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MODEL-BASED PREDICTIVE CONTROL 
OF LARGE-SCALE SYSTEMS USING 

A NEURAL ESTIMATOR 

SPYROS TZAFESTAS*, EFTHIMIOS KYRIANN AKIS* 

YIANNIS ANTHOPOULOS* 

An approach to the design of discrete-time decentralized control systems based 

on model-based predictive control (MBPC) and neural estimation is proposed. 

The class of interconnected large-scale systems (LSS) is considered, and a model 

is used at each control station to predict the corresponding subsystem output 

over a long time period. In the case of subsystems with m-step delay information 

patterns the non-locally available interaction trajectories are estimated by a 

multi-layer neural network trained on-line with a modified backpropagation­

type algortithm. Representative computer simulation results are provided and 

compared for a set of illustrative examples. The proposed control scheme shows 

better performance than the other schemes, and also covers the important case 

where the subsystems' interactions are nonlinear. 

1. Introduction 

The decentralized control of interconnected dynamical systems is still generating an 
increasing interest among theorists and practitioners (Bahnasawi et al., 1990; Corf­
mat and Morse, 1976; Jamshidi, 1996). One of the benefits of decentralized control 
is that large-scale systems can be decomposed into many subsystems (Linnemann, 
1984; Singh and Titli, 1978), and the control design and implementation of each of 
them can be performed independently. This simplifies the overall control problem. 
Moreover, the computational burden can be shared by all the control stations in­
volved. The main difficulty in designing decentralized control systems is the limited 
information available for the control (Ho and Chu, 1974; Sandell and Athans, 1974; 
Yoshikawa and Kobayashi, 1978). The set of the control stations is constrained to 
have access only to local information, i.e. only to measurements of local outputs and 
states with no communication allowable among them (Kurtaram and Sivan, 1974). 
This is exactly what characterizes a non-classical information pattern. Finally, the 
local control stations cannot take into account the interactions with other subsystems, 
and therefore techniques to deal with this problem must be developed. Many optimal 
decentralized control algorithms have been proposed for dealing with such problems. 
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But it is well-known that optimal control is not very suitable for complex industrial 
systems or general large-scale systems, since it needs an accurate model of the system 
being controlled and it is sensitive to parameter variations and to the existence of 
stochastic disturbances. 

A new control appproach which does not have the drawbacks of standard optimal­
regulator control and is suitable for complex large-scale systems (LSS's) is the so-called 
Model-Based Predictive Control (MBPC) approach (Clarke, 1990; De Keyser, 1990; 
Richalet, 1990). This approach was developed in the mid-seventies and allows for 
model uncertainties, updates the output of the model by closed-loop corrections, and 
optimizes the control law on a moving horizon. On the other hand, neural networks 
(NN) are parallel systems consisting of a large number of relatively simple process­
ing units, highly interconnected via unidirectional signal channels called connections. 
Each unit performs a (usually) nonlinear transformation on the weighted sum of its 
inputs in order to produce the output signal which is then fed to the other units 
connected with it. Neural networks process information in a non-parametric way 
and are able to learn by iteratively adjusting their weights (Hecht-Nielsen, 1990). In 
this paper the decentralized control approach is combined with model-based predic­
tive control (Tzafestas et al., 1995) and a neural estimator. The resulting overall 
MBPC-NN control scheme was verified by simulation to be a very good candidate for 
application to industrial and other LSS's of real-life systems (Singh and Titli, 1977; 
Tzafestas, 1989). · 

2. Problem Formulation 

Consider a discrete-time, linear, possibly time-varying large-scale system which con­
sists of N-interconnected subsystems (see Fig. 1), each of which has the following 
state-space description: 

(la) 

(lb) 

(le) 

for i = 1, 2, ... , N, where Xi(t) is the ni-dimensional state vector of the i-th sub­
system at time t, ui(t) is the ri-dimensional control vector of the i-th subsystem at 
time t, Ymi (t) is the Pi-dimensional output vector of the model of the i-th subsys­
tem at time t, Zi(t) is the qi-dimensional interconnection vector which describes the 
influence of all other subsystems upon the i-th one. 

The vector zi(t) is considered to be a linear combination of the states of all 
other subsystems, i.e.1 

N 

zi(t) = ~ LijXj(t), i = 1, 2, ... , N, with i -=J. j (2) 
j=l 

1 This assumption can be relaxed due to the nonlinear estimation capability of neural networks. 
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Fig. 1. The decentralized control system with mixed-type control stations. 

where Lij are matrices of appropriate dimensions assumed to be known to every 
control station. Let us note that the output Ymi (t) of the model may generally differ 
a little from the real output Yi(t) because of modelling errors or noise which affect 
the whole system or its parts. Finally, the matrices Ai, Bi, Ei, Ci are of suitable 
dimensions. The problem is to find at every time t the best control ui(t) for the i-th 
subsystem, which leads the current value of the output Yi(t) to its set-point wi(t). 
The control must be "the best" in the sense of minimizing a cost function which will 
be described later. 

Moreover, the control laws must be specified in a decentralized way. In the 
following, predictive control techniques and neural estimation will be used to satisfy 
the problem requirements. It will be shown that the control laws are of the form 

ui(t)=u~(t)+uil(t), i=1,2, ... ,N (3) 

where u~(t) is the "local" part of the control, i.e. the part which depends on infor­
mation available to the i-th control station, and ufl(t) is the "non-local" part of the 
control law, which depends on information not available to the i-th control station. 

3. MBPC and Computation of the Local Part of the Control 

At each time t, the output Yi(t + k) is predicted over a future period of time k = 
1, 2, ... , Ly where Ly is the prediction horizon. The predictions are denoted by 
yPi (t + kjt) and determined by means of a model, e.g. a state-space model (1). 
The predictions yPi (t + kjt), k = 1, 2, ... , Ly depend on the future control values 
ui(t + kjt), k = 0, 1, ... , Lu, where Lu is the control horizon (Lu ::; Ly). In the 
control horizon we have 

Ui(t + Lu + kjt) = Ui(t + Lu- 1), k 2: 0 

The output predictions for the i-th subsystem can be calculated as 

(4) 
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where, by (la) and (lb), 

Ym; (t + kjt) 

k 

C i [ A~xi(t) + L A{- 1 Biui(t + k- j /t) J 
j=1 

k 

LA{-1Eizi(t+k-jjt), k=1,2, ... ,Ly (5) 
j=1 

and qi(t + k/t) is the cloded-loop correction vector based on the information set 
available at time t. A recommended form for qi(t + k/t) is 

(6) 

where Yi(t) is the measured value of the output vector at time t. A reference tra­
jectory ri(t + kjt), k = 1, 2, ... , Ly is defined over the prediction horizon, which 
describes how one wants to guide the output vector Yi(t) to its set-point wi(t), i.e. 

(7) 

where vi ( t + k) is a correction vector based on the previous error information set 
{wi(t)- Yi(t), ... ,wi(l)- Yi(l)}. A simple form which gives good results is the 
following: 

(8) 

where 0 < a s; 1 is a tuning parameter which specifies the desired closed-loop dy­
namics (a --+ 0 for fast control, a --+ 1 for slow control). The reference trajectory is 
initiated at the current measured output, i.e. ri(tjt) = Yi(t). Note that if the future 
set-point values wi(t + kjt), k = 1, 2, ... , Ly are unknown at time t, one can assume 

wi(t + kjt) = wi(t), k = 1, 2, ... , Ly 

All the above issues are illustrated in Fig. 2. 

The cost function of the i-th control station has the form 

1 Ly 2 1 Lu-1 2 

Ji(t) = 2 L llri(t + kjt)- Yp; (t + k/t) IIQ;(k) + 2 L iiui(t + k/t) IIR;(k) (9) 
k=Lo k=a 

where Qi(k) ;::: 0, k = La, ... , Ly and Ri(k) ;::: 0, k = 0, ... , Lu- 1. Since Ji(t) 
varies with time t and has a moving optimization horizon, only the first term in 
the optimal solution is implemented to control the i-th subsystem. The optimization 
parameter La determines, together with Ly, the "coincidence horizon", i.e. one wants 
the predicted output to follow the reference trajectory over the time interval [t + 
La, ... , t + Ly]· Minimizing the cost function (9), we get 

(10) 
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Fig. 2. The reference trajectory, the set-point trajectory, the prediction horizon 
and the coincidence horizon. 

where Di and /i, oi are the computable matrix and functions, respectively (Tzafes­
tas et al., 1995). The second term is not locally computable because it depends on 
the non-available Zi(t) and its predictions in the prediction horizon (zi(t+kjt), k = 
0, 1, ... , Ly - 1). The next section deals with that problem. 

4. Neural Estimation for the Non-Local Part of the Control 

Multilayer Perceptrons (MLP's) are networks whose processing units (neurons) are 
arranged in layers. The nodes of each layer take as the input the outputs of the 
nodes of the previous layer and perform a non-linear (usually sigmoidal) transforma­
tion on them in order to produce their outputs. The units belonging to one layer 
are connected only to the nodes of the previous and the next layer and not to one 
another (Fig. 3). The network learns by adjusting its weights according to the back­
propagation algorithm which computes the error between the actual and the desired 
output for a number of training patterns (supervised learning) and "backpropagates" 
it to the units which adjust their associated weight values so that the actual response 
of the network moves closer to the desired response. To express the above in a formal 
mathematical way, the output of the i-th node is assumed to be 

(11) 

where Wij is the weight corresponding to the connection from node j to node i, 
and iJi a fixed value called the 'threshold.' The algorithm minimizes the value of the 
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Fig. 3. A multi-layer perceptron with two hidden ~ayers. 

"energy" function 

E(w) = :L)tp- op) 2 (12) 
p 

where tp and op stand respectively for the desired and the actual output when the 
network receives as the input the pattern p. To do so, it uses the delta rule, thus 

Wij(n + 1) = Wij(n)- n\lE(w) (13) 

MLP's can be trained either off-line when all of the training patterns are known 
beforehand or on-line in the opposite case (Rumelhart et al., 1989). It can be proved 
that an MLP trained with the back-propagation algorithm can approximate arbitrarily 
well every function belonging to the L 2 class. Another very important characteristic 
of the MLP networks is their ability to generalize, i.e. to give a valid (meaningful) 
output for the input patterns to which they have not been trained (since after their 
training they implement a continuous mapping function). 

In this paper, a multi-layer perceptron is used at each control station to predict 
the interaction trajectories over the prediction horizon in the case where the informa­
tion pattern of the problem is an m-step delay sharing one. A decentralized control 
problem is said to have an m-step delay sharing pattern when it permits the spreading 
of its information through the subsystems but with delay of m time steps. Clearly, 
each control station obtains instantaneously all the information about its associated 
subsystem, and after the delay of m time steps all the information available to all 
the control stations. For our problem this means that at time t in the i-th control 
station the vectors Xj(t- m), j -=f. i and all the past values Xj(t- m- k), k > 0 
are known. Then one can calculate Zi(t- m) using (2) as 

N 

zi(t- m)= L LijXj(t- m), i = 1, 2, ... , N, with i -=f. j (14) 
j=l 
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i.e. zi(t - m) is well-known to the i-th control station at time t. An estimate of 
zi(t+k/t), k = 0,1, ... , Ly -1 can be obtained by an appropriate model of zi(t-m) 
as a function of zi(t-m- j), j = 1, 2, ... ,p, where pis a design parameter. For that 
purpose the vector zi(t-m) is computed as the output of an MLP with zi(t -m- j) 
values as its inputs, j = 1, 2, ... , p. In this case, of course, the training is done on-line 
since each estimated value is used for the estimation of the next one. The training 
algorithm is a variant of the standard back-propagation algorithm, i.e. the energy 
function to be minimized is as follows: 

'""""" 2 nw Li L j wfj 
E(w) = L.)tp- op) + L· L. w?. + nwi<2 

p t J tJ 

(15) 

where Wij is the weight of the connection from node j to node i, and K2, nw are 
appropriate constants. The extra term increases the stability of the algorithm and 
the generalization capability of the network by reducing the number of active weights 
(i.e. the weights with values not practically equal to zero). The weights are again 
adapted according to the delta rule where the gradient of the new energy function is 
computed. The initial weight values are random but small, so that the derivatives 
of the network output attain their maximum values. During the first m time-steps 
before the real value of the predicted variable is communicated to the subsystem, 
the network output is random. From that time on, the network is trained on-line 
so as to minimize the energy funtion (15), where p increases as more real values 
are communicated to the subsystem. The training stops when the value of E( w) 
becomes smaller than a preset limit depending on the specifications of each problem. 

5. Simulation Results 

Extensive simulation studies have been carried out to demonstrate the effectiveness 
of the proposed approach. Zero initial conditions (start-up of the operation) were 
assumed and the constrained MBPC version was used in order to take into account 
physical constraints on the control variables of the problem. The on-line training of 
the NN with the extra term in the energy function was proved to upgrade the steady­
state response performance (Tzafestas et al., 1996), but with the respective increase in 
the duration of the transient state due to the NN training process (also depending on 
the delay of the sharing information pattern). Moreover, due to the generality which 
the NN offers to the estimation problem, the proposed technique can treat processes 
with non-linear interaction models. 

System (i): The present system consists of three subsystems with state-space ma­
trices 

A1 = [ O 
-0.3 

A _ [ 0 1 ] 2
- 0.1 -0.4 ' A, = [ -~.2 -~.5 ] 

B = [ 0.3 
1 

-0.1 
B _ [ 0.2 0 ] 

2
- 0.1 0.2 ' 

B3= [ 
0.4 0.1 ] 
0.1 0.4 
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c1 = [ 2 1 ] ' Cz = [ -3 1.5 ] ' c3 = [ 1 4 ] 

L12 = [ 2 1 ] ' L21 = [ -1 1 ] ' L31 = [ 0 2 ] 

L13 = [ -1 0 ] ' L23 = [ 0 -2]' L32 = [ -2 1 

and a two-step delay sharing pattern. The predictions for the interconnections are 
produced from an NN since the system allows for the spreading of its information. For 
the controller the parameters are Ly = 10, Lu = 4, a = 0.1, initial p = 3, Qi = Ii 
and Ri = 10-3 Ii (Ii is the identity matrix of appropriate dimensions). 

The MLP has one output layer with one node and a hidden layer with three 
nodes. One can easily observe (see Figs. 4-6) good tracking in the steady-state re­
sponse, whereas some oscillations in the transient response are due to the delay of the 
information flow. 

OUTPUT-8ETPOINT 7.-----------------------------------, 

3 

o~ur~~~~~~~~~~~~~~~~ 

0 6 10 16 20 25 30 35 40 45 50 55 

TIME 

Fig. 4. Subsystem 1: output-setpoint trajectories. 

System (ii): This system consists of two subsystems with state-space matrices 

A, = [ 0~2 -~.4 ] ' A, = [ -~.5 -~.4 ] 

B, [ ~:~ -~:~ ] , B, [ 0~2 002 ] 

= [ 3 

= [ -1 

and an m-step delay sharing pattern. We apply the suggested controller in the follow­
ing cases: 

a) a controller with m= 1 (see Figs. 7 and 8), and 
b)· a controller with m= 4 (see Figs. 9 and 10). 
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OUTPUT·SETPOINT 
8.-------------------------------~--. 

0~~~~~~~~~~~~~~~~~~~ 

o 5 m ~ ~ ~ ~ " ~ ~ ~ e 
TIME 

Fig. 5. Subsystem 2: output-setpoint trajectories. 

OUTPUT·SETPOINT 
6.-----------------------------------. 

6 

0~~~~~~~~~~~~~~~~~~ 

o 6 m ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TIME 

Fig. 6. Subsystem 3: output-setpoint trajectories. 

The parameter values Ly = 10, Lu = 3, L 0 = 1, a = 0.1, initial p = 3, Qi = Ii 

and Ri = 10-2 Ii were used in both the cases. The MLP used has one output layer 

with one node and a hidden layer with two nodes. It is easy to see a delay which 

exists in the results of Case (b) in both the transient and the steady state response 

in comparison with Case (a). 

System (iii): The system in this example consists of the two subsystems of the 

previous example (with m = 4) but with the following non-linear interconnection 
model: 

z1 =sin (x2(t)), z2 = xi(t)- 2cos (x1(t)) 
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OUTPUT·SETPOINT 4.-----------------------------------, 

0 5 10 15 20 25 30 35 40 45 50 55 

TIME 

Fig. 7. Subsystem 1: output-setpoint trajectories m= 1. 

OUTPUT-SETPOJNT 
6~--------------------------------~ 

2 

0 5 10 15 20 25 3C 35 40 45 50 55 

TIME 

Fig. 8. Subsystem 2: output-setpoint trajectories m = 1. 

For the controller, the parameter values Ly = 10, Lu = 3, Lo = 1, a = 0.1, initial 
p = 3, Qi = Ii and Ri = 10-2 Ii were used in both the cases. One can easily observe 
(see Figs. 11 and 12) good tracking in the steady-state response and a success of the 
NN in estimating the interaction trajectories governed by the non-linear model. The 
oscillatory behaviour in the transient response is again caused by the delay of the 
information flow. 

In almost all cases, a small wave effect is observed every time a peak is achieved, 
probably due to the inherited conflicts between the subsystems when a steady state 
is brought about. A way suggested to improve the transient response is the known 
technique of the parallel introduction and the use of a standard decentralized PID 
controller when there is a serious deviation of the outputs from their setpoints and 
the learning period becomes a critical factor. 
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2 

5 m ~ ~ ~ ~ ~ ~ ~ ~ ~ 

. TIME 

Fig. 9. Subsystem 1: output-setpoint trajectories m = 4. 

OUTPUT·BETPOINT 
8r-------~--------------------------~ 

6 

0~~~~~~~~~~~~~~~~~~~ 

o m ~ ~ ~ ~ ~ ~ ~ ~ 9 

TIME 

Fig. 10. Subsystem 2: output-setpoint trajectories m = 4. 

6. Con cl us ion 

The "optimal" control ui(t) = u~(t)+uil(t) is optimal in the sense of decentralization, 
but it remains suboptimal in comparison with the solution which would be attain­
able if the whole information was available to every control station. The proposed 
decentralized controller depends weakly on the initial conditions and strongly on the 
approximate model used for the interconnections. The last dependence seems to be 
reduced by the on-line neural estimation for the predictions of the interconnections 
based on their approximate model. 
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OUTPUT-8ETPOINT 4r------------------------------------, 

2 

D~~~~~~~~~~~~~~~~~~~ 

o s ro • m H ~ ~ ~ ~ ~ n 
TIME 

Fig. 11. Subsystem 1: output-setpoint trajectories (nonlinear interactions). 

3 

2.6 

Ui 

0.5 

0~~~~~~~~~~~~~~~~~~~ 

0 5 10 15 20 25 30 35 40 45 50 55 

TIME 

Fig. 12. Subsystem 2: output-setpoint trajectories (nonlinear interactions). 

The neural network used is an MLP trained with a modified version of the back­
propagation algorithm. The term added to the standard energy function to be min­
imized increases the plasticity and the generalization capability of the network by 
reducing the variance of the network output. This reduces the oscillatory behaviour 
during the transient response, but does not completely eliminate it because of the 
inherited delay in the information flow of the system. Moreover, the system reaches 
more quickly its steady state in comparison with the method presented in (Tzafestas 
et al., 1995) where an ARMA linear model for the prediction of the interconnections 
was used and the parameter values were updated via a least-squares algorithm. 
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The approach presented in the paper covers all the cases of large-scale systems 
with linear subsystems and linear or non-linear interactions processes. These systems 
are encountered in many engineering applications (Singh and Titli, 1977; Tzafestas, 
1989; Tzafestas and Hassan, 1986). 
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