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GENERATING A SELF-ORGANIZING FUZZY 
CONTROLLER FROM HUMAN SKILL PERFORMANCE 

FOR MULTIVARIABLE SYSTEMS 

ANNA LEKOVA*, D. BOYADJIEV* 

The paper presents a learning concept for creating of a self-organizing fuzzy 

controller for multivariable systems by explicit use of human skill performance 

during the control of a complex technological process. When such processes 

cannot be entirely controlled automatically, a natural way to achieve fl.exi ble 

and adaptive control is a combination of human resources and information tech­

nologies. The main idea is the decomposition of a multivariable control system 

into several subsystems with two inputs and multiple outputs. The number of 

sub-systems corresponds to the number of all orthogonal projections of an N­

dimensional input vector in the two-dimensional plane. Thus the method for 

generating fuzzy if-then rules from numerical data in the two-dimensional plane 

which is already available, can be used. Fuzzy rules with variable fuzzy regions 

are generated automatically. An aggregation operator for calculating the con­

nectivity degree of membership functions which connects the whole set of the 

generated fuzzy rules in all decomposed subsystems is found. 

1. Introduction 

A fuzzy controller which is able to develop and improve fuzzy rules and its structure 
automatically as a result of monitoring the performance of the process so as to obtain 
a prespecified quality, is called a self-organizing fuzzy controller (SOC) (Shihuang, 
1988). There are complex control systems in which a human controller is an essen­
tial part of control because the processes are so complicated that no mathematical 
models exist for them. Yet skilled human operators can control such systems quite 
successfully without having in mind any quantitative models. Several approaches 
have recently been proposed for automatically generating fuzzy if-then rules from 
numerical data (Takagi and Sugeno, 1985; Wang and Mendel, 1992). Self-learning 
methods have also been proposed for the evaluation of membership functions of fuzzy 
sets (Chaudhuri and Majumder, 1982; Lekova and Boyadjiev, 1996). Genetic algo­
rithms (Ishibuchi et al., 1995) have been employed for selecting fuzzy if-then rules 
in classification tasks. Unfortunately, most of the solutions can be implemented only 
for single-input-single-output (SISO) control systems. It is known that real control 
systems are multidimensional and the analysis and design procedures for such systems 
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are very difficult. The process of generating fuzzy rules for multivariable systems has 
not been cleared yet. Usually such rules are obtained from human experts but knowl­
edge acquisition is problem-dependent and in general this linguistic information is not 
sufficient. A survey of multivariable structures for fuzzy control systems is made in 
(Gupta et al., 1986). The decisions are based on the decomposition of control rules 
through the intersection coefficients or the decomposition of a multivariable fuzzy 
system into a set of one-dimensional systems by multivariable fuzzy equations. 

While various methods have been proposed for generating fuzzy rules with con­
stant fuzzy regions, only a few approaches (Abe and Lan, 1995a; 1995b; Mikhailov 
et al., 1996) have dealt with variable fuzzy regions. The fuzzy rules are composed 
recursively from activation hyperboxes (A be and Lan, 1995b) which describe the in­
put regions corresponding to given output intervals and inhibition hyperboxes where 
there is an overlapping of input regions for several output intervals. The overlapping 
among the output intervals is recursively resolved by defining additional activation 
and inhibition hyperboxes, until non-overlapped input regions are obtained. It is not 
necessary to preliminary divide the input range and to assign membership functions 
to each input variable. When there is no overlapping among the activation hyper­
boxes at a given level of resolution, the recursive process could not be resolved and 
a new method (Mikhailov et al., 1996) for extraction of fuzzy rules from the set of 
input-output data has been proposed. There are no inhibition boxes, so the rules 
are simpler without the OR operator, which additionally simplifies the fuzzification 
procedure and allows a very fast reasoning. 

The paper presents a learning concept for creating a self-organizing fuzzy con­
troller for multi variable systems by explicit use of the human skill performance during 
the control of a complex technological process. The main idea is the decomposition 
of a multivariable control system into several two-inputs-multiple-output (TIMO) 
subsystems. The number of TIMO sub-systems corresponds to the number of all or­
thogonal projections of an N -dimensional input vector in the two-dimensional plane. 
Thus the method for generating fuzzy if-then rules from numerical data in the two­
dimensional plane which is already available, can be used (Mikhailov et al., 1996). 
It deals with fuzzy rules with variable fuzzy regions. Only the range of the out­
put variables is divided into intervals and thus the input data corresponding to each 
output interval are grouped into appropriate areas. The fuzzy rules are composed 
recursively from activation hyperboxes (Mikhailov et al., 1996) which describe the 
input regions corresponding to given output intervals. An aggregation operator for 
calculating the connectivity degree of membership functions for an input vector to all 
given output intervals is found. It connects the whole set of the fuzzy rules generated 
in all decomposed subsystems. 

2. Extraction of Fuzzy Rules from Numerical Data in a 'I\vo­
Dimensional System 

Let us consider a control system with two inputs and one output. It could be de­
composed into a TIMO subsystem. The universe of discourse of Y is divided into n 
output intervals Yi, i = 1, 2, ... , n. By considering the set of all input vectors x E Xi 
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which produce an output in the i-th output interval Yi, i = 1, 2, ... , n, starting from 
the value (0, 0) of the input space and moving from the left to the right and from the 
bottom to the top, the activation rectangle with the maximum point concentration is 
produced in the first step, which contains only the input data from Xi. This rectangle 
is denoted by Ai (1), where the values of its minimum and maximum border points 
are Vik (1) and Vik (1), respectively. Activation rectangles with smaller areas exist in 
the unclassified input space B(1) =X- A(1) and, in the same way, new rectangles 
are formed in the second step, and so on. Since the activation rectangle Ai (l) does 
not overlap any other rectangle Aj (l), j f:. i, j = 1, 2, ... , n, fuzzy rules Ri (l) from 
the l-th step and for the i-th output interval are generated forming the fuzzy rule 
base 

IF x is in Ai (l) THEN y is in Yi 

where 

(1) 

The coressponding geometrical representation in the two-dimensional plane is 
shown in Fig. 1(a), where the SOC is fully trained, i.e. the human skills are involved 
entirely. The control actions are Y1, Y2, Y3 and Y 4. Each input variable has 
different influence on the control actions and this fact is expressed by the priority 
vector DJ = (0.2 0.1). The deviated variables in positive direction (t) are more 
important than those in negative one (..j,.). For this reason the activation rectangles 
in Fig. 1(b) are extended and translated in a certain direction when compared with 
those in Fig. 1(a). The surfaces which denote the control actions in a geometrical rep­
resentation and correspond to the negative deviations or to smaller priorities, occupy 
a narrower space. The sensitivity parameter 'Y defines the slope of the trapezoid or 
the triangle membership function shape and could be different on the two axes in all 
the two-dimensional planes. These parameters describe the generalization region of 
the corresponding fuzzy rule and the overlapping of the fuzzy regions. 

The learning concept aims at obtaining the geometrical representation shown in 
Fig. 1(b), which is unknown at the beginning, i.e. the human skills are not involved 
entirely. The design of the SOC allows us to improve iteratively the system as a 
modification based upon the results of the training approach. The geometrical rep­
resentation for the available rules after the initial training is shown in Fig. 1(c). The 
method for extraction of fuzzy rules from numerical data of two dimensional systems 
is proposed in detail in (Mikhailov et al., 1996). 

3. Extraction of Fuzzy Rules from Numerical Data in a Multi­
dimensional System 

Let us suppose that a set of input-output data pairs 
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Fig. 1. Separation of the input space: a fully trained SOC (a), a fully trained 
sac with priorities (b), and an initially trained soc (c). 

is given where x{, ... , xfn are the components of the m-dimensional input vector x 
and Yi, i = 1, ... , n are the outputs. When m > 4, even if the output is single, it 
is difficult to create an m-dimensional fuzzy map. Similarly, the method presented 
in Section 2 could not be applied by analogy because of the difficult geometric rep­
resentation in the m-dimensional space. For this reason, the MIMO control system 
is decomposed into several subsystems with two inputs and multiple outputs whose 
number Nprj(k) corresponds to all the orthogonal projections in the two-dimensional 
plane: 

1 
Nprj(k) = 2k(k- 1), k = 1, ... , m (2) 

When the input Xk is inside the rectangle Ai(l)p, the degree of the membership of 
Xk for the rule Ri(l)p, denoted by mA,(l)p(xk), is always equal to 1 and decreases 
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when Xk moves away from the rectangle. This means that the membership function 
mA

1
(z)p(xk) could be trapezoidal, as shown in Fig. 1(a) The membership functions in 

all the orthogonal projections for each output interval could be generated as 

mA1(z)p(xk) = [z- max (o,min (1,,(vikp(l)- xk)) )] 

x [z-max(O,min(1,,(xk-Xikp(l))))], 

k = 1, ... , m, p = 1, ... , N pr j ( k), l = 1, 2, . . . ( 3) 

For separated points (vikp(l) = Xk = Vikp(1)) or rectangles with zero height or length, 
the above membership function is triangular. 

The degree of the membership for a given input vector x is 1 when its two com­
ponents are inside the rectangle or on its border. Hence the degree of the membership 
function of the fuzzy rule for x has to be calculated as the minimum of the values for 
all the membership functions in all the orthogonal projections for all the i-th output 
intervals: 

dR1(l)p(x) = min (mA1(l)p(xk)), p = 1, ... ,Nprj(k), k = 1, ... ,m (4) 

Thus the degree of the membership of x in the i-th output interval for the whole set 
of the generated fuzzy rules, giving an output in Yi is as follows: 

dip(x) = max (dR1(l)p(x), p = 1, ... , Nprj(k), k = 1, ... , m (5) 

The connectivity degree of the membership of x to the i-th output interval for 
the whole set of generated fuzzy rules in all the orthogonal projections, i.e. cdi(x), 
has to be found. N factors participate here which correspond to the degrees of the 
membership of x to the i-th output interval for the whole set of the generated fuzzy 
rules, see eqn. (5). All the variables have to be in certain intervals, which allows using 
the records of human-operator control actions: 

cdi(x) = aggr_oprt(dip(x)), p= 1, ... ,Nprj(k), k = 1, ... ,m (6) 

The aggregation operator aggr _ oprt to handle this calculation from its own solutions 
in all TIMO subsystems could be: min, max, an average value, an algebraic product or 
a new one. The crisp value of the output variable for a given input vector x is obtained 
by defuzzification with the maximum type for a discrete system and defuzzification 
with bell-shaped membership functions or the centre of gravity for a continuous system 
(Mikhailov et al., 1996). 

4. Illustrative Example 

To illustrate the procedure of fuzzy rule extraction, the synthesis of an SOC for con­
trol of a chemical technological process is considered (Boyadjiev et al., 1995). The 
process is simulated in different conditions: first-with four inputs and one output, 
and second-with nine inputs and one output. In general, the Human Operator has 
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the information that the control actions must reduce the deviations of the controlled 
variable from their normal values. The control action is a piece of imprecise knowl­
edge, e.g. "If the temperature is high or medium_ high deviated you might regulate a 
little", where "high or ... " is fuzzy, rather than precise, not clear cut and, which is 
more important, context-dependent. A self-organizing system has to scan the process 
variables and the Human Operator's control actions in appropriate form. The values 
are transformed in compressed form and the system must be trained to accomplish 
at least a part of the operator's skilled performance. This process must be repeated 
to iteratively improve the system. 

Let us consider a multivariable control system with four inputs and one output 
(m = 4 and n = 1). The output is divided into eight output intervals: Y1 = 1 .,!., 
Y2 = 1 t, ... , Y7 = 4 ,t.., Y8 = 4 t. The input space could be decomposed into 
six TIMO subsystems, see eqn. (2), and the geometrical representations in all the 
orthogonal projections are shown in Fig. 2. There are hyperboxes, lines and points 
for eight output intervals in each two-dimensional plane. For graphical simplification, 
geometrical representations for four output intervals are shown: Y1 = 1 ,t.., Y2 = 1 t, 
Y5 = 3.,!. and Y6 = 3 t. The priorities are as follows: 

1. a more deviated variable has a maximum priority; 

2. the deviated variables in a positive direction are more important than those in a 
negative one; 

3. the third variable has a higher priority than the first, second and fourth ones. 

Hence the priority vector DJ is (0.3, 0.2, 0.4, 0.1). 

Let us suppose that an SOC is not fully trained and take the following test state 
in the normalized form T = (0.95, 0.75, 0.25, 0.5). After the deffuzification a right 
control action could be found. 

The membership functions (3) are formed for all the rules. For the first activation 
rectangle (the first step) in Fig. 2(a) the membership functions are as follows: 

mAI(I)I (xl) = { ~- max (0, min (1, -y(0.7- xJ))) 
1- max (0, min (1, r(xi - 0.9))) 

mAI(I)I (x2) = { ~- max (0, min (1, -y(0.3- x2))) 
1- max (o, min (1, r(x2 - 0.65))) 

for 0.7:::; XI :::; 0.9 

for XI :::; 0.7 

for XI ~ 0.9 

for 0.3 :::; x2 :::; 0.65 

for x2 :::; 0.3 

for x2 ~ 0.65 
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From ( 4) the degrees of the membership of the fuzzy rules for test points in all the 
orthogonal projections could be obtained: 

• from the first orthogonal projection (Fig. 2(a)) 

dRl(l}l (0.95, 0. 75) = min(0.95, 0.85) = 0.85 

dR1(2)1 (0.95, 0.75) = min(0.8, 1.0) = 0.8 

dR1(3)1 (0.95, 0.75) = min(0.8, 0.25) = 0.25 

dR1(4)1 (0.95, 0.75) = min(0.95, 0.9) = 0.9 

dR1(5)1 (0.95, 0. 75) = min(l.O, 0.3) = 0.3 

dR1(6)1 (0.95, 0. 75) = min(0.9, 0.9) = 0.9 

dR2(1)1 (0.95, 0. 75) = min(0.35, 0. 75) = 0.35 

dR2(2)1 (0.95, 0. 75) = min(0.05, 1.0) = 0.05 

dR2(3)1 (0.95, 0.75) = min(0.15, 0.95) = 0.15 

dR2(4)1 (0.95, 0.75) = min(0.15, 0.15) = 0.15 

dR2(5)1 (0.95, 0. 75) = min(0.45, 0.6) = 0.45 

dR3(1)1 (0.95, 0. 75) = min(0.8, 1.0) = 0.8 

dR3(2)1 (0.95, 0.75) = min(O.O, 0.25) = 0.25 

dR3(3)1 (0.95, 0.75) = min(0.1, 0.3) = 0.1 

dR3(4)1 (0.95, 0.75) = min(0.7, 0.3) = 0.3 

dR4(1)1 (0.95, 0. 75) = min(0.85, 0.85) = 0.85 

dR4(2)1 (0.95, 0.75) = min(0.6, 0.95) = 0.6 

• from the second orthogonal projection (Fig. 2(b)) 

dR1(1)2 (0.95, 0.25) = min(l.O, 0.95) = 0.95, 

dR1(2)2 (0.95, 0.25) = min(0.3, 0.9) = 0,3, 

dR1(3)2(0.95, 0.25) = min(l.O, 0.5) = 0.5, 

dR1(4)2 (0.95, 0.25) = min(0.9, 0.6) = 0.6, 

Using eqn. (5), we have 

du = max(0.85, 0.8, 0.25, 0.9, 0.3, 0.9) = 0.9, d51 = max(0.8, 0.0, 0.1, 0.3) = 0.8 

d21 = max(0.35, 0.05, 0.15, 0.15, 0.45) = 0.45, d61 = max(0.85, 0.6) = 0.85 
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dl2 = 0.95, dl3 = 1.0, d14 = 0.95, d1s = 1.0, dl6 = 1.0 

d22 = 0.45, d23 = 0.75, d24 = 0.4, d25 = 1.0, d26 = 1.0 

ds2 = 0.65, ds3 = 0.6, d44 = 0.8, dss = 1.0, ds6 = 0.6 

d62 = 0.85, d63 = 0.95, d64 = 0.85, d65 = 0.9, d66 = 1.0 

Compared to crisp logic implication operations, a number of fuzzy operation 
methods such a t-norm and s-norm have been introduced. Even under the same 
conditions (rules, etc.), when the operation method is changed, the inference result will 
be somewhat different. In other words, it is necessary to support as many operation 
methods as possible, even to evaluate which fuzzy operation method is best suited to 
the target system. Consequently, in this system it has been made possible to choose 
between two representative operation methods with two aggregation operators: the 
average value and the algebraic product. 

By using eqn. (6) and an aggregation operator (the algebraic product), we ob­
tained that the degrees of the membership of x to the Y1 = 1 .!-, Y2 = 1 t, Y5 = 3-!­
and Y6 = 3 t output intervals from the whole set of the generated fuzzy rules are as 
follows: 

cd1 (0.95, 0.75, 0.25, 0.5) = 0.9 * 0.95 * 1.0 * 0.95 * 1.0 * 1.0 = 0.81 

cd2 (0.95, 0. 75, 0.25, 0.5) = 0.45 * 0.45 * 0. 75 * 0.4 * 1.0 * 1.0 = 0.06 

cd5 (0.95, 0.75, 0.25, 0.5) = 0.8 * 0.65 * 0.6 * 0.8 *1.0 * 0.6 = 0.15 

cd6 (0.95, 0.75, 0.25, 0.5) = 0.85 * 0.85 * 0.95 * 0.85 * 0.9 * 1.0 = 0.53 

As can be seen, after the maximum-type deffuzification, the test state is classified 
into the first control interval. The second alternative is Y6. If the Human Mental 
Model for the control actions were used, the same result could be obtained: x1 is the 
maximum deviated variable in a positive direction. 

5. Implementations and Results 

The control problem for a chemical technological process is described with nine inputs 
and one output divided into eighteen output intervals (the control actions): Y1 = 1 -!-, 
Y2 = 1 t, Y3 = 2 -!-, Y 4 = 2 t, Y5 = 3 -!-, Y6 = 3 t, ... , Y17 = 9 -!-, Y18 = 9 t. 
For the present technological process DJ is (0.5, 0.4, 0.9, 0.3, 0.6, 0.2, 0.7, 0.1, 0.8). 
The design of an SOC allows us to iteratively improve the system as a modification 
based upon the human skills involved after each control action. The test patterns are 
randomly chosen numbers in the interval ( -1 7 + 1), which corresponds to control 
actions which deviate the controlled variable from its normal values. According to 
1000 test patterns in the present example, the SOC is approximately fully trained 
and makes a good generalization, despite the fact that a geometrical representation 
for a fully trained system is not yet achieved. 
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Simulation results obtained for two kinds of aggregation operators are summa­
rized in Tables 1 and 2 and are shown in Figs. 3. and 4. The learning abilities of 
the SOC are tested in the following way: the system learns each 100 training pat­
terns and after that it is tested by means of 100 unknown patterns. The number of 
classified states (the classification ability) and the best distance between the connec­
tivity degrees of the membership of x to the i-th output interval are explored. The 
first, second and third alternative control actions are proposed. Taking into account 
the results obtained using the different aggregation operators, we conclude that the 
most appropriate one is the algebraic product. The corresponding results for cdi(x) 
are given in Table 3. For the aggregation operator (the average value), all the val­
ues are in the range (0.7-;- 0.95) and after the sixth trial they fall into the interval 
(0.960-;- 0.996). All the three alternatives have virtually equal values for cdi(x). 

Table 1. The classification ability of the 
SOC under consideration for the 
aggregation operator being the 
average value. 

% First Second Third 
Test pred. pred. pred. 

1 21 32 47 

2 30 55 67 

3 40 65 76 

4 51 69 82 

5 51 72 84 

6 65 79 90 

7 69 84 94 

8 71 87 95 

9 74 90 95 

10 80 88 94 

Table 2. The classification ability of the 
SOC under consideration for the 
aggregation operator being the 
algebraic product. 

% First Second Third 
Test pred. pred. pred. 

1 20 30 48 
2 34 56 69 

3 40 64 76 

4 50 69 82 

5 55 72 83 

6 65 79 90 

7 69 84 94 

8 71 88 95 

9 75 89 94 

10 78 88 94 

A comparison of these results with similar ones from a self-organizing neural­
network system is also drawn. The classification ability after each series of lOO pat­
terns is calculated. These computer simulations show that a good generalization is 
obtained after 1000 test patterns and both the methods have a high classification 
ability. Further, the quality of the test patterns produces a significant effect on the 
classification ability. Because of the transparent nature of the fuzzy system, the 
method described in the present work allows us to accelerate the learning process. 
The results for cdi(x) obtained in each test make it possible to analyse to what 
extent the SOC is trained and, in this way, to plan the training. If they are in the 
interval (0. 7-;- 0.95), the learning process can be stopped. From Table 3 it can be seen 
that even if the interval is (0.4-;- 0.6), the generalization is good. This is obtained in 
the fourth test trial. 
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Aggregation Operator - Average V aloes 
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Fig. 3. Graphical representation of Table 1. 

Aggregation Operator - Algabraic Product 

% 1~!1 
0 1 2 3 4 5 6 7 8 9 10 

Test trials 

Fig. 4. Graphical representation of Table 2. 

6. Conclusions 

The paper presents a learning concept to create a self-organizing fuzzy controller 
by an explicit use of the human skill performance during the control of a complex 
technological process. The concept allows earlier and permanent model testing as the 
learned samples are changing in the process of control. The method could be applied 
for generation of fuzzy rules in a multivariable system where the human assessment 
and uncertainty of the control for a technological process are highly complicated and 
difficult to express. The SOC permits the analysis of the convergence of the learning 
process through the connectivity degree of the membership of x to the i-th output 
interval for the whole set of the generated fuzzy rules. Thus the training could be 
planned and the learning process could be accelerated because of the transparent 
nature of the fuzzy system. 
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Table 3. The range for the connectivity degree of the membership of x 
to the i-th output interval, cdi(x). 

Trials m in max Main 
value value interval 

1 prd1 0.00 0.415 
prd2 0.00 0.103 0.050-0.220 
prd3 0.00 0.058 

2 0.004 0.864 
0.004 0.220 0.200-0.400 
0.002 0.130 

3 0.006 0.864 
0.046 0.294 0.300-0.550 
0.003 0.150 

4 0.009 0.864 
0.006 0.511 0.390-0.600 
0.014 0.280 

5 0.038 0.864 
0.011 0.550 0.410-0.615 
0.127 0.324 

6 0.058 0.864 
0.035 0.550 0.500-0.650 
0.015 0.280 

7 0.024 0.920 
0.035 0.522 0.550-0.690 
0.035 0.427 

8 0.061 0.920 
0.185 0.530 0.550-0.700 
0.052 0.397 

9 0.061 0.920 
0.185 0.523 0.600-0.750 
0.060 0.530 

10 0.071 0.920 
0.082 0.566 0.600-0.850 
0.287 0.513 
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