
Appl. Math. and Camp. Sci., 1998, Vol.8, No.3, 599-609

SOLVING DIFFERENTIAL EQUATIONS WITH
NONLINEAR PERCEPTRONt

PIOTR S. SZCZEPANIAK*, BARTOSZ LIS*

The work concerns training neural networks for approximate mappings being

solutions to differential equations, especially partial-differential equations. The

presented approaches fall into two categories. In the first one, backpropagation

training is combined with an arbitrary numerical method used for obtaining tab­

ulated solutions to the equations for training sequences. In the other, the neural

network is forced to suggest a solution to the equation and to keep on improving

that mapping during the backpropagation process. The other approach implies

certain modifications in the structures of the neural network, neuron and neural

signals.

1. Introduction

In the last decade, artificial neural networks have been in the focus of interest of many
researchers, and some important results, described in (Cybenko, 1989), showing that
one-hidden-layer nonlinear perceptrons are capable of approximating an arbitrary
function arbitrarily well, have been achieved.

Many applications of neural networks (c.f. Nerrand et al., 1994) deal with the
generating of solutions to differential equations. In most cases, especially when the
equation under consideration contains a derivative with respect to time, apart from
normal arguments, the network gets its delayed outputs as inputs. Such a trick allows
the network, after some necessary training, to forecast the values of the solution after
an arbitrarily given step.

This paper deals with one-hidden-layer perceptrons prepared to produce the value
to the solution of the differential equation for any arguments contained in a polyhedral
stretched on the arguments of the training sequence, when the solution values for
certain points are presented only during training, and not during the operation time.

Section 3 presents such networks together with methods of preparing them to
produce proper values. In Section 3.1, the method presented by Szczepaniak and Lis
(1994a; 1994b) is briefly described. The network is trained on a number of solutions

The paper was originally presented at the 2nd Conference Neural Networks and Their Appli­
cations, Szczyrk, Poland, 1996.

* Institute of Computer Science, Technical University of Lodz, ul. Sterlinga 16/18, 90~217 Lodz,
Poland, e-mail: piotr@ics.p.lodz.pl, bartoszl@ics.p.lodz.pl.

600 P.S. Szczepaniak and B. Lis

obtained previously for a set of equation parameters, and then it is able to gener­
ate solutions for non-presented values of parameters. The solutions used for training
can be computed using any numerical or analytical method. Subsections 3.2 and 3.3
present a method of forcing the network to generate a solution when only a differ­
ential equation and initial (or boundary) conditions are known during training. The
method does not depend on other methods of solving differential equations. Subsec­
tion 3.2 presents the target function which is optimized during training. The method
requires networks capable of computing derivatives of their outputs with respect to
their inputs. Such networks are described in Subsection 3.3. Section 4 presents some
numerical experiments with those networks.

2. Problem Formulation

Let us consider a system of ordinary differential equations of the form

l(t, a, y, y) = 0 (1)

with the initial condition depending on a parameter vector a:

y(f[1l) = y(a) (2)

where a E Da C JRA, t E Dt C IR, y E D C JRM, iJ E D C JRM; M, A E N and
Dt, D, D are closed sets. Moreover, I: Da x Dt x D x D ~ JRM, jj: Da ~ JRM,
and all these mappings are of class C 1 .

Such a formulation of the problem in which the derivative of the unknown map­
ping is given implicity does not guarantee the uniqueness of the solution. The theory
states (c.f. Nikliborc, 1951) irregular points whose number is equal to the number of
solutions to the equation l(f[1l,a,y(a),p) = 0 for variable p. Assuming that the
solution does not contain irregular points, we can ensure its uniqueness by adding the
following conditions:

8y (f[ll) = p(a) at
where p: Da ~ JRM, and p is in C 1.

(3)

Now, let us consider a system of partial equations with first-order derivatives:

(
8y 8y 8y)

I t, a, y, 8t1' 8t2' .. ·' 8tM
1

= 0 (4)

with the condition

y(f(O) =jj(~,a) (5)

where t E Dt C JRM1
, a E Da C JRA, y E D C JRM, M 1, M E N, Dt, D are closed

sets, I: Dt x Da x D x (JRM)M1 ~ JRM belongs to class C1, ~ E Df. c JRM1 -I, f:
Df. ~ 8Dt, y: Df. x Da ~D.

Solving differential equations with nonlinear perceptron 601

Without loss of generality, we can focus our considerations on systems with first­
order derivatives only, because any equation (or a system of equations) is easily re­
ducible to such a form.

Our task is to train a neural network to approximate the solution to (1)-(3) or
(4)-(5) on the domains of arguments Dt and parameters Da.

3. Presentation of the Methods

3.1. Training of a Neural Network on Tabulated Solutions

The first approach consists in finding and tabulating the solutions to a given equa­
tion or a system of equations in any numerical or analytical way for a number of
parameters a 1 , a 2 , ... , aL E Da· Those tabulated values create the training se-

{(-[v] - [v])} -[v] [[vf [v]T]T { } quence t , y v=l, ... ,N1 , where t = t , a E Dt x a1, a2, ... , aL ,

y[v] = Ya (t[v]) and Ya (t) is a solution to (1)-(3) (in this case t is a scalar
and M1 = 1) or (4)-(5). A feed-forward network has M1 +A inputs and M outputs,
and is trained with the above sequence, so it is expected to approximate the mapping
defined as

U: Dt X D a -+ ~M, 1\ u(t, a) = Ya(t)
tEDt
aEDa

(6)

If u is continuous, it can be approximated with any precision depending only
on the density of terms of the training sequence in their domain Dt x Da, and, of
course, certain parameters of the network and its training: the number of neurons
and a planned error on the training sequence. We will call this method an SA method
(Solution Approximating method).

3.2. Target FUnction for Solving Differential Equations

The process of training a neural network is an iteration of succesive suggestions of
mappings made by the network, followed by computation of a certain formula (the
target function) with respect to the suggested mapping as the terms of the training
sequence are being presented. Then the neurons' weights are changed so that the
next generated mapping may produce a smaller value of the target function. One
turn of the iteration is referred to as an epoch. The training concludes when the
target function is close enough to zero.

Let the mapping the network produces in epoch T be denoted by z[T]: ~n<o> -+
Rn<K>, where the network contains K + 1 layers numbered from 0 to K, n(k), 0::;
k ::; K is the number of neurons in layer k.

To force the neural network to solve a differential equation, the target function
should be expressed in such a way that it takes the zero value for the solution to the

602 P.S. Szczepaniak and B. Lis

equation. Thus its value s[r] in the T-th epoch can be written down as

1 Nl 2
= 2 L llz[r] (t[v]) - Y [v]ll

v=l

The first component, called the error function, is formed from the tabulated
initiai or boundary conditions (2) or (5) and is computed only on the first N1 terms
of the training sequence which is chosen from the domain of the initial condition.
The second component, called the correction function, contains the function from (1)
or (4) and is computed on arguments coming from the domain Dt x Da. If N1 < N 2 ,

the second component is computed on the boundary of Dt x Da for the first N1
terms and then on the interior of the domain for the other terms. Since the desired
values of the mapping function are unknown for the terms from the interior, these
terms are called the sampling sequence. The first N1 terms for which the initial
condition defines the desired values of the searched mapping are called the learning
sequence.

To ensure the uniqueness of the solution, (7) can be expanded with another
component, similar to the error function but based on (3), so instead of the unknown
mapping and its desired value it contains their derivatives.

3.3. Finding Derivatives of Neural Network Outputs with Respect to its
Inputs

For the target function (7) to be computed, the network should compute derivatives
of its outputs with respect to its inputs. These derivatives can be computed in the
forward propagation by a recurrent formula similar to that of the normal output
(Hornik et al., 1990):

• normal sum of inputs:

n(k-1)

x(k)[v,r] - '"" (k)[r] (k-l)[v,r] + (k)[r]
i,o - ~ wi,j xj,o wi,o (8)

j=l

• auxiliary sum of derivatives:

n(k-1)

X (k)[v,r] _ '"" (k)[r] (k-l)[v,r]
i,p - ~ wi,j xj,p , p::::: 1, ... ,M1 (9)

j=l

• normal output of a neuron:

(k)[v,r] _ (k) (x(k)[v,r])
Xi,O - a i,O (10)

Solving differential equations with nonlinear perceptron 603

• its derivative:

a (k)[v,r]
(k)[v,r] df Xi,O = ((k))

1 (x~k)[v,r]) X~k)[v,r]
Xi,p a (O)[v,r] a t,O t,p ' p=1, ... ,Ml. (11)

xp,o

where x~kJ[v,r] is a normal output of the i-th neuron from the k-th layer for the v-th

presented term of the training sequence in the T-th epoch, x~:;![v,r], p = 1, ... , M1

stands for its derivative after the p-th input to the neural network, a(k) is the acti­

vation function of the k-th layer and (a(k)) 1 is its derivative, w~j[r], k = 1, ... , K
denotes the weight of the link between the j-th element of the (k - 1)-th layer to

the i-th element of the k-th layer, x},~[v,rJ, p = 0, ... , M1 are auxiliary values
(internal sums of inputs to the neuron and its derivatives).

For the input and output layers there exsist some obvious substitutions

• for the input layer:

X~o0)[v,r] = t.[v]'
t, t

X~O)[v,r] = { 1 if i = p,
t,p 0 if i i- p,

i,p= 1, ... ,Nf1 (12)

• for the output layer:

[r] (i[v]) _ (K)[v,r]
zi - xi,o '

a [r] _5_ (i[v]) = X~K)[v,r]
atp t,p

(13)

The gradient of the target function is back-propagated with the use of the following
formulae:

E~k)[v,r] ·= as[r]
t,p . ax~k)[v,r]

t,p

(k)[v,r] ((n)) I (x(k)[v,r])
ei,o a i,o

~k)[v,r] ((n)) I (x~k)[v,r])
et,p a t,O for p = 1, ... , M 1

e~k)[v,r] ·= as[r]
t,p . a (k)[v,r]

xi,p

(15)
i=l

604 P.S. Szczepaniak and B. Lis

From (14) and (15) we get

n(K)

~K)[v,..-] = ~K)[l,r) _ -_[v] + '""" afi (t[v] X(K)[v,r]) j· (t[v] X(K)[v,r]) (16) ez,O xz,O Yz ~ a . ' J '
j=l Yz

and

(17)

where (16) is for v ~ N1 and p = 0, whereas (17) for the other values of v and p.
In both the equations x(K)[v,r] denotes the matrix of the outputs from the last layer
of the network:

X(K)[v,r] _ [x(K)[v,r]]
- i,p i=l, ... ,n(K)

p=O, ... ,M1

{

~ E~k)[v,r] for j = 0
[l

L...J z,O
(k)[r] •- as T _ v=l

d.. - -
z,J . a (k)[r] N M

wi,j i i E~k)[v,r]x\k)[v,r] for j = 1, ... 'n(k-1)
v=l p=O z,p J,p

(18)

To compute these quantities, some approaches tend to complicate the structure of
the feed-forward network in order to extract the most atomic operational elements and
to comprise all the dependencies in the structure of neural links. We suggest another
approach: signals passing from neuron to neuron can be treated not as scalar real
values but as aggregates of M1 + 1 real values. In this approach, except for the "size"
of its signals, the structure of the network remains the same as for usual perceptrons.
The surplus of complexity is encapsulated into neurons (see Fig. 1). Thus the output
of the i-th neuron of the k-th layer is the vector x~k)[v,r] = [x~~J[v,r)]p=O, ... ,M

1
and

the input is the matrix

(k-l)[v,r] _ [(k-l)[v,r]] X - X· . (k-1) J,p J=l, ... ,n
p=O, ... ,Ml

The backpropagated signals create vectors and matrices, as well.

Having a network which computes derivatives of its outputs, we can also extend
the SA method by teaching not only values of the solution but also formerly computed
values of the derivatives of the solution. It is shown in (Hornik et al., 1990) that for
any mapping there exists a perceptron which approximates this mapping and its
derivatives with arbitrary precision.

Solving differential equations with nonlinear perceptron 605

[t1' 1 ,0] [l2,0, 1]

(a) (b)

Fig. 1. Neural networks computing derivatives: (a) a network using scalar signals (Hornik et
al., 1990), (b) a network using aggregated signals. The label 'sigmoidal' on a neuron
means that it has a sigmoidal activation function, but having aggregate inputs, it
calculates its outputs using formulae (8)-(11), and back-propagates the gradient
using (14), (15) and (18). The neurons labelled as 'input' perform an identical
mapping. Neurons labelled as Wi,j are the only ones which are allowed to contain
weights (exactly one each).

Using one of the networks described in this subsection together with the formula
of the target function defined as in (7), we obtain a method for solving differential
equations. In contrast to the SA method, it is not only able to approximate solutions
for non-trained parameters, but it solves the equation as well. Let us call this method
the SGA method (Solutions Generating then Approximating method).

If the equation and the initial condition are not dependent on any parameter, the
SGA method solves only the differential equation and we will call this reduced form
of the SGA method the SG method.

4. Numerical Example

One of the considered differential equations was the heat equation

8y 82y
atl - at~ = 'P(tl, t2) (19)

606 P.S. Szczepaniak and B. Lis

for r,p(t1 , t2) = 0. The equation was reduced to the system of equations with first-order
derivatives by using the substitutions Y1 = y and Y2 = 8y / 8t2: ·

{

8yl - 8y2 = 0
at1 8t2

8yl
Y2--=0

8t2

(20)

The system of equations was considered in the domains t = [t1 , t2]T E Dt =
(0, 1) 2 , y = [y1 , y2]T E D = IR2 . Our system was combined with boundary conditions
dependent on a parameter a E Da = (0, 1):

f\ Y1 (0, t2) = 0,
t2E(O,l)

1\ Y1(t1, 0) = at1,
t1E(O,l)

f\ Y1(t1,1)=0
t1 E(O,l)

(21)

Equation (19) was solved using the method of straight lines. The results were
used to build a training sequence {([trl, tr1, a[v]]T, y[vJ}v=l, ... ,495 for the SA method.
The input patterns [tr1, trl, a[v]]T, v = 1, ... , 495 were taken from {0, 1/10, ... , 1} x
{0, 1/8, ... , 1} x {1/5, 2/5, ... , 1}. The trained perceptron had one hidden layer which
contained ten sigmoidal neurons and its output layer contained one linear neuron. All
the signals were scalars.

The system (20), (21) was used to train a network with aggregated signals (SGA
method). The second network had three inputs, ten hidden sigmoidal and two linear
output elements. The dimension of signals was three. The sampling sequence was
like the learning sequence in the former case. The terms lying on the boundary for
which conditions (21) could be computed created the learning subsequence. ·

Finally, the third network with the architecture like that of the second one was
trained with the SA method by using a learning sequence extended by the values of
derivatives 8ytf8tl and 8y2/8t2.

All the networks were tested on the sampling sequence containing 990 terms:
[tr], tr], a[v]]T E {0, 1/10, ... , 1} X {0, 1/8, ... , 1} X {1/10, 2/10, ... , 1} for V =
1, ... '990.

The results are presented in Table 1 and Figs. 2 and 3.

5. Conclusions

The paper shows how to obtain, using a feedforward nonlinear perceptron, the values
of the solution to a given differential equation which can contain parameters for
arbitrarily chosen arguments provided that they belong to a polyhedron stretched
on the arguments of the training sequence.

Two ways of reaching this goal are described: one is to teach the network some
solutions (and possibly their derivatives) for several parameters (the SA method), the
other is to force the network to find the solution (the SG and SGA methods).

At present, we do not know the conditions which must be satisfied by the dif­
ferential equation for the SG A method to be convergent to the solution of such an

Solving differential equations with nonlinear perceptron 607

Table 1. Summary of training. The predicate symbol ',..._.'

means here 'desired to approximate.'

Classical perceptron Perceptron with Perc. with aggr. sig.

after learning aggregated signals after learning the so-

the solution forced to find the so- lution and its deri-

(SA method) lution (SGA method) vatives (SA method)

Network's input 3 scalars: xio) = t1, 3 triples: xio) = [h, 1, of'
x(o) - t x(o) -a

2 - 2, 3 -
(o) []r (o) [o of x 2 = tz, 0, 1 , x 3 = a, ,

Hidden layer 1 hidden layer consisting of 10 sigmoidal neural elements

Network's 1 scalar: xi2
) "" y 2 triples: xi2

) "" [y1, 8yi/h, 8yi/tzf,

output x~2) ""[yz, 8yz/h, 8yz/tz]T

Training seq. 495 495 495

length

Training epochs 10 000 10 000 10 000
8[10000) 0.024102 0.101338 0.118913

Test sequence 990 990 990

length

Average squared 0.009523 0.033279 0.019719

error

Maximal error 0.069093 0.193763 0.098182

equation. However, numerical examples show that the method finds a solution with
the precision comparable to that of the SA method. In the future, it is necessary to
derive conditions under which the sequence of mappings generated during training by
the SGA method is convergent and, moreover, it has the solution to the differential
equation as its limit.

The disadvantages of all the described neural methods are a long training time
and problems with obtaining a satisfactory accuracy.

The following advantages are implied by the neural approach to the problem:

• a fast and parallelisable formula used by the perceptron to compute its outputs,

• a possibility of concurrent calculation of the values for several arguments pre­
sented parallelly to several neural networks having the same structure and
weights,

• a possibility of obtaining solution values for a parameterized equation (or sys­
tem) for a parameter for which the equation was not previously solved,

• when modelling a real process which changes its characteristics during its life­
time, the network can be trained between operation times to adjust its mapping
to the process.

608 P.S. Szczepaniak and B. Lis

0,41

0,35 ~

0,3 ~ ,x\ --+-str.lin.rreth.
0,25 o,~

0,2 'o~ --o- SA meth.,
y ''" scal.sign. 'X~ 0,15

V~ ''4~ • -o- • SGA meth.,
0,1 aggr.sign.

•v~
-X- SAmeth., 0,05 • •q,~

aggr.sign.
0 •o"-x

-0,05
0,5

.
length t2

Fig. 2. Comparison of the trained mappings and the solution to the heat equation,
t1 = 0.7 (the parameter a= 0.5 was not in the training sequence).

0,61

0,5~

0,4 ~. --+-str .lin.meth.

0,3
~\a --o- SA meth.,

y '.x~ scal.sign.

0,2
V•' ·~ • -o- • SGA meth.,

-~:1: aggr.sign.

0,1 X~)(-X- SAmeth.,

~~X
aggr.sign.

0
0,5

-0,1

length t2

Fig. 3. Comparison of the trained mappings and the solution to the heat equation,
t1 = 0.6 (the parameter a= 0.8 was not in the training sequence).

References

Cybenko G. (1989): Approximation by superpositions of a sigmoidal function. - Math.
Contr. Sign. Syst., Vol.2, No.4, pp.303-314.

Hornik K., Stinchcombe M. and White H. (1990): Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. - Neural Net­
works, Vol.3, pp.551....:.560.

Nerrand 0., Roussel-Ragot P., Urbani D., Personnaz L. and Dreyfus G. (1994): Train­
ing recurrent neural networks: Why and how? An illustration in dynamical process
modelling. -IEEE Trans. Neural Networks, Vol.5, No.2, pp.l78-184.

Solving differential equations with nonlinear perceptron 609

Nikliborc W. (1951): Differential Equations, Part I. - Mathematical Monographies,

Vol.XXV, Polish Math. Soc., Warsaw-Wroclaw (in Polish).

Szczepaniak P.S. and Lis B. (1994a): Solution of differential equations using feed-forward

artificial neural network. - Proc. 6th Int. Congress Computational and Applied

Mathematics ICCAM, Leuven, Belgium,

Szczepaniak P.S. and Lis B. (1994b): Neural modelling of dynamic process. - Proc. of the

Workshop Qualitative and Quantitative Approaches to Model-Based Diagnosis of the

2nd Int. Conf. Intelligent Systems Engineering, Hamburg, Germany, pp.144-149.

Received: 7 February 1997

