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The solution of differential-difference equations with small shifts having layer behaviour is the subject of this 
study. A difference scheme is proposed to solve this equation using a non-uniform grid. With the non-uniform grid, 
finite - difference estimates are derived for the first and second-order derivatives. Using these approximations, the 
given equation is discretized. The discretized equation is solved using the tridiagonal system algorithm. 
Convergence of the scheme is examined. Various numerical simulations are presented to demonstrate the validity 
of the scheme. In contrast to other techniques, maximum errors in the solution are organized to support the method. 
The layer behaviour in the solutions of the examples is depicted in graphs. 
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1. Introduction  

  
The analysis of differential-difference equations with small shifts and layer behaviour has progressed 

rapidly in recent years. Simulation of complicated physical systems requires the use of differential-difference 
equations. These equations are used in the modelling of a variety of real-world situations, such as population 
dynamics [1], physiological process reproductions [2], predator-prey models [3] and the production of an 
action potential in nerve cells by random synaptic inputs in dendrites [4]. The mathematical details of these 
problems are referred to in [5, 6]. 

In [4], the author discussed a problem with stochastic effects caused by neuron excitation. The 
determination by random synaptic inputs into the dendrites of the expected time to generate action potential in 
nerve cells can be modelled to constitute a first-time problem.  In this model, the input distribution is seen as  
an exponential decay Poisson process. If inputs with the variance parameter σ  and drift parameter μ  are also 
available to be modelled as a Wiener process, then the problem can be defined as a linear second order 
differential-difference equation with the initial membrane potential for expected first-exit time θ (s), 

( ),1 2s s s∈  and can be formulated as  
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

e e i i e is s s s a s a s 1
2

σ θ + μ − θ + λ θ + + λ θ − − λ + λ θ′ ′ = −′  (1.1) 

 
where the values 1s s=  and 2s s=  correspond to the inhibitory reversal potential and to the threshold value of 
the membrane potential for action potential generation respectively. Here the term ( )s s− ′θ  represents the 
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exponential decay between synaptic inputs.  The undifferentiated term corresponds to excitatory and inhibitory 
synaptic inputs, modelled as a Poisson process with rates eλ  and iλ , respectively, and produce jumps in the 
membrane potential of amounts ea  and ia , respectively, which are small quantities and could be dependent 
on voltage.  The boundary condition is ( ) ( ), ,  1 2s 0 s s sθ = ∉ . 

The numerical treatment of singularly perturbed differential-difference equations is far from trivial 
because the solution to these problems varies rapidly in some parts and slowly in some other parts. Also, the 
layer profile varies according to the values of the delay and advance parameters. Hence, to solve these 
problems, we required more efficient, simpler computational techniques. 

The analysis and numerical methodology of singular perturbation problems (SPPs) are presented in [7, 
8, 9, 10, 11]. The authors in [12, 13] used the Taylor approximation to implement a parameter-uniform 
differential scheme to solve a model based on neural variability. In [14], the authors investigated turning point 
behaviour in differential-difference equations. Researchers compared layer behaviour for various shift 
parameter values in [15], focusing on solutions that display layer behaviour at one or both ends of the boundary. 
The same authors expanded their research in [16], revealing that fast oscillation solutions are more prone to 
small delays than layer solutions based on the WKB approach.  

The authors in [17] proposed a finite difference technique to transform the time fractional stochastic 
KdV equation into elliptic stochastic differential equations. Then, the resulting elliptic SDEs were solved using 
a meshless method based on radial basis functions. In [18], the researchers suggested a finite difference scheme 
and radial basis functions interpolation to convert the solution of time-fractional stochastic advection–diffusion 
equations to the solution of a linear system of algebraic equations. In [19], a new scheme employing 
a collocation method in combination with matrices of Fibonacci polynomials is introduced for the solution of 
singularly perturbed differential-difference equations.  

Sirisha et al. [20] addressed the mixed shifts problem by decomposing the domain and applying a 
mixed difference technique. Phaneendra et. al. [21] employed numerical integration with interpolation to solve 
equations containing a layer or oscillatory nature. In [22], researchers proposed a fitted spline approach for 
solving the delay problem with a layer at one end of the domain. Based on the triangular function theorem, in 
[23], the authors proposed a set of finite difference methods for convention-diffusion equations, which is 
subsequently extended to solve two-dimensional problems using the AID methodology. 
 
2. Description of the problem 
 

The differential-difference equation describing layer behaviour is 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ' s p s s q s s r s s v s s f sεθ″ + θ + θ − δ + θ + θ + η =  (2.1) 
 
on ( ), ,0 1  under the boundary conditions 
 
  ( ) ( )s sθ = ϕ       on      s 0−δ ≤ ≤ ,    ( ) ( )s sθ = γ       on       1 s 1≤ ≤ + η  (2.2) 
 
where 0 1< ε <<  is a perturbation parameter ( ) ( ) ( ) ( ) ( ) ( ) ( ),  ,  ,  ,  ,   and  p s q s r s v s f s s sϕ γ  are the smooth 
functions and ( ),  ( )0 o 0 o< δ = ε < η = ε  are the delay and the advance parameter, respectively. The solution of 
Eq.(2.1) with Eq.(2.2) exposes a layer at the left end of the domain if ( ) ( ) ( )  p s q s v s 0− δ + η > and a layer at 
the right end of the domain if ( ) ( ) ( ) . p s q s v s 0− δ + η < If ( )p s 0= , then the problem has oscillatory solution 
or two layers depending upon the cases whether ( ) ( ) ( )q s r s v s+ +  is positive or negative. 

Since the solution ( )sθ  of Eq.(2.1) is suitably differentiable, the terms ( )sθ − δ  and ( )sθ + η  ( )θ s η−  
can be expanded using the Taylor series, then we have: 
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  ( ) ( ) ( )' s s sθ − δ ≈ θ − δθ ,      ( ) ( ) ( )' s s sθ + η ≈ θ + ηθ . (2.3) 
 
Using Eq.(2.3) in Eq.(2.1), we get: 
 
  ( ) ( ) ( ) ( ) ( ) ( ) ' s a s s b s s f sεθ″ + θ + θ = . (2.4) 
 
Equation (2.4) is a second-order SPP. Here, 
 
  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), .a s p s q s v s b s q s r s v s= − δ + η = + +  
 
3. Derivation of the scheme 
 

Let the advance parameter be in [ ], 0 1 . Let ( ),   
i 1

0 i k
k 0

s 0 s h 1 i N
−

=
= = ≤ ≤ . 

 ,  and k k 1 k N i i i 1h s s s 1 d h h+ −= − = = −  be the common grid difference.  
 

Using the Taylor series expansion of i iθ & θ1 1+ −  and ignoring the term of the third and higher order, we get 
 

  
2

i
i 1 i i i i

hh
2+ ′ ′′θ ≈ θ + θ + θ , (3.1) 

 

  
2

i 1
i 1 i i 1 i i

hh
2
−

− − ′ ′′θ ≈ θ − θ + θ . (3.2) 

 

Multiplying Eq.(3.2) by i

i 1

d
h −

, we get:  

 

   i i i i 1
i 1 i i i i

i 1 i 1

d d d hd
h h 2

−
−

− −

′ ′′θ = θ − θ + θ . (3.3) 

 
Summing Eq.(3.1), Eq.(3.2) and Eq.(3.3) gives: 
 

  
( )

i i
i i 1 i i 1

i i i 1 i 1 i 1

d d2 1 2
h h h h h− +

− − −

   
θ = + θ − + θ + θ   +   

′′


. (3.4) 

 
Using Eq.(3.1) and Eq.(3.2), we have: 

 

  ( ) i i i
i i 1 i 1 i 1 i i 1

i i 1 i i 1 i 1

d d d1 1 2
h h h h h+ − − +

− − −

      θ = θ − θ − + θ − + θ + θ     +      
′

 
. (3.5) 

  
Using Eq.(3.4) and Eq.(3.5) in Eq.(2.4), we get: 
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( )

( ) ( ) ( )
( )

  

 .

 

i i
i 1 i i 1

i i i 1 i 1 i 1
i

i i i i
i 1 i 1 i 1 i i 1 i i

i i 1 i i 1 i 1

d d2 1 2
h h h h h

f s
a s d d d1 2 b s

h h h h h

− +
− − −

+ − − +
− − −

     ε + θ − + θ + θ +     +       
= 

       + θ − θ − + θ − + θ + θ + θ      +         

 

  
Arranging the above equation in three-term relation, we have: 
 
  - for , ,...i i 1 i i i i 1 iL C U F i 1 2 N 1+θ + θ + θ = = − . (3.6) 
 
Here 

  ( ) ( ) ,i i
i i i

i i 1 i i 1

d d1 2L a s 1 a s
h h h 2 h− −

   = ε − + −   +     
  

 

  ( )( ) ( ) ,i i
i i i i 1 i

i i 1 i i 1

d d1 2C b s h h a s 2
h h h 2 h−

− −

   = + − ε − +   +     
  

 

  ( ) ( ) .i
i i i

i i 1 i

d1 2U a s a s
h h h 2−

  = ε − +  +   
  

 
4. Mesh selection strategy 
 

Let N be the number of grid points in the domain.  Let  i i i 1d d h h −= = −  be the common grid difference. 
Then  

 

  

( ) ( ) ( )
( ){ } ( ){ }

( ) ( ){ } ( )

...... =

= ...

= ..... = ,

N 0 N N 1 N 1 N 2 1 0

0 0 0

0 0

s s s s s s s s

h N 1 d h N 2 d h

1N 1 N 2 1 d Nh N N 1 d Nh
2

− − −− = − + − + + −

+ − + + − + +

− + + − +

=

− + +

  

 

this gives      ( )
( )

0
i

2 1 Nh
d

N N 1
−

=
−

. 

Therefore, d is chosen from the above equation and subsequent 'ih s  can be acquired by
, , ,..., .i i 1h h d i 1 2 N−= + =   

 
5. Uniform convergence of the scheme 
 
Let the problem Eq. (2.4) be denoted by Qε  and the corresponding discretized problem be denoted by NQε , i.e., 
 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
with

, .
a s b s s f s

Q
0 0 1 1ε

εθ + θ + θ ==
′′ ′

 θ = ϕ θ = ϕ
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and  
 

  ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )with , .

2
N i i i i i is a s s b s s f sQ

0 0 1 1ε
εΔ θ + Δθ + θ == 

θ = ϕ θ = ϕ
 

 
Let επ  be the operator corresponding to the continuous problem Qε  and N

επ  be the operator 

corresponding to the problem NQε , i.e., 
 

  ( ) ( )
2

2
d da s b s

dsdsεπ = ε + +       and      ( ) ( )N 2
i ia s b sεπ = εΔ + Δ +  

 
where:       
 

  ( ) ( )  2 i i
i i 1 i i 1

i i i 1 i 1 i 1

d d2s 1 2
h h h h h− +

− − −

    
Δ θ = + θ − + θ + θ    +      

, 

 

  ( ) ( ) .i i i
i i 1 i 1 i 1 i i 1

i i 1 i i 1 i 1

d d d1s 1 2
h h h h h+ − − +

− − −

      Δθ = θ − θ − + θ − + θ + θ     +        
 

 
Uniform convergence of the method will be verified using the discrete minimum principle and the 

following lemmas. 
Lemma 1. Discrete Minimum Principle:  Suppose the grid function satisfies 0 0χ ≥  and N 0χ ≥ . 

Then  for    implies that 0  for all 0N
i i0 0 i N 1 i Nεπ χ ≤ ≤ ≤ − χ ≥ ≤ ≤ . 

 
Proof. Suppose there exists m, 0 m N≤ ≤  such that mmin  and  χm i0 i N 1

0
≤ ≤ −

χ = χ < . By the hypothesis 

χ0 0≥  and χ N 0≥ , therefore { },m 0 1∉ . For 1 m N≤ ≤  we have:  
 

  

( )

( )

( ) ( )

  

+ 

N i i
m m 1 m m 1

m m m 1 m 1 m 1

i i i
m 1 m 1 m 1 m m 1 m m

m m 1 m m 1 m 1

i
m 1 m

m m m 1 m 1

d d2 1 2
h h h h h

d d d1 1 2 b
h h h h h

d2 1
h h h h

ε − +
− − −

+ − − +
− − −

−
− −

    επ χ = + χ − + χ + χ +    +      
      + χ − χ − + χ − + χ + χ + χ     +     

=
   

  ε  = + χ − χ  +    
( )

( ) ( )

( ) ( )
)

.  
(

m 1 m

m 1 m m 1 m
m m 1

i i
m 1 m m 1 m m m

m m m 1 m 1

1
h h

d d1 b
h h h h

+

+ −
−

− +
− −

 
χ − χ + 

  

 + χ − χ − χ − χ + +

  
− + χ − χ + χ − χ + χ  +    

(5.1) 
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Then, we have ,    m 1 m m 1 m0 0− +χ − χ ≥ χ − χ ≥ and mb 0< . Using these inequalities and Eq.(3.6), we get 
N

i 0επ χ > . Thus for ,1 m N≤ ≤  we have N
i 0επ χ > , which contradicts the hypothesis that 

  for  .N
i 0 1 i N 1επ χ ≤ ≤ ≤ −   

Therefore our assumption that m 0χ <  is wrong which implies that  for all i 0 0 i Nχ ≥ ≤ ≤ . 
Lemma 2. Let 𝜒 be any grid function such that .0 N 0χ = χ = Then 
 

   max ,    for   .N
i j1 j N 1

1 0 i Nε
≤ ≤ −

χ ≤ π χ ≤ ≤
ϑ

 

 
Proof. We introduce two barrier functions i

±ψ  defined by:  
 

  max ,   for   .N
i j i i1 j N 1

1 L 1 i N±
ε

≤ ≤ −
ψ = π φ + φ = + φ ≤ ≤

ϑ
 

 
Then  
 
  ,0 0 N NL L 0 L L 0± ±ψ = + φ = > ψ = + φ = >  for .0 i N≤ ≤   

 
Now 

  

( ) ( )
( ) ( ) ( ) ( )( )

( )
Δ

.

N 2
i i i i i i
2

i i i i i
N N

i i i

a s b s

L a s L b s L

Lb s L 0

± ± ± ±
ε

ε ε

π ψ = εΔ =ψ + Δψ + ψ

ε ± χ + Δ ± χ + ± χ =

= π χ ± ≥ π χ ϑ ≥

=

±

 

 
Therefore, by Lemma 1, we have ,i 0±ψ ≥  for   1 i N 1≤ ≤ − which substantiates the required conclusion. 

Lemma 3. Let  , , 0 N i i i 1s 0 s 1 d h h −= = = −  be the common grid difference, ,
i 1

i m
m 0

s h
−

=
=   for 1 i N 1≤ ≤ −  then, 

 i
3h
N

≤ . 

 
Proof. For a detailed proof of this lemma one can refer to [17]. 
Lemma 4. For every ( ),3C 0 1φ∈ , we have:  
 

    
2

2
32

d 2
Nds

 
Δ − φ ≤ φ  
 

  where   
( ) ( )

( )
,

.j
j s

s 0 1
sup
∈

φ = φ  

 
Proof. One can refer to [17].  
Lemma 5. Let 𝜃 be the solution of the BVP Eq.(2.4) and let u vε εθ = + . For 0 k 3≤ ≤  and for small ε , the 
functions ,uε  vε  and their derivatives satisfy the following: 
 

  ( ) ,k 2 ku C −
ε ≤ ε  
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  ( ) [ ]exp ,    , ,Msv x C s 0 1ε
 ≤ − ∈ ε 

 

 

  ( ) [ ]exp ,    , .k k Msv C s 0 1−
ε

 ≤ ε − ∈ ε 
 

 
Proof. One can refer to [6]. 
Theorem 1. The solution Yε  of the discrete problem NQε  and the solution εθ  of the continuous problem Qε  
satisfy the following ε – uniform error estimate; 
 
  (ln )1 2

0 1
sup Y CN N−

ε ε
<ε≤

− θ ≤ , (5.2) 

 
where C  is a positive constant unaffected by ε .  
Proof. Decompose the solution Yε  into regular ( )Rε  and singular ( )Wε  parts. Thus  Y R Wε ε ε= +  where Rε  
is the solution of the non-homogeneous problem 
 
  ( ) ( ) ( ) ( ),    ,   N R f R 0 r 0 R 1 r 1ε ε ε ε ε επ = = =  (5.3) 
 
and Wε  is the solution of the homogeneous problem 
 
  ( ) ( ) ( ) ( ),   ,   NW 0 W 0 w 0 W 1 w 1ε ε ε ε ε επ = = = . (5.4) 
 
Here rε  and wε  are the regular and singular parts of continuous problem Qε  so that r wε ε εθ = + .  
The error may be written in the form Y R r W wε ε ε ε ε ε− θ = − + −  it gives: 
 
   Y R r W wε ε ε ε ε ε− θ ≤ − + − . (5.5) 
 
As a conclusion, the error estimation in the regular and singular parts of the solution can be separated. Now 
we can evaluate the error for the regular part. 

 

  ( )( ) ( ) ( ) ( ) ( ) = =
2

N N N 2
i i i i2

d dR r s f s r s r r a s r
dsdsε ε ε ε ε ε ε ε ε ε

   π − = − π π − π ε − Δ + − Δ       
. (5.6) 

 
Let [ ],is 0 1∈ . Then for any ( ),3C 0 1φ∈  using Lemma 4, we have: 
 

  
2

2
32

d 2
Nds

 
Δ − φ ≤ φ  
 

 

 
also, we obtained   
 

  .32
d 3
ds N

 Δ − φ ≤ φ 
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Using these results in Eq.(5.6), we get  
 

  ( )( )N
i 3

2R r s r
Nε ε ε επ − ≤ ε . 

 
Using Lemma 5, for the estimation ( )3r  yields 
 
  ( )( )N 1

iR r s CN −
ε ε επ − ≤ . (5.7) 

 
Using inequality Lemma 1, to the grid function ( )( )iR r sε ε−  gives  
 
  ( )( ) ( )( )max1 N

i i1 j N 1
R r s R r s−

ε ε ε ε ε
≤ ≤ −

− ≤ ϑ π − . (5.8) 

 
Using inequality Eq. (5.7) in inequality Eq.(5.8), we get 
 
  ( ) 1R r CN −

ε ε− ≤ . (5.9) 
 
Now by the same arguments as that for the regular part, the error estimate for the singular part of the solution 
is given by:  

 

  ( )( )N
i 3

2W w s w
Nε ε ε επ − ≤ ε . 

 
Using Lemma 5 for the estimation ( )3w  yields 
 
  ( )( ) .N 2 1

iW w s C N− −
ε ε επ − ≤ ε  

 
But in this case ln( )1 C N−ε ≤ , so the above inequality reduces to: 
 
  ( )( ) ( )ln 2N 1

iW w s CN N−
ε ε επ − ≤ . 

 
Using inequality Lemma 1 to the grid function ( )( )iW w sε ε−  gives:  

 
  ( )( ) ( )ln 21

iW w s CN N−
ε ε− ≤ . (5.10) 

 
Combining the inequalities Eq.(5.5) to Eq.(5.10) gives the desired result Eq.(5.2). 

 
6. Numerical illustrations 
 

To verify the applicability of the method, model problems of the types Eqs (2.1)-(2.2) are considered. 

The exact solution of the problem is ( ) 1 2m s m s
1 2

fs c e c e
C

θ = + +  
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where 

  C b c d= + + ,      
( )

( )
2

1 2

m

1 m m
1

f C e f f C
c

e e C

 − + γ

−

+ − = , 

 

  
( )

( )
1

1 2

m

2 m m

f yC e f f C
c

e e C

 − + −

−

+ = ,      
( ) ( )

,
2

1

p q v p q v 4 C
m

2

 − − δ + η + − δ + η − ε  =
ε

 

 

  
( ) ( )2

2

p q v p q v 4 C
m

2

 − − δ + η − − δ + η − ε  =
ε

. 

 
Example 1. ( ) ( )s 2 s 3 0εθ + θ + θ −′ ′ −′ δ θ =   with  ( ) ( ), , ,   s 1 s 0 s 1 1 s 1θ = − δ ≤ ≤ θ = ≤ ≤ + η . 
 
Example 2. ( ) ( )s 3 2 s 0εθ + θ − θ +′′ θ′ + η =    with  ( )θ s , δ s ,1 0= − ≤ ≤ ( )θ s ,   s η.1 1 1= ≤ ≤ +  
 
Example 3. ( ) ( ) ( )s 2 s 5 s 0ε −′′θ + θ − θ δ − θ + θ + η =′   with  ( )θ s , δ ,1 s 0= − ≤ ≤ ( )θ ,s 1=   η1 s 1≤ ≤ + . 
 
Example 4. ( ) ( )s 2 s 0ε ′θ − θ − θ −′ δ + θ =′   with  ( )θ , δs 1 s 0= − ≤ ≤ , ( )θ s 1= − ,  η1 s 1≤ ≤ + . 
 
Example 5. ( ) ( )s 2 s 0εθ − θ + θ − θ +′ ′ η =′    with  ( )θ , δs 1 s 0= − ≤ ≤ , ( )θ s 1= − ,  η1 s 1≤ ≤ + . 
 
Example 6. ( ) ( ) ( )s 2 s 2 s 0εθ − θ − θ − δ + θ −′′ ′ θ + η =   with  ( ) ( ),  ,  ,s 1 s 0 s 1θ = − δ ≤ ≤ θ = −  1 s 1≤ ≤ + η . 

 
7. Conclusion 
 

The equation having a layer structure with small shifts is solved using a difference technique on a 
nonuniform grid. Finite difference estimates are obtained for the first and second-order derivatives using the 
nonuniform grid.  
 

 
Fig.1. Layer profile in Example 1 with   .0 1ε = . Fig.2. Layer profile in Example 2 with .0 1ε = . 
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Fig.3. Layer profile in Example 3 with  

. , .0 1 0 5ε = δ = ε . 
Fig.4. Layer profile in Example 3 with

. , .0 1 0 5ε = η = ε . 
 

 
Fig.5. Layer profile in Example 4 with .0 1ε = . Fig.6. Layer profile in Example 5 with .0 1ε = . 

 

 
Fig.7. Layer profile in Example 6 with

. , .0 1 0 5ε = δ = ε . 
Fig.8. Layer profile in Example 6 with .0 1ε = , 

.0 5η = ε . 
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Making use of these approximations, the given equation is discretized and solved using the tridiagonal 
algorithm. Convergence of the scheme is established. Multiple numerical examples are illustrated to validate 
the method. MATLAB software is used to design the codes for the solution of the examples. For Examples 1-
6, the maximum absolute errors (MAEs) in the solutions are listed in Tabs 1-6. The proposed method was 
shown to be more accurate than the methods in [24] and [12] when comparing the computed errors. The rate 
of convergence of the scheme for the examples is calculated and shown in Tab.7. Figures 1-8 show the layer 
structure to the examples for a various value of the shift parameters. Using Figs 1-4, it is noticed that, when δ  
increased, the width of the left end boundary layer decreases and it is increased when η  is increased. From 
Figs 5-8, we noticed that when δ  increased the size of the right end boundary layer increases and it is decreased 
when η  is increased. 
 
Table 1. MAEs in Example 1 with .0 1ε = . 

__________________________________________________________ 
N →          32                                       128                          512 
__________________________________________________________ 
δ ↓     Suggested method 
0.00         2.2648e-03                         1.2536e-04                 5.9442e-06 
0.05         2.0935e-03                         1.1586e-04                 5.3476e-06 
0.09         1.9443e-03                         1.0735e-04                 4.8437e-06 
δ ↓     Results in [9] 
0.00         3.7007e-02                         9.5467e-03                   2.1450e-03 
0.05         3.6405e-02                         9.2466e-03                   2.0299e-03 
0.09         3.5566e-02                         8.9517e-03                   1.9248e-03 δ ↓    Results in [1] 
0.00        3.5537e-03                          9.1770e-04                   2.3113e-04 
0.05        3.8619e-03                          9.9278e-04                   2.4977e-04 
0.09        4.1191e-03                          1.0557e-03                   2.6536e-04 
___________________________________________________________ 

 
Table 2. MAEs in Example 2 with .0 1ε = . 

___________________________________________________________ 
N →   32                               128                          512 
___________________________________________________________ 
η ↓     Suggested method 
0.00   2.2648e-03                        1.2536e-04                      5.9442e-06 
0.05   2.4169e-03                        1.3371e-04                      6.5072e-06 
0.09   2.5154e-03                        1.3970e-04                      6.9362e-06 
η ↓     Results in [9] 
0.00  3.7007e-02                         9.5467e-03                     2.1450e-03 
0.05  3.7270e-02                         9.7965e-03                     2.2447e-03 
0.09  3.7238e-02                         9.9628e-03                     4.5869e-03 
η ↓     Results in [1] 
0.00    2.8330e-03                           7.4107e-04                      1.8720e-04 
0.05    2.6115e-03                           6.8579e-04                      1.7341e-04 
0.09    2.4443e-03                           6.4520e-04                      1.6328e-04 
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Table 3. MAE for Example 3 with .0 1ε = . 
__________________________________________________________ 
N →        32                                   128                           512 
__________________________________________________________ 
  δ ↓        .0 05η =     Suggested method 
0.00     3.1908e-03                      1.7721e-04                          8.1741e-06 
0.05     3.5660e-03                      1.9754e-04                          9.4574e-06 
             

0.09     3.8696e-03                      2.1406e-04                          1.0534e-05  
  η ↓        .0 05δ =  
0.00     3.3775e-03                      1.8734e-04                          8.8067e-06 
0.05     3.5660e-03                      1.9754e-04                          9.4574e-06 
0.09     3.7175e-03                      2.0571e-04                          9.9905e-06 
Results in [1] 
 δ ↓     .0 05η =  
0.00     1.7890e-02                       4.5754e-03                         1.1494e-03 
0.05     1.7272e-02                       4.4321e-03                         1.1147e-03 
0.09     1.6748e-02                       4.3186e-03                         1.0870e-03 
  η ↓        .0 05δ =  
0.00     1.7587e-02                        4.5038e-03                         1.1321e-03 
0.05     1.7272e-02                        4.4321e-03                         1.1147e-03 
0.09     1.7013e-02                        4.3752e-03                         1.1008e-03 
   Results in [9] 
 δ ↓     .0 05η =  
 0.00   3.4534e-02                           1.1643e-02                       3.0046e-03 
 0.05   3.8231e-02                           1.2958e-02                       3.3513e-03 
 0.09   4.1108e-02                           1.4001e-02                       3.6292e-03 
   η ↓       .0 05δ =  
 0.00   3.6404e-02                           1.2294e-02                      3.1778e-03 
 0.05   3.8231e-02                           1.2958e-02                      3.3513e-03 
 0.09   3.9658e-02                           1.3483e-02                      3.4905e-03 
___________________________________________________________ 
 

Table 4. MAEs for Example 4 for with .0 1ε =  
__________________________________________________________ 
N →           32                                      128                                512 
__________________________________________________________ 𝛿 ↓    Suggested method 
0.00     9.9096e-03                          5.5551e-04                        2.3088e-05 
0.05     7.2235e-03                          4.0487e-04                        1.7063e-05 
0.09     5.4742e-03                          3.0372e-04                        1.2923e-05 
Results in [9] 
0.00     4.6789e-02                    1.7279e-02                        4.4308e-03 
0.05     3.8283e-02                   1.4877e-02                        3.8067e-03 
0.09     3.1492e-02                    1.2993e-02                        3.3193e-03 
Results in [1] 
0.00    9.3435e-03                            2.4536e-03                       6.2174e-04 
0.05    1.0039e-02                            2.6180e-03                       6.6231e-04 
0.09    1.0571e-02                            2.7569e-03                       6.9686e-04 
____________________________________________________________ 
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Table 5. MAEs in Example 5 with .0 1ε = . 
____________________________________________________________ 
N →          32                                   128                           512 
____________________________________________________________ 
η ↓   Suggested method 
0.00      9.9096e-03                       5.5551e-04                        2.3088e-05 
0.05     1.3384e-02                        7.2751e-04                        3.0086e-05 
0.09     1.6586e-02                        8.8665e-04                        3.6388e-05 
Results in [9] 
0.00    4.6789e-02                         1.7279e-02                         4.4308e-03 
0.05    5.5164e-02                         1.9725e-02                         5.0676e-03 
0.09    6.1682e-02                         2.1696e-02                         5.5845e-03 
Results in [1] 
0.00    9.3435e-03                          2.4536e-03                          6.2174e-04 
0.05    8.7029e-03                          2.3021e-03                          5.8424e-04 
0.09    8.2900e-03                          2.1895e-03                          5.5647e-04 
_____________________________________________________________ 

 
Table 6. MAE in Example 6  with .0 1ε = .  

_____________________________________________________________ 
N →        32                                      128                              512 
_____________________________________________________________ 
δ ↓       .0 05η =   Suggested method  
0.00     9.2888e-03                           4.9625e-04                          2.0550e-05 
0.05     6.7830e-03                           3.6849e-04                          1.5464e-05 
0.09     5.0656e-03                           2.8006e-04                          1.1897e-05 
η ↓    .0 05δ =  
0.00     4.6748e-03                           2.5982e-04                          1.1073e-05 
0.05     6.7830e-03                           3.6849e-04                          1.5464e-05 
0.09     8.7549e-03                           4.6934e-04                          1.9478e-05 
Results in [9] 
δ ↓     .0 05η =      
0.00     3.6850e-02                           1.3316e-02                           3.4288e-03 
0.05     3.2184e-02                           1.1671e-02                           2.9957e-03 
0.09     2.8503e-02                           1.0389e-02                           2.6637e-03 
η ↓    .0 05δ =  
0.00     2.7595e-02                            1.0078e-02                           2.5829e-03 
0.05     3.2184e-02                            1.1671e-02                           2.9957e-03 
0.09     3.5914e-02                            1.2973e-02                           3.3404e-03 
Results in [1] 
δ ↓     .0 05η =     
0.00     1.6643e-02                           4.3793e-03                          1.1118e-03 
0.05     1.6949e-02                           4.4649e-03                          1.1320e-03 
0.09     1.7233e-02                           4.5266e-03                          1.1463e-03  
η ↓    .0 05δ =  
0.00     1.7317e-02                           4.5402e-03                           1.1496e-03 
0.05     1.6949e-02                           4.4649e-03                           1.1320e-03 
0.09     1.6711e-02                           4.3982e-03                           1.1160e-03 
______________________________________________________________ 
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Table 7. Rate of Convergence with .0 1ε = . 
 

_______________________________________________ 
N →          32                           128                  512         
_______________________________________________ 
δ ↓     Example 1 
0.00        2.0760                 2.1668                1.8917 
0.05        2.0739                         2.1733                 2.0103 
0.09        2.0756                 2.1789                2.1207 
η ↓     Example 2 
0.00   2.0760              2.1668                 1.8917 
0.05   2.0768                          2.1602                 1.7892 
0.09   2.0718                          2.1552                 1.7161 
 δ ↓        .0 05η =     Example 3 
0.00     2.0674                            2.1732                 2.0209 
0.05     2.0757                            2.1643                 1.8589 
0.09     2.0772                            2.1572                 1.7543 
  η ↓        .0 05δ =  
0.00     2.0715                            2.1689                 1.9348 
0.05     2.0757                            2.1643                 1.8589 
0.09     2.0767                            2.1604                 1.8043  
 δ ↓     Example 4 
0.00     2.0434                            2.1994                 2.6339 
0.05     2.0417                            2.1926                 2.5513 
0.09     2.0685                            2.1933                 2.4645 
η ↓   Example 5  
0.00        2.0434                       2.1994                   2.6339 
0.05        2.0899                       2.1969              2.6977 
0.09        2.1282                       2.2022              2.7391 
δ ↓       .0 05η =   Example 6 
0.00         2.1307                      2.0957                   2.6577   
0.05         2.1004                      2.1958                   2.5744 
0.09         2.0675                      2.1094            2.4845 
η ↓    .0 05δ =  
0.00        2.0596                        2.1929                  2.4576 
0.05        2.1004                        2.1958                  2.5744 
0.09        2.1292                        2.2001                  2.6432 
______________________________________________ 

 
Nomenclature 
 
 id  – grid difference 

 ih  – mesh size 

 N – number of sub intervals 

 s  – independent variable 

 is  – mesh points 
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 δ  – delay parameter 

 ε  – perturbation parameter 

 η  – advance parameter 

 θ  – solution 
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