1995) The linear second-order dynamical system with dum­
ping (2) is approximately controllable if and only if the .first-order dynamical sys­
tem (5) is approximately controllable for some a E (0, oo). 

Lemma 4. (Yamamoto and Park, 1990) Let us assume that the nonlinear operator H 
is uniformly bounded on V x V and Lipschitz-continuous in w. Then the semilinear 
first-order dynamical system (3) is approximately controllable if and only if the linear 
first-order dynamical system (4) is approximately controllable. 

Now, we shall formulate and prove a necessary and sufficient condition for the ap­
proximate controllability of the semilinear infinite-dimensional dynamical system (1), 
which constitutes the main result of the present paper. 

Theorem 1. The semilinear dynamical system ( 1) is appro.ximately controllable if 
and only if the linear dynamical system (4) is approximately controllable for some 
a E (0, oo). 
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Proof. First of all, let us observe that the semilinear dynamical systems (1) and (3) 
are equivalent. Since, by assumption, the nonlinear term h( v) in eqn. (1) is uni­
formly bounded on the space V and Lipschitz-continuous in v, taking into account 
the form of the nonlinear operator H(w) and assumptions (i) and (ii) concerning 
the nonlinear operator h(v), we see that H(w) is uniformly bounded on Wa and 
Lipschitz-continuous in w. Indeed, we have 

1\H(w) 1\wa = 11 (0, h(v)) llw"= llh(v) llv" ~M for each wE Wa 

I!H(wi) -H(w2)llw"= 11 (0, h(vi))- (0, h(v2)) llw"= l!h(vl)- h(v2)llva:=;Lilvl- v2ilva 

Therefore, by Lemma 4, the semilinear first-order dynamical system (3) is approxi­
mately controllable if and only if the linear first-order dynamical system ( 4) is ap­
proximately controllable. Moreover, by Lemmas 2 and 3, the dynamical system ( 4) 
is approximately controllable if and only if the dynamical system (5) is controllable 
for some a E (0, oo). Therefore our theorem follows. • 

Corollary 1. Suppose that ci + c~ > 0. Then the semilinear dynamical system {1) 

is approximately controllable in any time interval [0, t 1) if and only if the linear 

dynamical system (4) is approximately controllable in finite time. 

Proof. Since in case ci + c~ > 0 the operator F generates an analytic semigroup, by 
(Naito and Park, 1989) the approximate controllability of the semilinear dynamical 
system (3), and hence that of the dynamical system (1) too, is equivalent to its 
approximate controllability in any time interval [0, t 1). Therefore the corollary follows 
from Theorem 1. • 

Corollary 2. Suppose that the space of control values is finite-dimensional, i.e. 

U = JRm, and the operator F generates an analytic semigroup. Then the semilinear 

dynamical system {1) is approximately controllable in any time interval [0, t 1) if and 
only if 

rankBi = ni for i = 1, 2, 3, ... (10) 

Proof. The corollary is a direct consequence of Theorem 1, Corollary 1 and some well­
known results (Klamka, 1991; Triggiani, 1975a; 1975b; 1976) concerning the approxi­
mate controllability of infinite-dimensional dynamical systems with finite-dimensional 
controls. • 

Corollary 3. Suppose that U = JRm, the operator F generates an analytic semigroup 

and, moreover, ni = 1 for i = 1, 2, 3, .... Then the semilinear dynamical system {1) 

is approximately controllable in any time interval [0, t 1) if and only if 

j=m 

L (bj, vi)~ "# 0 for i = 1, 2, 3, ... 
j=l 

(11) 
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Proof. From Corollary 2 it follows immediately that in the case where ni = 1, 
i = 1, 2, 3, ... the dynamical system (1) is approximately controllable in any time 
interval if and only if the m-dimensional row vectors 

Thus the corollary follows. • 

In the next section we shall use the general controllability results in order to check 
the approximate controllability of a semilinear mechanical flexible structure vibratory 
dynamical system. 

4. Approximate Controllability of a Vibratory System 

In this section we shall consider a vibratory dynamical system described by the fol­
lowing non-linear partial-differential equation (K unimatsu and Ito, 1988): 

Wtt(t,x) - 2c!Wtxx(t,x) + 2c2Wtxxxx(t,x)- d!Wxx(t,x) + d2Wxxxx(t,x) 

(13) 

defined for x E (0, L] and t E (0, oo), with initial conditions 

v(O, x) = vo(x), Vt(O, x) = v1 (x) for x E (0, L] (14) 

and boundary conditions 

v(t,O) = v(t,L) = Vxx(t,O) = Vxx(t,L) = 0 fortE [O,oo) (15) 

Equation (13) describes the transverse motion of an elastic beam which occupies the 
interval (0, L] in a reference and stress-free state. The function w(t, x) denotes the 
displacement from the reference state at time t and position x. On the left-hand 
side of eqn. (13), the second and the third terms represent internal structural viscous 
dampings, and the fourth term represents the effect of the axial force on the beam 
(Kunimatsu and Ito, 1988). The boundary conditions (15) corresponds to hinged 
ends. 

Let V= L 2 [0, L] be a separable Hilbert space of all square-integrable functions 
on (0, L] with standard norm and inner product (Bensoussan et al., 1993; Klamka, 
1991). In order to regard the vibratory system (13)-(15) in the general framework 
considered in the previous sections, let us define the unbounded linear differential 
operator (Klamka, 1995) A: V~ D(A)--+ V, 

Av(x) = Vxxxx (x) for v(x) E D(A) (16) 

D(A) = { v(x) E H 4 (0,L]; v(O) = v(L) = Vxx(O) = Vxx(L) = 0} 

where H 4 (0, L] denotes the fourth-order Sobolev space on (0, L]. 
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The linear unbounded operator A has the following properties (Bensoussan et 
al., 1993; Klamka, 1991; Kunimatsu, 1988; Triggiani, 1975a): 

1. It is a self-adjoint and positive-definite operator whose domain D(A) is dense 
in V. 

2. There exists a compact inverse A- 1 and, consequently, the resolvent R(s; A) 
of A is a compact operator for all sE p(A). 

3. The operator A has a spectral representation 

i=oo 

Av = L Si (v, vi) H Vi for v E D(A) 
i=l 

where si > 0 and Vi E D(A), i = 1, 2, 3, ... are simple (ni = 1) eigenvalues 
and the corresponding eigenfunctions of A, respectively. Moreover, 

s; = (~)', v;(x) = ffsin ("1x) for x E [O,L] 

and the set { vi(x), i = 1, 2, 3, ... } forms a complete orthonormal system in V. 

4. The fractional powers A a, 0 < a S 1 can be defined by 

i=oo 

Aav = L sf (v, vi)v Vi for v E D(Aa) and 0 Sa S 1 
i=l 

which are also self-adjoint and positive-definite operators with dense domains 
in H. 

In particular, for a= 1/2 we have (Kunimatsu and Ito, 1988) 

A 112v = -Vxx 

with the domain D(A112 ) = {v E H 2 [0,L]: v(O) = v(L) = 0}. Moreover (Kunimatsu 
and Ito, 1988), 

IIA'I•vll~ = f lv,(x)l2 dx 

Now, we can consider the partial-differential equation (13) with conditions (14) 
and (15) as the following second-order semilinear evolution equation in the Hilbert 
space V (Kunimatsu and Ito, 1988): 

v(t) + 2(c2A + c1 A 112 )v(t) + (d2 A + d1 A 112 )v(t) 

j=m 

+ diiA114 v(t) II~A1 1 2 v(t) = L bjuj(t) (17) 
j=l 
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where 

v(t) = v(t, ·) E V, v(t) = Vt(t, ·) E V, ii(t) = vu(t, ·) E V 

bj = bj(-) E V, j = 1,2, ... ,m 

Set 

h(v) = diiA1 14 vli~A1 1 2 v 
It is well-known (Kunimatsu and Ito, 1988) that the nonlinear operator h(v) is uni­
formly bounded and locally Lipschitz-continuous on D(A112

). 

Let the initial conditions be of the following form: 

v(O) = Vo E D(A), v(O) =VI E V 

Then there exists a unique solution to the partial-differential equation (13) (Kuni­
matsu and Ito, 1988). 

Theorem 2. The semilinear vibratory dynamical system {13) is approximately con­
trollable in any time interval [0, t1] if and only if-

~ (t Rbj(X) sin ( 1r~X) dx r # 0 for i = 1, 2, 3,... (18) 

Proof. Let us observe that the semilinear dynamical system (13) satisfies all the 
assumptions of Corollary 1. Therefore, taking into account the analytic formula for the 
eigenvectors vi(x), i = 1, 2, 3, ... and the form of the inner product in the separable 
Hilbert space L2 ([0, L], IR), from (11) we directly obtain (18). • 

5. Conclusions 

The present paper contains some results concerning the approximate controllability 
of semilinear second-order abstract infinite-dimensional dynamical systems. By using 
the general method given in the papers (Naito, 1987; 1989; Naito and Park, 1989; 
Seidman, 1987) and some methods of functional analysis, especially the theory of 
unbounded linear operators, necessary and sufficient conditions for approximate con­
trollability in any time interval have been formulated and proved. Moreover, some 
special cases have also been investigated and discussed. Then the general controlla­
bility conditions have been applied to investigation of the approximate controllability 
of a mechanical flexible structure vibratory dynamical system. The results presented 
in the present paper are a generalization of the controllability conditions given in 
the literature (Bensoussan et al., 1993; Klamka, 1992; Kobayashi, 1992; O'Brien, 
1979; Triggiani, 1975a; 1975b) to semilinear second-order abstract dynamical systems 
with damping terms. Finally, it should be pointed out that the obtained results can 
be extended to cover the case of more complicated semilinear second-order abstract 
dynamical systems (Chen and Triggiani, 1989; 1990a; 1990b; Fujii and Sakawa, 1974). 
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