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SEARCHING FOR OPTIMAL EXPERIMENTAL 
DESIGNS USING SPACE-FILLING CURVES 

EwA SKUBALSKA-RAFAJLOWICZ*, EWARYST RAFAJLOWICZ* 

A new approach to the standard problem of searching for optimal experimen­
tal designs is considered. It consists in replacing a multidimensional search for 
global maxima by a one-dimensional global search. The points found in this way 
are then transformed to the multivariate design domain by using a space-filling 
curve. It is shown that this approach leads to the optimal design, provided that 
the one-dimensional global search is reliable. An additional advantage of the 
proposed approach is the possibility of visualization of the model variance sur­
face. The results are presented for the D-optimality criterion, but their extension 
to other criteria is not difficult. 

1. Introduction 

Since the early 1970's the algorithms of Wynn and Fedorov (Fedorov, 1972; Wynn, 
1970) and their modifications have been the main tools in searching for optimal ex­
perimental designs for estimating regression functions. The most difficult and time­
consuming step of these algorithms is to find a point to be entered into a present 
design. The difficulty is that the point to be entered should be a global maximum of 
the prediction variance surface corresponding to the present design. In the implemen­
tations used so far, this difficulty has been circumvented by reducing the set of can­
didate points from a subset of the Euclidean space to a finite set of candidate points, 
usually forming a grid covering the design domain. Efficient second-order algorithms 
have been recently proposed by Gafike and Heiligers (1995). In their algorithms it is 
possible not to address a global search directly by using a priori information on the 
optimal design support points. We refer the reader to this paper also for a detailed 
survey of other design searching algorithms. 

An alternative to the brute grid-search way of finding candidates to be entered 
is given in (Rafajlowicz, 1998), where a selective random search is proposed. Here, 
we consider a potentially more accurate approach which is based on searching for 
candidate points in the unit interval and then transforming them to a multidimen­
sional design domain by using a space-filling transformation, such as the Peano or 
Hilbert curve (see (Hilbert, 1891; Milne, 1980; Sagan, 1994) for basic properties of 
space-filling curves) . 

The reminder of the paper is organized as follows. After stating the problem, in 
the next section we formulate a theoretical basis for the proposed algorithm which 
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is then described. Finally, we discuss some implementation aspects and preliminary 
results of numerical experiments with the algorithm. 

2. Problem Statement 

Let EY(x) = aT v(x) be a regression function spanned by a given column vector 
v(x) E JRr of functions which are linearly independent in a given domain X c lR8

• 

Here a E JRr denotes the column vector of unknown constant parameters which are 
estimated by the least-squares method from observations of Y(xi), i = 1, 2, ... , n. 
We assume that cov (Y(xi), Y(xj)) = 0 for i f. j and var (Y(x)) = a2 = const < 
oo. As regards the domain of the experiment X and v(x), we adopt the standard 
assumptions (Fedorov, 1972; Pazman, 1986). Namely, X is assumed to be closed and 
bounded, while the components of v : X --+ JRr are continuous functions in X. 

We treat the design of experiments as discrete probability measures on X, i.e. 
~ is a design of experiment, if it is of the form: 

(1) 

where Xi E X, Pi 2:: 0, i = 1, 2, ... , m and I::,1 Pi = 1. We refer the reader 
to (Atkinson and Donev, 1992; Fedorov, 1972; Pazman, 1986) for the motivations 
and interpretation of such a design. The class of all designs (1) will be denoted by 
S(X), admitting a different number of support points Xi, i = 1, 2, ... , m in different 
designs. Referring to the above-mentioned origins, we consider the problem of finding 
aD-optimal design C, for which det M(C) = sup~EB(X) det M(0, the information 
matrix M(~) being defined as follows: 

m 

Ms(O = LPiV(xi)vT (xi) 
i=l 

where the subscript s underlines the dependence on the dimension of x. 
The Fedorov-Wynn algorithm of searching for C is based on the maximization 

of the function 

c.p(x, ~) = vT (x)M- 1 (~)v(x) (2) 

with respect to x E X, provided that for a given design ~, M ( ~) is nonsingular. If 
in the n-th iteration a design ~n is found, then c.p (x, ~n) is maximized in order to 
find a point Xn to be entered into ~n· The search for Xn is the crucial step of the 
algorithm sketched above for the following reasons: 

1. c.p (xn, ~n) is expected to be the global maximum of c.p(-, ~n) over X. 
2. c.p(·, ~n) is known to be multimodal. 

3. Maximization of c.p(-, ~n) is performed at each iteration. 

Our aim in this paper is to propose an algorithm for finding global maxima of cp(·, ~n), 
which is such that the Fedorov-Wynn algorithm retains its convergence properties. 
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2.1. Space-Filling Curves and Complete Class Theorem 

Denote by h the unit interval [0, 1] and let Is = [0, 1] x · · · x [0, 1] (s times) be the 
unit hypercube. For simplicity, we assume that the experiment domain X = Is (note 
that D-optimum designs can be transformed by one-to-one transformations to other 
domains, while retaining their optimality). 

We need a space-filling curve <I> : h ~Is which has the following properties: 

<I>1) <I> transforms h onto Is, 

<I>2) <I> is continuous. 

Let us note that the Peano-Hilbert curves possess properties <I>1 and <I>2 (see (Butz, 
1971; Milne, 1980; Sagan, 1994) and the references given therein). Also the Sierpiflski 
curve, originally constructed on the unit square (Sierpinski, 1912) and generalized by 
the first author (Skubalska-Rafajlowicz, 1994), is such that <I>1 and <I>2 hold. 

Additionally, the generalized Sierpiflski curve is closed, which may be advanta­
geous in our application. 

Let us note that <I> cannot have an inverse. The above-mentioned curves possess 
many other interesting features such as Lipschitz continuity and preservation of the 

Lebesgue measure (Milne, 1980), which are not used in this paper, but may be of 
interest in other applications. 

Consider the class of all experiment designs on h and denote it by 2(h ). Trans­
form each design 7 E S(h) by <I> as follows: convert each support point ti E h of 
7 to Xi = <I>(ti) E Is and associate with Xi the same weight Pi, as ti had in design 
7. Denote by <I>(S(h)) the class of all the designs which can be obtained in the way 
described above. Clearly, <I>('2(h)) C B(Is), but the nonexistence of the inverse of 
<I> implies that for a certain ~ E S(Is) it may have many counterparts in 3(h). We 
shall show below that <I>(B{h)) is sufficiently rich to contain at least one solution to 
the D-optimal design problem. 

Theorem 1. Let 7* E '2(h) be a D-optimal design for estimating a regression 

function aTv(<I>(t)) over h. Let ti, i = 1,2, ... ,m denote the support points of 

7*, Pi being the corresponding weights. Then the design ~* with the support points 

xi = <I>(ti) and weights Pi, i = 1, 2, ... , m is D-optimal in the class B(Is) for 

estimating aT v(x) over Is. 

Outline of the Proof. The optimality of 7* implies (by the Kiefer-Wolfowitz equiva­
lence theorem) 

supvT(<I>(t))M:L1(7*)v(<I>(t)) = r 
tEh 

(3) 

where 

m 

M1 ( 7*) = L piv ( <I>(ti) )vT ( <I>(ti)) (4) 
i=l 
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Note that by construction of e we have: M1(T*) = Ms(e). Furthermore, ti?1 and 
ci>2 imply that for any continuous function q : Is --7 1R we have suptEh q( <P ( t)) = 
supxEis q(x ). These facts and (3) imply 

sup vT(x)M-1 s(C)v(x) = r 
xEls 

which completes the proof, by invoking again the Kiefer-Wolfowitz equivalence theo-
rem (Fedorov, 1972; Pazman, 1986). • 

3. Fedorov-Wynn Algorithm in One Dimension 

The above simple theorem implies that it suffices to apply the Wynn-Fedorov algo­
rithm to aT v(ci>(t)), t Eh in order to obtain a sequence of designs which is convergent 
to a D-optimal design. 

Modified Fedorov-Wynn Algorithm 

Step 0. Select To E 3(II) such that M1 (To) is nonsingular and set k = 0 (the 
iteration counter). 

Step 1. Select (by a one-dimensional global search algorithm) a point tk E I 1, for 
which a (global) maximum in h of the function 

(5) 

is attained. 

Step 2. Update Tk according to 

(6) 

where 0 < ak < 1 is chosen as argmaxo<a<llndetM1((1-a)Tk +a6(tk)), 
6(tk) being a one-point design at tk. - -

Step 3. If 'Pk(tk)- r is less than a prescribed accuracy s > 0, then go to Step 4, 
otherwise set k := k + 1 and go to Step 1. 

Step 4. Transform the support of Tk by <I> to Is and attach the corresponding 
weights of Tk. The resulting design ~k provides an approximate solution to 
the problem and fulfils the inequality 

sup <p(x, ~k) - r < s (7) 
xEI8 

If we omit the stopping condition, then the above algorithm generates a sequence 
of designs which is convergent to a D-optimal design. This follows from the conver­
gence of the Fedorov-Wynn algorithm in one-dimensional case and from Theorem 1. 
Clearly, the crucial point of the above algorithm is to have a reliable method of 
one-dimensional global search. In our computational experiments, we have used a 
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simplified version of the global search algorithm from (Sergeyev, 1995). When imple­

menting the above algorithm, it is also necessary to have a method of calculating an 

approximation to a chosen space-filling curve (Butz, 1971; Milne, 1980). 

It seems that the most interesting question concerning the proposed algorithm 

is where the "curse of dimensionality" is hidden. Trying to give a partial answer, let 

us note that known space-filling curves <P are Holder-continuous with exponent 1/ s. 

Thus, if the components of v(x) are Holder continuous with exponent 0 < J-L ~ 1, 

say, then v(<P(t)) and 'Pk(t) are Holder continuous with exponent J-L/s which is not 

larger than 1/ s if v(x) is differentiable. In other words, a smooth global optimization 

problem over Is is replaced by a one-dimensional problem with a highly irregular goal 

function. The gain, however, is in a possibility of visual verification whether a vicinity 

of a global maximum is found. The above considerations are illustrated in the next 

section. 

4. Computer Experiments 

Four examples from a series of experiments of the algorithm performance are reported 

here. We choose the cases in which optimum designs are well-known, in order to be 

able to evaluate the algorithm accuracy. 

Example 1. Our aim in this example is twofold. Namely, we would like to illustrate 

a fractal behaviour of the variance surfaces scanned by a space-filling curve and to 

give some indications concerning the choice of the r parameter in the algorithm of 

global optimization from (Sergeyev, 1995), which was incorporated into the algorithm 

considered here. 

Consider the quadratic regression function without interactions 

y = ao + a1x(l) + a2x(2) + a3(x(1))2 + a4(x(2)? 

and the experiment design 

{{{1., 1.}, 1/6}, {{0.' 0.}, 1/6} 
{{1., 0.}, 1/6}, {{0.' 1.}, 1/6} 

{{0.5, 0.}, 1/6}, {{1.' 0.5},1/6}} 

(8) 

which is treated as an initial design. The prediction variance corresponding to this 
design is shown in Fig. 1, as a function of x<1) and x<2) (the upper panel). The same 

function, but scanned by the Sierpinski curve is shown in the middle panels of thfs 

figure (in two different scales), while in the lower left and in the lower right panels 

-<P(<P(t), €), t E [0, 1] for the Hilbert and the Peano curves is plotted. Grey dots 

on these plots indicate points visited by the global search algorithm. A comparison 

of the last two rows of Fig. 1 indicates that scanning the same surfaces by the three 
different curves leads to quite different one-dimensional representations of the surface, 

but all of them share the same Holder exponent. 

To give some indications concerning the choice of the parameter r in the global 

search algorithm applied to find a minimum of -<P(<P(t), €), t E [0, 1] the following 
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-var 

fHtL fHtL 

0. 2 0.4 0. 6 0. 8 
0. 2 0. 4 0. 6 0. 8 

.-4. 5 

Fig. 1. Upper plot: the surface -<P(x, ~) for the design described in Example 1. Middle 
left plot: the same surface scanned by the Sierpinski curve, i.e. the plot of the func­
tion -</J(<I>(t), ~), t E [0, 1]. The middle right plot reveals the fractal nature of 
-</J(<I>(t),~). The shaded region from the left plot is enlarged on the right plot. In 
the lower left and the lower right panel the function -</J(<I>(t),~), t E [0, 1] is shown 
when <I> is the Hilbert and the Peano curve, respectively. 
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MBest 

3.5 r 

1.5 

Fig. 2. The best values found by the global search algorithm as a function of the parame­

ter r, obtained for the Hilbert (left panel) and Sierpi:riski (right panel) curve. See 
Example 1 for details. 

simulations were performed. The global search algorithm was run for each value of the 
r parameter ranging from 1.5 to 3.5 with the step size 0.5. For each run the smallest 
value found by the algorithm was stored. These values for each r are plotted in Fig. 2 
for the Hilbert (left panel) and the Sierpinski (right panel) curves. As one can notice, 
the values of r close to r = 3 assure good behaviour of the global search method. 
A similar pattern was obtained for the Peano curve. As a common value for all the 
simulations reported below r = 3 is chosen. + 

In all the examples reported below the same accuracy 10-6 was used in the 
stopping condition. The 1-D global search algorithm was stopped when the length 
of the interval between succesive arguments was less than 10-10

. In practice, also a 
space-filling curve has to be approximated. The degree of the approximations which 
were used in the examples below can be expressed in terms of the edge lengths of 
subcubes which are treated as one point on an approximate curve. In the examples 
presented below these egde lenghts were 1/212 for the Hilbert and the Sierpinski 
curve, while for the Peano curve the value 1/312 was used. 

Example 2. Consider the regression function 

y = a0 + a1x(1) + a2x(2), (x(l), x(2)) E [0, 1] x [0, 1] (9) 

It is well-known that a D-optimal experiment design is concentrated in the corners 
of [0, 1] x [0, 1] with the weights 1/4. This example turned out to be easy for the 
proposed algorithm. The optimum design was found in 2 or 3 iterations, depending 
whether the Sierpinski, Peano or Hilbert curve was used. The starting design was the 
same as in Example 1. + 
Example 3. As an example with an intermediate level of difficulty, consider the 
quadratic regression in two variables (xC1), xC2)) E [0, 1] x [0, 1]: 

y = ao + a1x(l) + a2x(2) + asx(1)x(2) + a4(x(1)) 2 + as(xC2))2 (10) 

The design search algorithm was run three times from the same starting design for the 
Peano, Hilbert and Sierpinski curves. The plots in the right column of Fig. 3 illustrate 
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the history of increasing log det M 1 ( Tk) versus iteration number k. As one can notice, 
after about 10-20 iterations the algorithm was able to find a good approximation of 
the optimal design, independently of which the space-filling curve was used. Below, 
the approximation to the optimal design, found by using the Hilbert curve, is shown 
(rounded to three decimal digits): 

{{{0., 0.}, 0.146}, 
{{0, 0.999}, 0.146}, 
{{0.5, 0.5}, 0.096}, 
{{0., 0.5}, 0.080}, 
{{0.999, 0.}, 0.146} 

{{0.999, 0.499}, 0.080} 
{{0.999, 0.999}, 0.146} 
{{0.499, 0.999}, 0.080} 
{{0.499, 0}, 0.080}} 

• 
Example 4. For x E [0, 1] x [0, 1] x [0, 1] a quadratic regression without interaction 
terms (seven unknown parameters) was considered. The example turned out to be 
relatively difficult, since the accuracy 10-6 was not attained by the design search 
algorithm after 150 iterations, independently of which the space-filling curves were 
used. After additional40 iterations, the algorithm with the Sierpinski curve found the 
following approximation to the optimum design (three decimel digits are retained): 

{{0.998, 0.053, 0.007}, 0.111}, {{0.984, 0.982, 0.595}, 0.105} 
{{0.002, 0.986, 0.053}, 0.114}, {{0.583, 0.000, 0.416}, 0.118} 
{{0.008, 0.486, 0.557}, 0.108}, {{0.500, 0.500, 0.000}, 0.115} 
{{0.065, 0.031, 0.992}, 0.112}, {{0.972, 0.446, 0.984}, 0.101} 
{{0.532, 0.998, 1. 000}' 0.111} 

We should add, however, that the algorithm was able to improve essentially the 
starting design relatively quickly, as is documented in Fig. 4. + 

Due to computer memory limitations of the brute grid-covering technique, we 
cannot give a full comparison between the new technique and the grid-covering one. 
We can, however, compare the timing of search for a new point to be entered to 
the initial design. Consider the initial design from Example 1 having the prediction 
variance function shown in Fig. 1 (see the upper plot). Using an IBM PC Pentium 
200 MHz and Mathematica 3.01, we found the maximum after 0.88 s (23 functions 
evaluations) by the new technique with the Hilbert curve. Similar timings were ob­
tained when the Peano and Sierpinski curves were used. Assuming the grid step 0.01 
with respect to each variable (10000 grid points) the timing was 6.54 sec. Analogously, 
for the regression function with three factors described in Example 4, the timing of 
the grid search was 11.25 s for the grid step 0.05 with respect to each variable (9261 
grid points). The corresponding time for the new technique was 1.21 s. One can ex­
pect that advantages of the new technique would be more visible when more factors 
enter to a regression function. 

Let us also note that the proposed technique is a general-purpose method in the 
sense that it does not use any additional a-priori information on possible positions of 
the optimal design support points. If such a-priori knowledge is available, one should 
apply more specialized algorithms such as those proposed in (Gaffke and Heiligers, 
1995). 
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Fig. 3. Left column: functions <Pk (t) obtained in Example 3 in the last iteration of the design 
search algorithm when the Peano, Hilbert and Sierpinski space-filling curves were 
used. Dots indicate the points where <Pk (t) were evaluated by the 1-D global search 
algorithm. Right column: the logarithm of the determinant of the information matrix 
versus the iteration number of the design search algorithm. The plots coorespond 
to the same curves as the plots in the left column. 
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Fig. 4. Growth of log det( M 1 ( 'Tk)) obtained in Example 4. 
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