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NEW RESULTS TO THE INVERSE OPTIMAL CONTROL 
PROBLEM FOR DISCRETE-TIME LINEAR SYSTEMS 

DIMITRIS P. IRACLEOUS*, A.T. ALEXANDRIDIS* 

The inverse optimal control problem, i.e. the problem of the optimal eigenvalue 

assignment for multi-input linear discrete-time systems, is considered. New nec­

essary and sufficient conditions are proposed which lead to new simple optimal 

design methods. In particular, for an n-th order system with m inputs the pro­

posed method assigns n - m dominant eigenvalues to any preselected positions 

while the remaining m eigenvalues are accommodated to ensure stability and 

to satisfy optimal criteria. 

1. Introduction 

An important problem in the optimal control design with quadratic weighting cost 
criteria is the selection of the performance index weighting matrices which result in 
a state feedback gain matrix such that the closed-loop eigenvalues are at desired 
locations. This constitutes the inverse optimal control problem, i.e. under what con­
ditions a given feedback gain-matrix satisfies optimal quadratic criteria (Molinari, 
1973; 1977). For continuous-time, single-input systems, this problem was first raised 
by Kalman (1964) who posed the circle criterion as a necessary and sufficient condi­
tion. Therefore, an arbitrary eigenvalue assignment can provide a gain-matrix which 
is checked for optimality. This is the inverse problem of finding fixed eigenvalues 
from the Hamiltonian and after determining the optimal gain matrix by using e.g. 
Ackermann's formula (Lewis and Syrmos, 1995). 

For multi-input systems where the same closed-loop eigenvalue set results in an 
infinite number of different state-feedback gain matrices a number of methods and 
techniques have been proposed. Most of these techniques, with extensive references, 
are included in (Johnson and Grimble, 1987) while a more detailed analysis is given 
in (Grimble and Johnson, 1988). Many conditions have been proposed which result in 
the design of optimal control systems by cost weight selection either assigning every 
eigenvalue to a desired position (Alexandridis and Galanos, 1987; Bar Ness, 1978; 
Fujii and Narazaki, 1984; Haddad and Bernstein, 1992; Jameson and Kreindler, 1973; 
Maki and Van de Vegte, 197 4) or shifting the entire set of eigenvalues as a whole to 
a desired area (Amin, 1985; Kobayashi and Shimemura, 1981). 

: H0wever, as is well-known, the discrete-time optimal regulator has properties 
essentially different from those of the continuous-time case (Alexandridis, 1996; Fuji­
naka and Katayama, 1988; Kim and Furuta, 1988; Sugimoto and Yamamoto, 1988). 
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Therefore the conditions for the optimality of continuous-time systems cannot be di­
rectly transformed to the discrete-time case. Indeed, some different conditions have 
been proposed for the discrete-time case but most of the existing inverse optimal 
design methods seem to need complicated calculations (Alexandridis, 1996). 

In this paper, some new conditions which satisfy optimality and a partial eigen­
value assignment are proposed. The main advantage of the proposed conditions is 
that they are easier to test and therefore they lead to simpler solutions. Using these 
methods one can assign the dominant eigenvalues of the discrete-time system to any 
preselected positions while the non-dominant eigenvalues are simply accommodated 
to be stable; simultaneously, the design satisfies the conditions imposed for optimality. 
An illustrative example demonstrates an implementation of the method. 

2. Preliminaries 

Consider the multi-input discrete-time linear system 

x(k + 1) = Ax(k) + Bu(k) (1) 

where A and B are real constant matrices with dimensions n x n and n x m, 
respectively. Let rank (B) = m and {A, B} be a completely controllable pair. Then 
the state feedback control law 

u(k) = Kx(k) (2) 

results in the closed-loop system 

x(k + 1) =(A+ BK)x(k) (3) 

The state feedback gain matrix K is optimal if it minimizes a quadratic perfor­
mance index of the form (Lewis and Syrmos, 1995) 

loo loo 
J= 2L [xr(k)Qx(k)+ur(k)Ru(k)] = 2Lxr(k)[Q+KrRK]x(k) (4) 

k=O k=O 

As is well-known, the optimal feedback gain matrix K must satisfy 

(5) 

where P is a real positive definite symmetric matrix determined by the solution to 
the discrete algebraic matrix Riccati equation, (DARE), 

p = ATPA- ATPB(R + BTPB)- 1 BTPA + Q (6) 

In the following sections, without loss of generality, we assume that the input 
matrix of system (1) has the following form: 

(7) 



New results to the inverse optimal control problem for ... 519 

Let the state matrix A and the feedback gain matrix K be correspondingly decom­
posed as follows: 

A= [ ~:: ~:: ] , K = [K1 K 2 ] {8) 

Consequently, the closed-loop system matrix becomes 

(9) 

If K, given by (8), is optimal for a system with the input matrix of the form (7), 
then an optimal gain matrix exists for any system described by any arbitrary input 
matrix B. If B has full rank, then it can be written as B = T-1 [ 10 ] where T is a 
suitable n x n invertible matrix. Then the following lemma holds. 

Lemma 1. (Kobayashi and Shimemura, 1981) Assume that for the modified system 
T AT-1 , TB, a matrix K is an optimal state feedback gain matrix satisfying the 
DARE. Then the original system A, B has KT as an optimal state feedback gain 
matrix satisfying a DARE with the state weighting matrix TT QT, input weighting 
matrix R and solution matrix TT PT. 

3. Inverse Optimal Control Problem 

For the linear system ( 1), the inverse problem of linear optimal control is to find 
necessary and sufficient conditions under which a given state feedback gain matrix 
K satisfies a performance index of the form (4). The inverse optimal control problem 
for continuous-time systems was originally raised by Kalman (1964). For multi-input 
systems several solutions have been proposed by many researchers for both the con­
tinuous and discrete-time case. In most of these cases the state weighting matrix 
Q and the solution to the Riccati equation P are obtained provided that the input 
weighting matrix R is fixed. 

In the following, we present Theorem 1 where some easier conditions for inverse 
optimality than the existing ones are proposed. Furthermore, Theorem 1 provides a 
class of positive definite solutions P to the corresponding DARE. 

Theorem 1. The state feedback gain matrix K is optimal for system (1) provided 
that the input weighting matrix R > 0 is given, if and only if 

(i) the closed-loop system A+ BK is asymptotically stable, 

(ii) the matrix 

is symmetric and positive definite. 
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Proof. (Necessity) Let a given gain matrix K be optimal, i.e. it minimizes a per-­
formance index of the form ( 4). This means that there exists a symmetric constant 
matrix P > 0 such that J{ can be expressed by (5), where P satisfies the DARE (6). 
However, since (4) is minimized by this K, the second-order variation of J is greater 
than or equal to zero, i.e. 

1 00 

d2 J = 2 L [dxT(k)Qdx(k) +duT(k)Rdu(k)] ~ 0 (10) 
k=O 

The inequality constraint (10) has n +m variables corresponding to n state 
and m input variables. However, since the dynamic equation (1) constitutes an n-th 
order constraint for J, there are only m independent variables in the performance 
index (4). This implies that (10) must hold for m independent variables (Green and 
Limebeer, 1995). Therefore "completing the square" in (10) (Green and Limebeer, 
1995, Ch.5; Lewis and Syrmos, 1995, Ch.4), we obtain 

1 1 
d2 J = 2dxT (O)P dx(O) - 2dxT ( oo )P dx( oo) 

+ ~ f [du(k)- du*(k)]T[R+BTPB] [du(k)- du*(k)] (11) 
k=O 

where du*(k) = [R+BTPB]- 1BTPAdx(k). 

Hence for R > 0 the condition d2 J ~ 0 yields for P > 0 that dx( oo) = 0, 
which implies for the linear system (3) that lim x(k) = 0, i.e. the closed-loop system 

k-+oo 
A+ BK is asymptotically stable. 

Let the solution to the DARE be decomposed as follows: 

(12) 

where P1 , P2 and P3 are constant matrices with dimensions m x m, m x ( n - m) 
and (n- m) x (n- m), respectively. Then the optimal state feedback gain matrix (5) 
can also be decomposed as 

[K1 K2] =- [R + P1]-1 [P1An + P2A21 P1A12 + P2A22] 

which can be equivalently rewritten as the following set of equations: 

- [R + P1]K1 = P1An + P2A21 

- [R + P1]K2 = P1A12 + P2A22 

(13) 

(14a) 

(14b) 

After some algebraic manipulations, i.e. solving (14b) for P2 and substituting the 
result in (14a), we calculate 

(15) 
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Since P >0, we have P1 > 0, i.e. 

(Sufficiency) If F > 0, we can construct P of the form (12) with P1 = F, P2 = 
[-[R + PI]K2- P1A12]A;-2

1 and P3 =Pi P1-
1 P2 + Pt, where Pt is any symmetric, 

positive definite matrix, so that P always be a symmetric, positive definite matrix 
(Horn and Johnson, 1991). Constructing now the matrix -[R + BT PB]-1 BT PA 
and substituting P1 , P2 and P3 , we confirm that 

On the other hand, for this P we can find a symmetric Q so that 

(18) 

Substituting K = -[R+BTPB]-1BTPA in (18), we obtain the DARE (6). Simul­
taneously, since A+BK is stable, we have limk-+oox(k) = 0 and, since P is positive 
definite, the term 1/2limk-+oo x(k)T Px(k) tends to zero. However, manipulating the 
DARE, we arrive at the closed-loop Lyapunov equation 

[A+ BK]TP[A + BK]- P = -[Q +KTRK] 

Substituting (19) in (4), we obviously conclude that 

J = ~ t x(k)T [Q + KTRK]x(k) = ~xT(O)Px(O) 
k=O 

(19) 

(20) 

Therefore the performance index J converges to the positive optimal value J = 
(1/2) xT(O)Px(O). • 

Remark 1. Let us note a main restriction, i.e. that the inverse of A22 must exist. 
Also, the inverse of K[ -A!l A

21 
J + A 11 - A 12A22

1 A 21 is required. If this is not the 
case, we apply an initial optimal state feedback gain matrix K 0 to the system subject 
to an arbitrary state weighting matrix Q0 and an input weighting matrix R. At the 
second stage, a new K is determined by using the proposed method on the resulting 
system, i.e. on the system with the plant matrix A+ BK0 , input matrix B and 
input weighting matrix R + BT P0 B, where P0 is the solution to the DARE at the 
initial stage. Then the gain matrix K 0 + K assigns the closed-loop eigenvalues to the 
desired locations (Alexandridis, 1996). 

Remark 2. It is well-known that main assumptions in the optimal control design 
are R > 0 and Q 2:: 0. However, it has been proved many times in applications 
that the performance of a system is further improved if the optimal gain matrix 
satisfies a quadratic criterion J with Q indefinite (Alexandridis, 1996; Grimble and 
Johnson, 1988; Jameson and Kreindler, 1973; Lewis and Syrmos, 1995; Shih and 
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Chen, 1974). This is a result due to the inverse optimal control problem where, 
as indicated by (18), the definiteness of Q is not guaranteed. As discussed in the 
proof of Theorem 1, inverse optimality requires that the minimum of J exist in 
the space of at least m dimensions. Therefore the requirements for R > 0 and 
F > 0 (which lead to P > 0) are adequate. It is easily seen that in this case 
J is certainly minimized in the space of m independent dimensions (Theorem 1). 
Other methods (Alexandridis, 1996) lead to the minimization of J in the space of 
n dimensions (where n 2 m), i.e. in the case where Q +KT RK > 0, and therefore 
J = (1/2) L:~0 x(k)T[Q + KTRJ<]x(k) 2 0. In the case of inverse optimal control, 
we start from the assumption that an optimal K is given. Therefore the formulated 
conditions are sufficient conditions with respect to the conventional optimal control 
which uses the definiteness of Q and R as necessary conditions in the space of n +m 
dimensions in order to obtain an optimal J{. Therefore, in inverse optimal control 
the a-posteriori calculation of Q is meaningless. 

4. Optimal Eigenvalue Assignment 

In this section, the conditions for optimality from Theorem 1 are used to achieve 
a partial eigenvalue assignment, i.e. the assignment of n- m dominant closed-loop 
eigenvalues, while the remaining m closed-loop eigenvalues of system (3) are assigned 
to stable non-dominant positions. 

To this end, we first prove the following lemma which provides an alternative 
method for the eigenvalue assignment in two sequential stages. 

Lemma 2. Let a linear time-invariant, discrete-time system be of the form {1). There 
exists a state feedback gain-matrix K which assigns the entire set of n eigenvalues 
of the closed-loop system {3) exactly to the values where: 

{i) an arbitrary m x ( n - m) matrix .}[ assigns n - m eigenvalues of the matrix 
A22 + A21X, and 

{ii) the square part of the feedback gain-matrix, i.e. the m x m submatrix K 1 , 

assigns m eigenvalues of A1 + K 1, where A1 =An- XA21· 

Proof. Let M be an n x n matrix of the form 

M= 
[

I -X ] 

~ In-m 

where 

I m and In-m are the m x m and (n- m) x (n- m) identity matrices, respectively. 
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We apply the similarity transformation M on the closed-loop matrix A+ BK 
given by (9). Thus we have 

M[A+BK]M-1 

= [ Au - X A21 + K 1 

A21 

(Au + K1)X- XA21X- XA22 + A12 + K2 ] 

A22 + A21X 

By selecting K 2 = S- K 1X with 

S = -AuX + XA21X + XA22- A12 

the similar of A+ BK becomes 

(21) 

(22) 

(23) 

where A1 = A 11 - XA21 . Equation (23) yields that there exists K = [K1 K2] such 
that the eigenvalues of the closed-loop matrix A+ BK are placed at the values where 

(i) an arbitrary matrix X locates n- m eigenvalues of A22 + A21 X, and 

(ii) the matrix K 1 locates the m eigenvalues of A 1 + K 1. • 

We note that the assignment of the n- m closed-loop eigenvalues by selecting 
an appropriate X of A22 + A21 X is possible if the pair {A22, A2d is completely 
controllable. This is true for system (1) in accordance with the following lemma. 

Lemma 3. The pair { A22, A21} is completely controllable if and only if the pair 
{A, B} is completely controllable. 

Proof. If {A,B} is a controllable pair, then rank[A- )..J B] = n which can be 
equivalently written as 

This yields 

[ 

Au- Aim 
rank 

A21 

rank [A21 A22- >..I] =rank [A22- )..J A21] = n- m 

which implies that { A22 , A2I} is a controllable pair and vice versa. • 

Similarly, the assignment of the m closed-loop eigenvalues by selecting an ap­
propriate K 1 of A1 + K 1 is always possible since in this case the input matrix is 
the- identity matrix I m and therefore the pair { A1 , I m} is completely controllable for 
every A1. 

Now, to proceed with our approach, we combine Theorem 1 with Lemma 2 to 
establish the following theorem. 
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Theorem 2. The state feedback gain matrix K = [K1 K2] with K1 and K2 deter­
mined as 

(24) 

and 

(25) 

is an optimal state feedback gain-matrix in the sense of Theorem 1, which simultane­
ously assigns n- m eigenvalues of the closed-loop system {3} where 

{i} X and S are selected in accordance with Lemma 2, and 

{ii) a is a positive real scalar selected in such a manner that A1 + K 1 is stable. 

Proof. Let X be selected by assigning n-m eigenvalues of A22 +A21 X to any desired 
positions. Then these eigenvalues are n- m closed-loop eigenvalues of A+ BK in 
accordance with Lemma 2. Calculating S from (22) and selecting a > 0 so that 
A1 + K 1 be stable, we ensure the stability of A+ BK (condition (i) of Theorem 1). 

On the other hand, condition (ii) of Theorem 1, after some simple manipulations, 
leads to 

F = -R[I+[An-AI2A22
1A21] [Kl[J+XA2lA21]-SA22

1A21]-
1
]-

1
> 0 (26) 

Substituting K1 and S in (26) by (24) and (22) we arrive at 

F=aR>O (27) 

which is evidently true for a> 0 and R > 0. Therefore K = [K1 K 2 ] is an optimal 
gain matrix according to Theorem 1. • 

Let us note that [Im + XA22
1 A21]-1 is supposed to exist. This is the usual case 

provided that A2l exists, since the first term is the m-th order identity matrix. 

Remark 3. In practical applications, the n - m eigenvalues which are assigned 
exactly to any desired stable positions are dominant eigenvalues of the closed-loop 
system. The m eigenvalues which are manipulated to provide optimality are con­
strained to be located near the origin on the complex plane. Usually these eigenvalues 
are selected to be non-dominant closed-loop eigenvalues. 

5. Illustrative Example 

Let us consider a discrete-time system with the following system and input matrices 
(n = 4,m = 2): 

-0.2612 -1.7358 1.1061 -1.5287 
[ 1.20 0.80 l 1.4910 -0.2495 2.7318 -1.4463 0.10 -0.10 A= B= (28) 

-0.9076 -2.5249 -0.4374 -2.0431 0.20 -0.20 

1.8779 1.5460 1.6391 -0.4281 0.00 0.10 
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In order to transform the input matrix of the system into the standard form (7), we 
use the following coordinate transformation: 

4.00 

-6.00 

-2.00 

0.60 

0.00 0.00 l 
0.00 0.00 

1.00 0.00 

0.00 1.00 

(29) 

where Be is any n x (n- m) matrix such that [B Bc]-1 exists, i.e. in this case 

Be= [ O ] 
In-m 

Then the system and input matrices become respectively 

9.1095 1.9023 11.4802 -6.5496 1.00 0.00 

TAT- 1 = 
-13.9966 -3.3653 -15.8377 7.9134 0.00 1.00 

TB= (30) 
-6.0503 -1.6439 -5.9010 0.8495 0.00 0.00 

4.1356 1.3136 3.2229 -1.2194 0.00 0.00 

The open-loop eigenvalues are -0.2615 ± 4.3651i, -0.0928 and -0.7605, so 
they are unstable. Using the proposed method for the modified system, we first 
determine n -m = 2 dominant eigenvalues at the positions -0.60 ± 0.20i. To this 
end, we select X in such a way that A22 + A21 X has also eigenvalues -0.60 ± 0.20i 
(Lemma 2). Selection of X constitutes a reduced order state feedback (n - m)­
eigenvalue assignment problem. Thus X can be determined by any well-known state 
feedback technique (Jamshidi et al., 1992) as follows: 

X= [ -2.1472 0.1191 ] 

4.7023 0.1269 
(31) 

To calculate K1 and K 2 , we use (24) and (25), where S is given from (22) and 
the parameter a is selected in such a way that A1 + K 1 is stable with eigenvalues 
near the origin (non-dominant eigenvalues). To this end, we plot the spectral radius 
of A1 + K1, i.e. p(A1 + K1) = max{I.A.[A1 + K1]1} versus the parameter a (Fig. 1). 
From Fig. 1 we observe that for a > 7 we obtain stable eigenvalues. Selecting a= 75, 
we get p(A1 + K 1) which is less than 0.15 (i.e. we get non-dominant eigenvalues). 
Hence 

[ 

4.4744 1.7824 ] 
K1 = 

-14.0122 -4.1911 [ 

1. 7970 4.5685 ] 
K2= 

-11.7142 -4.0646 
(32) 
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1.8 

1.6 

1.4 

a 

Fig. 1. The spectral radius p(A1 + K!) versus the parameter a. 

However, (32) provides an optimal gain matrix for the modified system (30). Accor­
ding to Lemma 1, we calculate the optimal gain matrix K for the original system: 

[ 
2.8999 6.3504 1. 7970 4.5685 ] 

K = -8.8984 -9.9127 -11.7142 -4.0646 
(33) 

This leads to the closed-loop system A+BK with the eigenvalues -0.6000±0.2000i, 
0.0058 and 0.1013. Selecting 

R = [ 0.3 0 ] 
0 0.5 

we obtain P =TT PT, where P is calculated from (12) with P1 given by (27) and 

- [ 1020.9 46.3] Pt-
46.3 32.5 

(34) 

in order to ensure the definiteness of the matrix 

P= 
[ 

15.6 61.1 -67.7 -6.5] 
61.1 600.5 -723.4 -15.8 

-67.7 -723.4 1020.9 46.3 
-6.5 -15.8 46.3 32.5 

{35) 

which satisfies the DARE with a given R and some symmetric Q. 
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6. Conclusion 

Necessary and sufficient conditions for the inverse optimal control problem of discrete­
time systems have been established. Based on these conditions, a simple procedure 
for implementing an optimal partial eigenvalue assignment has been presented. An 
illustrative example demonstrates the application of the method. 
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