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FRICTIONAL CONTACT PROBLEMS FOR 
NONLINEAR ELASTIC MATERIALS 

MOHAMED ROCHDI*, BoUDJEMAA TENIOU** 

We are interested in the static problem of modelling the frictional contact be­
tween an elastic body and a rigid foundation. We assume that the elastic con­
stitutive law is nonlinear, that the contact is bilateral and that the friction is 
described by Tresca's law. Two equivalent weak formulations of the problem 
are established and the existence of a unique solution is proved in each case. 
A regularized problem is also studied and a strong convergence result is proved. 

1. Introduction 

Only recently progress has been made towards the modelling and analysis of contact 
processes between deformable bodies. This is due to the considerable difficulties that 
the process of frictional contact presents in the modelling and analysis due to the 
complicated surface phenomena involved. Contact problems with or without friction 
were already studied for instance in (Burguera and Viaiio, 1995; Drabla et al., 1998; 
Duvaut and Lions, 1972; Haslinger and Hlavacek, 1980; 1982; Hlavacek and Necas, 
1981; 1983; Kikuchi and Oden, 1988; Licht, 1985; Shillor and Sofonea, 1998), see also 
the references therein, in the case of elastic or viscoelastic materials. The case of 
elasto-visco-plastic materials was considered for instance in (Amassad and Sofonea, 
1998; Drabla et al., 1997; Rochdi, 1997; Rochdi and Sofonea, 1997; Sofonea, 1997) 
and the works cited therein. 

In this work, we consider the process of frictional contact between an elastic body 
which is acted upon by volume forces and surface tractions, and a rigid foundation. 
We assume that the forces and tractions change slowly in time so that the accelerations 
in the system are negligible. Neglecting sufficiently the inertial terms in the equations 
of motion leads to a static approximation of the process. The material's constitutive 
law is assumed to be nonlinear elastic. The same constitutive law was recently used 
in (Drabla et al., 1998) for the study of a frictionless contact problem with Signorini's 
contact conditions. The contact is modelled here with a bilateral condition and the 
friction with the associated Tresca law. These contact and friction conditions were 
considered for instance in (Duvaut and Lions, 1972; Licht, 1985) in the case of linear 
elastic or viscoelastic bodies and in (Amassad and Sofonea, 1998) in the case of elasto­
visco-plastic bodies. 
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This paper is organized as follows. Section 2 contains the notations and some 
preliminary material. Section 3 deals with the description of the model for the process 
and the mathematical statement of the problem. In Section 4, we list the assumptions 
on the data and set the problem in two variational forms. These are two elliptic 
variational inequalities: Problems P1 and P2 . The unknown in the first problem 
is the displacement field and in the second one it is the stress field. The existence 
of a unique solution to each problem (Theorem 1, Theorem 2) as well as an equivalence 
result between the problems P1 and P2 (Theorem 3) are established in Section 5. 
In the last section, we introduce for each nonnegative parameter J.t a regularized 
problem PJ.L of Problem P1 and we prove a strong convergence result of its solution 
to the solution of Problem P1 when J.t---+ 0 (Theorem 4). 

The purpose of this work is to extend some known results in linear elasticity 
to the nonlinear case and to point out the second variational formulation which is 
important in engineering since it is related to the stress field. Moreover, it deals with 
a regularization of the problem considered, which is of interest from the numerical 
point of view. 

2. Notation and Preliminaries 

In this short section, we present the notation we will use and some preliminary ma­
terial. For further details we refer the reader to (Duvaut and Lions, 1972; Ionescu 
and Sofonea, 1993; Kikuchi and Oden, 1988; Panagiotopoulos, 1985). §N represents 
the set of second-order symmetric tensors in JRN. We denote by '·' and I · I the 
inner product and the Euclidean norm on § N and IRN. We also use the following 
notations: 

H = { v =(vi) 1 vi E L2(0)} = L 2(n)N 

H1 = { v =(vi) 1 viE H 1(0)} = H 1(n)N 

1l= { 7 = (7ij) I 7ij = 7ji E L 2 (0)} = L2 (0)~xN 

1£1 = { 7 E 1£1 Div 7 E H} 
where i,j = 1, ... ,N. H, 1-l, H 1 and 1-£1 are real Hilbert spaces endowed with the 
inner products given by 

(u, v)H = L UiVi dx 

(a, 7)1-£ = L aij7ij dx 

(u,v)H1 = (u,v)H + (c:(u),c:(v))1-l 

(a, 7)1-£ 1 = (a, 7)1-£ + (Div a, Div 7) H 
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respectively, where c : H 1 --+ 1{ and Div : 1£1 --+ H are the deformation and the 
divergence operators, respectively, defined by 

1 
c(v) = (cij(v)), Eij(v) = 2(vi,j + Vj,i), Diver= (crij,j) 

The associated norms on the spaces H, 1-l, H1 and 1£1 are denoted by \· \H, 1·\H, 
\ · \H1 and I ·l1t1 , respectively. 

Let Hr = H 112 (r)N and let 'Y: H1 --+ Hr be the trace map. Let also v 

be the outward unit normal to r. For every element v E H 1 we use, when no 
confusion is likely, the notation V for the trace "fV of V on r. We denote by Vv 

and vT the normal and the tangential components of v on r given by Vv = v · v 

and vT = v- vvv, respectively. Let H~ be the dual of Hr and let (·, ·) denote the 
duality pairing between H~ and Hr. For every er E 1£1 let crv be the element of 
H~ given by 

(crv,-yv) = (cr,c(v))'H + (Div cr,v)H (1) 

We also denote by CJv and CJT the normal and tangential traces of er (see e.g. Kikuchi 
and Oden, 1988; Panagiotopoulos, 1985). We recall that if er is a regular function 
(say C1 ), then 

(crv, -yv) = l crv · v da (2) 

where da is the surface measure element, CTv = (crv) · v and CJT = crv- crvv. 

3. Problem Modelling 

We model the static process when a nonlinear elastic body is being acted upon by 
forces and surface tractions and as a result it contacts a rigid foundation. The elastic 
body occupies a domain n of ~N (N = 1, 2, 3) with surface r. A volume force of 
density fo is applied on n. We assume that r is Lipschitz and is divided into three 
disjoint measurable parts f 1 , f 2 and f 3, such that measf1 > 0. We assume that 
the body is clamped on r 1 and thus the displacement field vanishes there and that 
surface tractions h act on r 2 . The solid is always maintained in frictional contact 
with a rigid foundation on r 3, which means that the body and the foundation have 
a compliant shape on r3. 

We denote by u the displacement vector, er the stress field and c = c( u) the 
small strain tensor. The elastic constitutive law that we consider is er = F(c(u)), 
in which F is a given nonlinear constitutive function. The condition of bilateral 
COntact between the body and the foundation along f3 is given by Uv = 0, where Uv 

represents the normal displacement. The associated friction law is the static Tresca 
law: 

\crT\ ~ g on f3 

\crT\ < g ===}uT = 0 

\crT\ = g ===} CJT =-AuT, A~ 0 
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Here, (]'T represents the tangential force on the contact boundary r3, g denotes 
the friction yield limit and Ur represents the tangential displacement. This friction 
law, which was already considered by Duvaut and Lions (1972), Licht (1985) and 
Panagiotopoulos (1985), states that the tangential shear cannot exceed the maximal 
frictional resistance g. Then, if the inequality holds the surface adheres completely 
to the foundation and is in the so-called stick state, and when the equality holds there 
is relative sliding, the so-called slip state. Therefore, at each time instant the contact 
surface f 3 is divided into two zones: the stick zone and the slip zone. 

'l:he mechanical problem of frictional contact between a nonlinear elastic body 
and a rigid foundation may be formulated classically as follows: 

Problem P: Find a displacement field u: n ---t ]RN and a stress field (]': n ---+ § N 

such that 

(]' = F ( c ( u)) in n 

Div (]' + fo = 0 in !l 

u = 0 on rl 

Uv = 0 On f3 

I(]' T I ::; g on r 3 

I(]' r I < 9 ===> Ur = 0 

I(J'rl = 9 ===> (]'r = -AUr, 

(3) 

(4) 

(5) 

(6) 

(7) 

To study Problem P, we need the following additional notation. Let V denote 
the closed subspace of H 1 given by 

V= {V E Hl I V= 0 on rl, Vv = 0 on r3} 

Now, Korn's inequality holds, since meas f 1 > 0. Thus (Duvaut and Lions, 1972; 
Hlavacek and Necas, 1981) 

Vv E V (8) 

Here and below C denotes a positive generic constant which may depend on !1, r 1 , 

f2, f3 and F, but does not depend on the input data / 0, /2, g, and whose value 
may vary from place to place. 

We consider the inner product (·, ·)v on V, given by 

(v,w)v = (c(v),c(w))1-£ (9) 

It follows from (8) that I · IH1 and I · lv are equivalent norms on V. Therefore 
(V, I · lv) is a Hilbert space. 
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4. Variational Formulations 

In this section, we give two variational formulations to Problem P. For that purpose, 

we assume that the elasticity operator 

F: nx§N--t§N 

satisfies the following set of conditions: 

(a) there exists L > 0 such that 

IF(· ,cl)- F(· ,c2)1::; Llcl- C21 V Cl,C2 E §N, a.e. inn 

(b) there exists M > 0 such that 

(F(·,cl)-F(-,c2)). (cl-E2) ~ Mlcl-C212 Vcl,C2 E §N, a.e. inn (10) 

l (c) x f--7 F(x,E) is Lebesgue measurable on n 

(d) x f--7 F(x, 0) E 1-l. 

The forces and the tractions satisfy 

foE H, hE L2(r2)N 

Moreover, the friction yield limit satisfies 

g~O 

(11) 

(12) 

Remark 1. Using (10) it is straightforward to show that for all 7 E 1-l, the function 

x f--7 F(x,T(x)) belongs to 1-l. Consequently, it is possible to consider F as an 

operator from 1-l into 1-l. Moreover, F: 1-l --t 1-l is a strongly monotone and 

Lipschitz operator (Sofonea, 1993, p.53). Therefore F is invertible and its inverse 

operator F-1 : 1-l ---+ 1-l is also strongly monotone and Lipschitz. 

Next, using (11) and the Riesz representation theorem, we may define the element 

f E V by 

Vv E V (13) 

Let also j : V --t 114 be the functional 

j(v) = g r ivrl da, V E V (14) 
lr3 

Finally, we define the set of "statically admissible stress fieldd' :Ead by 

:Ead = { z E 1-ll (z, c(v) )1-£ + j(v) ~ (f, v)v V v E V} (15) 

Lemma 1. If ( u, a) is a regular solution to Problem P, then 

u E V, (F(c(u)), c(v)- c(u))1-l + j(v)- j(u) ~ (f,v- u)v V V E V (16) 

(17) 
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Proof. First, from (5) and (13) we deduce that u E V. Let v E V. Using (4), (1) 
and (2), we have 

(a, c(v)- c(u))1-l = (fo, v- u)H + l av ·(v-u) da 

and, from (5), (6) and (11), we obtain 

(a, c(v)- c(u) )7-i = (j, V- u)y + r av ·(v-u) da lr3 
Using now ( 3) and (7), the previous equality leads to 

(F(c(u)),c(v)-c(u))'H.=(f,v-U)y+ r a7 (V 7 -U 7 )da (18) lr3 
The inequality in (16) follows from (18) and (14) since (7) implies that 

aT(vT-uT) ~ g(iuTi-ivTI) a.e.on r3 
Putting now v = 2u and v = 0 in (16) and taking (14) and (3) into account, we 

obtain 

(a,c(u))H + j(u) = (f,u)v (19) 

Hence, by using (16), (3), (19) and (15) it follows that a E ~ad· The inequality 
in (17) is now a consequence of (19) and (15) since u E V and F is invertible. • 

Lemma 1 leads to the following weak formulations for Problem P. 

Problem P1: Find a displacement field u: 0 ----+ ~N such that 

u E V, (F(c(u)), c(v)- c(u))H.+ j(v) -j(u) ~ (f,v- u)v V V E V (20) 

Problem P2: Find a stress field a: 0----+ §N such that 

(21) 

Remark 2. Let us remark that Problems P1 and P2 are formally equivalent to 
Problem P. Indeed, if u represents a regular solution to the variational problem P1 
and a is defined by a= F(c(u)), using arguments in (Duvaut and Lions, 1972) it 
follows that { u, a} is a solution to Problem P. In a similar way, if a represents a 
regular solution to the variational problem P2 and u E V is given by a = F(c(u)) 
then, using the same arguments, it follows that { u, a} is a solution to Problem P. 
For this reason, we may consider Problems P1 and P2 as variational formulations to 
Problem P. 

Under the assumptions (10)-(12), in the next section we give the existence and 
uniqueness results for the variational problems P1 and P2 followed by an equivalence 
result between these two problems. 
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5. Existence and Uniqueness Results 

Theorem 1. Let {10)-(12) hold. Then there exists a unique solution to Problem P1 . 

Proof. Using the Riesz representation theorem, we may consider the operator A: 
V -+ V defined by 

(Av,w)v = (F(s(v)),s(w))1-l Vv, wE V 

Theorem 1 is now a consequence of the theory of elliptic variational inequalities 
(Brezis, 1968; Kikuchi and Oden, 1980), since (10) and (8) imply that the opera­
tor A is strongly monotone and Lipschitz and, since the functional j defined by (14) 
is proper, convex and lower semicontinuous. • 

Theorem 2. Let {10)-(12) hold. Then there exists a unique solution to Problem P2 . 

Proof. Using (9) and the fact that the functional j is nonnegative, we deduce that 
c(f) E :Ead· Thus, :Ead given by (15) is a nonempty convex subset of H. Moreover, 
from Remark 1 we obtain that ;:--1 is a strongly monotone and Lipschitz operator. 
Hence, using arguments of the theory of elliptic variational inequalities, it follows 
that Problem P2 has a unique solution C5 E :Ead· Let us prove now that C5 E H 1 . 

Indeed, since C5 E :Ead, it results from (15) that (C5,c(v))t£ +j(v) 2: (f,v)v for all 
v E V. Putting in this inequality v = ±'P where 'P E 'D(O)N and using (13), we 

obtain that (C5, c( 'P ))v'(O)N xv(O)N = (fo, 'P) H for all 'P E 'D(n)N. Thus using (1) 
yields Div C5 + fo = 0 a.e. in n. Finally, the regularity of C5 E H1 is a consequence 
of the last equality and (11). • 

The following result deals with the study of the link between the variational 
problems P1 , P2 and the constitutive law (3). 

Theorem 3. Let {10)-(12) hold and let ( u, C5) be such that u E V and C5 E H 1 . 

Consider the following properties: 

(i) u is the solution to Problem P1 given in Theorem 1, 

(ii) C5 is the solution to Problem P2 given in Theorem 2, and 

(iii) u and C5 are connected with the elastic constitutive law C5 = F ( s ( u)). 

Then two among these properties imply the third one. 

Proof. We start by proving that (i) and (iii) imply (ii). Putting v = 2u E V and 
v = 0 E V in (20) and using (14) and (iii), we deduce that 

(C5,c(u))1-l +j(u) = (f,u)v 

Therfore, (20), (22) and (iii) imply that 

C5 E :Ead 

(22) 

(23) 
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Let now T E :Ead· From (iii) it follows that 

( _F-
1 ( 0"), T - 0") 7-i = ( ( T, c ( U)) 7-i + j ( U)) - ( ( 0", c ( U)) 7-i + j ( U)) ( 24) 

Property (ii) is now a consequence of (15) and (22)-(24) since u E V. 

Let us prove now that (i) and (ii) imply (iii). For this, let (i E 1-l be the function 
(i = .F(c(u)). Using now the previous step of the proof, it follows that (i is a solution 
to Problem P2 . The uniqueness of the solution O" to this problem yields Property (iii). 

Finally, we will establish that (ii) and (iii) imply (i). For that purpose, we 
introduce the spaces W and W defined by 

w = {V E H1 I V = 0 on r1} :J V 

w = { z E HI Div z = 0 in n, zv = 0 on r2 u r3} 

Using (1), it is straightforward to show that the orthogonal complement of W in 1-l 
is the subspace c(W), i.e. 

Wj_ = c(W) in 1-l (25) 

Thus it follows from (15) and (25) that O" ± z E :Ead for all z E W. Consequently, 
taking T = O"±z in (21), it may be concluded that (z,.F-1 (0"))7-t = 0 for all z E W. 
This implies, by using (25), that there exists u E W such that 

(26) 

Let us prove that u E V. For this, let us suppose that u ~ V. Hence, since V 
is a closed subspace of W, there exists T E 1-l such that 

\fv E V (27) 

and 

(T, c(u) )7-i < 0 (28) 

Since the functional j is nonnegative, it follows from (9) that AT+ c(f) E :Ead for 
all A 2': 0. Therefore, if we set T = AT+ c(f) in (21) and use (26), we obtain 

Passing to the limit as A--+ +oo, it follows from (28) that (O"- c(f), c(u))H =:; -oo 
which is absurd. Consequently, u E V. Assertion (iii) and (26) yield O" = .F(c(u)) = 
.F(c(u)). Hence, using (10) and (8), we obtain 

o = (.F(c(u))- F(c(u)), c(u)- c(u))H 2': Clc(u)- c(u)l~ 2': Clu- ul~1 
Thus we deduce that u = u E V. 

Let us establish now the inequality in (20). Since the functional j is subdiffer­
entiable, there exists 7 E 1-l such that 

(7, c(v)- c(u))H + j(v)- j(u) 2': (f,v- u)v \fv E V (29) 
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Taking v = 2u E V and v = 0 E V in this inequality, we have 

(7,c(u))1l +j(u) = (f,u)v 

499 

(30) 

and, from (29), (30) and (15), we deduce that 7 E :Ead· Taking now r = 7 in (21) and, 
using Assertion (iii) and (30), it follows that 

(.F(c:(u)), c:(u) )7-l + j(u) ~ (J, u)v (31) 

Moreover, since a = .F( c:( u)) E :Ead, we have 

(.F(c:(u)),c:(u))1l + j(u) 2: (f,u)v (32) 

and 

(.F(c:(u)),c:(v))1l +j(v) 2: (f,v)v VvE V (33) 

The inequality in (20) is finally a consequence of (31)-(33). This concludes the proof 

of Theorem 3. • 

Remark 3. A mechanical interpretation of the result obtained in Theorem 3 is the 
following: 

1. If the displacement field u is the solution to Problem P1 , then the stress field 
a connected to u by the elastic constitutive law a= .F(c:(u)) is the solution 
to Problem P2. 

2. If the stress field a is the solution to Problem P2 , then the displacement field 
u connected to a by the elastic constitutive law a= .F(c:(u)) is the solution 
to Problem P1. 

3. If the displacement field u is the solution to Problem P1 and the stress field 
a is the solution to Problem P2 , then u and a are connected by the elastic 
constitutive law a= .F(c:(u)). 

6. A Regularized Problem 

Due to the nondifferentiability of the functional j given by (14), we introduce a 
regularized problem PI-L of Problem P1 , depending on a nonnegative parameter J.L. 

We prove the existence of a unique solution u/-L to this problem and we obtain a 
convergence result of u/-L to the solution of Problem P1 as J.L---+ 0. 

Indeed, for every parameter 0 ~ J.L < 1, let j/-L: V -----+ ll4 be the functional 
defined by 

\lv E V (34) 

Replacing the functional j by j/-L in Problem P1, we obtain the following regularized 
problem: 

Problem P'"': Find a displacement field u/-L E H 1 such that 

u/-L E V, (.F(c:(u/-L)), c:(v)- c:(u/-L))1l + j/-L(v)- j/-L(u/-L) 

\lv E V (35) 
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Since the functional j JJ. is proper, convex and lower semicontinuous, using the 
same arguments as those used in the proof of Theorem 1, we have 

Theorem 4. Let {10}-{12) hold. Then there exists a unique solution to Problem PP.. 

Our main interest in this section lies in the behaviour of the solution up. of 
Problem PP. as J-L--+ 0. This is the subject of the following result: 

Theorem 5. Let {10}-{12) hold. Then the solution up. of Problem PP. converges in 
V to the solution u of Problem P1 as J-L --+ 0, i.e. 

up. ~ u in V as J-L --+ 0 (36) 

Proof. If v = 0 in (35), then 

(F(.s(up.)), .s(up.))1-l + jp.(up.) ::; {f,up.)v for all 0::; J-L < 1 

and, using (10), (9) and the nonnegativity of the functional jp., we deduce that the 
sequence (up.)p. is bounded in V. Thus there exist a subsequence denoted again by 
(up.)p. and an element u E V such that 

Up. ~ u weakly in V as J-L --+ 0 (37) 

In order to pass to the limit in (35) as J-L--+ 0, we remark that using (37), (34) and (14) 
we have 

and 

lim {j, V- Up.)V = {j, V- ii.)y 
p.--+0 

Vv E V 

We will prove now that 

Vv E V (38) 

(39) 

(40) 

Due to the differentiability and the convexity of the functional jp. given by (34), it 
follows that 

(41) 

Consequently, taking v = u = in (39) and using ( 41), we deduce that in order to 
establish ( 40) it suffices to prove that 

9 [ lii.riP.(up.- u) da ~ 0 as 1-L--+ 0 (42) 
lrs 

Indeed, since the trace map is linear and continuous from H 1 into L2(r)N, one can 
easily deduce from (37) that 

up.·~ u weakly in L2(r3)N as 1-L--+ 0 (43) 
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Moreover, from the Lebesgue theorem we obtain 

(44) 

Therefore, using (43) and (44), we establish (42) and consequently (40). In order to 
pass to the limit in (35) as f..L-+ 0, we need to prove that 

For this, taking V = u in (35) on the one hand and using the monotonicity of the 
operator :F (see (10)) on the other hand, we obtain 

and 

(F(c:(utt)), c:(u)- c:(utt))H::; (:F(c:(u)), c:(u)- c:(utt))1i 

Passing to the limit in these inequalities as f..L -+ 0, from (37)-( 40) we see that 

and 

limsup (:F(c:(utt)), c:(u)- c:(utt))1i::; 0 
J.L---+0 

Therefore 

(46) 

Let v E V and (} E (0, 1). The monotonicity assumption in (10) applied with utt 
and wE V given by 

w = (1 - 8)u + 8v (47) 

implies that 

(:F(c:(utt)), c:(u)- c:(utt))H + 8(:F(c:(utt)), c:(v)- c:(u))1i 

::; (F(c:(w)), c:(u)- c:(utt))1i + O(:F(c:(w)), c:(v)- c:(u))1i (48) 

Using now (46), (37) in (48), we obtain 

liminf (:F(c:(utt)), c:(v)- c(u))-u::; (:F(c:(w)), c:(v)- c:(u))-u (49) 
J.L---+0 n. n. 

Moreover, since 

(:F(c:(utt)), c:(v) -c:(utt))1i = (:F(c:(utt)), c:(u) -c:(utt))1i 

+ (:F(c:(utt)), c:(v)- c:(u))1i 



502 M. Rochdi and B. Teniou 

from ( 46) and ( 49) it follows that 

liminf (F(c(u11 )), c(v)- c(u 11 ))1-l :::; (F(c(w)), c(v)- c(u))H (50) 
!1-+0 

The inequality (45) may be deduced by introducing (47) in (50) and passing to the 
limit as e -+ 0. 

Using now (38)-(40) and (45), we may pass to the limit in (35) as p,-+ 0 and 
obtain that u is a solution to the variational problem (20). Therefore, from the 
uniqueness of the solution to this problem (see Theorem 1) we deduce that u = u. 
Thus u is the unique weak limit of any subsequence of (u 11 )w Consequently, the 
whole sequence (u 11 ) 11 is weakly convergent in V to u, i.e. 

u 11 ~ u weakly in V as p, -+ 0 (51) 

In order to obtain (36), let us remark that from (10) and (8) it follows that 

where C > 0 is a positive constant independent of p,. The strong convergence (36) 
is finally a consequence of (51) and ( 46) since u = u. • 

Remark 4. Let u and u 11 be the solutions to the problems P and P 11 given in 
Theorems 1 and 4, respectively. We define the associated stress fields by 

CJ = F(c(u)) 

and 

Then we have 

Indeed, it follows from (53), (20) applied with v = ±cp E 1J(O)N and (1) that 

DivCJ + fo = 0 a.e. in 0 

A similar argument used for (54) and (35) implies that 

DivCJ11 + fo = 0 a.e. in 0 

Therefore, by (53)-(54) and (56)-(57) we deduce that 

!CJ11 - CJ!H 1 = ICJ11 - CJ!H = IF(c(u11))- F(c(u)) 11-l 

The strong convergence (55) is finally a consequence of (58), (10) and (36). 

Remark 5. Let us consider the following contact and friction conditions: 

Uv = 0 on r3, I(Jrl = -gluri 11 -
1ur on r3 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 
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Using arguments similar to those used in the proof of Lemma 1, one can prove that the 
solution uJ.£ to Problem PJ.£ and the associated stress field a J.£ given by (54) represent 
a weak solution (in the sense of Lemma 1) to the frictional contact problem (3)­
(6), (59). 

Remark 6. The strong convergence (36), (55) may be interpreted as follows: the weak 
solution { u, a} to problem (3)-(7) modelling the frictional contact between an elastic 
body and a rigid foundation may be approximated by the weak solution {uJ.£,aJ.£} to 
problem (3)-(6), (59) which models the frictional contact between the elastic body 
and the rigid foundation using a more regular friction law. The regularization used 
here may be of a strong interest in the numerical study of such a type of contact 
problems. 
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