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In the present paper, a theoretical analysis is made to investigate fluid flow and heat energy transformation 
features of single and multi-walled water functionalized carbon nanotubes (CNTs) with uniform heat inconstancy 
boundary conditions onward a flat plate. The liquid motion and momentum transfer of carbon nanotubes (CNTs) 
have been analyzed using a homogeneous flow model. Both single-wall CNTs (SWCNTs) and multi-wall CNTs 
(MWCNTs) used base fluids, namely, water. The thermophysical characteristics of CNTs regarding the solid 
volume fraction of CNTs are studied by applying empirical correlations. Similarity transformations have been used 
to the governing partial differential equations turning them into ordinary differential equations. The outcome of 
similarity transformations which are nonlinear ordinary differential equations subjected to reconstructed boundary 
conditions, are subsequently solved numerically using bvp4c. The effects of the governing parameters on the 
dimensionless velocity, temperature, and skin friction are investigated numerically and graphically. An increase in 
the volume fraction and the velocity ratio parameter increase the flow, the velocity, and the temperature profile. 
Regardless of any physical parameter, SWCNTs give better heat transfer than MWCNTs. 
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1. Introduction 

 
 It is necessary to improve the thermal conductivity of heat transfer fluids, as these fluids have many 
industrial applications in the heat exchangers, cooling systems, transport, and building sectors. Choi and 
Eastman [1] and Choi et al. [2] revealed that suspension containing ultrafine particles in nanofluid enhanced 
the rate of caloric conductivity. Adding CTN to the base fluid can significantly impact the thermo-physical 
properties. Many researchers have investigated the heat transfer characteristics of distinct nanofluid particles 
over distinctive geometries. Hone et al. [3], Liu et al. [4], Ding et al. [5], Garg et al. [6], Mintsa et al. [7], 
Ebrahimnia-Bejestan and Niazmand [8], Halelfadl et al. [9] and Sabiha et al. [10] proved experimentally that 
the caloric conductivity of energy mutated fluids can be amplified by 10-50% surprisingly with microscopic 
rigid volume fraction of nanoparticles (conventionally smaller than 5%). Eastman et al. [11] Trisaksri and 
Wongwises [12], Wang and Mujumdar [13], and Kakaç and Pramuanjaroenkij [14] reviewed these studies. 
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 Hone et al. [15], and Antar et al. [16] investigated the influence of single-wall CNT thermal conductivity 
up to  /6600 W mK and multi-wall CNT thermal conductivity up to a hypothetical inquiry. An experimental 
investigation was carried out by Ding et al. [5] to observe the motion and the energy transfer characteristics of 
CNTs down a horizontal tube. A remarkable increment in the rate of heat transfer is observed, which relies on 
the Reynolds number and volume fraction of CNTs. Later, Kamali and Binesh [17] studied the heat transfer of 
MWCNT in a straight tube with wall heat mass flux conditions. Khan et al. [18] examined the heat transfer flow 
of carbon nanotube through the flat plate with Navier slip and heat flux boundary conditions. This work of Khan 
et al. [18] was extended by Anur et al. [19] to observe the stability analysis. Wang et al. [20] investigated the  
energy transfer and negative gradient of the pressure of CNTs in a flat circular tube experimentally. They showed 
that the Hagen-Poiseuille flow theory prediction validates the friction factor of diluted nanofluids. Said et al. [21] 
presented improved energy and exergy efficiency considering SWCNTs with spectroscopic technique. 
 Carbon nanotubes (CNTs) are noted to have particular caloric distinctive with very high thermal 
conductivities owing to cylindrical carbon molecule genesis. The CNTs have extents in micrometer and diameter 
from ~ 1  to ~  100 nm . Liu and Liang [22] invented an advance aqueous drag-shrinking flow with CNTs. This 
has ramifications of not only drag-contracting but also energy conduction increment. They performed 
assessments for investigating the imposed convective fluid and energy conduction behavior of typical drag-
decreasing motion. Various differences in the heat transfer characteristics between both fluids were found, and 
the strong subordination of new nanofluid on the liquid temperature and the concentration of nanofluid and the 
cetyl trimethylammonium chloride was examined. The rate of convection of heat increment of aqueous 
suspensions of multi-walled CNTs passing through a linear horizontal tube was investigated experimentally by 
Mayer et al. [23]. They calculated some crucial terms concerning the Reynolds number, such as the energy 
transfer coefficient and the friction factors. The reason for increment was found while balancing the data on a 
Reynolds Nusselt graph; the consequence was that the shooting up of viscosity was four times the shooting up of 
the caloric conductivity. Various boundary surface motion problems regarding SWCNTs and MWCNTs have 
been reported recently [24-27]. 
 The present article, influenced by the works mentioned above, is aimed to give a comprehensive insight 
into high thermal polymer processing.  A mathematical model is developed for the fluid motion and caloric 
transformation features of single and multi-walled water-based CNTs along a horizontal plate subjected to a 
consistent gradient of heat boundary conditions. This model extends the earlier study of Khan et al.  [18] to 
consider different parametric heat transfer effects. A nonlinear dimensionless ordinary differential boundary 
value problem is obtained by converting the partial differential boundary value problem by employing 
appropriate similarity transformations. A numerical solution is obtained with the bvp4c [28], and compared with 
Khan et al. [18]. A detailed parametric study and observation of the effect of volume fraction and velocity ratio 
parameter on velocity and temperature distributions are conducted with graphical visualization, along with the 
zoomed view of results and the skin friction profiles. The observed results may be constructive in understanding 
the complex interplay between volume fraction, slip parameter, and rheology in materials processing operations.  
 
2. Problem formulation 
 
 We consider a two-dimensional laminar flow above a horizontal plate with heat momentum in water-
based nanofluids restraining single- and multi-wall CNTs. We assume that the plate surface has a consistent heat 
gradient. The base fluids and the CNTs are in caloric balance. The no-slip hydrodynamic boundary condition 
between nanofluids and the horizontal facet is applied along with the dilapidation of the viscous dissipation and 
radiation results in the governing equation. The Cartesian coordinate system (Fig.1) has its origin located at the 
leading edge with the positive x -axis extending along with the sheet in the upward direction, while the y -axis 
is measured normal to the flow. The steady fluid and heat start with velocity 0U along the x -axis. Keeping the 
origin fixed, wT  is the surface temperature, and T∞  is the temperature outside the thermal boundary layer. The 
ambient temperature is assumed to be constant.  
Under the boundary layer approximations, the continuity, the momentum, and the energy equations with variable 
thermal conductivity can be written as [18]: 
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Fig.1. Flow problem.  
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Base fluid and carbon nanotubes help to examine the essential properties of nanofluids and the solid volume 
fraction of CNTs in the base fluids as follows: 
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where n fk  is the thermal conductivity of the nanofluid, ( )p n f

Cρ is the thermal capacity of the nanofluid, and 

φ  is the rigid volume fraction of the nanofluid.  
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The boundary conditions are as follows: 
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Here, U ∞  is the free stream velocity. 
 
2.1. Effective thermal conductivity 
 
 Different researchers have proposed many theoretical models to predict the effective caloric 
conductivity increment of CNTs suspensions. All of these models were constructed with the help of Fourier’s 

law of heat conduction. Maxwell [29] suggested the caloric conductivity ratio = CNT

f

k
k

 can be expressed in 

terms of the effective caloric conductivity and the volume friction φ : 
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Jeffery [30] and Davis [31] proposed the following theoretical models assuming higher orders of volume fraction, 
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respectively, where, ( ) ( )/1 2λ = α − α + . The higher-order terms indicate a mutual relationship of a randomly 
dispersed sphere. But the shape factor of the particles cannot affect these models.  
Hamilton and Crosser (1962) proposed that: 
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Based on Maxwell’s theory, Xue [32] developed a theoretical model where he considered rotational elliptical 
nanotubes with a huge axial ratio: 
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In our study, we have computed thermal conductivity and the dimensionless momentum rates of nanofluids 
using the Xue [32] model (see Eq.(2.10)). We will examine the skin friction and the dimensionless heat 
momentum of the nanofluid by developing a mathematical model. We will present the physical interpretation 
and significance of our results by solving the constructed model with a numerical approach. 
 
2.2. Transformations 
 
 We first transform the boundary layer equations into a dimensionless system of equations using 
similarity variables. To simplify the governing equations, the similarity technique of coordinate transformation 
is used to reduce the number of independent variables. We have: 
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Thus, our final equations are: 
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and the necessary conditions reduce to: 
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where /0U U∞λ =  is the velocity ratio parameter. The plate moves in the assisting flow if 0λ > , and the plate 
moves in the opposing flow if 0λ < and ( )Pr /p ff

C k= μ  is the Prandtl number of the base fluid. 

 
3. Numerical procedure 
 
 The coupled nonlinear ordinary differential equations (2.12) and (2.13) along with the boundary 
conditions (2.14) for the Prandtl number Pr , the CNT volume fraction φ , and the velocity ratio parameter ,λ  
are solved using a finite difference method as well as a shooting technique. The boundary value problem was 
transformed into an initial value problem, which was solved by systematic guessing for ( )f 0′′ and ( )0′θ until 
the necessary constraints have been at ∞ , asymptotically converging to zero. To secure the convergence in 
each case, the step size .0 001Δη =  is utilized to acquire the numerical solution with max 8η = . 
 
4. Graphical representation, results and discussion 
 
 A water-based fluid has been used to examine the flow and heat motion rate of single- and multi-wall 
CNTs. A set of nonlinear equations is solved numerically after transforming them from the governing PDE 
along with the necessary boundary conditions. In Tab.1, the thermophysical properties of water and both CNTs 
are shown.  
 
Table 1. Thermophysical properties of water-based fluid and both CNTs [18]. 
 

Physical properties Base fluid Nanoparticles 
Water SWCNT MWCNT 

( )/ 3kg mρ
 

997 2600 1600 

( )/pC J kg K 4179 425 796 

( )/k W m K  0.613 6600 3000 
 
Table 2. Variation of the thermophysical properties with volume fraction of both CNTs. 
 

SWCNT φ  ρ  ( )6
pC 10ρ ×  k  

Water 

0 997 4.167 0.613 
0.04 1061 4.044 1.051 
0.08 1125 3.921 1.528 
0.12 1189 3.799 2.048 
0.16 1253 3.676 2.618 
0.2 1317 3.554 3.245 

     
MWCNT φ  ρ  ( )6

pC 10ρ ×  k  

Water 
 

0 997 4.167 0.613 
0.04 1021 4.051 1.011 
0.08 1045 3.935 1.444 
0.12 1069 3.819 1.916 
0.16 1093 3.703 2.434 
0.2 1117 3.588 3.002 
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 Table 2 presents the variation of the caloric patterns of the water-based nanofluids with rigid volume 
portions of single- and multi-wall CNTs. It is observed that the density and the thermal conductivity are 
proportional, and the heat capacity is inversely proportional to the rigid volume portion for each CNT. To 
examine the accuracy of our computational method, we have compared our results for the skin friction and 
local Reynolds number for water-based SWCNT and MWCNT with those of Khan et al. [18], as shown in 
Tab.3. The results are found to be in excellent agreement with the published data. 
 
Table 3. Comparison of the values of skin friction with 0λ =  and no-slip conditions with Khan et al. results [18]. 
 

Case 𝜙 
1/ 2Rex fC  

Khan et al. [18] Present 

Water-based 

SWCNT 

0.01 0.33894 0.338942 

0.1 0.40811 0.408110 

0.2 0.50452 0.504521 

Water-based 

MWCNT 

0.01 0.33727 0.337268 

0.1 0.39008 0.390076 

0.2 0.46466 0.464659 

 
We have used the graphical method to consider the effects of various parameters on the flow profile, the 
velocity profile, and the temperature profile. We have represented the flow profile, the velocity profile, and 
the temperature profile considering the changes in the volume fraction φ  and velocity ratio parameter .λ  The 
results are discussed below. 
 
The effects of the volume fraction φ  on the flow profile 
 

 
 

Fig.2. Flow profile corresponding to φ .  
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Fig.3. Zoomed preview of the flow profile. 
 
 Figure 2 shows the effects of the nanoparticle volume fraction on the flow profile for the water-
based SWCNTs and MWCNTs. The case of pure fluid ( )0φ = is also studied to compare the pure fluid flow 
with the nanofluid flow. It can be observed that the flow increases with the volume fraction of each CNTs. 
Hence it can be concluded that with an increase in nanoparticle volume fraction for a particular case, the 
flow profiles for SWCNT are higher than MWCNT for water. For clarity, we have also represented a zoomed 
preview of the flow in Fig.3. 
 
The effect of the volume fraction φ  in the velocity profile 
 

 
 

Fig.4. Velocity profile corresponding to φ . 
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Fig.5. Zoomed preview of the velocity profile. 
 
The influence of the nanoparticle volume fraction parameter φ  on the velocity profile in water-based SWCNTs 
and MWCNTs is shown in Fig. 4. The case of pure fluid ( )0φ = is also studied to compare the pure fluid velocity 
flow with nanofluid velocity flow. It can be observed that the velocity profile increases with the volume fraction 
of each CNTs. It can also be observed that with an increase in the nanoparticle volume fraction for a particular 
case, the velocity flow profiles for SWCNT are higher than MWCNT for water-based nanofluids. For clarity, 
we have also represented a zoomed preview of the velocity profile in Fig.5. 
 

 
 

Fig.6. Temperature profile corresponding to φ . 
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The effects of the volume fraction φ  on the temperature profile 
 
 The effects of the nanoparticle volume fraction parameter φ  of both CNTs on the temperature profile 
are illustrated in Fig.6. It can be observed that with an increase in the nanoparticle volume fraction for a 
particular case, the temperature profiles for SWCNTs are higher than MWCNTs for water-based nanofluids.  
For clarity, we also have represented a zoomed preview of the temperature profile in Fig.7. 
 

 
 

Fig.7. Zoomed preview of the temperature profile. 
 
The effect of the velocity ratio parameter λ  on the flow profile: 
 

 
 

Fig.8. Flow profile corresponding to λ . 
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 The effects of the velocity ratio parameter λ on the flow profile in the presence of water-based 
SWCNTs and MWCNTs are shown in Fig.8. It can be seen that the flow profile increases with the velocity ratio 
parameter of each CNTs. It can also be observed that with an increase in the velocity ratio parameter for a 
particular case, the flow profiles for SWCNTs are higher than MWCNTs for any fluid. A zoomed preview of 
the flow is shown in Fig.9 for clarity. 
 

 
 

Fig.9. Zoomed preview of the flow profile. 
 
The effects of the velocity ratio parameter λ  on the velocity profile 
 

 
 

Fig.10. Velocity profile corresponding to λ . 
 
 Figure.10 shows the effects of the velocity ratio parameter λ  on the velocity profiles for water-based 
nanofluids SWCNTs and MWCNTs. It can be seen that the velocity increases with the velocity ratio parameter. 
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With an increase in the velocity ratio parameter for a particular case, the velocity profiles for SWCNTs are 
higher than MWCNTs. For clarity, a zoomed preview of the velocity is shown in Fig.11. 
  
 

 
 

Fig.11. Zoomed preview of the velocity profile. 
 
The effects of the velocity ratio parameter on the temperature profile 
 

 
 

Fig.12. Temperature profile corresponding to λ . 
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Fig.13. Zoomed preview of the temperature profile. 
 

 Figure 12 shows the effects of the velocity ratio parameter λ , on the temperature distribution in the 
presence of water-based SWCNTs and MWCNTs. It is observed that the temperature increases with an 
increase in the velocity parameter. It also can be observed that with an increase in the velocity ratio parameter 
the temperature distributions for SWCNTs are higher than MWCNTs. For clarity, we have also represented a 
zoomed preview of the temperature flow in Fig.13. 
 
5. Conclusion 
 
 A numerical solution of the two-dimensional flow of fluid and heat transfer features of single and 
multi-walled water-based functionalized CNTs along a flat plate subjected to Navier slip and uniform heat flux 
boundary conditions has been discussed in the present analysis. The consequences of various parameters, that 
govern the flow phenomena are presented graphically using ‘bvp4c’ in ‘Matlab’ with an accuracy of 610− . 
The effects of the governing parameters on the flow, velocity, and temperature were studied, and the following 
conclusions were made: 

• Volume fraction positively affects the flow, velocity, and temperature distribution. 
• The flow, velocity, and temperature profiles increase with an increase in the velocity ratio parameter. 
• Temperature distribution increases with an increase of all governing parameters. 
• Temperature exponent enhances the rate of heat transfer.  
• Regardless of any physical parameter, SWCNTs give better heat transfer than MWCNTs. 
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Nomenclature 
 
 pC  – specific heat at constant pressure 
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 f  – dimensionless stream function  
 k  – thermal conductivity  
 n  – shape factor  
 Pr  – Prandtl number 
 Rex  – local Reynolds number  
 T  – local fluid temperature  
 wT  – temperature of the surface 
 T∞  – free stream temperature 
 ( , )u v  – velocity components  
 0U  – initial fluid velocity  
 U ∞  – free stream velocity 
 ( , )x y  – components of the cartesian system 
 α  – thermal diffusivity 
 η  – similarity variable 
 θ  – dimensionless temperature 
 ρ  – fluid density  
 υ  – kinematic viscosity  
 λ  – velocity ratio parameter 
 μ  – absolute viscosity  
 ϕ  – volume fraction  
 ψ  – stream function  
 
Abbreviations 
 
 CNT – carbon nanotube 
 SWCNT – single-wall carbon nanotube 
 MWCNT – multi-wall carbon nanotube 
 
Subscripts  
 
 ( )nf  – nanofluid 

 ( ) f  – base fluid 

 ( )CNT  – carbon nanotube 
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