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This study presents an improvement of the graphical method for plotting the shear and moment diagrams for 
the structural members under linearly varying loads (triangular and trapezoidal loads). Based on the parabolic nature 
of the shear function, when the loading varies linearly, and on the relations among load, shear, and moment, a 
mathematical equation is developed to locate the zero-shear point, while a geometric technique is presented to 
calculate the parabolic shear area. Five comprehensive examples of beams loaded with linearly varying loads are 
selected to illustrate the steps of the solution for the proposed techniques. The results demonstrated the applicability 
of the presented method, and gave exact diagrams compared with the basic graphical method. It is concluded that 
the proposed improved method is generally more convenient, less time-consuming, and has less computational 
efforts because it does not require sectioning, solving equilibrium equations, and quadratic formulas compared with 
the basic graphical method. 
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1. Introduction 
 

When a structural member is subjected to external loads, internal forces are developed in order to 
maintain the equilibrium [1, 2]. The internal shear forces and the internal bending moments are considered to 
be the foremost imperative internal forces in the analysis and design of the structural members because the 
computations of stresses and deformations depend mainly on these two essential internal forces [3]. Since the 
internal shear forces and bending moments are varying from point to point along the member, it is helpful to 
visualize this variation by constructing plots called the shear and moment diagrams [1, 2, 4, 5]. 

The shear and moment diagrams are graphs with an abscissa representing the locations of the sections 
along the member, and an ordinate representing the values of the internal shears and internal moments at the 
corresponding sections, respectively [2]. The shear diagram (V-diag. or S-diag.) and the moment diagram  
(M-diag.) provide detailed information about the change in shear and moment throughout the member as well 
as the maximum values and their locations [1]. 

There are many approaches of constructing (or plotting) the shear and moment diagrams for the loaded 
members. However, two methods are the most common methods that are discussed in the literature; the method 
of sections and the graphical method. 

The method of sections is the basic method for constructing the shear and moment diagrams. This 
method was presented by Hibbeler [1], Onouye and Kane [2], Goodno and Gere [4], Kassimali [5], Pytel and 
Kiusalaas [6], Muvdi and Elhour [7], Beer et al. [8], Hibbeler [9], Limbrunner and D’Allaird [10], Mott and 
Untener [11], and Ranzi and Gilbert [12]. In this method, the functions of the shear and the moment are 
developed for each segment between the discontinuity points throughout the member. The discontinuity points 
represent the points of the sudden change in loading and the support reactions. Each segment is sectioned at a 
distance x, usually from the starting point on the left of the member, then a free body diagram is constructed 
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for each segment to establish the equations of the shear and the moment in terms of the distance x by applying 
the equilibrium equations. Finally, the equations of the shear and moment for each segment are plotted to 
achieve the shear and moment diagrams.  

Another common method is the graphical method; which is generally preferred by engineers in plotting 
the shear and moment diagrams because it is faster and simpler compared with the method of sections. This 
method was presented by Hibbeler [1], Onouye and Kane [2], Kassimali [5], Pytel and Kiusalaas [6], Beer et 
al. [8], and Hibbeler [9]. The graphical method is based on the relations among the loading, shear force and 
bending moment, in which the values and the properties of the shear and moment diagrams are determined 
according to the relations below: 

- The slope of the shear diagram equals the intensity of the load diagram and the change in the shear 
equals the area under the load diagram. 

- The slope of the moment diagram equals the intensity of the shear diagram and the change in the 
moment equals the area under the shear diagram. 
The values of the shear due to the concentrated force and the moment due to couple moments are 

established according to a sign convention, while in the case of the distributed loads these values are calculated 
from the areas under the load diagram and the shear diagram, respectively. The degree of the diagram lines is 
also identified based on the above relations.  

The method of integration is one of the approaches for constructing the shear and moment diagrams. 
This method is reported by Goodno and Gere [4], Kassimali [5], Beer et al. [8], and Mott and Untener [11]. In 
this method, the functions of the shear and the moment are developed by integrating the load and the shear 
functions,  respectively, and then plotting the diagrams.  

Boedo [3] and Beer et al. [8] presented a technique of using the polynomial-based singularity function, 
in mathematics, to construct the shear and moment diagrams. In this technique, the load diagram is represented 
by a singularity function, then the integration is used to develop the functions of the shear and moment, and 
finally plotting these functions as diagrams. This approach is characterized by some complexity due to using 
long polynomial functions and mathematical processes to achieve the diagrams. 

On the other hand, as a result of the challenges that researchers confront in sketching the shear and 
moment diagrams, in their courses, Lumsdaine and Ratchukool [13] developed multimedia tools, whereas 
Philpot et al. [14] investigated the influence of using the computer-aid tools for improving the skills of 
constructing the shear and moment diagrams. Moreover, Le et al. [15] presented, to the students, a simple 
graphical procedure for plotting the shear and moment diagrams for the members subjected to simple loading 
cases; concentrated loads and uniformly distributed loads. 

The structural members are always exposed to various types of loadings while performing their 
functions in the structures, such as the concentrated loads, uniformly distributed loads, and linearly varying 
distributed loads. The linearly varying distributed loads (triangular and trapezoidal loads) which can be applied 
to the structural members due to supported two-way roofs and the hydrostatic pressures, are considered to be 
one of the common loading cases in civil engineering structures. But the task of plotting the shear and moment 
diagrams for the members under these loadings is characterized by some difficulty and is time-consuming 
compared with plotting these diagrams for concentrated and uniformly distributed loads.  

Due to the parabolic nature of the shear diagrams, dealing with linearly varying loads (triangular and 
trapezoidal loads) still involves several slow stages. Even if the graphical method is employed, the locating of 
the zero-shear point, which is a necessary value in plotting the shear and moment diagrams, requires sectioning 
the member and applying equilibrium equations, which is a time-consuming process with the potential for 
errors. However, Onouye and Kane [2] adopted a quicker approach in utilizing the graphical method for the 
beams under triangular loadings by computing the area under the loading diagram in terms of the location for 
the zero-shear point, then finding the location based on equating the load intensity with the change in shear 
forces. In addition, for calculating the area under the parabolic curve, they used the formula of the area under 
the parabola (the area equals one third of the base times the height) to obtain the values of the moment diagram. 
Although the technique presented by Onouye and Kane [2] is helpful, dealing with members under trapezoidal 
loads was not considered in their technique.  
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The purpose of this study is to present an improvement for the graphical method of plotting the shear 
and moment diagrams for the structural members under linearly varying distributed loads (triangular and 
trapezoidal loads). The proposed method intends to contribute to a quick and helpful procedure based on the 
parabolic shape and the relations among the external loading, internal shear, and internal moment, rather than 
employing the monotonous sectioning technique. The study is motivated by the need of simpler and more 
convenient techniques for locating the zero-shear point and computing the area under the shear parabolic 
diagram for the structural members under triangular and trapezoidal loads, as the available methods are 
utilizing the tedious sectioning technique to achieve this goal. 

 
2. Methodology 

 
This study aims to provide a quick geometric approach for drawing the shear and moment diagrams 

of the structural members under linearly varying loads (triangular and trapezoidal loads). The proposed 
approach is based on the general graphical method but with two improvements relevant to the zero-shear point 
and the area under the shear diagram. Hence, this work includes two specific points; formulation of a technique 
for locating the zero-shear point on the shear diagram, and presenting a geometric technique for calculating 
the area under the parabolic shear diagram.  

It is necessary to establish the sign convention for the loading, shear, and moment in order to define 
the positive and negative values for these quantities. The sign convention adopted in this study is the same as 
that often used in practice, and it was adopted by Hibbeler [1], Goodno and Gere [4], Kassimali [5], Muvdi 
and Elhouar [7], Beer et al. [8], and Hibbeler [9]. In this sign convention, the loading that acts upward, the 
shear force that causes a clockwise rotation of the member segment, and the moment that causes sagging of 
the member segment are all defined as positive values. The opposite directions are considered as negative 
values. 

 
2.1. Formulation of a technique for locating the zero-shear point 

 
In the construction of the shear and moment diagrams, determining the location of the zero-shear 

section is necessary because it is utilized in plotting the moment diagram and identifying the position of the 
peak value of the moment. This subsection presents the formulation of a geometric technique to locate the 
zero-shear point for the members under linearly varying loads, that is adopted in this study. The formulation 
of the geometric technique is based on the equation of the parabola and the relation between the load and the 
shear functions.  

The equation of a parabola, in the x-y plane, with a vertex at the origin can be defined as: 
 

    2y ax= , (2.1) 
 

in which, a represents the constant of the parabola [16].  
The general equation of the parabola (   2y ax bx c= + + ) represents a shifted equation from the 

parabola   2y ax=  [17] as shown in Fig.1. This means that the equation of each shifted parabola becomes 

  2y ax=  when the location of its vertex is transferred to the origin.  
Since the change in a shear diagram between two points represents the integration of the loading 

diagram throughout these points [5, 9], then the first-degree of the loading diagram, which occurs in linearly 
varying loads, leads to a second-degree (parabolic) shear diagram. Therefore, the function of the internal shear 
for a member under linearly varying loads can be expressed in the form of the parabola   2y ax=  as follows: 

 
     2V ax= , (2.2) 
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in which, V  is the value of the shear with respect to the vertex of the parabola, x  is the location of the section 
on the member with respect to the vertex of the parabola. 

 

 
 

Fig.1. The parabola 2y ax=  and its shifted parabola. 
 

The vertex of the parabola in Eq.(2.2) has a zero-slope tangent at the corresponding zero-load point 
because, as aforementioned in the previous section, the slope of the shear diagram equals the intensity of the 
load diagram. Hence, the location of the vertex for the parabola in Eq.(2.2) can be identified based on the 
location of the zero-load point. For the case of triangular loading, the location of the zero-load point is known 
as the point of the zero-load is available, but in the case of trapezoidal loading, the location of the zero-load 
point is located at an imaginary point (the point where the load diagram intersects the member). Figures 2 and 
3 show the difference in the locations of the parabola vertices under triangular and trapezoidal loadings 
respectively, noting that the local coordinate axes for the parabola are x and V, while the global coordinate 
axes for the shear diagram are X  and S . 

To find the constant a  of the parabola in Eq.(2.2), the first step is computing the slope of the shear 
diagram by the differentiation of the shear V  in Eq.(2.2) with respect to the distance x to obtain: 

 

    dV 2ax
dx

= , (2.3) 

 
Since the slope of the shear diagram is equal to the load intensity (as aforementioned), then Eq.(2.3) 

can be expressed in terms of the load intensity on the member as follows: 
For the triangular loading with a maximum load intensity ,w  as shown in Fig.2, the vertex of the shear 

parabola is located below the zero-load point. If the local coordinates of the parabola ( x  and V ) are established 
such that the vertex of the parabola is located at the origin as shown in Fig.2, then the intensity of the load 
when   x L=  is equal to .w  Thus, Eq.(2.3) becomes: 

 
  w  2aL= ,  (2.4) 
 
which leads to the value of the constant a  to be: 
 

   wa
2L

= . (2.5) 
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Fig.2. Location of the vertex of the parabola under triangular loading. 
 

In the case of the trapezoidal loading, the constant a can also be determined by following the same 
steps for the triangular loading. Here, if s  represents the distance from the vertex of the parabola to the point 
of the maximum intensity of the trapezoidal load 2w  as shown in Fig.3., then the slope of the shear diagram 
in Eq.(2.3) is equal to 2w  at   x s= . Thus, Eq.(2.3) becomes: 

 
  2w 2as= , (2.6) 

 
then the constant of the parabola a can be determined as: 
 

   2wa
2s

= .  (2.7) 

 
It can be clearly noticed that the value of ( )/w L  in Eq.(2.5) and the value of ( )/2w s  in Eq.(2.7) are 

both equal to the slope of the loading diagram m  for the triangular and trapezoidal loadings, respectively. 
Therefore, the constant a  of the parabola in Eq.(2.5) and Eq.(2.7) can be expressed in terms of the loading 
slope m  as follows: 

 

    ma
2

= . (2.8) 

 
By substituting the value of the parabola constant a from Eq.(2.8) into Eq.(2.2), the equation of the parabola 
for the shear diagram becomes: 
 

     2mV x
2

=   (2.9) 

 



M.A.Husain and A.S.Ali  51 

The above equation represents an equation of a parabola, with a vertex at the origin. It relates the value 
of the shear V  to the location of the section x  by a constant and represents the half of the loading diagram 
slope ( )/ ,m 2  provided that both V  and x  are measured with respect to the vertex of the parabola. This 
equation is considered the key equation for the proposed approach in this study because the shear value can be 
calculated easily from this equation as the slope of the linearly varying loading m  can be calculated easily, 
noting that the value of the shear V  in this equation represents the ordinate of the shear diagram with respect 
to the parabola vertex, not the actual shear value ( )S  on the member, since the actual shear value on the 
member is measured according to the main global centroidal axis of the member ( X  -axis) as shown in Figs 
2 and 3. The parabola in Eq.(2.9) represents the curve of the shear diagram in the region below the triangular 
or trapezoidal loads.  
 

 
 

Fig.3. Location of the vertex of the parabola under trapezoidal loading. 
 

Finally, to plot this parabola, it is required to determine the coordinates of its vertex. The vertical 
coordinate of the vertex can be determined from the change in the shear ( )SΔ  by using simple adding and/or 
subtracting for the shear values on the shear diagram, while the horizontal coordinate of the vertex is 
determined in different ways for the triangular and trapezoidal loadings.  

For the triangular loading, the vertex of the parabola is located horizontally at the same distance of the 
zero-load point as shown in Fig.2, while for the trapezoidal loading, if the vertex of the parabola is assumed to 
be located at a distance d  from the point of the minimum load intensity of the trapezoidal loading, as shown 
in Fig.3, then this distance can be calculated from the slope m  of the load diagram as: 

 

      
 

1wd
m

= . (2.10) 

 
It can be noticed from the preceding formulation that the zero-shear point can be determined by solving 

Eq.(2.9) for the distance x. The parameters that are needed to solve Eq.(2.9) are: the slope of loading diagram ,m  
the location of the parabola vertex, and the value of the shear V  with respect to the parabola vertex. 
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2.2. Calculating the area under the shear diagram 
 
Since the function of the shear diagram of a member subjected to a triangular or trapezoidal load is a 

parabolic equation, then it is convenient to find the area under the shear diagram geometrically, rather than 
using the method of sections.  

If the parabola opens upward with a vertex located at the origin, as shown in Fig.4a, the area under the 
parabola can be calculated by the following equation [1, 9]: 

 

       1
1A b h
3

= , (2.11)  

 
in which, 1A  is the area under the parabola which opens upward with a vertex at the origin, b  is the horizontal 
distance from the origin to a given point (the base length), h  is the vertical distance from the origin to a given 
point (the height). 
 

 
 

Fig.4. The area under the parabola. 
 

The area of the spandrel portion ,2A  which is located above the area 1A  as shown in Fig.4a, can be 
calculated by subtracting the area 1A  from the rectangular area ( )b h×  to get: 

 

   2
2A bh
3

= . (2.12) 

 
When the parabola opens downward as shown in Fig.4b, the areas 1A  and 2A  can be calculated by 

using the same equations, Eq.(2.11) and Eq.(2.12), respectively. 
Equations (2.11) and (2.12) can be easily proven by applying the concept of the area under curves 

using the definite integration. But one should pay attention that the areas calculated from these equations were 
developed based on the location of the vertex of the parabola (the zero-slope point). Therefore, these equations 
are employed to calculate the area of any portion under or above the parabola in the shear diagram, provided 
that the base b  and the height h  of the parabola are measured from the vertex (at zero-slope point). If the 
parabolic shear diagram has not zero-slope tangent, it is necessary to locate the point of the zero-slope, which 
represents the location of the vertex of the parabola, in order to apply Eq.(2.11) and Eq.(2.12) correctly.  
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It is necessary to mention that Onouye and Kane [2] have used the above principle in calculating the 
area under the shear diagram for the case of the triangular load only (calculating the area under trapezoidal 
load was not presented). 

In the current study, this geometric approach of calculating the parabolic areas is presented for the 
members under both the triangular loading and the trapezoidal loading.  

 
2.3. Procedure for the improved graphical method 
 

After upgrading the method with the techniques presented in this paper, the suggested name of the 
graphical method is chosen to be the improved graphical method. The proposed procedure of plotting the shear 
and moment diagrams has the same steps that were utilized within the basic graphical method presented by 
Hibbeler [1], Kassimali [5], Pytel and Kiusalaas [6], Beer et al. [8] except two differences in determining the 
location of the zero-shear point and the area under the parabolic shear curve. The main steps for determining 
the location of the zero-shear point and the parabolic area by using the improved graphical method can be 
summarized as follows: 
 
Step 1:  
Computing the slope of the loading diagram .m   
Step 2:  
Developing the equation of the shear parabola (the equation of the shear V  as a function of the distance x  
with respect to the parabola vertex) by applying Eq.(2.9). 
Step 3:  
Identifying the vertex of the parabola, which it located horizontally corresponding to the zero-load point (for 
triangular loading) or to the imaginary zero-load point (for trapezoidal loading), and located vertically 
according to the shear value at a given horizontal distance. In the case of the trapezoidal loading, Eq.(2.10) is 
used to find the horizontal location, while the parabola equation that was developed in Step 2 is utilized to find 
the vertical location of the parabola vertex. 
Step 4:  
Locating the zero-shear point by substituting the value of the shear ,V  at which the parabola intersects the  
X -axis, into the parabolic equation that was developed in Step 2, and solving the equation for the distance .x  

The zero-shear point is evaluated geometrically based on the distance .x   
Step 5:  
Calculating the area under the parabolic shear diagram by using Eq.(2.11) and/or Eq.(2.12) based on the 
location of the parabola vertex. The area is utilized to evaluate the maximum and/or minimum points on the 
moment diagram. 

Furthermore, to simplify the calculations of the proposed method, the positive direction of the vertical 
axis of the parabola (V -axis) is assumed in the direction of the focus of the parabola (the positive direction of 
the vertical axis is assumed to be downward if the parabola opens downward and vice versa), while the positive 
direction of the horizontal axis of the parabola (x-axis) is assumed to be directed towards the zero-shear point. 

 
3. Applications 

 
In order to examine the applicability of the proposed improved graphical method, and to study the 

differences in solutions obtained by the basic graphical method and improved method, five examples of beams 
subjected to various cases of linearly varying loads are selected to construct their shear and moment diagrams. 
In the first two examples, two solutions are presented for locating the zero-shear point and computing the 
maximum moment values under the regions of linearly varying load; The basic graphical method is used in 
the first solution since it was used in most of the literature, while the proposed improved graphical method is 
used as the other solution to illustrate its procedure and to compare the two solutions. The remaining three 
examples are solved by using only the proposed improved graphical method to illustrate how to apply its 
procedure. The procedure mentioned in the previous section is followed in the solutions of the proposed 



54  Improvement of the graphical method in plotting the shear … 

method. Other details of how to construct the shear and moment diagrams are not mentioned in these examples 
because these details are widely available in the literature that deal with the graphical method. 

These five examples introduce comprehensive cases of beams that are found in practice. Regarding 
the frame members, since the procedure of constructing the shear and moment diagrams for the frame members 
is completely identical to the procedure for the beams, only the examples of the beams are presented in this 
study to avoid long computations in the frame cases. 

 
Example 1: This example is presented by Hibbeler [1]. It is a simply supported beam subjected to a triangular 
loading along its span as shown in Fig.5. The reactions are calculated as shown in Fig.6a, and the shear and 
moment diagrams are shown in Figs 6c and 6d, respectively. 
 

 
 

Fig.5: The beam of example 1. 
 

Solution I (by using the basic graphical method): 
 

The steps of solution were as follows: 
Step 1:  
Sectioning the beam at a distance x where the internal shear force S equals zero as shown in Fig.6b (the distance 
x represents the location of the zero-shear point measured from the point A). 
Step 2:  
Finding the intensity of the loading at a distance x based on the similarity of triangles, ( ) = /  w 20 9 x . 
Step 3:  
Applying the equilibrium equation for the vertical forces in the free body diagram, Fig.6b, to find the shear S 
as a function of the distance x, ( ) /  2S 30 10 9 x= − . 
Step 4:  
Substituting S 0=  into the equation in step 3 to obtain .  x 5 2 m= . 
Step 5:  
Evaluating the maximum moment, which occurs at the zero-shear point ( )at . ,x 5 2m=  by using the section 
technique. The equilibrium equation for the moments in the free body diagram shown in Fig.6b was applied 
to get the maximum moment of  . .104 kN m  
 
Solution II (by using the improved graphical method): 
 

Referring to Fig.6, the steps for locating the zero-shear point and computing the value of the maximum 
moment by using the proposed technique are as follows: 
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Fig.6. The diagrams of example 1. 
 
Step 1:  
Computing the slope of the loading diagram m by dividing the maximum intensity of the load by the loading 
length to get /m 20 9= . 
Step 2:  
Developing the shear parabola by applying Eq.(2.9) to obtain ( ) /  2V 10 9 x= . 
Step 3:  
Identifying the vertex of the parabola to be horizontal at point A (below the zero-load point) and vertical at the 
value of V 30kN=  (the value of the reaction at A). 
Step 4:  
The parabolic function in step 2 intersects the X-axis when V 30kN=  as shown in Fig.6c, thus substituting 

V 30kN=  in the parabolic function ( ) /  2V 10 9 x=  yields the distance .  ,x 5 2 m=  which represents the 
location of the zero-shear point. 
Step 5:  
To find the maximum moment, the shaded area MNSA  in Fig.6c is calculated directly according to Eq.(2.12) 
since the slope at the vertex N   is zero (the case of 2A  in Fig.4b). By substituting .b 5 2m=  and h 30kN=  in 
Eq.(2.12), we get a maximum moment of  .104 kN m . 
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This example represents the case of a beam subjected to a common and simple triangular loading. It can be 
seen that the method proposed in this study (Solution II) gave the same results as the method presented by 
Hibbeler [1] (Solution I). For comparison, the method proposed in this study seems to be more convenient 
compared with the method of Solution I because it does not require taking a section and applying equilibrium 
equations, but it depends on the parabolic equation, ( ) /  2V 10 9 x= , which it developed simply from knowing 
the slope of the loading diagram. Regarding computing the parabolic areas, the proposed geometric method is 
characterized by a systematic process depending on simple equations dealing with a simple geometry. It is 
necessary to note that the distances b and h of the parabola in Fig.6c are measured according to the vertex 
(point N), which has a zero-slope tangent. Even if the number of the steps for the two solutions appears equal, 
actually Solution I took more computation efforts and time since both the sectioning and the equilibrium 
equations were utilized twice for determining the zero-shear point and the maximum moment.  

 
Example 2: This example is presented by Ranzi and Gilbert [12]. It is a simply supported beam subjected to 
a trapezoidal loading along its span as shown in Fig.7. The reactions are calculated as shown in Fig.8a, and the 
shear and moment diagrams are shown in Figs 8c and 8d, respectively. 
 

 
 

Fig.7. The beam of example 2. 
 

Solution I (by using the basic graphical method): 
 

The steps of solution were as follows: 
Step 1:  
Sectioning the beam at a distance x where the internal shear force S equals zero as shown in Fig.8b (the distance 
x represents the location of the zero-shear point measured from the point A). 
Step 2:  
Finding the intensity of the loading at a distance x based on the similarity of triangles,  .  w 0 75 x= . 
Step 3:  
Applying the equilibrium equation for the vertical forces in the free body diagram, Fig.8b, to find the shear S 
as a function of the distance x , ( ) /  2S 3 8 x 6 x 32= − − + .  
Step 4:  
Substituting S=0 into the equation in step 3 and solving the quadratic formula to obtain .x 4 22m= . 
Step 5:  
Evaluating the maximum moment, which occurs at the zero-shear point ( )at . ,x 4 22m=  by using the section 
technique. The equilibrium equation for the moments in the free body diagram shown in Fig.8b was applied 
to get the maximum moment of .  .72 2 kN m . 
 
Solution II (by using the improved graphical method): 
 

Referring to Fig.8, the steps for locating the zero-shear point and computing the value of the maximum 
moment by using the proposed technique are as follows: 
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Step 1:  
Computing the slope of the loading diagram m by dividing the difference between the maximum and the 
minimum load intensities of the trapezoidal load by the loading length to get the slope m=0.75 
Step 2:  
Applying Eq.(2.9) to obtain the shear parabolic function  .  2V 0 375 x= . 
Step 3:  
From the minimum load intensity (w1=6 kN/m) and the loading slope (m=0.75), the location of the parabola 
vertex d is obtained by applying Eq.(2.10) to get d=8 m (to the left of point A) as shown in Fig.8c. The ordinate 
of the parabola vertex is computed by adding the vertical distances QR and RK in Fig.8c. The distance QR 
represents the reaction at the support A (32 kN), while the distance RK is obtained by substituting the distance 
d=8 m into the parabolic function from step 2 to get V=24 kN. Thus, the ordinate of the vertex becomes (

 32 24 56 kN+ = ). 
 

 
Fig.8. The diagrams of example 2. 

 
Step 4:  
The parabolic function in step 2 intersects the X-axis when V=56 kN as shown in Fig.8c, thus, substituting 
V=56 kN in the parabolic function  .  2V 0 375 x=  yields the distance x=12.22 m (the location of the zero-shear 
point with respect to the vertex). Finally, the location of the zero-shear point is calculated by subtracting the 
distance 8 m from the total distance 12.22 m to get the distance of 4.22 m. 
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Step 5:  
Based on the location of the parabola vertex J (the zero-slope point), the shaded area AQRP in Fig.8c is calculated 
geometrically from the parabolic areas AHJP and AIJR, and the rectangular area AHIRQ as follows: 
 
   QRP HJP IJR HIRQA A A A= − − . (3.1) 
 
The parabolic areas AHJP and AIJR are calculated according to Eq.(2.12), and the area AHIRQ is an area of a 
rectangle. By substituting the numerical values in Eq.(3.1), we get: 
 

  ( ) ( ).    QRP
2 2A 8 4 22 24 32 8 24 8 32
3 3

= × + × + − × × − × .  (3.2) 

 
Equation (3.2) yields the value AQRP=72.2, which represents the maximum moment of 72.2 kN.m. 

It can be noticed from example 2 that the common method for locating the zero-shear point (Solution 
I) requires using the quadratic formula to solve the equation developed from applying the equilibrium equations 
for the sectioned beam, which is in the form of (  2a x bx c 0+ + = ). The trapezoidal loading always makes 
utilizing the common method more complex and time-consuming in both sectioning and solving the quadratic 
equations. On the other hand, the application of the proposed improved method does not need sectioning the 
beam and/or solving quadratic equations, which give it an advantage compared with the common method. 
 
Example 3: This example is presented by Kassimali [5]. It is an overhanging beam subjected to a triangular 
loading along its length as shown in Fig.9. The reactions are shown in Fig.10a, and the shear and moment 
diagrams are shown in Figs10b and 10c, respectively. 
 

 
 

Fig.9. The beam of example 3. 
 
Solution (by using the improved graphical method): 
 

Referring to Fig.10, the steps for locating the zero-shear point and computing the value of the 
maximum moment by using the proposed technique are as follows: 

 
Step 1: 
Computing the slope of the loading diagram m by dividing the maximum intensity of the load by the loading 
length to get the slope m=3. 
Step 2: 
Applying Eq.(2.9) to obtain the shear parabolic function .  2V 1 5 x= . 
Step 3: 
Identifying the vertex of the parabola to be horizontal under the zero-load point (point K in Fig.10b) and 
vertical at the value of V=60.75 kN, which is calculated by adding the vertical distance 13.5 (by substituting 
x=3 m into the parabola from step 2) with the vertical distance 47.25 (the value of the shear at point B). 
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Step 4:  
The parabolic function in step 2 intersects the X-axis when V=60.75 kN as shown in Fig.10b, thus substituting 
V=60.75 kN in the parabolic function  .  2V 1 5 x=  yields the distance x=6.364 m. Finally, the location of the zero-
shear point is calculated by subtracting the distance 3m, shown in Fig.10a, from the total distance 6.364 m, shown 
in Fig.10b, to get the location of the zero-shear point as 3.364 m (with respect to point B). 
 

 
 

Fig.10. The diagrams of example 3. 
 
Step 5:  
Based on the location of the parabola vertex K (the zero-slope point), the shaded area ARLQ in Fig.10.b is 
calculated as follows: 
 
   RLQ IKQ JKL IJLRA A A A= − − . (3.3) 
 



60  Improvement of the graphical method in plotting the shear … 

The parabolic areas AIKQ and AJKL are calculated according to Eq.(2.12), and the area AIJLR is an area of a 
rectangle. By substituting the numerical values in Eq.(3.3), we get: 
 

  ( ). . .  .  .  RLQ
2 2A 6 364 47 25 13 5 3 13 5 3 47 25
3 3

= × × + − × × − × . (3.4) 

 
Equation (3.4) yields the value .RLQA 88 992= , then the maximum moment is obtained from calculating the 
area AIRS to be 13.5, according to Eq.(2.11): 
 

  .IRS
1A 3 13 5
3

= × ×   (3.5) 

 
and finally subtracting the value 13.5, Eq.(3.5), from the value 88.992 kN.m, Eq.(3.4), to get the maximum 
moment of 75.5 kN.m. 

In this example, the parabola of the shear diagram has a jump at the support B due to the existence of 
the concentrated vertical reaction at the roller support. The jump caused two parabolic areas to the left of the 
zero-shear point Q, having two identical curves due to an identical loading slope m which leads to the same 
coefficients for the two parabolas. Furthermore, the parabolic areas IRS and RLQ are calculated to evaluate the 
negative moment over the roller support B (-13.5) and the maximum moment (75.5 kN.m), noting that these 
parabolic areas calculations are based on the vertices I and K, respectively. 
 
Example 4: This example is created by the authors of this study to give a comprehensive case of a loaded 
beam. In this example, an overhanging beam is subjected to various types of loadings as shown in Fig.11. The 
reactions are shown in Fig.12a, and the shear and moment diagrams are shown in Figs 12b and 12c, 
respectively. 
 

 
 

Fig.11. The beam of example 4. 
 

Solution (by using the improved graphical method): 
 

Referring to Fig.12, the steps for locating the zero-shear point and finding the value of the maximum 
moment by using the proposed technique are as follows: 
Step 1:  
Computing the slope of the loading diagram m by dividing the maximum intensity of the load by the loading 
length to get the slope m=4.5/4. 
Step 2:  
Applying Eq.(2.9) to obtain the shear parabolic function ( ) /  2V 9 16 x= . 
Step 3:  
Identifying the vertex of the parabola to be horizontal at point Q (below the zero-load point) and vertically at 
the value of V=2.5 kN (the value of the shear at Q). 
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Step 4:  
The parabolic function in step 2 intersects the X-axis when V=2.5 kN as shown in Fig.12b, thus substituting 
V=2.5 kN in the parabolic function ( ) /  2V 9 16 x=  yields the distance x=2.108 m. Finally, subtracting the 
distance 2.108 m from the total distance 4 m, in Fig.12a, gives the location of the zero-shear point as 1.892 m 
with respect to point A. 
 

 
 

Fig.12. The diagrams of example 4. 
 
Step 5:  
Based on the location of parabola vertex Q (the zero-slope point), The shaded area AMNO in Fig.12b is calculated 
geometrically as follows: 
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   MNO LNQ ROQ LMORA A A A= − − . (3.6) 
 
The parabolic areas ALNQ and AROQ are calculated according to Eq.(2.11), and the area ALMOR is an area of a 
rectangle. By substituting the numerical values in Eq.(3.6), we get: 
 

  ( ) ( ). .  . .  . .MNO
1 1A 4 6 5 2 5 2 108 2 5 4 2 108 2 5
3 3

= × × + − × × − − × . (3.7) 

 
Equation (3.7) gives the value of .MNOA 5 514= , which is added to the value of the couple moment (4 kN.m) 
at A to get the maximum moment of 9.514 kN.m. 

The moment decreases by the value of ∆M which represents the shaded area AOPQ. This area is 
calculated according to Eq.(2.12) to get the value of 3.514, which is subtracted from the value of the maximum 
moment (9.514 kN.m) to get a moment of 6 kN.m as shown in Fig.12c. 

This example evidenced that the improved method is applicable when the beam is subjected to various 
types of loadings. In addition, the example presented the case of decreasing linearly varying load which leads 
to an open-up parabola rather than open-down parabolas that were presented in previous examples. It can be 
seen that the direction of the parabola opening, whether up or down, does not affect the calculations of the 
proposed method because the sign convention of this method states that the positive direction of the ordinate 
is in the direction of the parabola focus (or opening) as mentioned in the previous section. 
 
Example 5: This example is presented by Kassimali [5]. It is an overhanging beam subjected to a trapezoidal 
loading along its length as shown in Fig.13. The reactions are shown in Fig.14a, and the shear and moment 
diagrams are shown in Figs 14b and 14c, respectively. 
 

 
 

Fig.13. The beam of example 5. 
 
Solution (by using the improved graphical method): 
 

Referring to Fig.14, the steps for locating the zero-shear point and finding the value of the maximum 
moment by using the proposed technique are as follows: 
Step 1:  
Computing the slope of the loading diagram m by dividing the difference between the maximum and the 
minimum load intensities of the trapezoidal load by the loading length to get the slope m=1.5. 
Step 2:  
Applying Eq.(2.9) to obtain the shear parabolic function .  2V 0 75 x= . 
Step 3:  
From the minimum load intensity (w1=10 kN/m) and the loading slope (m=1.5), the location of the parabola 
vertex d is obtained by applying Eq.(2.10) to get d=6.667 m (to the right of point D) as shown in Fig.14a. To 
locate the zero-shear point in Fig.14b, it is required to find the ordinate of the vertex for the middle parabola. 
The ordinate of the vertex is evaluated as follows. 
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Fig.14. The diagrams of example 5. 
 

The height of the middle parabola (vertical distance) is determined by substituting the value of its base 
(horizontal distance) into the equation of the parabola .  2V 0 75 x= . It can be seen from Fig.14b that the distance 
from point N to point O is equal to ( . .  5 3 6 667 14 667 m+ + = ), which represents the base of the parabola when 
the shear value equals 48 kN. Thus, by substituting the value of (x=14.667 m) into the parabola equation 

 .  2V 0 75 x= , we get V=161.333 kN. Finally, subtracting 48 kN from 161.333 kN gives the ordinate of 113.333 
kN (downward with respect to the X-axis). Similarly, the location of the vertex of the upper parabola is obtained 
to be 33.333 kN (downward with respect to X-axis), and the location of the vertex of the lower parabolas is 
obtained to be 208.333 kN (downward with respect to the X-axis), as shown in Fig.14b. 
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Step 4:  
The parabola equation in step 2 represents the equation for the upper, middle, and lower parabolas as the 
loading slope m is constant. Only the middle parabola intersects the X-axis at the interior point on the beam, 
as the upper and the lower parabolas pass through the free ends of the beam as shown in Fig.14b. The middle 
parabola intersects the X-axis when V=113.333 kN, thus, substituting this value in the parabolic function in 
step 2 yields the distance x=12.293 m. Finally, the location of the zero-shear point with respect to point C is 
calculated by subtracting the distance ( . .  3 6 667 9 667 m+ = ) from the total distance 12.293 m to get the location 
of the zero-shear point as 2.626 m to the left of point C.  
Step 5:  
There are four parabolic areas; , , and1 2 3 4A A A A  as shown in Fig.14b. Each of these areas is calculated based 
on the location of the parabola vertex (the zero-slope point). 

The area 1A , which represents the shaded area of the parabolic portion MNR in Fig.14b, is calculated 
geometrically as follows: 
 
   1 MOQ RPQ RNOPA A A A= − − . (3.8) 
 
The parabolic areas AMOQ and ARPQ are calculated according to Eq.(2.12), and the area ARNOP is an area of a 
rectangle. By substituting the numerical values in Eq.(3.8), we get: 
 

  ( ) ( ) ( ) ( ). .  . .  . .1
2 2A 10 6 667 208 333 8 6 667 208 333 47 8 6 667 47
3 3

= × + × − × + × − − + ×  (3.9) 

 
Eq.(3.9) gives the value of 𝐴ଵ = 48 𝑘𝑁. 𝑚, which represents the moment of -48 kN.m in Fig.14c. 
By using the same manner that is employed for A1, the other areas ( ), and2 3 4A A A  are calculated to be: 

( ).  . , .  .  and .  .2 3 4A 55 302kN m A 59 052kN m A 51 75 kN m= = = . 
Based on the obtained values of the parabolic areas, the moment diagram is constructed normally as 

shown in Fig.14c. 
This example shows a complex case of a loaded beam as the beam has interior support reactions which 

cause jumps in the shear diagrams, and also due to the applied trapezoidal load which is considered a more 
troublesome loading case compared with the triangular load. The jumps in shear diagrams lead to numerous 
parabolic curves for a given one linearly varying loading case. These parabolic curves have the same 
coefficient of the parabola equation, as the slope of the loading diagram is constant, but with different vertical 
locations of their vertices. As a result, four parabolic areas , , and1 2 3 4A A A A  are developed due to the three 
parabolas curves. Hence, relatively long calculations in constructing the shear and moment diagram are carried 
out compared with other simpler cases of loaded beams. It should be noted that if the common sectioning 
technique is utilized for this example, then it is required to cut the beam three times, applying the equilibrium 
equations for each section, and solving three quadratic formulas, in order to obtain the values of the moment 
diagram shown in Fig.14c. This leads to a time-consuming process with the potential for errors, compared with 
the geometrical method proposed in this study. 
 
4. Conclusions: 
 

The conclusions of this study can be summarized as follows: 
1. The graphical method of plotting the shear and moment diagrams for the structural members subjected to 

linearly varying distributed loads (triangular and trapezoidal loads) can be improved by using the 
geometric approach presented in this study. The proposed improved method gives completely the same 
results and diagrams for all cases of the structural members compared with the basic graphical method. 
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2. The improved graphical method does not require sectioning and applying the equilibrium equations for 
the structural members to construct the shear and moment diagrams. Therefore, utilizing this method 
cancels the possibility of making mistakes which can occur in sectioning and applying the equilibrium 
equations.  

3. Generally, the improved graphical method is more convenient, less time-consuming, and requires less 
computational efforts because it does not need sectioning and solving equations. Furthermore, in the case 
of trapezoidal loads, solving quadratic formulas becomes not needed as is the case in the basic graphical 
method. 

4. If the analyst and/or the designer of the structural members prefers using the basic graphical method, since 
it is a commonly used method, then he or she can use the improved graphical method as a good option to 
verify or check the shear and moment diagrams that are constructed by using the basic method.  

 
Nomenclature 
 
 a  − coefficient of the parabola  
 1A  − area under the parabola opens upward with vertex at the origin 

 2A  − area above the parabola opens upward with vertex at the origin 

 b  − horizontal distance from the origin to a given point on the parabola 
 d  − length of imaginary loading 
 h  − vertical distance from the origin to a given point on the parabola 
 L  − length of actual loading 
 m  − slope of the loading diagram 
 M  − value of the internal moment in a member 
 s  − length of the actual plus the imaginary loadings 
 S  − value of the internal shear in the member 
 V  − value of the shear with respect to the parabola vertex 
 w  − intensity of the triangular loading 
 1w  − minimum intensity of the trapezoidal loading 

 2w  − maximum intensity of the trapezoidal loading  
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