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The present paper analyzes an unsteady magnetohydrodynamic blood flow model of an visco-elastic fluid 
through an inclined porous stenosed artery with body acceleration and slip effect. Navier-Stokes equations have 
been used to describe the blood flow model. The governing equation of blood flow is solved by an analytic method 
by considering blood as an incompressible, visco-elastic fluid, and suspension of RBC’s in plasma. Axial velocity, 
blood acceleration, flow rate, and shear stress are derived numerically by using the finite Laplace and Hankel 
transformation and their inverse. The effect of parameters such as the visco-elasticity parameter, Womersley 
number, Hartmann number, inclination angle, parameter of slip, and body acceleration frequency is analyzed. Axial 
velocity reduces as the Hartmann number and visco-elasticity parameter enhance and it enhances with the 
enhancement of the slip parameter and inclination angle. The study is beneficial for finding the effect of slip 
parameter, porosity factor and Hartmann number when a human body is exposed to MRI and CT scan.  
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1. Introduction 
 
 Nowadays, cardiovascular diseases have a great effect on human beings all over the world. Diseases 
like heart failure, heart attack, brain stroke, narrowing of the artery, etc., are the main cause of death in the 
young population of the earth. The narrowing of the artery is medically termed as stenosis. Stenosis disturbs 
the characteristics of blood flow in the human artery. Mathematical studies of blood flow past an inclined 
stenosed, bifurcated and tapered are of great significance. It is usually known that tubes are not horizontal in 
physiological systems but have some inclination to the axis. Chakraborty et al. [15] presented a blood flow 
model past an inclined artery with radially symmetric but axially non-symmetric stenosis. They illustrated that 
flow resistance enhances with the stenosis size and hematocrit but it reduces with the inclination angle and slip 
at the wall. Tripathi [17] examined a blood flow model past an inclined artery with the impact of a magnetic 
field by describing blood as a couple stress fluid. They detected that axial velocity enhances with the 
augmentation of the couple-stress parameter. Srivastava [23] studied flow characteristics of an MHD blood in 
an inclined porous stenosed artery with the effect of an inclined magnetic field. Kumar et al. [25] analyzed a 
blood flow model past a tapered inclined artery under the impact of a magnetic field and in a porous medium. 
They found that shear stress magnifies with the augmentation of the inclination angle of the artery. Sharma et 
al. [26] evaluated the effect of overlapping stenosis and dilataion in an inclined artery with the non-Newtonian 
blood flow. They discovered that fluid velocity decreases in the area of dialatation and skin friction increases 
at the extremities of the overlaping stenosis. Kumari et al. [28] studied an unsteady MHD fluid with peristaltic 
transport with a slip effect past an inclined stenosed artery.  

A porous medium is made of a solid matrix and interconnected void. The porosity is defined as the 
ratio of void space to total volume. The permeability of a porosity of the medium represents the flow 
conductivity in the medium. The impact of the magnetic field and porous medium is the concern of numerous 
applications in recent years. The red blood cells are a vital bio-magnetic material and the blood flow can be 
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affected by the magnetic field. Tzirtzilakis [6] presented a blood flow model with the impact of a magnetic 
field. This blood flow model is based on the principle of magnetohydrodynamics, the fluid's magnetic property 
and electrical conductivity of blood. Verma and Parihar [12] analyzed the blood flow model in multi-stenosis 
arteries in the presence of a magnetic field. This model is based on the principles of ferrohydrodynamics and 
MHD. The outcomes show that for a weak heart low diastolic pressure and high systolic pressure are very 
harmful. Sinha et al. [14] evaluated the blood flow in a porous artery with double stenose under the impact of 
a magnetic field. They revealed that the flow rate magnifies with the enhancement of velocity slip. Eldesoky 
[16] analyzed the slip effect of magnetohydrodynamics pulsatile blood flow with the influence of body 
acceleration. He showed that the flow is greatly affected by the Knudsen number of slip, magnetic field and 
body acceleration frequency. An unsteady pulsatile blood flow in a porous stenotic artery in the presence of a 
magnetic field is reported by Sharma et al. [18]. They found that both porosity and magnetic field decrease the 
blood transported to the organs. Sharma et al. [20] evaluated an MHD pulsatile blood flow in the arteries with 
the double stenoses. They found that fluid velocity reduces when the magnitude of the Hartmann number 
enhances and shear stress amplifies when the Hartmann number magnifies.  
 Beaver and Joseph [2] and Saffman [3] explored the properties of flow of blood across a constricted 
artery by considering boundary and slip conditions at the permeable vessel. Chaturani and Biswas [4] examined 
the Poiseuille flow of a polar fluid with various boundary conditions, namely: couple stress zero or non-zero 
and slip or no-slip at the wall. The slip effects for a non- Newtonian Maxwellian fluid on the peristaltic flow 
in porous media was studied by El-Shehawy et al. [7]. They revelated that the net flow rate is strongly 
influenced by the Knudsen number of slip flow and a non-Newtonian nature of the fluid. Ponalagusamy [8] 
studied the two-layered motion of blood past a mild stenosis artery with variable slip and peripheral layer 
thickness by describing blood as a Newtonian. Hayat et al. [10] discussed that slip effects on the viscous fluid 
with peristaltic flow in a porous medium. Nadeem and Akram [13] discussed the slip effects of an asymmetric 
channel with a Jeffrey fluid with the impact of a magnetic field. They found that temperature field reduces 
with the enhancement of the slip parameter and Jeffrey parameter. Sinha et al. [19] examined the influence of 
slip on flow of blood in a constricted artery under the impact of body acceleration. They showed that flow 
resistance enhances with the stenosis height increase and velocity slip increase. Sharma et al. [22] considered 
an MHD pulsatile flow in a catheterized narrow artery with a slip on the wall. They observed that WSS 
magnifies with the enhancement of the transverse magnetic field. 
 Many studies have been denoted to examine the effect of a porous medium with body acceleration. 
The blood flow is disturbed when there is a sudden change in the human body. Although the human body was 
adapted to these sudden changes, the changes may result in many health diseases. In many circumstances like 
travel in vehicles, spacecraft, aircraft, sports activities, etc. the human body is exposed to vibrations and they 
can be the cause of severe health risk factors namely, enhancing rate of pulse, blurred vision, stomachache, 
and headache. El-Shehawey et al. [5] studied a magnetohydrodynamic flow of an visco-elastic fluid under the 
effect of body acceleration. They obtained the numerical derivation of flow rate, shear stress, fluid acceleration 
and axial velocity. Nagarani and Sarojamma [9] investigated a pulsatile flow of a non-Newtonian fluid 
described by the Casson model through the mild stenosis artery under the impact of body acceleration. They 
revealed that the flow rate enhances in the existence of blood acceleration. A pulsatile blood flow in a porous 
narrow artery with the impact of body acceleration and magnetic field was analyzed by Rathod and Tanveer 
[11]. They found that the velocity enhances with the enhancement of body acceleration and permeability 
parameter while it reduces as the magnetic parameter magnifies. The parameter of slip at walls in a unsteady 
MHD blood flow model was analyzed by Eldesoky [21]. He revealed that blood axial velocity reduces at the 
neck of the stenosis with the augmentation of the slip parameter. Sharma et al. [24] studied the effect of axial 
translation, transverse magnetic field and hematocrit concentration on the pulsatile blood flow past a narrowing 
artery. They demonstrated that fluid velocity enhances with the augmentation of the Reynolds number along 
the axial direction. Chitra and Karthikeyan [27] studied the impact of stenosis height on an MHD oscillatory 
blood flow in a tapered artery having inclination angle and detected that stenosis height outstandingly affects 
the shear stress. Manisha et al. [29] investigated the two-layered motion of blood flow in a porous narrowing 
artery with the impact of heat and mass transfer and a magnetic field. Jaafar et al. [30] presented a mathematical 
study of flow with chemical reaction in a stenosed artery. Shah et al. [31] examined the pulsatile MHD blood 
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flow in a porous tube of cylindrical shape with an inclined angle having generalized time-nonlocal shear stress. 
Manisha et al. [32] considered the blood flow model for various shapes of stenosis with the non-Newtonian 
power-law model. Manisha and Kumar [33] studied the non-Newtonian nature of blood described by the 
Casson model to show the effects of cosine shape stenosis in an artery. 
 It follows from the literature survey, that an visco-elastic fluid flow through a porous stenosed artery 
having an unsteady MHD effect, inclination angle, slip conditions, and body acceleration has not been studied 
yet. In the present manuscript, an unsteady MHD visco-elastic fluid model in an inclined porous stenosed 
artery having slip condition and body acceleration is analyzed. The study has been performed with the 
application of suitable analytical methods. This analysis helps to find the flow rate, blood acceleration, axial 
velocity, and shear stress in a specific situation. 
 
2. Problem formulation 
 

In the present study, blood is considered a suspension of red blood cells in plasma. Equation (2.1) 
represents the hematocrit concentration-dependent viscosity of blood [18]. 

 
  ( )0 11 h rμ = μ  + β   . (2.1) 

 
Here, 0μ  is the viscosity coefficient, 1β  is a constant, and ( )h r is the concentration of hematocrit 

varying along the radial direction represented as follows: 
 

  ( )
n

0

rh r Hm 1
R

   = −  
   

 (2.2) 

 
where Hm  represents the maximum concentration of hematocrit. 
The mathematical representation of the geometry of the constricted arterial section is as follows: 

 

  ( ) 0
0

zR z R 1 1 cos
2 L

  δ π= − +  
   

  (2.3) 

 
Here,  0R  denotes the radius of the normal artery, ( )R z  denotes the radius of the stenosed artery, δ  is the 
maximum depth of the stenosis,  2L denotes the length of the artery and 02L  denotes the length of the stenosis.  

 

 
 

Fig.1. Geometry of cosine shape narrowing artery. 
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Consider a one-dimensional unsteady motion of an MHD blood flow through an inclined cylindrical 
stenosed artery with the effect of slip and blood acceleration. Blood is assumed to be an incompressible, visco-
elastic fluid flowing in a porous medium which has permeability .k  Blood is considered a non-Newtonian 
fluid with the electric conductivity in the presence of a transverse magnetic field. The applied magnetic field 
produces the electromotive force and this force is represented by Ohm’s law as: 

 
  ( )= σ + ×J E q B . (2.4) 

 
The electro-magnetic force F  is: 
 
  ( )= × = σ + × ×F J B E q B B .  (2.5) 

  
 Here, E  indicates intensity of the electric field vector, σ  is the defines electrical conductivity, 

( ), ,0 0 u=q  is the velocity vector, J  is the density of current, and 0 1= +B B B  represents the intensity vector 
of the magnetic flux in which 1B is a negligibly small vector of the induced magnetic field and 0B  is externally 
applied magnetic field. The vector 0=E  because of the no polarisation of charge [1]. Now, the magneto-
hydrodynamic force is, 

 
  2

0B u= × = −σF J B  where 0 0B=B .  (2.6) 
 

3. Equation of motion 
 

 The Navier-Stokes equation of motion is given in [5] in the cylindrical polar coordinate as 
 

  ( ) sin
2

2
1 02

u p u 1 uG t u B u g
t z t r r kr

 ∂ ∂ ∂ ∂ ∂ μ ρ = − + ρ + μ + μ + − − σ + ρ ψ   ∂ ∂ ∂ ∂∂  
 (3.1) 

where  

  ( )cos0 1 p
p p p w t
z

∂− = +
∂

,      t 0≥ ,      

and 
  ( ) ( )cos ,  0 bG t G w t t 0= + φ ≥  

  
where 0p  is the magnitude of pressure gradient of steady portion, 1p  denotes the magnitude of the 

pressure gradient for the oscillatory part, z  is the axial direction, 1μ  is the coefficient of visco-elastic fluid. 

p pw 2rf=  with pf  is the heart pulse frequency, 0G  defines magnitude of body acceleration, b bw 2rf=  with 

bf  denote the frequency of body acceleration, φ  denotes phase difference, ψ  is the inclination angle of the 
artery and t  denotes time. 
Then, Eq.(3.1) becomes 
 

 
( ) ( )cos cos

sin .

0 1 p 0 b

2
2

1 02

u p p w t G w t
t

u 1 u u B u g
t r r kr

∂ρ = + + ρ + φ +
∂

 ∂ ∂ ∂ μ + μ + μ + − − σ + ρ ψ   ∂ ∂∂  

 (3.2) 
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For a dimensionless process, we insert some dimensionless terms: 
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  pt tw′ = ,     
p 0

gg
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ρ=′ ,     2
0
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R

′ = ,     b

p
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0

p

R GG
w

ρ
=

μ
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After applying non-dimensional terms and ignoring ‘ ' ’ sign, we get  
 

  ( )cos cos
2

2 2
0 1 0 02

u u 1 u 1p p t G bt 1 H u g
t t r r kr

 ∂ ∂ ∂ ∂   α = + + + φ + + β + − + +     ∂ ∂ ∂∂    
 (3.4) 

   

where 
2
0 pR wρ

α =
μ

 is the Womersley parameter, 
2 2
0 0R BH σ

=
μ

 is the Hartmann number, 1M
k

=  is the 

permeability parameter, 1
pwμβ =

μ
 is the non-dimensional parameter of visco-elasticity and sin2

0
0

g Rg
′ ψ

=
μ

. 

Furthermore, we consider that at t 0=  the blood flows through the artery by an instant pressure 
gradient that is shown as: 
 

  0 1
p p p
z

∂− = +
∂

  (3.5) 

 
For a porous medium with small permeability, the boundary condition investigated by Beavers and Joseph [2] 

was simplified by Saffman [3] as du u
dy k

η=  where η  represents a constant whose value is based on the 

porous material properties and on its structure and k  is the permeability parameter. This boundary condition 
holds for the MHD flow and unsteady flow [21]. The initial and boundary conditions of the above stated 
problem may be represented as 
 

  (i) 1
u h u
r

∂ = −
∂

 for  and  r a t 0= ≥  (Slip condition)  (3.6) 

where  

  1
0

h
R k

η= −   

 

represents the slip parameter and ( ) ( )1
0

R z
a R z

R
= = ,  

 

  (ii) ( ) ( )( )
( )
( )

cos, . 0 n0 1 0 01
2 2 2 2 2

1 nn 1 n 1 n

J rp p g G2hu r 0
a J aH M h

∞

=

λ+ + + φ
=

λ+ + λ + λ
       for      0 r a≤ ≤ ,  (3.7) 

 
  (iii) ( ), u 0 t  is finite. 
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After applying non-dimensional terms and ignoring ‘ ' ’ sign, the geometry of the constricted arterial section is 
represented as  
 

  ( )1
0

zR z 1 1 cos
2 L

  δ π= − +  
   

  

 
4. Solution of the problem 

 
Using the Laplace transformation on Eq.(3.2), we get: 

 

  
( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

cos sin, ,

, , , ,  .

2
0 1 02 2 2

2
2 2

02

1 s s bsu r s u r 0 p p G
s 1 s s b

d 1 d 1u r s su r s u r 0 H M u r s g
r dr sdr

φ − φ    α − = + + +     + +     
   + + + β − β − + +       

 (4.1) 

    
Applying the Hankel transformation to Eq.(4.1), we have 

 

  
( ) ( ) ( ) ( )

( ) ( )

, ,

cos sin . . 

2 2 2 2 2 2 2
n n n n n

0 0 1 0 1 n2 2 2
n

s H M s u s u 0

1 s s b ap g p G J a
s 1 s s b

α + + + λ + β λ λ − βλ + α λ =

 φ − φ   = + + + λ     λ+ +    

 (4.2) 

  
From (4.2), we have, 
 

  

( ) ( )

( )( )
( ) ( )

)

)

.

.

cos, (

cos sin
. (

0 1 0 0
n 1 n2 2 2

nn

0
0 0 1 1 n2 2 22 2

nn

p p g G1 au s J a
s l H M

G s b1 1 s ap g p J a
s 1 s s bs l

 + + + φ λ = λ
 + λ+ + λ 

 φ − φ  + + + + λ   λ+ + α + βλ + 

+



 (4.3) 

 
where nλ  are the zeros of Eq. ( ) ( )'

0 1 0J a h J a 0λ λ + λ = , ( )0J r  and ( )1J r  are the first kind Bessel functions 

and ( )
( ) 

2 2 2
n

2 2
n

H Ml + + λ
=

βλ + α
.  

  
To find the expression of velocity of the fluid, employing the inverse of the Laplace and Hankel transform to 
Eq.(4.3.), we have 

 



88  Visco-elastic fluid model in an inclined porous stenosed… 

  

( ) ( )
( ) ( )( )

( )

( ) ( )( ) ( )

,

cos sincos .

cos sin cos sin
.

0 n1
2 2 2 2

n 1 1 n 0 n n

0lt0 0 1 0 1
2 2 2

0 1
2 2 2

J r2hu r t
a h J a

G l bp g p G p le
l l 1 l l b

G l bt b bt p l t t
l b 1 l

∞

=

−

λ
=

+ λ λ α + βλ

 φ + φ + + φ + − − +  + +  
+ φ + + φ +

+ + 
+ + 



 (4.4) 

 

The acceleration of the fluid is: ( ), uF r t
t

∂=
∂

  

  

  

( ) ( )
( ) ( )( )

( )

( ) ( )( ) ( )

,

cos sincos .

sin cos sin cos
.

0 n1
2 2 2 2

n 1 1 n 0 n n

0lt 1 0 1
2 2 2

2
0 1

2 2 2

J r2hF r t
a h J a

G l bp G p lle
l 1 l l b

G lb bt b bt p l t t
l b 1 l

∞

=

−

λ
=

+ λ λ α + βλ

  φ + φ + φ
− − − +  

+ +  
− + φ + + φ − + + +
+ +




 (4.5) 

 

Similarly, the flow rate Q  is derived as: ( ) ( ),  ,  
a

0

Q z t 2 r u r t dr= π   

  

  

( ) ( )
( ) ( )( )

( )

( ) ( )( ) ( )

,

cos sincos . 

cos sin cos sin
 .

1 n
1 2 2 2 2

n 1 n 1 n 0 n n

0lt0 0 1 0 1
2 2 2

0 1
2 2 2

J a
Q z t 4 h

h J a

G l bp g p G p le
l l 1 l l b

G l bt b bt p l t t
l b 1 l

∞

=

−

λ
= π

λ + λ λ α + βλ

 φ + φ + + φ + − − +  + +  
+ φ + + φ +

+ + 
+ + 



 (4.6) 

 

Also, the shear stress is obtained as: ( ), ur t
r

∂τ = μ
∂

  

 

  

( ) ( )
( ) ( )( )

( )

( ) ( )( ) ( )

,

cos sincos .

cos sin cos sin
.

n 1 n1
2 2 2 2

n 1 1 n 0 n n

0lt0 0 1 0 1
2 2 2

0 1
2 2 2

J r2 hr t
a h J a

G l bp g p G p le
l l 1 l l b

G l bt b bt p l t t
l b 1 l

∞

=

−

−λ λμτ =
+ λ λ α + βλ

 φ + φ + + φ + − − +  + +  
+ φ + + φ +

+ + 
+ + 



 (4.7) 
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5. Numerical result and discussion 
 
Velocity, flow rate, blood acceleration and shear stress are derived numerically by solving the Navier-

Stokes equations using the Laplace and Hankel transformation and their inverse. The expression of Eqs (4.4), 
(4.5), (4.6), and (4.7) have been used to execute the numerical codes in mathematical software MATLAB and 
to get the plots for the velocity field, blood acceleration, flow rate, and stress field. The computation has been 
done for various values of parameters such as to show their relative effects the slip parameter 1h , permeability 
parameter ,M  Womersley parameter α, visco-elasticity parameter β , Hartmann number H , body acceleration 
frequency b , the inclined angle of arterial segment ψ, phase difference ϕ and magnitude of body acceleration 

0G  on the velocity trends, blood acceleration trends, profile of the flow rate, and shear stress trends. 
 

 
 

Fig.2. Plot of axial velocity versus r  for the various values of the Hartmann number H  and 0p 2= , 1p 4= , 

0G 2= , . ,1h 0 4=  .M 1 5= , , ,t 1 b 2 a 2= = = , /pi 3ψ = , . .0 25φ =  
 
Graphs of different physical quantities are plotted for different magnitude of 0p 2= , 1p 4= , 0G 3= , 

. ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  a 2= , ,2α =  and other different values of various parameters as used by 
other researchers [11, 16, 21, 25, 28]. The plot of axial velocity for various values of the parameters has been 
shown in Figs 2-8. The variation in axial velocity versus the radial distance of various values of the Hartmann 
number H  and coefficient of visco-elasticity β is shown in Figs 2 and 3. The figures show that the flowing 
fluid decelerated slightly in the radial direction with the enhancement of the Hartmann number H and visco-
elasticity parameter β . It has been observed that the velocity trend is almost flat for  H 4= and 1β = . 
Moreover, it is also found that blood velocity is controlled by choosing appropriate values of the magnetic 
field parameter and visco-elasticity parameter. Figure 4 shows the changes in the axial velocity ( ), u r t  versus 
r  for different values of the inclination angle ψ . The parabolic axial velocity profile gradually decreases 
when the inclination of the artery slightly enhances. Hence, the blood velocity is greatly affected by the 
stenosed artery inclination angle. The outcomes for velocity are in agreement with the results published [11, 
16, 21, 25, 28]. 
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Fig.3. Plot of axial velocity versus r  for various values of the visco-elasticity parameter β and 0p 2= , 1p 4= ,

0G 2= , . ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  ,a 2=  /pi 3ψ = , . .0 25φ =  
 

  
Fig.4. Graph of axial velocity versus r  for various values of the inclination angle ψ  and 0p 2= , 1p 4= , 

0G 2= , . ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  ,a 2=  /pi 3ψ = , . .0 25φ =  
 

Figure 5 shows a plot of axial velocity profile versus r  for various values of the slip parameters 1h . 
The velocity profile enhances as the values of the slip parameter enhances which is in agreement with the 
results published in [11, 28]. The effect of body acceleration magnitude 0G and permeability parameter M  on 
the axial velocity versus r  in the stenosed portion is shown in Figs 6 and 7. It can be concluded from Fig.6 
that when 0G  enhances, the axial velocity profile increases. It can be concluded from Fig.7 that when M  
diminishes, i.e. k  increases, the axial velocity increases. Further, it is also observed that parameters 0G  and 
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M  have a great impact on the blood flow in the stenosed region and blood circulation can be increased by 
increasing and decreasing the parameter 0G  and permeability parameter M , respectively. Figure 8 shows the 
trend of velocity profile in three dimensions. 
 

 
 

Fig.5. Graph of axial velocity versus r  for various values of the slip parameter 1h  and 0p 2= , 1p 4= , ,0G 3=
, .H 2 M 1 5= = , , ,t 1 b 2= =  ,a 2=  ,2α =  / , . .pi 3 0 25ψ = φ =  

 

 
 

Fig.6. Graph of axial velocity versus r  for various amplitudes of body acceleration 0G  and 0p 2= , 
,  ,1p 4 H 2= =  .M 1 5= , , ,t 1 b 2= =  ,a 2=  α , / , . , . .12 pi 3 h 0 2 0 25= ψ = = φ =  
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Fig.7. Graph of axial velocity versus r  for various values of the permeability parameter  M  and 0G 2= , 

0p 2= , 1p 4= , , ,  ,H 2 t 1 b 2= = =  , ,a 2 2= α =  . , / ,  . .1h 0 2 pi 3 0 25= ψ = φ =  
 

 
 

Fig.8. Graph of axial velocity ( ), u r t  in three dimensions for 0G 2= , 0p 2= , 1p 4= , ,  .H 2 M 1 5= = , 
, , t 1 b 2= = a=2, ,  . ,  / , . .12 h 0 2 pi 3 0 25α = = ψ = φ =  

 
The variations in blood acceleration ( ),  F r t versus time-dependent variant t  of various values of the 

Hartmann number H  and frequency of body acceleration b  have been displayed in Figs 9 and 10. The figures 
show that blood acceleration is decreasing with the enhancement of the Hartmann number H  and b  up to 

. ,t 0 6=  then it is increasing up to .t 1=  It is also observed that blood acceleration shows a reverse behaviour 
for .b 1=  
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Fig.9. Graph of blood acceleration versus t  for various values of the Hartmann number H  and 0G 2= , 0p 2= , 

1p 4= , .0R 0 4= , .M 1 5= , ,b 2=  ,a 2=  2α = , .1h 0 2= , / , . .pi 3 0 25ψ = φ =  
 

 
 

Fig.10. Graph of blood acceleration versus t  for various values of frequency of body acceleration b  and 
, .1 0p 4 R 0 4= = , 0G 2= , 0p 2= , .M 1 5= , a 2= , . , , / , . .1h 0 2 2 pi 3 0 25= α = ψ = φ =  

 
Figures 11 and 12 show the profile of blood acceleration for various values of the permeability 

parameter ,M  and Womersley number .α  It is noticed that blood acceleration increases as the amplitude of 
M  decreases or k  increase and the Womersley number α increases. Moreover, blood acceleration decreases 
along  t up to  . , t 0 6= and then it starts increasing up to t 1= . The outcomes are similar to the results published 
in [11, 16]. 
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Fig.11. Graph of blood acceleration versus t  for different values of the permeability parameter  M  and  0G 2= , 

0p 2= , 1p 4= , .0R 0 4= , ,b 2=  a 2= , . , , / , . .1h 0 2 2 pi 3 0 25= α = ψ = φ =  
 

 
 

Fig.12. Graph of blood acceleration versus t  for different values of the Womersley parameter α and  0G 2= , 

0p 2= , 1p 4= , .0R 0 4= , ,b 2=  ,a 2=  . , , / , . .1h 0 2 2 pi 3 0 25= α = ψ = φ =  
 

Figures 13, 14, and 15 show the variation in ( ), r tτ  versus r  due to the Hartmann number H , 
inclination angle  ,ψ  and visco-elasticity parameter β  in the stenosed region of the artery. It is discovered that 
the shear stress increases with an enhancement of the Hartmann number ,H  inclination angle ,ψ  and visco-
elasticity parameter .β  Shear stress has two regions of circulation for H 3<  and . .0 6β <  After that, it becomes 
flattened for , , H 3 H 4= = and . , .0 8 1β = β =  This implies that the intensity of the magnetic field and visco-

t
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elasticity parameter β affect the circulation region. For a large value of the Hartmann number and visco-
elasticity parameter ,β  circulation is observed at the endpoints of the stenosed artery and for small values, 
circulation happens at the neck of the stenosed artery.  

 

 
 

Fig.13. Graph of shear stress ( ), r tτ  versus r for various values of the Hartmann number H  and 0p 2= , 

1p 4= , ,  . ,  .0 1G 2 h 0 4 M 1 5= = = , , ,t 1 b 2= =  ,2α =  ,a 2=  / , . .pi 3 0 25ψ = φ =  
 

  
 

Fig.14. Graph of shear stress ( ), r tτ  versus r  for different values of the inclination angle ψ  and 
, , , . , . ,  , ,  , , 0 1 0 1p 2 p 4 G 2 h 0 4 M 1 5 t 1 b 2 a 2 2= = = = = = = = α =  . , .0 25 H 2φ = =  
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Fig.15. Graph of shear stress ( ), r tτ  versus r for different values of the visco-elasticity parameter β  and 
, ,  ,  . , . ,  ,  ,  , , . ,  .0 1 0 1p 2 p 4 G 2 h 0 4 M 1 5 t 1 b 2 a 2 2 0 25 H 2= = = = = = = = α = φ = =   

 

 
 

Fig.16. Graph of shear stress ( ), r tτ  versus r  for 1h  and 0p 2= , 1p 4= , 0G = 3, , . , , ,H 2 k 0 4 t 1 b 2= = = =  
a 2= , , / , . .2 pi 3 0 25α = ψ = φ =  

 
Shear stress for different values of the of body acceleration 0G  and slip parameter  1h  in the stenosed 

region is displayed in Figs 16 and 17, respectively. As when we enhance the value of 1h  and 0G , the shear 
stress profile decreases. Shear stress becomes flattened at 0G 0= . The effect of the values of the permeability 
factor  M  on shear stress versus  r in the stenosed region is depicted in Fig.18. It is ascertained from Fig.18 
that as the amplitude of M  reduces, i.e. k  increases, the shear stress profile decreases and it becomes flattened 
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at .M 2 2= . For small values of body acceleration 0G , slip parameter 1h , circulation is observed at the 
endpoints of the stenosed artery and for large values, circulation is observed at the neck of the stenosed artery. 
The outcomes are similar to the results [16, 21, 25, 11, 28]. The effect of various values of the shear stress in 
three-dimensions is shown in Fig.19. 

 

 
 

Fig.17. Graph of shear stress ( ), r tτ  versus r  for amplitude of body acceleration  0G and 0p 2= , 1p 4= , 

, .H 2 M 1 5= = , , ,t 1 b 2= =  , , , . ,  . .1
pia 2 2 h 0 2 0 25
3

= α = ψ = = φ =  

 

  
 

Fig.18. Graph of shear stress ( ), r tτ  versus r  for various values of M  and 0G 2= , 0p 2= , 1p = 4 ,
,  , ,H 2 t 1 b 2= = =  , , . ,  / ,  . .1a 2 2 h 0 2 pi 3 0 25= α = = ψ = φ =  
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Fig.19. Graph of shear stress ( ), r tτ  in three dimensions for 0G 2= , 0p 2= , , ,1p 4 H 2= =  t = , ,1 b 2=  
,a 2=  , . ,  / , . .12 h 0 2 pi 3 0 25α = = ψ = φ =  

 

 
 

Fig.20. Graph of  Q versus r  for the different values of the Hartmann number H  and ,  0 1p 2 p 4= = , 0G 2= , 
. ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  , , / , . .a 2 2 pi 3 0 25= α = ψ = φ =  

 
The trends of flow rate Q  versus r for different values of the Hartmann number H , visco-elasticity 

parameter β , inclination angle ψ , slip parameter 1h , the magnitude of body acceleration 0G  are displayed in 
Figs 20-24. The flow rate reduces as the values of the Hartmann number, inclination angle ψ , and visco-
elasticity parameter β  increase and it amplifies with the enhancement of ,1h  and 0G . The trend of flow rate 
Q  versus  r for the permeability parameter M  is displayed in Fig.25. The flow rate amplifies as the value of 
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the permeability parameter M  decreases, i.e. k increases. The trend of flow rate Q  in three dimensions is 
illustrated in Fig.26. 

 

 
 

Fig.21. Graph of Q  versus r  for different values of the visco-elasticity parameter β  and 0p 2= , 1p 4= , 

0G 2= , . ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  , , / , . .a 2 2 pi 3 0 25= α = ψ = φ =  
 

  
 

Fig.22. Graph of  Q versus r  for different values of the inclination angle ψ  and 0p 2= , 1p 4= , 0G 2= , 
. ,1h 0 4=  .M 1 5= , , ,t 1 b 2= =  , , . , .a 2 2 0 25 H 2= α = φ = =  
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Fig.23. Graph of Q  versus r  for the different values of 1h  and 0p 2= , 1p 4= , , 0G 3 H 2= = , .M 1 5= , 

, , , , / , . .t 1 b 2 a 2 2 pi 3 0 25= = = α = ψ = φ =  
 

 
 

Fig.24. Graph of Q  versus r  for different values of body acceleration 0G and 0p 2= , 1p 4= , H 2= , 
.M 1 5= , , ,t 1 b 2= =  , , / , . , . .1a 2 2 pi 3 h 0 2 0 25= α = ψ = = φ =  
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Fig.25. Graph of Q  versus r  for different values of M  and  0G 2= , 0p 2= , 1p 4= , , H 2= , t 1= , b 2=
, , . , / , . .1a 2 2 h 0 2 pi 3 0 25= α = = ψ = φ =  

 

 
 

Fig.26. Graph of flow rate Q  in three dimensions 0G = 2, 0p 2= , 1p 4= , ,H 2=  .M 1 5= , , ,t 1 b 2= =
 , . , , /  and  . .1a 2 h 0 2 2 pi 3 0 25= = α = ψ = φ =   

7. Conclusion 
 
In the present work, an MHD unsteady blood flow in an inclined porous stenosed artery is examined. 

This work is also useful for assessing the role of porosity. The study has been performed by using a suitable 
analytical method and some appropriate assumptions were made. Some important observations of the present 
work have been given below as: 

1. Axial velocity reduces as the value of the Hartmann number, inclination angle and visco-elasticity 
parameter are increasing but it enhances as the slip parameter and magnitude of body acceleration are 
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enhancing. Thus, blood velocity could be managed by using a relevant magnetic field. It can be 
enhanced by the permeability parameter. 

2. Blood acceleration reduces as the value of the Hartmann number, and body acceleration frequency are 
increasing and it enhances as the value of the Womersley number is increasing. Blood acceleration is 
also increasing with the permeability parameter. 

3. Shear stress enhances while the values of the Hartmann number, visco-elasticity parameter and 
inclination angle are growing and it decreases as the value of the slip parameter and the magnitude of 
body acceleration are enhancing. Shear stress also decreases with the permeability parameter. 

4. Flow rate reduces as the values of the Hartmann number, inclination angle and visco-elasticity 
parameter are increasing but it enhances as slip parameter, and magnitude of body acceleration are 
enhancing. Thus, flow rate could be managed by using a relevant magnetic field. Flow rate enhances 
with the permeability parameter. 
The present study will be useful in medical research for the analysis of cardiovascular diseases through 

magnetic therapy. Understanding of blood acceleration could be helpful in the remedial analysis of some health 
complications like inflammation of the joint, vascular disorder, and blurred vision. 
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Nomenclature 

 
 pf  – oscillations of a heart pulse 
 bf  – frequency of body acceleration 
 0G  – magnitude of body acceleration 
 H  – Hartmann number 
 Hm  – greatest concentration of hematocrit 
 ( )h r  – concentration of hematocrit 
  L  – half artery length  
 0L  – half stenosis length 
 M  – permeability parameter 
 0p  – pressure gradient of steady portion 
 1p  – oscillatory pressure gradient 
 0R  – normal artery radius 
 ( )R z  – stenosed artery radius 
 α  – Womersley parameter 
 0μ  – viscosity coefficient 
 β  – constant 
 δ  – extreme stenosis depth 
 1μ  – coefficient of visco-elastic fluid 
 φ  – phase difference 
 ψ  – inclination angle of the arterial segment 
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