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SOLVING DIFFERENTIAL EQUATIONS WITH 
NONLINEAR PERCEPTRONt 

PIOTR S. SZCZEPANIAK*, BARTOSZ LIS* 

The work concerns training neural networks for approximate mappings being 

solutions to differential equations, especially partial-differential equations. The 

presented approaches fall into two categories. In the first one, backpropagation 

training is combined with an arbitrary numerical method used for obtaining tab­

ulated solutions to the equations for training sequences. In the other, the neural 

network is forced to suggest a solution to the equation and to keep on improving 

that mapping during the backpropagation process. The other approach implies 

certain modifications in the structures of the neural network, neuron and neural 

signals. 

1. Introduction 

In the last decade, artificial neural networks have been in the focus of interest of many 
researchers, and some important results, described in (Cybenko, 1989), showing that 
one-hidden-layer nonlinear perceptrons are capable of approximating an arbitrary 
function arbitrarily well, have been achieved. 

Many applications of neural networks (c.f. Nerrand et al., 1994) deal with the 
generating of solutions to differential equations. In most cases, especially when the 
equation under consideration contains a derivative with respect to time, apart from 
normal arguments, the network gets its delayed outputs as inputs. Such a trick allows 
the network, after some necessary training, to forecast the values of the solution after 
an arbitrarily given step. 

This paper deals with one-hidden-layer perceptrons prepared to produce the value 
to the solution of the differential equation for any arguments contained in a polyhedral 
stretched on the arguments of the training sequence, when the solution values for 
certain points are presented only during training, and not during the operation time. 

Section 3 presents such networks together with methods of preparing them to 
produce proper values. In Section 3.1, the method presented by Szczepaniak and Lis 
(1994a; 1994b) is briefly described. The network is trained on a number of solutions 
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obtained previously for a set of equation parameters, and then it is able to gener­
ate solutions for non-presented values of parameters. The solutions used for training 
can be computed using any numerical or analytical method. Subsections 3.2 and 3.3 
present a method of forcing the network to generate a solution when only a differ­
ential equation and initial (or boundary) conditions are known during training. The 
method does not depend on other methods of solving differential equations. Subsec­
tion 3.2 presents the target function which is optimized during training. The method 
requires networks capable of computing derivatives of their outputs with respect to 
their inputs. Such networks are described in Subsection 3.3. Section 4 presents some 
numerical experiments with those networks. 

2. Problem Formulation 

Let us consider a system of ordinary differential equations of the form 

l(t, a, y, y) = 0 (1) 

with the initial condition depending on a parameter vector a: 

y(f[1l) = y(a) (2) 

where a E Da C JRA, t E Dt C IR, y E D C JRM, iJ E D C JRM; M, A E N and 
Dt, D, D are closed sets. Moreover, I: Da x Dt x D x D ~ JRM, jj: Da ~ JRM, 
and all these mappings are of class C 1 . 

Such a formulation of the problem in which the derivative of the unknown map­
ping is given implicity does not guarantee the uniqueness of the solution. The theory 
states (c.f. Nikliborc, 1951) irregular points whose number is equal to the number of 
solutions to the equation l(f[1l,a,y(a),p) = 0 for variable p. Assuming that the 
solution does not contain irregular points, we can ensure its uniqueness by adding the 
following conditions: 

8y (f[ll) = p(a) at 
where p: Da ~ JRM, and p is in C 1. 

(3) 

Now, let us consider a system of partial equations with first-order derivatives: 

( 
8y 8y 8y ) 

I t, a, y, 8t1' 8t2' .. ·' 8tM
1 

= 0 (4) 

with the condition 

y(f(O) =jj(~,a) (5) 

where t E Dt C JRM1
, a E Da C JRA, y E D C JRM, M 1, M E N, Dt, D are closed 

sets, I: Dt x Da x D x (JRM)M1 ~ JRM belongs to class C1, ~ E Df. c JRM1 -I, f: 
Df. ~ 8Dt, y: Df. x Da ~D. 
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Without loss of generality, we can focus our considerations on systems with first­
order derivatives only, because any equation (or a system of equations) is easily re­
ducible to such a form. 

Our task is to train a neural network to approximate the solution to (1)-(3) or 
(4)-(5) on the domains of arguments Dt and parameters Da. 

3. Presentation of the Methods 

3.1. Training of a Neural Network on Tabulated Solutions 

The first approach consists in finding and tabulating the solutions to a given equa­
tion or a system of equations in any numerical or analytical way for a number of 
parameters a 1 , a 2 , ... , aL E Da· Those tabulated values create the training se-

{( -[v] - [v])} -[v] [ [vf [v]T]T { } quence t , y v=l, ... ,N1 , where t = t , a E Dt x a1, a2, ... , aL , 

y[v] = Ya (t[v]) and Ya (t) is a solution to (1)-(3) (in this case t is a scalar 
and M1 = 1) or (4)-(5). A feed-forward network has M1 +A inputs and M outputs, 
and is trained with the above sequence, so it is expected to approximate the mapping 
defined as 

U: Dt X D a -+ ~M, 1\ u(t, a) = Ya(t) 
tEDt 
aEDa 

(6) 

If u is continuous, it can be approximated with any precision depending only 
on the density of terms of the training sequence in their domain Dt x Da, and, of 
course, certain parameters of the network and its training: the number of neurons 
and a planned error on the training sequence. We will call this method an SA method 
(Solution Approximating method). 

3.2. Target FUnction for Solving Differential Equations 

The process of training a neural network is an iteration of succesive suggestions of 
mappings made by the network, followed by computation of a certain formula (the 
target function) with respect to the suggested mapping as the terms of the training 
sequence are being presented. Then the neurons' weights are changed so that the 
next generated mapping may produce a smaller value of the target function. One 
turn of the iteration is referred to as an epoch. The training concludes when the 
target function is close enough to zero. 

Let the mapping the network produces in epoch T be denoted by z[T]: ~n<o> -+ 
Rn<K>, where the network contains K + 1 layers numbered from 0 to K, n(k), 0::; 
k ::; K is the number of neurons in layer k. 

To force the neural network to solve a differential equation, the target function 
should be expressed in such a way that it takes the zero value for the solution to the 
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equation. Thus its value s[r] in the T-th epoch can be written down as 

1 Nl 2 
= 2 L llz[r] (t[v]) - Y [v]ll 

v=l 

The first component, called the error function, is formed from the tabulated 
initiai or boundary conditions (2) or (5) and is computed only on the first N1 terms 
of the training sequence which is chosen from the domain of the initial condition. 
The second component, called the correction function, contains the function from (1) 
or (4) and is computed on arguments coming from the domain Dt x Da. If N1 < N 2 , 

the second component is computed on the boundary of Dt x Da for the first N1 
terms and then on the interior of the domain for the other terms. Since the desired 
values of the mapping function are unknown for the terms from the interior, these 
terms are called the sampling sequence. The first N1 terms for which the initial 
condition defines the desired values of the searched mapping are called the learning 
sequence. 

To ensure the uniqueness of the solution, (7) can be expanded with another 
component, similar to the error function but based on (3), so instead of the unknown 
mapping and its desired value it contains their derivatives. 

3.3. Finding Derivatives of Neural Network Outputs with Respect to its 
Inputs 

For the target function (7) to be computed, the network should compute derivatives 
of its outputs with respect to its inputs. These derivatives can be computed in the 
forward propagation by a recurrent formula similar to that of the normal output 
(Hornik et al., 1990): 

• normal sum of inputs: 

n(k-1) 

x(k)[v,r] - '"" (k)[r] (k-l)[v,r] + (k)[r] 
i,o - ~ wi,j xj,o wi,o (8) 

j=l 

• auxiliary sum of derivatives: 

n(k-1) 

X (k)[v,r] _ '"" (k)[r] (k-l)[v,r] 
i,p - ~ wi,j xj,p , p::::: 1, ... ,M1 (9) 

j=l 

• normal output of a neuron: 

(k)[v,r] _ (k) (x(k)[v,r]) 
Xi,O - a i,O (10) 
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• its derivative: 

a (k)[v,r] 
(k)[v,r] df Xi,O = ( (k))

1 (x~k)[v,r]) X~k)[v,r] 
Xi,p a (O)[v,r] a t,O t,p ' p=1, ... ,Ml. (11) 

xp,o 

where x~kJ[v,r] is a normal output of the i-th neuron from the k-th layer for the v-th 

presented term of the training sequence in the T-th epoch, x~:;![v,r], p = 1, ... , M1 

stands for its derivative after the p-th input to the neural network, a(k) is the acti­

vation function of the k-th layer and (a(k)) 1 is its derivative, w~j[r], k = 1, ... , K 
denotes the weight of the link between the j-th element of the (k - 1)-th layer to 

the i-th element of the k-th layer, x},~[v,rJ, p = 0, ... , M1 are auxiliary values 
(internal sums of inputs to the neuron and its derivatives). 

For the input and output layers there exsist some obvious substitutions 

• for the input layer: 

X~o0)[v,r] = t.[v]' 
t, t 

X~O)[v,r] = { 1 if i = p, 
t,p 0 if i i- p, 

i,p= 1, ... ,Nf1 (12) 

• for the output layer: 

[r] (i[v]) _ (K)[v,r] 
zi - xi,o ' 

a [r] _5_ (i[v]) = X~K)[v,r] 
atp t,p 

(13) 

The gradient of the target function is back-propagated with the use of the following 
formulae: 

E~k)[v,r] ·= as[r] 
t,p . ax~k)[v,r] 

t,p 

(k)[v,r] ( (n)) I (x(k)[v,r]) 
ei,o a i,o 

~k)[v,r] ( (n)) I (x~k)[v,r]) 
et,p a t,O for p = 1, ... , M 1 

e~k)[v,r] ·= as[r] 
t,p . a (k)[v,r] 

xi,p 

(15) 
i=l 
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From (14) and (15) we get 

n(K) 

~K)[v,..-] = ~K)[l,r) _ -_[v] + '""" afi (t[v] X(K)[v,r]) j· (t[v] X(K)[v,r]) (16) ez,O xz,O Yz ~ a . ' J ' 
j=l Yz 

and 

(17) 

where (16) is for v ~ N1 and p = 0, whereas (17) for the other values of v and p. 
In both the equations x(K)[v,r] denotes the matrix of the outputs from the last layer 
of the network: 

X(K)[v,r] _ [x(K)[v,r]] 
- i,p i=l, ... ,n(K) 

p=O, ... ,M1 

{ 

~ E~k)[v,r] for j = 0 
[ l 

L...J z,O 
(k)[r] •- as T _ v=l 

d.. - -
z,J . a (k)[r] N M 

wi,j i i E~k)[v,r]x\k)[v,r] for j = 1, ... 'n(k-1) 
v=l p=O z,p J,p 

(18) 

To compute these quantities, some approaches tend to complicate the structure of 
the feed-forward network in order to extract the most atomic operational elements and 
to comprise all the dependencies in the structure of neural links. We suggest another 
approach: signals passing from neuron to neuron can be treated not as scalar real 
values but as aggregates of M1 + 1 real values. In this approach, except for the "size" 
of its signals, the structure of the network remains the same as for usual perceptrons. 
The surplus of complexity is encapsulated into neurons (see Fig. 1). Thus the output 
of the i-th neuron of the k-th layer is the vector x~k)[v,r] = [x~~J[v,r)]p=O, ... ,M

1 
and 

the input is the matrix 

(k-l)[v,r] _ [ (k-l)[v,r]] X - X· . (k-1) J,p J=l, ... ,n 
p=O, ... ,Ml 

The backpropagated signals create vectors and matrices, as well. 

Having a network which computes derivatives of its outputs, we can also extend 
the SA method by teaching not only values of the solution but also formerly computed 
values of the derivatives of the solution. It is shown in (Hornik et al., 1990) that for 
any mapping there exists a perceptron which approximates this mapping and its 
derivatives with arbitrary precision. 
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[t1' 1 ,0] [l2,0, 1] 

(a) (b) 

Fig. 1. Neural networks computing derivatives: (a) a network using scalar signals (Hornik et 
al., 1990), (b) a network using aggregated signals. The label 'sigmoidal' on a neuron 
means that it has a sigmoidal activation function, but having aggregate inputs, it 
calculates its outputs using formulae (8)-(11), and back-propagates the gradient 
using (14), (15) and (18). The neurons labelled as 'input' perform an identical 
mapping. Neurons labelled as Wi,j are the only ones which are allowed to contain 
weights (exactly one each). 

Using one of the networks described in this subsection together with the formula 
of the target function defined as in (7), we obtain a method for solving differential 
equations. In contrast to the SA method, it is not only able to approximate solutions 
for non-trained parameters, but it solves the equation as well. Let us call this method 
the SGA method (Solutions Generating then Approximating method). 

If the equation and the initial condition are not dependent on any parameter, the 
SGA method solves only the differential equation and we will call this reduced form 
of the SGA method the SG method. 

4. Numerical Example 

One of the considered differential equations was the heat equation 

8y 82y 
atl - at~ = 'P(tl, t2) (19) 
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for r,p( t1 , t2 ) = 0. The equation was reduced to the system of equations with first-order 
derivatives by using the substitutions Y1 = y and Y2 = 8y / 8t2: · 

{ 

8yl - 8y2 = 0 
at1 8t2 

8yl 
Y2--=0 

8t2 

(20) 

The system of equations was considered in the domains t = [t1 , t2]T E Dt = 
(0, 1) 2 , y = [y1 , y2]T E D = IR2 . Our system was combined with boundary conditions 
dependent on a parameter a E Da = (0, 1): 

f\ Y1 (0, t2) = 0, 
t2E(O,l) 

1\ Y1(t1, 0) = at1, 
t1E(O,l) 

f\ Y1(t1,1)=0 
t1 E(O,l) 

(21) 

Equation (19) was solved using the method of straight lines. The results were 
used to build a training sequence {([trl, tr1, a[v]]T, y[vJ}v=l, ... ,495 for the SA method. 
The input patterns [tr1, trl, a[v]]T, v = 1, ... , 495 were taken from {0, 1/10, ... , 1} x 
{0, 1/8, ... , 1} x {1/5, 2/5, ... , 1}. The trained perceptron had one hidden layer which 
contained ten sigmoidal neurons and its output layer contained one linear neuron. All 
the signals were scalars. 

The system (20), (21) was used to train a network with aggregated signals (SGA 
method). The second network had three inputs, ten hidden sigmoidal and two linear 
output elements. The dimension of signals was three. The sampling sequence was 
like the learning sequence in the former case. The terms lying on the boundary for 
which conditions (21) could be computed created the learning subsequence. · 

Finally, the third network with the architecture like that of the second one was 
trained with the SA method by using a learning sequence extended by the values of 
derivatives 8ytf8tl and 8y2/8t2. 

All the networks were tested on the sampling sequence containing 990 terms: 
[tr], tr], a[v]]T E {0, 1/10, ... , 1} X {0, 1/8, ... , 1} X {1/10, 2/10, ... , 1} for V = 
1, ... '990. 

The results are presented in Table 1 and Figs. 2 and 3. 

5. Conclusions 

The paper shows how to obtain, using a feedforward nonlinear perceptron, the values 
of the solution to a given differential equation which can contain parameters for 
arbitrarily chosen arguments provided that they belong to a polyhedron stretched 
on the arguments of the training sequence. 

Two ways of reaching this goal are described: one is to teach the network some 
solutions (and possibly their derivatives) for several parameters (the SA method), the 
other is to force the network to find the solution (the SG and SGA methods). 

At present, we do not know the conditions which must be satisfied by the dif­
ferential equation for the SG A method to be convergent to the solution of such an 
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Table 1. Summary of training. The predicate symbol ',..._.' 

means here 'desired to approximate.' 

Classical perceptron Perceptron with Perc. with aggr. sig. 

after learning aggregated signals after learning the so-

the solution forced to find the so- lution and its deri-

(SA method) lution (SGA method) vatives (SA method) 

Network's input 3 scalars: xio) = t1, 3 triples: xio) = [h, 1, of' 
x(o) - t x(o) -a 

2 - 2, 3 -
(o) [ ]r (o) [ o of x 2 = tz, 0, 1 , x 3 = a, , 

Hidden layer 1 hidden layer consisting of 10 sigmoidal neural elements 

Network's 1 scalar: xi2
) "" y 2 triples: xi2

) "" [y1, 8yi/h, 8yi/tzf, 

output x~2 ) ""[yz, 8yz/h, 8yz/tz]T 

Training seq. 495 495 495 

length 

Training epochs 10 000 10 000 10 000 
8[10000) 0.024102 0.101338 0.118913 

Test sequence 990 990 990 

length 

Average squared 0.009523 0.033279 0.019719 

error 

Maximal error 0.069093 0.193763 0.098182 

equation. However, numerical examples show that the method finds a solution with 
the precision comparable to that of the SA method. In the future, it is necessary to 
derive conditions under which the sequence of mappings generated during training by 
the SGA method is convergent and, moreover, it has the solution to the differential 
equation as its limit. 

The disadvantages of all the described neural methods are a long training time 
and problems with obtaining a satisfactory accuracy. 

The following advantages are implied by the neural approach to the problem: 

• a fast and parallelisable formula used by the perceptron to compute its outputs, 

• a possibility of concurrent calculation of the values for several arguments pre­
sented parallelly to several neural networks having the same structure and 
weights, 

• a possibility of obtaining solution values for a parameterized equation (or sys­
tem) for a parameter for which the equation was not previously solved, 

• when modelling a real process which changes its characteristics during its life­
time, the network can be trained between operation times to adjust its mapping 
to the process. 
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0,41 

0,35 ~ 

0,3 ~ ,x\ --+-str.lin.rreth. 
0,25 o,~ 

0,2 'o~ --o- SA meth., 
y ''" scal.sign. 'X~ 0,15 

V~ ''4~ • -o- • SGA meth., 
0,1 aggr.sign. 

•v~ 
-X- SAmeth., 0,05 • •q,~ 

aggr.sign. 
0 •o"-x 

-0,05 
0,5 

. 
length t2 

Fig. 2. Comparison of the trained mappings and the solution to the heat equation, 
t1 = 0.7 (the parameter a= 0.5 was not in the training sequence). 

0,61 

0,5~ 

0,4 ~. --+-str .lin.meth. 

0,3 
~\a --o- SA meth., 

y '.x~ scal.sign. 

0,2 
V•' ·~ • -o- • SGA meth., 

-~:1: aggr.sign. 

0,1 X~)( -X- SAmeth., 

~~X 
aggr.sign. 

0 
0,5 

-0,1 

length t2 

Fig. 3. Comparison of the trained mappings and the solution to the heat equation, 
t1 = 0.6 (the parameter a= 0.8 was not in the training sequence). 
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