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The present research focuses on two-dimensional deformation in a functionally graded thermoelastic micro-
elongated medium. It is supposed that the non-homogeneous properties (thermal and mechanical) of FGM are in 
the x-direction. The normal mode technique is used to acquire the analytic expression for displacement 
components, stress, micro-elongation and temperature. The cause and effect relationship of non-homogeneity and 
physical quantities is shown through graphical results. 
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1. Introduction 
 
 Biot [1] developed the coupled theory of thermoelasticity to study the weakness of the uncoupled 
theory according to which the elastic deformation does not affect the temperature. To modify the classical 
coupled and uncoupled theory of thermoelasticity, various researchers developed generalized theories of 
thermoelasticity. The micro-elongated medium can be categorised into porous media with gaseous pores, or 
with non-viscous fluid pores in the medium, solid-liquid crystals, composite materials with chopped elastic 
fibers. In the theory of micro-elongation with classical deformation medium, micro-elongation of the material 
particles was found to be volumetric. The material points of the deformation medium contract and stretch 
independently. The nonlinear theory of micro-elastic solids was elaborated by Eringen and Suhubi [2,3]. 
Furthermore, Eringen [4,5,6] described in its linear theory of micropolar elasticity, the macro deformation and 
micro rotations of a material particle in solids. Dhaliwal et al. [7] reported the impact of a continuous line heat 
source on thermoelasticity of isotropes. Sharma and Chauhan [8] also studied the impact of thermal as well as 
mechanical sources in a thermoelastic half-space in a generalized way. Ailawalia and Singla [9] derived the 
solution and reported a significant effect of laser pulse heating on all quantities in an immersed thermoelastic 
micro-elongated layer. Furthermore, Ailawaliaet al. [10] also reported deformation of plain strain in a 
thermoelastic micro-elongated solid as an effect of laser pulse heating. In addition to this, the effect of variable 
heat sources on FGMs was also studied by Shaw and Mukhopadhyay [11].Further consequently, thermoelastic 
interactions were included in the study by Shaw and Mukhopadhyay [12,13] reporting the effect of moving the 
heat source on an isotropic micro-elongated solid in a homogenous medium. Aliawalia et al. [14] also studied 
the internal heat source at an interface under the G-L theory. Deswal and Kalkal [15] discussed magneto-
thermoelastic interactions in an isotropic, microelongated solid which was stressed initially. 
 Marin et al. [16] dealt with problems associated with thetheoryof double porosity structure in a 
thermoelasticmicropolar body. Said et al. [17] derived a solution to the problem related to thermodynamical 
interaction in a micropolar rotated magneto-elastic medium using the normal mode technique. Khan et al. 
[18] examined a third-grade magnetohydrodynamic fluid with variable thermal conductivity and chemical 
reaction over an exponentially stretching surface. Bhatti et al. [19] presented a theory based on the flow of 
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nanoparticles and migratory gyrotactic microorganisms in a non-Newtonian blood-based nanofluid via an 
artery which was anisotropically tapering. 
 A report by Reddy and Chin [20] used Lagrangian finite element formulations. Transient thermal 
stress in a non-homogenous material was discussed by Wang and Mai [21]using the finite element method. 
This technique was also used to study the electro magneto thermoelastic response in an infinite FGM by 
Abbas and Zenkour [22]. Aboudi et al. [23] observed thermoelastic properties in the functionally graded 
composite. Radial vibrations under rotation and gravity field in an orthotropic elastic half-space were 
discussed by Abd-Allaet al. [24]. Abbas [25] included one relaxation time in the study of thermoelasticity in 
a thick-walled FGM. Shankar and Tzeng [26] focused their study on functionally graded beams and found 
exponential variation with the thickness of the thermoelastic material. Mishra et al. [27] studied 
thermoelastic properties of an annular disk under pressure variations and observed the effect of forced 
vibrations in a non-homogenous medium. Gunghas et al. [28] followed the Green-Naghdi model III to study 
two-dimensional deformations. Two-dimensional interactions of magnetic as well as thermoelastic properties in a micropo
 In the present work, by taking the micro-elongation effect and functionally graded medium, we 
developed a model for a thermoelastic micro-elongated solid by using the normal mode technique. The 
thermal and mechanical properties of a functionally graded material vary with an exponential power of the 
space coordinate. The two-dimensional deformation of a functionally graded thermoelastic micro-elongated 
solid subjected to mechanical and thermal sources applied along the free surface has been discussed. The 
analytical expression of displacement components, stress, temperature and micro elongation has been 
obtained. The numerical calculations are performed using MATLAB software. These numerical results of 
normal displacements force stress, temperature distribution, and micro-elongation are presented graphically 
to exhibit the effect of non-homogeneity. 
 
2. Basic equations 
 
 Following Shaw and Mukhopadhyay [11], the field equation of motion for a non-homogeneous, 
isotropic, micro-elongated, thermoelastic solids in the absence of body forces are: 
 

  , , ,( ) ,kl kl r r k l l k 0 1 2k kl 0 klu u u 1 t T
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∂ σ = λδ + μ + − β + δ δ + λ δ φ ∂ 
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The equation of motion for displacement, micro elongation, and temperature varies with respect to equations 
defined by Eringen [31], Kiris and Inan [32] as follows: 
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where ( ) ,

1t0 3 2β = λ + αμ ( ) . 
21 t3 2β = λ + αμ  

 For a non-homogenous medium, the parameters *, , , ,1 0 Kβ β μ λ and , , ,1 0 0aλ λ ρ  became space 

dependent. Here *( ), ( ), ( ), ( ), ( ), ( ), ( ),10 00 0 0 0 10 00f X f X f X f X K f X f X f Xβ β μ λ λ λ ( ),00a f X

( )0 f Xρ , respectively, replace *, , , , , , , ,1 0 1 0 0K aβ β μ λ λ λ ρ with constant values as ,10β ,00β ,0μ *, ,0 0Kλ
,10λ , ,00 00 0aλ ρ  and ( )f X  is a given non-dimensional space variable ( , , )X x y z= . It is supposed that 

properties of materials are dependent on the x coordinate, and notation of ( )f X changes into ( )f x , therefore 
field Eqs (2.5)-(2.7) become: 
 

  
( ) ( )

( ) ( )

( )

( ) ,

2 2 2
1 2 1

0 0 0 0 0 00 1 2k 002 2

2
1 2 1

0 0 0 00 1 2k 00 0 2

u u u Tf x 2 1 t
x y t x xx y

u u uf x 2 1 t T f x
x x y t t

 ∂ ∂ ∂ ∂ ∂ ∂φ λ + μ + λ + μ + μ − β + δ + λ +  ∂ ∂ ∂ ∂ ∂∂ ∂    

 ∂ ∂ ∂∂ ∂ + λ + μ + λ − β + δ + λ φ = ρ  ∂ ∂ ∂ ∂ ∂  

 (2.8) 

 

  
( ) ( )

( )

( ) ( )

( ) ,

2 2 2 2
1 2 1 2 1 2

0 0 0 0 02 2

2
1

00 1 2k 00 0 2

u u u u u uf x f x f x 2
x y x y x x yx y

uT1 t f x
t y y t

   ∂ ∂ ∂ ∂ ∂ ∂∂μ + + μ + + λ + λ + μ +   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

 ∂∂ ∂ ∂φ−β + δ + λ = ρ∂ ∂ ∂ ∂

 (2.9) 

 

  
( ) ( ) ( )

( ) ( ) ( ) ,

2
00 10 1 2k

2
1 2

10 00 0 0 2

a f x f x f x 1 t T
x x t

u u 1f x f x f x j
x y 2 t

∂ ∂φ ∂   ∇ φ + + β + δ +  ∂ ∂ ∂   

 ∂ ∂ ∂ φ−λ φ − λ + = ρ ∂ ∂ ∂ 

 (2.10) 

 

  

* *( ) ( ) ( )

( ) ( ) .

2
0 0 0 2k

2
1 2

00 0 0 2k 10 02

T TK f x T f x C f x 1 t
x x t t

u uT f x t T f x 0
t x y tt

∂ ∂ ∂ ∂   ∇ + − ρ + δ +  ∂ ∂ ∂ ∂   
  ∂ ∂∂ ∂ ∂φ−β + δ + − β =   ∂ ∂ ∂ ∂∂   

 (2.11) 

 
The constitutive components of microelongational stress tensors are given by: 
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3. Exponential variation of non-homogeneity 
 
 An assumption is made about ( ) nxf x e−= where n is a non-dimensional parameter, it can be 
concluded that materials having mechanical as well as thermal properties alter exponentially along the x-
direction.  
 The commanding Eqs (2.8)-(2.11) and the stress Eqs (2.12)-(2.14) can be modified in the non-
dimensional form by establishing the non-dimensional parameters: 
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Using the above mentioned dimensionless variables in Eqs (2.8)-(2.11), after dropping the subscript, we get: 
 

  

,

2 2 2
1 2 1

2 3 1 2k2 2

2
1 2 1

4 1 2k 2

u u u Tl l 1 t
x y t x xx y

u u un l 1 t T
x y t t

 ∂ ∂ ∂ ∂ ∂ ∂φ + + − + δ + +  ∂ ∂ ∂ ∂ ∂∂ ∂    

 ∂ ∂ ∂∂ − + − + δ + φ =  ∂ ∂ ∂ ∂  

 (3.1) 

 

  ,
2 2 2 2

2 1 2 1 2 2
3 2 1 2k 32 2 2

u u u u u uTl l 1 t nl
x y t y y x yx y t

   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂φ + + − + δ + − + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂     
 (3.2) 

 

  ,
2

2 1 2
5 1 2k 6 7 8 2

u un l 1 t T l l l
x t x y t

 ∂ ∂∂φ ∂ ∂ φ   ∇ φ − + + δ − φ − + =   ∂ ∂ ∂ ∂ ∂     
 (3.3) 

 

  
2

2 1 2
9 0 1k 10 0 1k 2

u uT TT n l 1 t l t
x t t t x yt

  ∂ ∂∂ ∂ ∂ ∂ ∂   ∇ − − + δ − + δ +      ∂ ∂ ∂ ∂ ∂ ∂∂      
,11l 0

t
∂φ− =
∂

  (3.4) 

 

  ,nx1 2
xx 4 2

u ul a T e
x y

− ∂ ∂σ = + − + φ ∂ ∂ 
  (3.5) 

 

  ,nx1 2
yy 4 2

u ul a T e
x y

− ∂ ∂σ = + − + φ ∂ ∂ 
  (3.6) 

 

  nx1 2
xy 3

u ul e
y x

− ∂ ∂σ = + ∂ ∂ 
 (3.7) 

 
where 
 



A. Sharma and P.Ailawalia  159 

  ,0 0
2 2

0 1
l

c
λ + μ

=
ρ

,0
3 2

0 1
l

c
μ

=
ρ

,0
4 2

0 1
l

c
λ

=
ρ *

,2

2
00 10 1

5
00

cl λ β
=

β ω *
,2

2
10 1

6
cl λ

=
ω

 

 

  
*

,2

2
00

7
0

l λ
=

ω ρ
,2

8 0 0 1
1l j c
2

= ρ
*

* * ,
2
1

9
0

c cl
K

=
ω * *

,2
00 0

10
0 0

Tl
K

β
=

ρ ω
* * .

2
10 00 0 1

11
00 0

T cl
K

β β
=

λ ω
 

 
4. Solution of the problem 
 
 To find the solution of physical variables in the above equations, normal mode analysis is used as 
follows: 
 
  * * * *( , , , )( , , ) ( , , , )( ) t by

i ij i iju T x y t u T x eω +ιφ σ = φ σ  (4.1) 
 
where ω  is the complex frequency, b defines the wave number in the y-direction, and * * * *, , ,i iju T φ σ are the 
amplitudes of the field quantities.  
Using Eq.(6.1) in Eqs (3.1)-(3.7), we get 
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The general solution of Eq.(4.9) which is bounded as x→ꝏ is given by: 
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In view of solution (4.10)-(4.13), stress components (4.6)-(4.8) become: 
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5. Boundary conditions 
 
To calculate the values of ( ) , , ,iA i 1 2 3 4= , we use the mechanical and thermal boundary condition at the free 
surface x 0=  as: 
 
5.1. Mechanical boundary conditions 
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The above boundary conditions in the form of a non-homogeneous matrix showing non dimensional 
expression of stress as well as temperature as mentioned above in Eqs (5.1)-(5.4) are shown as follows  
 

  

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4

U U U U A F
W W W W A 0
S S S S A 0
Y Y Y Y A 0

−     
     
     =
     
     

    

. (5.5) 
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We obtain the values of ( ) , , ,iA i 1 2 3 4=  from the solution of the system (5.5) as 
 

  i
iA Δ

=
Δ

 

where 
  ,1 1 2 2 3 3 4 4U L U L U L U LΔ = − + −  
 
  ( ) ,i

i i1 FLΔ = − ( , , , )i 1 2 3 4= , 
 
  ( ) ( ) ( ),1 2 3 4 3 4 3 2 4 2 4 4 2 3 2 3L W S Y Y S W S Y Y S W S Y Y S= − − − + −  
 
  ( ) ( ) ( ),2 1 3 4 3 4 3 1 4 1 4 4 1 3 1 3L W S Y Y S W S Y Y S W S Y Y S= − − − + −  (5.6) 
 
  ( ) ( ) ( ),3 1 2 4 2 4 2 1 4 1 4 4 1 2 1 2L W S Y Y S W S Y Y S W S Y Y S= − − − + −  
 
  ( ) ( ) ( )4 1 2 3 2 3 2 1 3 1 3 3 1 2 1 2L W S Y Y S W S Y Y S W S Y Y S= − − − + −  
where 
  ,1 21 1S H K= − ,2 22 2S H K= − ,3 23 3S H K= − ,4 24 4S H K= −  
 
    ,1 31Y H= −   ,2 32Y H= −  ,  3 33Y H= −  4 34Y H= − . 
 
5.2. Thermal boundary conditions 
 
To determine the constants ( ) , , ,iA i 1 2 3 4=  the boundary conditions at the free surface x 0=  are 
a)  
  0, xxσ =   (5.7) 
b)  
     ,xy 0σ =   (5.8) 
c)  

     P ,t byT e
x

ω +ι∂ =
∂

  (5.9) 

d)  
  .0φ =   (5.10) 
 
The above boundary conditions in the form of a non-homogeneous matrix showing non dimensional 
expression of stress as well as temperature as mentioned above in Eqs (5.7)-(5.10), are shown as follows: 
 

  

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4

U U U U A 0
W W W W A 0
M M M M A P
Y Y Y Y A 0

     
     
     =
     
     

    

. (5.11) 

 
We obtain the values of ( ) , , ,iA i 1 2 3 4=  from the solution of the system (5.11) as 
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*

*
i

iA Δ
=

Δ
 

 
where 
 
  * * * * *,1 1 2 2 3 3 4 4U L U L U L U LΔ = − + −   
 
  * *,i iPLΔ = ( , , , )i 1 2 3 4=  
 
  * ( ) ( ) ( ),1 2 3 4 3 4 3 2 4 2 4 4 2 3 2 3L W M Y Y M W M Y Y M W M Y Y M= − − − + −  
 
  * ( ) ( ) ( ),2 1 3 4 3 4 3 1 4 1 4 4 1 3 1 3L W M Y Y M W M Y Y M W M Y Y M= − − − + −  (5.12) 
 
  * ( ) ( ) ( ),3 1 2 4 2 4 2 1 4 1 4 4 1 2 1 2L W M Y Y M W M Y Y M W M Y Y M= − − − + −  
 
  * ( ) ( ) ( ),4 1 2 3 2 3 2 1 3 1 3 3 1 2 1 2L W M Y Y M W M Y Y M W M Y Y M= − − − + −  
 
  ,1 21S H= ,2 22S H= ,3 23S H= .4 24S H=  
 
6. Numerical results 
 
 To compute the results numerically, constant values of an aluminum epoxy-like material are taken as 
in Shaw and Mukhopadhyay [12,13] 
 
   .   ,    .  ,   .   ,10 2 10 2 10

07 59 10 Nm µ 1 89 10 Nm a 0 61 10 N− − −λ = × = × = ×  
 
  *   .   ,   .   ,   ,3 3 5 2 1 1 1

1 02 19 10 Kgm 0 05 10 Nm K C 966 JKg K− − − − −ρ = × β = β = × =  
 
    ,  .   ,    .   ,4 2 10 2

0 0 0 1T 293K j 0 196 10 m 0 37 10 Nm− −= = × λ = λ = ×  
 
  *. ,   . ,   .1 1 1

0 1t 0 02 t 0 003 K 252Jm s K− − −= = =  
 
Assuming    ,  . ,    . ,     . ,0 0 0 3 0 2 and b 0 3ω = ω + ιξ ω = − ξ = =  the value of non-dimensional time 

( )  .      .t 0 1 0 x 20 0= ≤ ≤ surface value  . ,y 1 0= are derived in numerical results and the values for 
microelongation, normal displacement, temperature as well as forced stress are reflected in Figs 1 to 4. These 
numerical values are in accordance with the Lord-Shulman (L-S) and Green-Lindsay (G-L) theories of 
thermoelasticity. 
 
7. Discussions 
 
Figures 1 to 4 show that values (in the range of  n 0= and  1n = ) for microelongation, normal 
displacement, forced stress and temperature are very close according to the L-S and G-L theories. An 
exponential increase of these quantities is also observed with respect to ‘ n ’. The variations of all the above 
mentioned quantities are similar in nature but the magnitude of normal displacement is greater as compared 



A. Sharma and P.Ailawalia  165 

to microelongation and temperature distribution. In contrast to the variation in normal displacement, 
microelongation and temperature distribution, the values of normal force stress increase sharply for a 
homogeneous medium i.e. for   0n = . Figure 2 illustrates changes in magnitude of normal forced stress with 
nand it is observed that the magnitude of normal forced stress was quite smaller in a non-homogeneous 
medium (i.e.   ; .) n 1 3=  
 

 
 

Fig.1. Variation of normal displacement 2u  with distance  x . 
 

 
 

Fig.2. Variation of normal force stress yyσ  with distance x . 
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Fig.3. Variation of microelongation ϕ  with distance x . 
 

 
 

Fig.4. Variation of temperature 𝑇 with distance 𝑥. 
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8. Conclusion: 
 
 The two-dimensional deformation in a functionally graded thermoelastic microelongated solid has 
been investigated and the components of displacement, stress, temperature and microelongation have been 
evaluated subject to thermal and mechanical boundary conditions. The results demonstrate that:  
1. The variations of physical quantities are similar in nature for both thermal and mechanical boundary 

conditions.  
2. The variations are also similar in nature for the Lord-Shulman (L-S) and Green- Lindsay (G-L) theories 

of thermoelasticity. 
3. The effect of non-homogeneity is observed on all the quantities. 
4. While the values of temperature distribution, microelongation and normal displacement increase with an 

increase in value of parameter n , the values of normal force stress decrease with parameter n . 
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Nomenclature: 
 
 , ,1 0β β , ,0 1 0aλ λ  – microelongational constants 

 *C  – specific heat at constant strain 

 *K  – thermal conductivity 
 ,

1 2t tα α  – coefficient of linear thermal expansion 

 T  – temperature 
 0T  – reference temperature 

 0j  – microinertia 

 ,0 1t t  – thermal relaxation times 

 ρ  – density 

 iu  – displacement vector 

 φ  – microelongational scaler 

 ,λ μ  – Lame’s elastic constants 

 σ  – microelongational stress tensor 
 klδ  – Kronecker delta 

 s  – components of stress tensor 
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