Int. J. Appl. Math. and Comp. Sci., 2000, Vol.10, No.1, 131-145

AN APPLICATION OF GENERAL BRANCHING
PROCESSES TO A CELL CYCLE MODEL
WITH TWO UNCOUPLED SUBCYCLES

AND UNEQUAL CELL DIVISION

MARINA ALEXANDERSSON*

A cell population model is constructed and analysed in the framework of general
branching process theory. The model uses the idea that the DNA division cycle
and the cell growth cycle are loosely coupled. The cell division is assumed to
be unequal and the structure variables of the model are size and growth, where
the growth is regulated by supramitotic growth control. An explicit expression
for the stable birth type distribution is given and asymptotics, such as the a-
and fi-curve and various size distributions, are derived. We also prove that the
microheterogeneity in growth causes the mother-daughter life length correlation
to be non-negative.

Keywords: branching process, cell cycle model, unequal cell division, stable
type distribution, a-curve, 8-curve, mother-daughter correlation

1. Introduction

Mathematical modelling of cell populations is of great importance e.g. in bacterio-
logy and cell biology, since it enables us to compare theories in cell kinetics and cell
growth with real observations. Cell kinetics provide mathematicians with interesting
applications and solving the difficulties that arise stimulates not only the develop-
ment of mathematical tools, but also the search for new biological interpretations
and questions to be handed back to biologists. This may lead to new insights not
only about the cell cycle control system, but also about the treatment of cell-related
human diseases, e.g. diseases caused by too much cell division (cancer) or too little
(non-regenerative tissues).

Modern mathematical population modelling has its roots in the beginning of
the century when Sharpe and Lotka (1911) introduced the first structured model in
demography. The first deterministic models were age-structured, meaning that every
individual in the population is characterised by its age. Other structures, as we will
see later, can be size, weight, growth etc. and will be referred to as the types of the
individuals. Sharpe and Lotka conjectured the existence of a stable age distribution
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introducing a renewal equation treatment. An age distribution gives the proportions
of individuals in various age intervals at a certain time, and stable indicates that the
composition of the population has stabilised with respect to age. The importance
of the existence of such a distribution is due to the fact that no matter what the
initial age distribution is, the composition of age will tend to the stable one. In cell
populations this would mean that it is possible to generate a large population from
one single cell.

Since population dynamics originates from the study of human populations,
where the fertility is clearly age dependent, the age-structure is a natural choice.
But when considering cell populations, it seems more appropriate to take the size
(e.g. mass, volume, DNA-content etc.) of the individuals into account. One of the
most influential papers on size structured cell populations seems to be (Bell and An-
derson, 1967), which gave rise to the so-called Bell-Anderson model. One approach to
study such size structured cell populations was initiated in (Lasota and Mackey, 1984),
where mitosis was thought to depend on some substance they chose to call mitogen.
That is to say, the size structure is the mitogen level in the cells and each daughter
cell receives exactly one half of the mitogen level of the mother, and the asymptotic
distribution of mitogen was shown to be the solution to an integral equation that
under mild assumptions becomes asymptotically stable. In (Heijmans, 1984) repro-
duction occurred by fission into two unegual parts introducing a variable p which is
the ratio of the birth size of a daughter cell and the division size of the mother. We
will use the same idea for unequal cell division in this paper. In (Webb, 1987) a de-
terministic ¢ransition probability model with inheritance was constructed using both
age and size as structure variables. Transition probability models use the idea that
the cell cycle consists of a completely deterministic B-phase and an indeterminate or
stochastic A-phase. During its life length the cell is thought to progress through four,
sometimes five, different stages: G; + S + G2 + M, where S is the DNA synthesis
period, M the mitosis or cell division, and G; and G, are preparation periods or
‘gaps’. The cell cycle is sometimes expanded with a fifth stage Gy, which is a resting
period between mitosis and G1, and from which cells are recruited randomly into G;.
In the transition probability models the A-phase contains Gy, when introduced, and
the first part of G, and the B-phase consists of the remainder of Gy, S, G, and M.
The inheritance in (Webb, 1987) was introduced in the model by letting the growth
of the cell, the transition between phases and the cell division depend on the birth
size of the cell, since the birth size can be considered as an inheritance of the mother.

A more relevant reference to the present paper is the branching process ver-
sion of the Bell-Anderson model that was presented in (Taib, 1996) and also treated
in (Jagers, 1992), where the relationship between deterministic modelling and the
expected evolution of a branching process was discussed. These two main approaches,
deterministic modelling using partial differential equations and stochastic modelling
using branching processes, were compared in detail in (Arino and Kimmel, 1993) con-
sidering a size-structured cell cycle model. It turns out that without the additional
structure of cell age in the PDE approach there is no obvious counterpart in branching
processes, while introducing the age variable gives equivalence between the PDE mo-
del and a forward equation in the branching process model. This made the authors
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question the use of PDE models without the age variable, which, as we have seen,
is a rather frequent approach. On the other hand, using size as structure variable is
not completely indisputable either. Size-structured models are sometimes criticised
because they render negative mother-daughter life length correlation. Especially for
mammalian cells this correlation is observed zero or positive (cf. (Webb, 1987) and
references therein). We come back to this later.

A recent, extensive list of references, and a fine collection of articles on different
kinds of cell population models can be found in (Arino et ol., 1995).

In this paper, we use the theory of branching processes described in (Jagers and
Nerman, 1996) to model a cell population, called the Two-Subcycle cell cycle model,
based on experiments on multipotent embryonal carcinoma cells (PCC3) described
and analysed in (Sennerstam and Strémberg, 1995). As we shall see later, the theory
of general multi-type branching processes is unusually well suited for modelling and
analysing the development of cell populations. The rules of cell proliferation are
clearly individual based and branching processes are concentrated on the life career
and reproduction pattern on the individual level. With some informal law of large
numbers argument we then relate individual properties to the development on the
population level.

In the Two-Subcycle model the cell cycle consists of two simultaneously running
subcycles: the DNA division cycle (DDC) and the cell growth cycle (CGC). The cell
is thought to enter mitosis as soon as the DDC is finished, regardless of the CGC.
In the main case, which is the case treated here, the CGC extends past cell division.
The cell divides unequally and the daughter cells continue to grow to complete their
mother’s CGC before they enter their own DDC. In the Two-Subcycle model the
structure variables are, to begin with, both size and growth. Introducing the growth
as a structure variable simply means that we let the growth vary somewhat between
cells. Moreover, we assume supramitotic growth control, meaning that instead of
choosing growth rate at the beginning of the cell cycle, the decision is made at a rate
regulation point, sometimes called the restricition point, within the G,-phase, and its
influence extends past mitosis to the next decision point. We prove that in this model
we avoid the problem of a negative mother-daughter life length correlation. We study
the asymptotic composition of the model as a transition probability model, such as
the a- and B-curves and various size distributions. We give an explicit expression
of the stable birth type distribution, and we compare our model to the simulation
results in (Sennerstam and Strémberg, 1995).

2. The Biological Model

The cell line in focus in (Sennerstam and Strémberg, 1995) consists of multipotent
embryonal carcinoma cells (PCC3). The cell cycle is defined as the time period be-
tween two consecutive mitotic events (i.e. between two cell divisions) and is divided
into four phases, G3 + S+ G2 + M, where S is the period where the DNA synthesis
takes place, M is mitosis and G; and G2 are preparation periods (‘gaps’) or presyn-
thetic phases of S and M, respectively. The idea here is that the cell cycle consists of
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two mutually dissociated, simultaneously running subcycles: the DNA division cycle
(DDC) causing a doubling of the genome, and the cell growth cycle (CGC) where the
cell doubles its size.

The DDC is assumed to have a fairly constant duration and covers the S+Ga+M
phases and a pre-S phase. The pre-S phase is postulated to be a temporally constant
(cf. Sennerstam and Strémberg, 1995) late G;-period (G1pS) when a cell is committed
to enter S phase. In the simplest case the CGC spans over the same time interval
as the DDC, beginning at some cell size m,. However, this is usually not the case.
The CGC is assumed to vary considerably in growth rate, as found experimentally
(Fraser and Nurse, 1978), and the most common situation is that the cell grows rather
slowly and the CGC extends past mitosis (Sennerstam and Strémberg, 1995). The cell
divides unequally and each daughter cell continues to grow to complete its mother’s
CGC in what is called the post-M phase (G1pM). When the cell reaches the critical
size m,, whenever that may occur in that Gp-period, a ‘start’ event is triggered, and
the cell is committed to enter its own DDC and the pre-S phase begins.

In the Two-Subcycle model a microheterogeneity in growth is introduced: the
growth control is supramitotic in the sense that a newborn cell continues to grow
with the same growth rate as its mother until it reaches the critical size, where it
chooses a new growth function. Two sister cells are assumed to get similar, but
not identical, growth functions due to some inheritance from the mother. Here this
inheritance is represented by a latent growth factor handed over by the mother to the
daughters when they reach the critical size. If we assume that the individual cells
grow exponentially two sister cells choose new growth rates according to

9:'[ =gr +m,
gé :gL+7727

where g, is a latent growth factor and 1, and 7y are individual contributions to the
growth rates. This behaviour is depicted in Fig. 1.

3. General Multi-Type Branching Processes

A general branching population starts from one ancestor labelled 0. She (we use the
convention to think of individuals in a one-sex population as female) gets a number
of children which can be labelled according to the elements in N = {1,2,3,...}.
Her grandchildren are elements in N? and so forth, so that the set of all possible
individuals in the population, the Ulam-Harris space, is

I= G N™, N°={0}.

n=0

A newborn individual inherits a type from a type space (S,S), where S can be
any abstract space with a countably generated o-algebra, S. Based on its type the
individual chooses a life from the life space (,.4) where Q is the set of all possible
life careers and A the corresponding o-algebra. To do this we equip the population
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Fig. 1. The cell growth in two generations. Different patterns indicate
different growth functions. A daughter cell continues her mother’s
CGC, with the same growth as the mother, until she reaches the
critical size mo. Then she chooses a new growth function.

space (S x O, S x AT) with a set of probability kernels P(s,4), s € S, A € A,
where

@A =T[®,A4).
zel
P(s,-) is called the life law for an s-type individual, which means that the individual

chooses a life from (2, A) according to P(s, ). Now the reproduction point process
£ on S xRy is defined by

§(Ax B) =#{ie€ N:o(i) € A,7(i) € B},

where o(i) : @ = S and 7(i) : @ = Ry are measurable functions giving the type of
the i-th child and the age at childbearing number %, respectively. The development
of the population is then described in terms of the reproduction kernel

u(r, A x B) = B, [¢(A x B)]

giving the expected number of children with types in A to an r-type individual with
agein B. E, is the expectation corresponding to P(r,-).

We assume the population to be supercritical and Malthusian, meaning that
there exists a number a > 0, the Malthusian parameter, such that the kernel

fro(r, A) = / e u(r, A x dt)
0

has Perron root one and is conservative (Shurenkov, 1992). Then by an abstract
version of the Perron-Frobenius theorem (Shurenkov, 1992) there exists a o-finite
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measure m and a w-measurable function A on (S,S) such that

h(r) = /Sh(s)ﬂa(r,ds),

r(4) = /S fia(r, A)(dr).

The measure 7 and the function k& are unique up to multiplicative constants and
can be interpreted as a stable birth type distribution and the reproductive value re-.
spectively. By requiring strong or positive a-recurrence (Jagers and Nerman, 1996)
and homogeneity in the sense that inf A > 0 we can norm to

/Sh(s)w(ds) =1 and /Sw(ds) =1.

To be able to count the population with respect to various properties (e.g. being
alive, being a mother, etc.) we introduce random characteristics. These are real-
valued processes x such that x(a) is simply the score of a cell at age a and y, is
the score of the cell z. Now the branching process counted by 7 is defined to be

zt = ZXz(t - Ta),
z€l

where 7, is z’s birth time such that ¢ — 7, stands for z’s age at time ¢, and x, is
z’s contribution to the population count at the current age. This means that 2z} is
simply the sum of all scores evaluated at the individual’s actual age at time ¢. When
x(a) = 1r (a), #F is just the total number of individuals born up to time ¢, and
will be denoted y;. Under certain conditions (cf. (Jagers and Nerman, 1996) and
references therein) it holds that

: —at X1 —
Jim B = e

where Er[X]= [¢ Es[X]n(ds), %(a) = fR+ e % x(t)dt and

0<f= / te”*h(s) u(r,ds x dt) 7(dr) < oo.
SXSXR4

For a more comprehensive description of the multi-type branching process theory, see
(Jagers, 1989; Jagers and Nerman, 1996).

4. The Two-Subcycle Branching Process Model

The assumption that all cells proliferate our population is clearly supercritical. If
myg(r,t) denotes the size of a cell with initial size r, age ¢ and with exponential
growth rate g this yields

mg(r,t) = reft.
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Let A denote the life length or the cell cycle time of a cell and let its distribution be
given by the hazard rate function b(s), where s is the size of the cell. The division is
assumed to be unequal and we let § and 1 —§ denote the division fractions, where
the density function of § € (0,1) is denoted by fs(m,p), 0 < p < 1, and m is the
size at division. We assume further that f5 is unimodal and symmetric around 1/2,
Le. E[0] =1/2 and fs(m,p) = fs(m,1 - p).

We interpret

T(zz,g)—T(wl,m:/‘zg%’—)

as the time it takes for a cell to grow from size z; to size x5 with growth function
g. With exponential growth rate g we get

1 w2dy 1 Ty
T(zs, —T:z,g:—/ —~ = —Iln—.
(z2,9) — T(z1,9) ol v T m

Finally, we let
“ b(y)
Clz,g) = / L
(z.9) 0 9"’

In this setting the type of a cell would consist of both birth size and growth rate.
To avoid problems with a two-dimensional type space, we use the following trick.
We assume that the intervals of possible birth sizes and possible division sizes are
non-overlapping so that every newborn cell is smaller than the critical size m, and
then it passes m, before division. Hence we can shift the cell cycle to begin at the
critical size and to end when both daughter cells have reached m,. The life span is
now divided into two parts A = A + X where X" = T'(m,, g) — T(6 my(mo, X'), g)
(cf. Fig. 2).

.

)\I AH

Fig. 2. The life starts when the cell reaches size mo and
ends when both daughters have reached size mo.

With this shift we get a population of pseudo-cells, all with the same birth size
and also without change of growth rate during the life time. We let the growth rate
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be the type and recall that the growth rates of two sister cells are given by
91 = g +m,

gy = g+,

where g, is the latent growth factor inherited from the mother and 7; and 7, the
individual contributions. To avoid sister dependencies we let the type consist of the
own growth rate g of the cell and the contribution g, handed over to the daughters
such that g = (g,9.) is a typical element of the type space. With dg’ = dg’ x dg/,
the reproduction kernel takes the form

u(g,dg’ x dt) = 2 Eg[1(\ € dt)1(g, +n € dg")1(£ € dg},)]

= 2Eg[1()\' + T(me,g) — T(6my(mo, A'),g) € dt)1(g, +1n € dg')1(L € dg’L)]

1
= // l(u-i—T(mo,g)—T(ng(mo,u),g) € dt)fé(mg(mm“)ap)dp
R4+ 0
X b(mg (mo,u))e Jo bmalmonDdvqy £ (g — g.) f2(g,)dg' dgl,

where £ is a random variable for the latent growth factor to be handed over in the
next generation and f, and fr are the density functions of n and £, respectively.
Making a change of variable z = mg(m,,u) yields

(g, dg’ x dt)
=2 [ [ {00 - Tn,) € 0} XD em S5 5 o, prapae
my 0 ’ ’ g(il:) ’
x fn(9" = 9.)f(9;)dg dgy.
The basis of the kernel becomes

(g, dg') = / e~ u(g, dg’ x df)
Ry

2my
=2 [ [ e-oT@a-Ter)-(Cs-0tmos) 2E) ¢
mo 0

x folg' — g9.)fc(g})dg’ dg),

z,p)dpdz

Il

ila, 9) fo(g' — 92)fc(9s)dg dg),
where

2myp

1

ia,g) =2 / / e=o(T(@9)~T(p2,0) ~(O(w.0)=Clmoa) 2B o (0 vy g,
0 9(z)

mo
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Now we want to find the stable birth type distribution 7 and the eigenfunction
h of our kernel, which are given by the integral equations

hr) = /S h(s) fia(r, ds),

r(A4) = [S (g, 4) 7(dg),

subject to the conditions [gh(s)m(ds) = 1 and [g7(dg) = 1. With g = (g,9:)
as before it turns out that, asymptotlcally, g and g, are independent such that 7

becomes a product measure m = 1 X 1, over the product space (S,8) = (51 x
S, 81 X 8y). With dg’ = dg' x dg, we get

ha()ha(gs) = /S /5 h(g)ha(9))fia (g, de)
= A, 9) /S ha(g)fald' ~ g2)dg /S ha(g)) e (g))dg!
b1(dg' ) (dgl) = /S /S i, 9)Fo (' — 92)Fe(al) ¥a(dge)in (dg)dg'dg,

- / i, g) %1 (dg) / £o(g’ = 92) a(dgs)dg' fo(al)dg,
S So

which gives hi(g) = fi(a,g) and ha(g.) = 1. Thus [g fi(e,9)¥1(dg) = 1 which
yields

Y1(dg) = fr+c(g)dy,
lbz(dgL) = fr(go)dgr-

Hence 7(dg) = fy+2(9)fc(g:)dgdg, and this is used in the next section.

5. Asymptotics of the Two-Subcycle Model

In the previous section we shifted the cell cycle to begin at the critical size and
considered a population of pseudo-cells. But when calculating the asymptotics we
still want the results for the real cells, so we have to translate our model back to the
real population. To do this we construct random characteristics that count each real
cell with the desired properties. We also add the assumption here that the DDC is
mainly constant in duration such that A’ = d in Fig. 2 for some constant d > 0.

The a-curve gives the probabilities a(a) that a cell, sampled at random among
all cells born from a stabilised population, is still undivided at some age a. The



3{10 M. Alexandersson

Mg
Mo
7
Aa
Mg
| e
(
Al
} }
0 Ao T T2 t

Fig. 3. The pseudo-cell mother is the patterned part. Its life starts at time 0
and 71 and 72 are the times of birth of the two pseudo-children.

characteristic that gives score one to each real daughter born and with life length
> a at time u is

1 <u)(L(a+ XMy <7+ M) +1a+ X, <7+ %))

x(w)
=1d<u)(lle<m)+1(a< 72))
and the characteristic counting all real cells born is
X' (w) =210 < u) =21(d < u).

From Section 3 we get that asymptotically

Er[x(a)]
)= B, o ()]
where
Ey[#(a)] = e /S Eg[l(a <) +1(a < m)] n(dg)
E [ ()] = 2e74.
Since

71 = T(m,,g9) — T (max(d,1 - 8)my(me,d),g) +d
79 = T(my,g) — T(min(5,1 - (5)mg(m0,d),g) +d

this yields

1
a(a) :/s /0 1(a < —Inp'/?) f5(moe??, p)dp 1 (dg).
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Similarly, the f;-curve among all born is given by

g0 = [ [ 1(|2n ] a) sime prap e

We use the parameter values defined in (Sennerstam and Strémberg, 1995):

Critical cell size (m,) 7 (rel. size units)

DDC (d) 8 (hr)

Latent growth factor (£) ~ N(0.06,0.005%)
Individual growth contribution () ~ N(0,0.015%)

L+ ~ N(0.06,0.0052 + 0.0152)
Sl = SQ (0,012)

and we let f; be the density function of a triangular distribution (cf. Fig. 4).

fs

Fig. 4. The density function of 4.
Since a newborn cell has size less than mg, the mother cell has to divide so that
p1 < 6 < pa, where py = 1 — p;, and the condition
Mo 9% — my < §me eI < my

gives that py = e~9%¢. Now

W p—(1-p)) if pp<p<

DO

fs(moe??,p) = )
h?*(p2 — p) if ESPSPz

where h =1/(ps — 1/2). The Malthusian parameter is the value « such that
1

/S M, 9) ¢ (dg) = 2/5 / P/ f5(mo €%, p) f4.2(9)dpdg = 1
1 1 J0

yielding o = 0.0574. Plots of the a- and the S;-curve, the densities of the stable birth
size distribution and the stable division size distributions are depicted in Figs. 5-8.
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Fig. 7. The density of the stable Fig. 8. The density of the stable
birth size. division size.

6. Mother-Daughter Cell Cycle Time Correlation

As mentioned in the introduction, size control models are sometimes criticised because
they predict a negative mother-daughter life length correlation. This is easy to see
since for a cell population, where all cells have the same growth rate, a long cell cycle
leads to alarger division size, and therefore bigger daughters. Since life length depends
on size, the daughter’s life lengths become shorter. Hence a negative correlation. In
mammalian cells, however, this correlation is observed to be zero or positive. In the
Two-Subcycle model, the cells change growth rate as pointed out at the critical size,
and the new growth rate is chosen independently of the old one. This means that the
length of the Gi-phase of the mother is independent of the length of the G-phase
of the daughter.

We want to find the sign of the covariance Cov(\;,A11). By writing the life
lengths as

A o= /\6’+/\'1,
A1l = /\'1'+)\'11

we see that A1 and A1 are only dependent through A} and A/, and these two are
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Fig. 9. X, and )\ are dependent through the growth rate gs.

only dependent through the growth rate g, (see Fig. 9). This vields
Cov(A1, A1) = Cov(\y + AL, A7 + Aly) = Cov(Xg, AY)-

This must be nonnegative since fast growth leads to a shorter \'-period as well as a
shorter \’-period. To see this, we use the trick

Cov(\,, \) Cov(E[Xllgg],E[z\'l’lgg]) +E[cov(,\'1,,\';|g2)]

= Cov(E[M|G2], E[NY|G2))-

where G, is a random variable for the growth rate denoted by g» in Fig. 9. The
distributions of X,|G> and A\/|Gz are both decreasing in G since for g, < g5 we get

P\, > 2]G2 = g2) > P(A > 2(G2 = g3),
P\ > z[G2 = g2) > P(X >z[G2 = 94)-

Now it holds that for every random variable X and decreasing functions f and
g, the random variables f(X) and g(X) are positively correlated. For a simple
coupling proof of this, see (Thorisson, 1995, p. 161). In the special case when the
DDC is considered to be constant, we get that A; and A;; are independent. Thus,
the mother-daughter correlation is zero as a consequence of constant DDC, rather
than due to the microheterogeneity in growth. Note that in this case the correlation
is zero even if all cells have the same growth rate.

7. Conclusions

The main objective of the Two-Subcycle model is that the cell cycle consists of two
simultaneously running, mutually dissociated subcycles, resembling large umbrellas
covering a complex system of cyclic processes. The dissociation between these two
subcycles, the DDC and the CGC, might enable the cell to alter gene expression from
one cell to the next.
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None of the various components of the Two-Subcycle model is new, except for the
latent growth factor reflecting genetic similarities in a pair of daughter cells generating
a similar answer to the growth factors at the reflection point, represented as a critical
size in the model.

The model offers an alternative interpretation of cell cycle progression. The first
part of the 1 phase prior to the restriction point is considered more as a completion
of the previous cell growth cycle than the first part of the current cycle.

Furthermore, the branching process approach serves well as an example of ap-
plications of the general branching process theory to various situations in population
dynamics. The branching process theory turns out to be a machinery well suited for
this type of modelling. We construct the branching process model corresponding to a
rather detailed biological description of the cell population, and still get an analytical
expression of the stable birth type distribution. From this distribution we then can
derive all the asymptotic results of interest on the population level. A few of these re-
sults are viewed in Figs. 5-8, and they agree satisfactorily with the simulation results
in (Sennerstam and Stromberg, 1995).

Another important feature of the model is that, unlike most size structured cell
cycle models, the mother-daughter cell cycle time correlation becomes non-negative.
This is due to the supramitotic growth regulation and the microheterogeneity in
growth.
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