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NONREGULAR NONLINEAR SECTOR MODELLING 

ANDRZEJ PIEGAT* 

Fuzzy models realize human-like modelling schemes. However, a human being 

can create in his mind relatively simple models of real systems with maximum 

two inputs. The reason is that human models are based on rectangular lattice 

partitions of the input spaces. Such a partition enables us to understand the 

modelled system, which is a great advantage of fuzzy modelling. Despite this, 

the rectangular lattice partition makes modelling of systems with large numbers 

of inputs and those realizing complicated inputs/output mappings impossible or 

very difficult. The paper puts forward a self-organizing and self-tuning method 

for modelling nonlinear systems. It is based on a nonrectangular partition of the 

input space. The conclusions of rules can be here linear or nonlinear. For the 

latter, a special delinearization function (SDL) is proposed. It makes it possible 

to decrease considerably the number of rules, which results in efficient modelling. 

Also, the amount of measurement information from the system needed to learn 

a model can be decreased considerably. 

1. Introduction 

Zeng and Sing (1996) prove that any fuzzy system with commonly-used triangular 
membership functions is a piecewise multilinear function. "Pieces" in the case of 2D 
input-space rectangles creating a partition lattice are shown in Fig. 1. The output 
value y of the Mamdani model at each node Pij of the partition lattice and in its 
neighbourhood is defined by a rule of the type 

IF (x1 close to x1i) AND (x2 close to X2j), THEN (y close to Yij) (1) 

for i,j = 1, 2, 3. 

If the statements like 'x1 close to x1/ are replaced by 'x = small', 'x = mean' 
and 'x = large', then the rules become easy to understand and to remember by a 
man who will create in his mind a fuzzy system model based on linguistic rules. In 
the example shown in Fig. 1, the model consists of nine rules which define the output 
value y for the input vector X and the neighbourhood of nine nodes Pij of the 
partition .lattice. 

* Institute of Computer Science and Information Systems, Technical University of Szczecin, 
ul. Zolnierska 49, 71-210 Szczecin, Poland, e-mail: andrzej_piegat@ii.tuniv.szczecin.pl. 
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f..l(XJ)i : : : 1--xx . 
X= [x1,x2]T X12 X13 Xt 

y = fk(X) = aok + alkxl + a2kX2 + a3kX1X2 

Fig. 1. Rectangular partition of the input space in a fuzzy Mamdani model. 

According to Zeng and Singh, instead of the rules (1), the following ones which 
describe the model surface over each sector of the partition lattice can be used: 

IF (xli:::; x1:::; x1(i+l)) AND (x2j:::; x2:::; X2(J+l)), THEN (y = fk(x1,x2)) (2) 

where 

y = fk(x1,x2) = aok + alkx1 + a2kx2 + a3kX1X2 

is a multilinear function. 

(3) 

A very important equivalence condition of the model with point rules of type (1) 
and that with sector rules of type (2) is the identity of neighbouring functions fk 
and fk+l along the sector borders. If multilinear functions (3) are in the sector 
rules conclusions, then this condition is satisfied if the neighbouring functions fk and 
fk+l have identical values at their common nodes Pij, because the borders of these 
multilinear functions are linear, which can be tested by imposing constant values on 
x1 or x2 in (3). 

Application of sector rules (2) in the example shown in Fig. 1 decreases the 
number of rules from nine (the Mamdani model) to four (the sector model). However, 
the amount of measurement information needed to tune both the models is identical 
and equal to r = m 1 x m 2 , where mi stands for the number of fuzzy sets of the input 
Xi, i = 1, 2. This number is equal to the number of nodes of the partition lattice. 
In the case of an n-dimensional input space the number of nodes of the rectangular 
lattice (r = m 1 x m2 x · · · x mn) increases sharply. For instance, for ten inputs, 
each defined by three linguistic values, we have r = · 59049. For a large number of 
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inputs (in practice, n > 2) the parameters of fuzzy sets cannot be acquired from 
a system expert and must be tuned with selfiearning methods, e.g. in the form of 
neuro-fuzzy models using measurement information from the system. But, according 
to (Bossley et al., 1995), self-learning neuro-fuzzy models become impractical when 
n > 4. The parameter tuning of the model comes to be difficult or non-realizable. 
This situation is caused by a too large number of parameters to be tuned. This was 
observed by Bellman (1961), the inventor of Dynamic Programming, and called the 
curse of dimensionality. The model with a too large number of tuned parameters is 
said to be overparametrized. Many scientists have been looking since that time for 
methods which would allow us to overcome this problem. 

The first method consists in using a nonlattice partitioning of the input space as k­
d trees and quad trees (Bossley, 1995). The second method relies on using local models 
with different partition lattices in different regions of the input space (Babuska and 
Verbruggen, 1995; Bossley et al., 1995). Both the methods use rectangular sectors in 
the input space partition. In (Su et al., 1995; Kwon and Zervakis, 1994) a nonregular, 
nonrectangular partition with multidimensional RBF-functions is proposed. Many 
papers propose a fight direction with the curse of dimensionality which consists in 
simplification of fuzzy models by reduction of less "important" or redundant rules and 
fuzzy sets (Fukumoto et al., 1995; Ishibuchi et al., 1995; Babuska et al., 1996). These 
methods base on a regular lattice input space partition and offer a limited reduction 
of the model complication level. 

The author of this paper has followed the way proposed in (Su et al., 1995; Kwon 
and Zervakis, 1994) for the nonregular, nonrectangular input space partition. This 
approach is very difficult but it gives the rosiest prospects to surmount the curse of 
dimensionality. Figure 2(a) shows a system surface with two mountains and two fiat 
regions. 

Accurate! "mountains" modelling requires using a larger number of fuzzy sets 
defining the variables x1 and x2 , Fig. 2(b). This results in a higher density of the 
partition lattice in their regions. However, a similar lattice density is also in the fiat 
"lowlands" regions where a smaller one would be sufficient. Each node Pij of the 
partition lattice in the Mamdani model means one rule and three parameters which 
have to be tuned. This requires a large number of measurements from the modelled 
system. Tuning models with large numbers of free parameters is very difficult. Appli­
cation of nonregular, nonrectangular partition lattices as that of Fig. 2( c) decreases 
considerably the number of nodes, and thereby the amount of the information about 
the system needed to determine its parameters. In the regions with a quicker variation 
of the system surface the nodes can be placed densely and in fiat regions sparsely. In 
the case of triangle sectors the surface above them can be uniquely defined on the 
basis of three nodes only if it is a linear one, goes through them and its borders are 
straight line segments. If the rectangular sectors of the input space are replaced by 
triangular ones, for n = 2 the rules of the following type are achieved: 

IF (x2 2: a~+ a~jx1) AND (x2 2: abk + alkx1) AND (x2 2: a~k + a{kxl) 

.. k . 'k .. k 
THEN (y =a~ + a~1 x1 + ai x2) (4) 
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Fig. 2. Contour lines of the surface of a modelled system (a), a rectangular input 
space partition (b), and a nonregular, nonrectangular one (c). 

The rule (4) concerns the sector stretched on three nodes Pi, P1, Pk (Fig. 2(c)). 
In the case of the space of a higher dimensionality (n > 2), the triangular sector is 
replaced by a simplex being the simplest form of a convex polyhedron which can exist 
in this space (for n = 3 it becomes a tetrahedron), (Dziubinski and Swiatkowski, 
1980). The inner space of the simplex is defined by the linear forms 

(5) 
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and the model surface above the simplex by 

(6) 

Defining the surface (6) above the simplex (5) requires a smaller amount of infor­
mation ( n + 1 measurements vectors x1 , ... , Xn, y) than in the case of a. rectangular 
partition where 2n vectors are required. The increase in the information needed for 
the model realization is linear for simplexes and exponential for rectangular partitions. 
Modelling based on simplex rules ( 4) with linear conclusions is efficient because the 
rule thickening is made here locally and only in the regions of the greatest curvature of 
the system surface. A further decrease in the number of rules is conditioned by intro­
ducing nonlinear conclusions. This problem is not trivial because simplex spaces are 
nonrectangular and the borders of the sector surfaces of the neighbouring simplexes 
must agree (no abrupt break-down of the surface is allowed). Nonlinear conclusions 
can be introduced owing to simplex delinearization functions (SDL-functions). This 
concept is presented in Section 3 and advantages of its application are indicated in 
Section 5. 

2. Modelling with the Attachment-Point Method 

The modelled MISO system realizes the input/output mapping is corresponding to 
some hypersurface in the input/output space: 

is : X -+ Y, X = X 1 X · · · X X n E JRn, Y E JR1 (7) 

The model of the system realizes the mapping 

(8) 

Adaptive modelling can be formulated as an adaptation process of the model 
surface im to the system surface is· Let us imagine the system surface is as a rigid 
spherical cap and the model surface im as a piece of a flabby soft cloth which should 
be attached to the cap so that both the surfaces be sufficiently close to one another 
and the number of attachment points be possibly small. The model cloth can lie at 
the beginning under the rigid system cap as is shown in Fig. 3. The model surface can 
be subsequently attached to the system surface at successive points (Fig. 4) which 
yields a higher and higher model accuracy. 

This heuristic method converges and gives good suboptimal solutions over­
coming local minima, which was confirmed experimentally by the author and 
by Ullrich (1997). The ordinates of particular attachment points (AP's) can 
be optimised with the use of the LS or Gauss-Seidel methods, which increases 
considerably the model accuracy when the number of AP's is small. At a greater 
number of AP's this optimisation has moderate influence. The simplex modelling in 
a two-dimensional input space is known in the literature as the Delaunay nets and 
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Fig. 3. Initial state of the modelling. 
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Fig. 4. Increasing the model accuracy in successive steps Us-system surface, 
f rn -model surface). 

creating simplex sectors on the basis of AP's as triangulation. The AP's being corners 
of triangular sectors are called the interpolation nodes (Ullrich, 1997). The Delaunay 
nets realize in fact a piecewise linearization. But the "pieces", i.e. simplexes, are found 
in the input space in a well-defined manner. Their size and placement determines the 
model structure. A Delaunay net is a self-structuring modelling method. An example 
of the model surface achieved by triangulation of the input space is shown in Fig. 5. 

Each simplex of the input space corresponds to a rule of the type ( 4) defining in its 
conclusion the surface above the simplex. Such a model will be efficient if the number 
of simplexes, which is equal to the number of rules, will be small with a sufficient 
model accuracy. Only then such models can be used for modelling systems with large 
numbers of inputs. Ullrich's investigations (Ullrich, 1997) showed that the number of 
AP's and simplexes generated in Delaunay nets is too high and a modelling system 
with the number of inputs which is greater than four involves a heavy computational 
burden. A way to achieve a high accuracy for a small number of simplexes is the 
application of non-linear interpolation between the AP's. This interpolation can be 
carried out with simplex delinearization functions (SDL-functions). 
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Fig. 5. Model surface (a) in the space xl X x2 X y achieved by triangularization 
of the input space X1 X X2 and partition of this space by triangular 
simplexes (b). 

3. Simplex Delinearization (SDL) Functions 

The idea of the SDL-function is shown in Fig. 6. 

y y 

Y _ ciik + ciik x + ciik x + ~ (diik) 
- 0 I I 2 2 Jd 

pi 

(a) (b) 

Fig. 6. Simplex interpolation with a linear (a) and a non-linear (b) SOL-function·, 
P, = (xL x~), Pt = (xL x~, y1

), l = i,j, k. 

617 
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The simplex linear function (SL-function) shown in Fig. 6(a) is stretched on the 
nodes Pt, Pj*, Pk and satisfies the condition 

l=i,j,k (9) 

Its borders are line segments at which one SL-function adjoins the neighbouring ones. 
This assures the continuity of the global model surface. Delinearization of the SL­
function 

ijk ijk ijk 
Y = c0 + c1 X1 + c2 X2 (10) 

consists in adding a non-linear function fd which is non-zero above the simplex, but 
equals zero on its triangular borders. Then the borders are still line segments. The 
formulae 

!d = c3dijk, !d = c3dijk +c4(dijk) 2, !d = c3dijk +c4(dijk) 2 +cs(dijk) 3 (11) 

constitute three variants of the SDL-function with different numbers of degrees of 
freedom. Clearly, other forms of the SDL-function are also possible. Here dijk is 
the product of the distances of the point P(x1, x2) lying inside the simplex from its 
borders (Fig. 6(b)). 

(12) 

If a simplex border passes through its nodes Pi, Pj and is described by the general 
line equation 

Aijx1 + Bijx2 + Cij = 0 

then this equation can be transformed into normal form 

where 

( 
.. ) A 

cos ci1 = --;:.:::;::;;:::==::;;;:: 
-../A2 +B2' 

.. ) B sin ( atJ = --;:.~=~ 
-../A2 +B2' 

(13) 

(14) 

ij- c 
P - -../A2 +B2 

The distance dij of a point P(x1 , x2) lying inside a simplex can be calculated 
according to the formula 

dij = lx1 cos (aij) + x2 sin (aij) - pij I (15) 

Adding the SL-function (10) to the SDL-function (11), we get the simplex non­
linear (SNL) function 

(16) 

. "k . "k . "k 
The parameters c:J , c~1 , ci are determined by the corner coordinates of the simplex 
Pz* = (xi,xLyl), l = i,j,k on which the plane (10) is stretched. The parame­
ters c3, c4, ... of the SDL-function are determined via the least-squares (LS) method 
using a pseudo-inverse matrix D. If s measurement points P~ = (x1m, X2m, Ym), 
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m = 1, ... , s (apart from the AP's), are situated in the simplex, then for each of 
them the difference between the measured output value Ym and y, from the linear 
interpolation (10), can be calculated as 

A _ ( ijk ijk ijk ) 
um - Ym - c0 + c1 X1 m + c2 X2m (17) 

and the vector ~ of the function differences 

~= ~: l 
~s 

(18) 

can be created. 

For each measurement point Pm its distance product dm can be calculated 
from (12) and, accordingly, the matrix 

[ dl 

d2 

~] 1 

d2 4 dr 
D= . 

2 

ds d2 dr s s 

can be created. 

If C signifies the vector of the unknown parameters of the SDL-function 

then its optimal estimate can be calculated from 

c opt = ( DT D) -
1 

DT ~ = n+ ~ 

(19) 

(20) 

(21) 

4. Algorithm of the Simplex Modelling with AP's and SDL­
Functions for Two-Input Systems 

Now, we are ready to present the following algorithm: 

1. Pre-processing the input/ output measurement data of the modelled 
system. This is to get a unique system representation and to decrease the 
amount of data. 

2. Determining a basic model y*=MJ(Xt,x2 ). 
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2.1. Determining the measurement points Pi with minimal and maximal values 
of the system input x1 : 

P1 = [ ~1: ] , Xu ~ X1j 

P2 = [ :;,:] , X12 ~ X1j, j= 1, ... ,m 

(22) 

where m stands for the number of the measurement points representing 
the system surface after pre-processing. If the number of such points is 
greater than two, the pair P1 , P2 with the greatest Euclidean distance 
R12 in the input space should be found (Fig. 7), 

( 

2 ) 1/2 

R12 = t; (xil - Xi2)
2 

(23) 

The points P1 and P2 become the first AP's: P1 --+ AP1 , P2 --+ AP2. 

Xt 

Fig. 7. The first AP's of the basic model. 

2.2. Determining the point P3 for which the sum of the distances 

R312 = R31 +R32 = (t (x;3- xn)
2

) 

112 

+ (t (x,3 - x;2 )
2

) 

112 

(24) 

from the points AP1 and AP2 in the input space is the greatest one 
(Fig. 8). After finding P3 (x13 ,x23 ,y3), we should check through (24) if it 
lies on the line connecting AP1 and AP2. If the condition 

(25) 
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Fig. 8. Step 2.2 of constructing the basic model. 

is satisfied, all the measurement points lie on one line in the input space 
and the modelling can be reduced, by rotation of the coordinates, to a 
two-dimensional problem. Otherwise, the fourth AP is to be determined. 

2.3. Determining the point P4 for which the sum R4123 of the distances from 
the points AP1 , AP2 , AP3 in the input space is the greatest one (Fig. 9). 

Fig. 9. Step 2.3 of constructing the basic model. 

After finding P4, a convexity condition for the quadrangle (AP1 , AP2 , 

AP3, AP4) must be checked. This can be achieved by checking if the points 
AP3 and P4 lie on the same side of the line connecting AP1 and AP2 . 

One of the conditions 

(
X23 - X21 > X22 - X21) AND (X24 - X21 < X22 - X21) (26) 
X13 - Xn X12 - Xu X14 - Xn X12 - Xu 



622 A. Piegat 

and 

(
X23- X21 < X22- X21) AND (X24- X21 > X22- X21) (27) 
X13 - Xu X12 - Xu X14 - Xu X12 - Xu 

must be satisfied. 

APt 

Xl 

Fig. 10. A basic model with three AP's. 

If these conditions are not satisfied, the point P4 lies inside the triangle 
(AP1,AP2 ,AP3 ), Fig. 10, and cannot be accepted as a new AP. The basic 
model will then be defined by three AP's. Go to Step 4. If the point P4 
satisfies (26) or (27), it is accepted as the new AP: P4 -t AP4 , Fig. 11. 

Xl 

Fig. 11. A basic model with four AP's. 

3. Partition of the input space into sectors. The input space inside the 
quadrangle (AP1, ... , AP4 ), Fig. 12, is partitioned into two triangular sectors 
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h and h. The partition can be made in two ways. According to Delaunay's 
net theory, the shorter diagonal is chosen. The outer space of the basic model is 
partitioned by the lines coming out of the intersection point PR of the diagonals 
and going through the outer AP's, Fig. 13. The space lying in the outer sectors 
Oi will be related to the model of the nearest neighbouring simplex. In the case 
of the basic model, the models of the sectors 0 1 and 0 2 are identical. After 
splitting the basic model into a greater number of inner sectors, the situation 
can be different. 

Fig. 12. Partition of the input space of a basic model into inner sectors Ii. 

Fig. 13. Partition of the outer space of the model into outer sectors Oi. 

4. Determining local models. From the partition of the input space, the basic 
model M 1 is determined: 

(28) 



624 A. Piegat 

The model Mn refers to the sector 11 and to adjacent outer sectors 0 3 
and 04: 

Mn = Mo3 = Mo4 (29) 

Similarly, the model MI2 refers to the sector 12 and the outer regions 0 1 
and 02: 

(30) 

Both the models have the form of the rules 

Mn(AP1,AP3,AP4,): 

IF (x2R13(d53 + dpxl)) AND (x2R14(d54 + d~4xl)) (31) 

and 

MI2(AP2, AP3, AP4,): 

IF (x2R23(d63 + di3xl)) AND (x2R24(d64 + di4xl)) (32) 

which define surfaces over each simplex of the input space. Here Rii stands 
for the relation ~ or ::; determined for the points Pm ( x1 , x 2 ) lying inside the 
simplex. Particular component premises of the type (x2Rii(d~ +d~ixl)) mean 
the right or left sides of the lines going through APi and APj. The direction 
of the relations (~, ::;) can be found by inserting the coordinates of the third 
simplex corner APk in the input space xl X x2 into 

dij dij 
X2 = 0 + l X1 (33) 

which represents the line going through the points APi and APi. The coef­
ficients D~jk, D~jk, n;ik in the rules' conclusions (31), (32) are the coefficients 
of the plane equation going through the points APi, A.Pi, APk in the space 
x1 x x2 x Y. 

5. Accuracy testing of the global model. For each input measurement vector 
WJ = [x1j, x2j], j = 1, ... , m, a model output y*(x1j, x2j) is calculated on the 
basis of only one local model (the input vector can be situated on the border of 
two simplexes) corresponding to the input-space simplex in which lies the vector 
W i. Then the model error Ej of the output y* is determined according to 

(34) 
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where y is the measured system output. The absolute value of the mean error 
IEimean for all the model outputs yj is calculated from 

1 m 

IEimean =- L IEjl 
m J=l 

(35) 

If the mean model error is sufficiently small, i.e. 

IEimean .:S; IEiad (36) 

where IEiad denotes an admissible model error, then the modelling is finished. 
Otherwise, go to Steps 6 or 7. 

6. Delinearization of simplexes with insufficient modelling accuracy. The 
delinearization is carried out according to instructions given in Section 3. It can 
be accomplished after any modelling cycle. The decision belongs to us. Go to 
Step 5. 

7. Determining new AP's. A measurement point Pp(XIp, X2p, Yp) should be 
found for which the model output error Ep is the greatest and positive one, 
and a point Pn(XIn, X2n, Yn) for which the error is the smallest and negative 
one, i.e. 

and 

En(XIn 1 X2n 1 Yn) =minEj(XIj 1 X2j 1 Yj), En< 0, j = 1, ... ,m (38) 

The points Pp and Pn become new AP's (Pp --+ APp, Pn --+ APn) and we 
have to change the corresponding local models. If a few points have the same 
maximal (minimal) error value, then only one of them is chosen as an AP. Go 
to Step 8. 

8. Decomposition of local models with new AP's. If the new AP belongs to 
an inner simplex, then it should be decomposed into three smaller simplexes as 
shown in Fig. 14. 

The previous local model Mi, where i is the number of the local model, is 
decomposed into three new models M(i): 

Mi(APi, APJ, APk)M(i)--+ (APi, APJ, APp) + M(i+I)(APi, APp, APk) 

+ M(i+2)(AP1,APk,APp) (39) 

The new local models can be constructed as described in Step 4. If a new AP 
lies in the outer sector Or, a new simplex is constructed on the basis of the new 
AP and two outer neighbouring AP's, Fig. 15. 

A new local model for the new simplex (AP2, AP3 , APp) is constructed according 
to Step 4. Go to Step 5. 
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Fig. 14. Decomposition of an inner simplex of the input space after introducing 
a new AP (APp)· 

Fig. 15. Creating a new outer simplex. 

5. Experiment 

In the first experiment, the modelling with attachment points without delinearizing 
SDL-functions will be shown. In the second experiment, the SDL function will be 
applied for the accuracy improvement of the model without increasing the number of 
rules. The measurement information about the modelled system is given in the form 
of the measurement vectors in Tab. 1. 

Table 2 shows the modelling, successively determined AP's and a full AP set in 
each modeling cycle. As Tab. 2 and Fig. 16 show, increasing the number of AP's 
results in an increased model accuracy. 

In the case of a practical application, we can choose a model which assures 
the required accuracy for a possibly small number of AP's. The basic model with 
four AP's and the error IEimean = 0.184 is shown in Fig. 17. The global model in this 
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Table 1. Input/output measurements of the modelled MISO-system. 

Pi pl p2 p3 p4 Ps p6 p7 Ps 

X1 0 0.2 0.4 0.6 0 0.2 0.4 0.6 

X2 0 0 0 0 0.2 0.2 0.2 0.2 

y 0 0.499 0.873 0.998 0.499 0.998 1.372 1.496 

pi Pg plO Pn p12 p13 p14 p15 p16 p17 

Xl 0 0.2 0.4 0.6 0 0.2 0.4 0.577 0.6 

X2 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.577 0.6 

y 0.873 1.372 0.873 1.876 0.998 1.496 1.876 2 1.955 

modelling cycle consists of two local models, M1 = Mn + M12, with rules 

Mn(AP1,AP2,AP3): 

IF (x1 ~ 0) AND (x1 ~ x2) AND (x2 ~ 0.6) THEN (y = 1.662x1 + 1.662x2) (40) 

and 

M12(AP1,AP2,AP4): 

IF (x1 ~ 0.6) AND (x1 ~ x2) AND (x1 ~ 0) THEN (y = 1.662x1 + 1.662x2 ) (41) 

IEimeon 
0.2 

0.18 
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0.14 
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~ 
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\ 
\ 
~ r--r-

0 2 4 6 8 10 12 14 16 18 
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Fig. 16. Model accuracy versus the number of attachment points. 
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Table 2. Modelling cycles of the MISO-system (2 inputs) with the AP-method and without SDL-functions. 

AP's I I I I 
in the I x 2 

1.. l I l I I I I I I I I I I I 
model 

AP1·· U-i..· -+-~+;~s~--niru:6-7TD.~ 

APr- ~--::....:·-t----t-=-:-~ 
-AP1o 

AP1·· 
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Fig. 17. Surface of the basic model with four AP's, IEimean = 0.184. 

Figure 18 shows the model surface with eight AP's achieved in the third cycle of 
modelling, with IEimean = 0.096. This model consists of ten simplexes and ten rules 
of the type ( 40). In Fig. 19, the model surface achieved in the last modelling step, 
with seventeen AP's and twenty simplexes (rules), is shown. In this case, we have 
IEimean = 0. 

Fig. 18. Model surface for eight AP's, IEimean = 0.096. 

To increase the modelling accuracy, we can additionally apply SDL-functions 
after any modelling cycle with the AP-method. Figure 20 shows the input-space 
partition for which the mean absolute error is equal to 0.076. 

After delinearization of the functions f for the same input-space partition as in 
Fig. 20, the zero value of the mean error is achieved. The resulting simplex non-linear 
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0.2 y 
-0.5 

Fig. 19. Model surface with 20 simplexes (rules), IEimean = 0. 

(SNL) functions including SDL-ones are given by 

/1 : y = 0.623 + 2.495 X1 + 0.625 X2 

/2 : y = 0.626 + 2.49 X1 + 0.62 X2 

j3 : y = 0.8945 + 1.1475 X1 + 0.62 X2 + 8.417 d26 d69 

f4: y = 0.789 + 0.9717(xl + x2) 

+2.269 X 103d26d25d56 - 2.5506 X 106(d26 d25 d56)2 

f5 : y = 0.8945 + 0.62 x1 + 1.1475 x2 + 8.417 d25 d5s 

f6 : y = 2.495 X1 + 2.1825 X2 + 3.4955 d16 d6,10 

f7: y = 2.2867(xl + x2) + 73.727 d15 d16 d56 

f8 : y = 2.2825 X1 + 2.495 X2 + 3.4955 d15 d57 

/9 : y = 0.623 + 0.625 X1 + 2.495 X2 

/10 : y = 0.623 + 0.62 X1 + 2.49 X2 

where particular SOL-functions are given by 

d15 = I ( -0.5xl + x2) /1.25°·51 

d16 = I (2xl - x2) /5°·51 

d36 = d56 = d46 = I (x1 + x2 - 0.6) /2°·51 

d26 = I(0.5xl-x2 +0.3)/1.25°·51 

d5s = lx2 - 0.21 

d57 = lx1 - 0.41 

d69 = lx1 - 0.21 

d6,10 = lx2 - 0.41 

(42) 

(43) 
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Fig. 20. Partition of the input space into simplexes, IEimean = 0.076. 

It should be noticed that the model with ten rules including conclusions ( 42) 
has the same accuracy as the model with linear conclusions and twenty rules. The 
surfaces of both the models are shown in Fig. 21. 

Fig. 21. Comparison of the simplex model with SDL-functions (a) and with linear 
functions in the rules conclusions (b), IEimean = 0. 
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6. Conclusions 

Rectangular partitions of the input space result in models with large numbers of rules. 
A manner to decrease the number of rules is partition of the space into nonregular 
simplexes with linear functions defining the model surface, which is a method applied 
in Delaunay's nets. Further decreasing the number of rules and simplexes is possible 
with SDL-functions described in the paper. Their advantageous influence is confirmed 
by experiments. 
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