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In this work, oily compost leachate (OCL) generated during oily sludge composting was 
treated by UV/TiO2. OCL subsamples, gathered bi-weekly from the composting process, 
were thoroughly mixed and then filtered to reduce the solution turbidity. The effects 
of initial chemical oxygen demand (COD) concentration, UV type (A and C), 
pH (3, 7, and 11), reaction time (30, 60, 90, and 120 min), and TiO2 concentration (0.5, 1, 
and 2 g L-1) on the total petroleum hydrocarbons (TPH) and COD removal from OLC 
were examined. The results showed that the efficiency of the process improved with the 
increase in TiO2 concentration and reaction time and the decrease in pH and pollutant 
concentration. In the optimal conditions (UV-C, TiO2 concentration of 1 mg L-1, reaction 
time of 90 min, and pH of 3), 52.29% of TPH was removed. Moreover, 36.69 and 48.3% 
of TPH was reduced by UV-A/TiO2 and UV-C/TiO2, respectively in real conditions 
of OCL (pH = 6.3, COD = 1501. 24 mg L-1, and TPH = 170.12 mg L-1) during the 90 min 
reaction time. The study verified that UV/TiO2 has the potential to be applied 
to treat OCL. 
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1. INTRODUCTION 

Storage tank bottom sludge contains huge quantities of total petroleum 
hydrocarbons (TPH) which severely threaten both public health and the 
environment [1, 2]. Hence, like any other oily sludge, it should be well purified 
before being discharged into the environment [3, 4]. In this regard, composting 
has been introduced as one of the most effective measures for treating this kind 
of waste [5, 6]. Nonetheless, this method is accompanied by the generation 
of a great deal of oily compost leachate (OCL). Since this kind of pollution can 
pose a major threat to both the environment and human health, it should be treated 
accordingly. OCL treatment is a very broad process as it contains varying amounts 
of petroleum compounds and other pollutants [7]. A variety of treatment methods 
can be used to minimize or avoid the adverse effects of this oily pollutant and, 
among them, advanced oxidation processes have been widely used to degrade 
a range of organic contaminants such as oily compounds [8-10]. 
Within this framework, photocatalytic oxidation by TiO2 (UV/TiO2) is one of the 
most effective technologies [11, 12]. UV/TiO2 has some prominent advantages 
including non-toxicity, cheapness, easy operation, and high stability [11]. Thus, 
many organic contaminants can be degraded via the application of TiO2 
in heterogeneous photocatalysis [12, 13]. In this process, pollutants are degraded 
through two main pathways: (1) OH radicals produced from valence holes, 
and (2) direct valence hole oxidation [14, 15]. Some variables like photocatalyst 
type, photocatalyst loading, target compound loading, initial pH value, 
and wavelength can highly influence the performance of the process. Hence, 
these variables should be taken into account seriously in studies performed 
regarding removal of target contaminants by this process [16]. 
To the best of our knowledge, limited information is available on the 
photocatalytic oxidation of OCL containing high levels of TPH. Therefore, we 
utilized the UV/TiO2 process for the removal of chemical oxygen demand (COD) 
and TPH from OCL generated during oily sludge composting. Moreover, 
the effects of parameters such as UV type, TiO2 loading, and pH on the 
performance of the process were investigated. 
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2. MATERIALS AND METHODS 

2.1. Experimental design and operation of composting experiments 
In this study, the OCL was taken from the two-phase composting systems used 
in our previous studies. These composting experiments were operated under 
different conditions being amendment type, mixing ratios, and aeration rates, 
all of which were reported in our previously published articles [17-22]. The 
compost leachate generated during the composting process was gathered bi-
weekly over 16 weeks. Next, all the subsamples of equal volume (500 mL) were 
thoroughly mixed to form one composite mixture (pH = 6.3, COD = 1501. 24 mg 
L-1, and TPH = 170.12 mg L-1) and then filtered to reduce the solution turbidity.  

2.2. Chemicals and materials 
Titanium dioxide (Sigma Aldrich, Germany) with a diameter of <50 nm and 
a purity of 99.5% was utilized as a photocatalyst (Fig.1). A stock solution was 
prepared and stored at 4 °C until use, with working solutions prepared daily from 
it. 

2.3. Photocatalytic experiments 
Fig. 2 presents an image of the 10-L batch photocatalytic reactor used  
in the present study. The reactor was equipped with two lamps being UV-A 
(Philips, 8 W, 352 nm) and UV-C (Philips, 8 W, 253.7 nm) which were vertically 
inserted at the center, placed inside a quartz tube. To mix the solution effectively, 
a magnetic stirrer (500 rpm) was applied. The temperature was kept at 25 °C. TiO2 

at concentrations of 0.5, 1, and 2 g L-1 were added to the reactor containing  
8 L of OCL. Next, the pH of the solution was adjusted to 3, 7, and 11 by adding 
H2SO4 (1.0 N) and NaOH (1.0 N) as required. Moreover, the UV lamps were 
allowed to stabilize for at least 10 min prior to irradiation. After specific time 
intervals, samples were gathered from the reactor and stored at 4 °C until analysis. 
Prior to the analysis, the TiO2 particles were separated from the reacted water 
through filtering of the samples. 
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Fig.1. SEM photo of the TiO2 used in the present study 

 
Fig. 2. Experimental pilot used in the present study 

2.4. Analytical methods 
The pH values were detected using a pH meter (JENWAY model 3510). COD 
was measured according to standard methods [23]. TPH was extracted with n-
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pentane and quantified in a gas chromatograph (VARIAN Model CP-3800) 
equipped with a flame ionization detector [24] as follows: the extract was injected 
into a gas chromatograph to detect petroleum compounds in the range between  
C6 and C35. A capillary column (CP-Sil 8CB) of 30 m length, 0.32 mm internal 
diameter, and 0.25 m film thickness was utilized. The initial temperature was 
kept at 35 °C for 2 min and then increased at a rate of 10 °C min-1 to reach 300 
°C, then kept constant for 5 min. The final temperature was set at 325 °C for 5 min 
to ensure that the column was clean. The temperatures of both the detector and 
injection port were 325 and 280 °C, respectively. Helium was used as the carrier 
gas at a rate of 2.9 ml min-1. The actual pressure and split ratio were 11 psi and 
25%, respectively. The flow rates of hydrogen gas, air, and makeup for FID were 
40, 450, and 30 ml min-1, respectively. SPSS 19.0 and Microsoft Excel software 
was applied to analyze the attained data. The differences between the variables 
were determined by using the one-way ANOVA test (P value ≤ 0.05). 

3. RESULTS AND DISCUSSION 

3.1. Effect of UV type and TiO2 loading  
Photocatalyst concentration can greatly affect the efficiency of the process in 
terms of the removal of target pollutants. In the current research, the loadings 
of TiO2 ranged between 0.5 and 2 g L-1. The effect of UV type and TiO2 loading 
on COD removal has been indicated in Fig. 3. When the UV-A/TiO2 loading was 
0.5 g L-1, 18.13% of COD was removed in 120 min. Efficiencies of 39.40  
and 41.25%, respectively, were reached at concentrations of 1 and 2 mg L-1  
of UV-A/TiO2 within 120 min. Therefore, it can be suggested that TiO2 loading 
has a significant impact on the photocatalytic removal of COD. It was found that 
the performance of the process increased significantly (P < 0.05) with increasing 
TiO2 loading between 0.5 and 1 g L-1. However, an additional increase in TiO2 
resulted in little elevation of the degradation rate and there was no significant 
difference between 1 and 2 g L-1. on the one hand, a rise in TiO2 loading leads 
to an increase in the number of active sites, but, on the other hand, it may cause 
a screening effect and reduce the total available surface area of photocatalysts 
because of the aggregation and sedimentation of the particles of TiO2 [12]. 
Furthermore, a gradual decline in photocatalytic performance is seen when 
photocatalyst loading exceeds the saturation level as a result of unfavorable light 
scattering and, consequently, a decrease in light penetration into the solution [11]. 
Thus, in using photocatalytic degradation methods, it is imperative that these 
processes are operated below the saturation amount of the photocatalyst. In this 
study, it was found that 1 g L-1 of TiO2 was the optimal loading. In the case  
of UV-C, COD removal rates were, respectively, 27.44, 56.87, and 59.56%  
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for TiO2 contents of 0.5, 1, and 2 g L-1. Hence, it can be said that UV-C exhibited 
better performance than UV-A for COD removal.  

 
Fig. 3. Effect of UV type and TiO2 loading on the removal of COD  

initial COD concentration = 1000 mg L-1, pH=7) 

3.2. Effect of initial pH  
The efficiency of the photocatalytic process is highly influenced by the initial pH. 
Fig. 4 depicts the effect of the initial pH on COD removal. As presented,  
the highest efficiency was attained at a pH of 3. It should be pointed out that over 
the course of the reactions, all the initial pH values remained unchanged.  
At pH values of 3, 7, and 11, COD removal percentages were 42.95, 39.40,  
and 32.86%, respectively after 120 min. Additionally, the corresponding 
percentages for VU-C were found to be 62.36, 56.87, and 48.39%, respectively. 
Photocatalytic activity is affected by pH because the surface charge of either  
the photocatalyst or target pollutant, and thereby the reciprocal affinity between 
them, can change. In acidic conditions (pH<6.9), the surface of TiO2 is more 
positively charged since the point of zero charge (PZC) of the commercial TiO2 
is nearly 6.9. By contrast, in alkaline conditions (pH>6.9), the surface of TiO2  
is more negatively charged [11]. Consequently, TiO2’s surface absorbs the target 
pollutant and hence enhances the direct contact between produced OH radicals 
and the pollutant. Other researchers have also reported similar results in terms  
of the effect of pH on the removal rate of target contaminants when TiO2  
is used [12, 25]. 
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Fig. 4. Effect of pH on COD removal (initial COD concentration = 1000 mg L-1,  

TiO2 concentration = 1 g L-1) 

3.3. Effect of initial COD and reaction time  
Reaction time is a parameter that strongly influences the performance of the 
UV/TiO2 method. As can be clearly observed, with an increasing reaction time 
until 90 min, COD removal went up and then leveled off. From this point 
onwards, the removal rates did not rise significantly (Figs 3 and 4). Lin and Lin 
[11], stated that in order to reach complete decomposition of various types 
of organic substances with different initial contents, different irradiation times are 
needed. It should be further noted that initial contaminant concentration is another 
important variable influencing photocatalytic degradation processes.  

 
Fig. 5. Effect of initial COD concentration on its removal rate  

(Reaction time= 90 min, TiO2 concentration= 1 g L-1) 
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Fig. 5 compares the COD degradation percentages attained by UV-A/TiO2 and 
UV-C/TiO2 processes at three pHs (3, 7, and 11) and two initial COD 
concentrations (500 and 1500 mg L-1). The findings illustrated that at an initial 
concentration of 500 mg L-1, the efficiencies were higher.  Moreover, the 
performance declined when the initial COD concentration was raised between 
500 and 1500 mg L-1. In accordance with our study, other researchers have 
claimed that photocatalytic oxidation is a contaminant concentration-dependent 
process [11, 12, 25]. 

3.4. TPH removal by UV/TiO2 
The experiments were also performed for TPH removal both under the optimized 
conditions (pH of 3 and TiO2 concentration of 1 g L-1) and the real conditions of 
the OCL (pH of 6.3 and TiO2 concentration of 1 g L-1). As can be seen from Fig. 
6, the highest removal efficiency (52.29%) was obtained at the optimum 
conditions of UV-C. But, in the case of the real conditions of OCL, only 36.69 
and 48.3% of TPH were removed by means of the UV-A/TiO2 and UV-C/TiO2 

processes, respectively. Thus, it can be claimed that UV-C/TiO2 is also more 
efficient than UV-A/TiO2 in TPH removal from OCL. The low removal rate of 
TPH by UV/TiO2 could be attributed to the high initial concentration of TPH  
(170 mg L-1) and, to some extent, the high turbidity of the OCL which can prevent 
UV transmittance through the solution. 

 
Fig. 6. Effect of UV/TiO2 on TPH removal (TPH= 170.12 mg L-1,  

TiO2 concentration= 1 g L-1) 
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4. CONCLUSION 

The feasibility of using UV/TiO2 for removal of COD and TPH from OCL was 
investigated in the present research. The efficiency of the process with the 
increase in TiO2 concentration and reaction time and decrease in pH and pollutant 
concentration. Application of UV-C presented higher efficiencies than UV-A. 
The optimal conditions for the process were found to be as follows: pH of 3, TiO2 
concentration of 1 g L-1, and reaction time of 90 min. At these optimal conditions, 
52.29% of TPH was removed from OCL. In the real conditions of OCL, 36.69 
and 48.3% of TPH were reduced by UV-A/TiO2 and UV-C/TiO2, respectively 
after a reaction time of 90 min. This study found that photocatalytic oxidation by 
UV/TiO2 is effective in OCL treatment.  
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