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The solution of differential-difference equations with small shifts having layer behaviour is the subject of this
study. A difference scheme is proposed to solve this equation using a non-uniform grid. With the non-uniform grid,
finite - difference estimates are derived for the first and second-order derivatives. Using these approximations, the
given equation is discretized. The discretized equation is solved using the tridiagonal system algorithm.
Convergence of the scheme is examined. Various numerical simulations are presented to demonstrate the validity
of the scheme. In contrast to other techniques, maximum errors in the solution are organized to support the method.
The layer behaviour in the solutions of the examples is depicted in graphs.
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1. Introduction

The analysis of differential-difference equations with small shifts and layer behaviour has progressed
rapidly in recent years. Simulation of complicated physical systems requires the use of differential-difference
equations. These equations are used in the modelling of a variety of real-world situations, such as population
dynamics [1], physiological process reproductions [2], predator-prey models [3] and the production of an
action potential in nerve cells by random synaptic inputs in dendrites [4]. The mathematical details of these
problems are referred to in [5, 6].

In [4], the author discussed a problem with stochastic effects caused by neuron excitation. The
determination by random synaptic inputs into the dendrites of the expected time to generate action potential in
nerve cells can be modelled to constitute a first-time problem. In this model, the input distribution is seen as
an exponential decay Poisson process. If inputs with the variance parameter ¢ and drift parameter u are also

available to be modelled as a Wiener process, then the problem can be defined as a linear second order
differential-difference equation with the initial membrane potential for expected first-exit time 0(s),

s€ (s;,s5,) and can be formulated as

0_2

76”(s) +(u—s)0"(s)+A.0(s+a,)+A0(s—a;)— (A, +A;)0(s)=—1 (1.1)
where the values s =35, and s =y, correspond to the inhibitory reversal potential and to the threshold value of

the membrane potential for action potential generation respectively. Here the term —s8'(s) represents the
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exponential decay between synaptic inputs. The undifferentiated term corresponds to excitatory and inhibitory
synaptic inputs, modelled as a Poisson process with rates A, and A, , respectively, and produce jumps in the

membrane potential of amounts a, and a;, respectively, which are small quantities and could be dependent
on voltage. The boundary condition is 8(s)=0, s& (s;, 5,).

The numerical treatment of singularly perturbed differential-difference equations is far from trivial
because the solution to these problems varies rapidly in some parts and slowly in some other parts. Also, the
layer profile varies according to the values of the delay and advance parameters. Hence, to solve these
problems, we required more efficient, simpler computational techniques.

The analysis and numerical methodology of singular perturbation problems (SPPs) are presented in [7,
8, 9, 10, 11]. The authors in [12, 13] used the Taylor approximation to implement a parameter-uniform
differential scheme to solve a model based on neural variability. In [14], the authors investigated turning point
behaviour in differential-difference equations. Researchers compared layer behaviour for various shift
parameter values in [15], focusing on solutions that display layer behaviour at one or both ends of the boundary.
The same authors expanded their research in [16], revealing that fast oscillation solutions are more prone to
small delays than layer solutions based on the WKB approach.

The authors in [17] proposed a finite difference technique to transform the time fractional stochastic
KdV equation into elliptic stochastic differential equations. Then, the resulting elliptic SDEs were solved using
a meshless method based on radial basis functions. In [18], the researchers suggested a finite difference scheme
and radial basis functions interpolation to convert the solution of time-fractional stochastic advection—diffusion
equations to the solution of a linear system of algebraic equations. In [19], a new scheme employing
a collocation method in combination with matrices of Fibonacci polynomials is introduced for the solution of
singularly perturbed differential-difference equations.

Sirisha et al. [20] addressed the mixed shifts problem by decomposing the domain and applying a
mixed difference technique. Phaneendra et. al. [21] employed numerical integration with interpolation to solve
equations containing a layer or oscillatory nature. In [22], researchers proposed a fitted spline approach for
solving the delay problem with a layer at one end of the domain. Based on the triangular function theorem, in
[23], the authors proposed a set of finite difference methods for convention-diffusion equations, which is
subsequently extended to solve two-dimensional problems using the AID methodology.

2. Description of the problem

The differential-difference equation describing layer behaviour is
e0”(s)+ p(5)0'(s)+q(s)8(s —8)+r(5)0(s) +v(s)8(s +1) = £ (s) @.1)
on (0,1), under the boundary conditions
0(s)=¢(s) on -8<s<0, O(s)=vy(s) on I<s<I+m 2.2)

where 0 <g<</ is a perturbation parameter p(s), ¢(s), r(s), v(s), f(s), ¢(s) and y(s) are the smooth
functions and 0 <3 =o0(€), 0 <Mn=o0(€) are the delay and the advance parameter, respectively. The solution of
Eq.(2.1) with Eq.(2.2) exposes a layer at the left end of the domain if p(s)—3g(s)+mv(s)>0 and a layer at
the right end of the domain if p(s)—3¢g(s)+mv(s)<0.If p(s)=0, then the problem has oscillatory solution
or two layers depending upon the cases whether g(s)+7(s)+v(s) is positive or negative.

Since the solution 6(s) of Eq.(2.1) is suitably differentiable, the terms 8(s—3) and 6(s+m) 6(s—n)
can be expanded using the Taylor series, then we have:
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B(s—8)=0(s)—380'(s), B(s+m)=6(s)+m0'(s). (2.3)
Using Eq.(2.3) in Eq.(2.1), we get:
e0”(s)+a(s)0'(s)+b(s)0(s)=1(s). 2.4)

Equation (2.4) is a second-order SPP. Here,
a(s)=p(s)=8q(s)+nv(s),b(s)=g(s)+r(s)+v(s).
3. Derivation of the scheme
i1
Let the advance parameter be in [0,1]. Let s, =0, s; = th (ISi<N).

k=0
h, =S, =S, ,Sy =1 and d; =h; —h,_; be the common grid difference.

Using the Taylor series expansion of 0,,; & 0,_; and ignoring the term of the third and higher order, we get

, h:
0,,;, =6, +h0; +’76i ,

;o
0,_; =0, —h_9, +l7 i

d.
Multiplying Eq.(3.2) by h—’, we get:
i1

d, d, oo dib g
L6, ,=—-0,-d6 +—L6/.
hifl i—1 2

Summing Eq.(3.1), Eq.(3.2) and Eq.(3.3) gives:

0, = 2 [+ 0, ;- P 0,+6,,,.
hy (B +hi_p) h_, b

Using Eq.(3.1) and Eq.(3.2), we have:

, 1

0/ = 0,,-0.,) -2l 1+ |o_,—| 2+-2|o, +0.,, |L.
i hl' +hi_1 {( i+1 i 1) hi |:[ hj_jJ 1 [ hi_lJ +1:|}

Using Eq.(3.4) and Eq.(3.5) in Eq.(2.4), we get:

3.1)

(3.2)

(3.3)

34

(3.5)
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2 1+ a 0, ; — 2+i 0,+0,,, |+
By (b +hy_p) by by
( ) p J p :f(si)'
als; ) ) .
+ ! 0.,,-0,_,)——|| 1+—108,_,—| 2+—10,+6,,, [t +b(s;)6;
h +h {( i+1 1—1) h[ |:[ h,'_]] i—1 [ h,'_]] i 1+1:|} (Sl) i

Arranging the above equation in three-term relation, we have:

LO,,+CO,+U®, , =F for i=12, .N-I. (3.6)

Here

4. Mesh selection strategy

Let N be the number of grid points in the domain. Let d; =d =h; — h;_; be the common grid difference.
Then

Sy — Sy :(SN_SN—1)+(SN—1_SN—2)+ ...... +(S]—S0):
={hy+(N=1)d}+{hy+(N=2)d}+...+ hy =
={(N-1)+(N-2)+.... +1}d+Nh0=§N(N—1)d+Nh0,
2(1-Nhy)

N(N-1)

Therefore, d is chosen from the above equation and subsequent 4 's can be acquired by
hi=h_;+d,i=12,.,N

this gives  d; =

1

5. Uniform convergence of the scheme

Let the problem Eq. (2.4) be denoted by Q, and the corresponding discretized problem be denoted by QEN ,1

Lo

0 ={£9”+a(s)9'+b( 5)0(s)=f(s) with
© [ 8(0)=9(0), 6(1)=0(1).
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and

0 = {AZO( s;)+a(s;)AB(s;) +b(s;)8(s;) =/ (s;)

with 6(0) = ¢(0), 0(7)=o(1).

Let m, be the operator corresponding to the continuous problem (O, and név be the operator
corresponding to the problem QSN , 1.e.,
d’ d

S:E—Z+a(s)—+b(s) and TCéV=SA2+a(Si)A+b(Si)
ds ds

T

where:

2 d. d.
A°0(s,) = I+——10._,—| 2+——10.+9,,, |,
(s1) h(hh)K hj( h] }

1 dl' di di
Ae(si): h+h {(eiﬂ _ei—])_h_|:[]+h_Jei—l _[2+h_Jei +ei+1:|}'
i i—1 i i—1 i—1

Uniform convergence of the method will be verified using the discrete minimum principle and the
following lemmas.

Lemma 1. Discrete Minimum Principle: Suppose the grid function satisfies y, =0 and y, =0.

Thenné\’xiSO for 0<i<N-1 impliesthat x; 20 forall O0<i<N.

Proof. Suppose there exists m, 0<m <N such that y,, = min %; and ¥, <0. By the hypothesis
0<iSN-1

%o 20 and 3y =0, therefore me {0,1} . For /ISm<N we have:

oy, = 2 [+ 2edi )y +
€ Xm hm (hm + hm_l) hm_l Xm—] hm_] Xm Xm+]
1 d; d; d;
+—— ——L|| I+ + +b =
hm N hm_] {(Xm+] Xm 1) hm l:( hm_] JX ( m JXm Xm+] :I} me

_ 2¢ d; _
- hm (hm + hm—l ) |:{[1+ hm—l J(Xm—] Xm) Xm+1 :l (51)

1
+—
h,, +h,_;

d. d.
- L 1+— - + - +b, X
o hm_]){[ p j(xm_z X )+ (Aot 1 xm)} Ko

m—1

[t =Xm) =t =) ]+
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Then, we have X,,_; —%m =0, Amss —Xm =0 and b, <0. Using these inequalities and Eq.(3.6), we get
Tcév x; >0. Thus for /<m<N, we have Tcév x; >0, which contradicts the hypothesis that
nly; <0 for ISi<N—I.

Therefore our assumption that 7, <0 is wrong which implies that x; =0 forall0<i< N .

Lemma 2. Let y; be any grid function such that y, =%, =0.Then

, for 0<i<N.

1 N
|Xz' S~ max Ty

O I<j<N-1

Proof. We introduce two barrier functions \|Jli defined by:

yi=1
- =— max
" DI<jEN-I

TS0, |+ 0 =L+0,, for ISi<N.

Then
Wy =L+0y=L>0,yy=L+0y=L>0 for 0<i<N.

Now
iyl =eA'yT +a(s; ) AT +b(s; ) ui =
=8A2(LiXi)"‘a(Si)A(LiXi)+b(S,-)(Lixi):
=y, £ Lb(s,) 2Ty, £ LO>0.

Therefore, by Lemma 1, we have ljlii >(), for 1<i< N -1 which substantiates the required conclusion.
i-1

Lemma 3. Let s, =0, sy =1, d; = h; — h;,_; be the common grid difference, s; = th, for /<i< N—1 then,
m=0

B
N

Proof. For a detailed proof of this lemma one can refer to [17].

Lemma 4. For every ¢e C’ (0,1), we have:

¢

(/)
(s)

ds’ )‘

d’ 2
( A2 _—J ¢H <lols  where Jo:1- N

Proof. One can refer to [17].
Lemma 5. Let 6 be the solution of the BVP Eq.(2.4) and let 6 =u, +v, . For 0<k <3 and for small ¢, the

functions u,, v, and their derivatives satisfy the following:

(k)

Ug

‘SCSZ_k,
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Ve (X)[| < Cexp —%, se|0,1],
(+) L) sefon)

NG

‘S ce* exp(—%j, se[0,1].
€

Proof. One can refer to [6].

Theorem 1. The solution Y, of the discrete problem QSN and the solution 6, of the continuous problem O,
satisfy the following € — uniform error estimate;

sup ||Y, -0, <CN~'(InN)?, (5.2)

O<e<l

where C is a positive constant unaffected by ¢ .
Proof. Decompose the solution ¥, into regular (R, ) and singular (W, ) parts. Thus ¥, =R, + W, where R,
is the solution of the non-homogeneous problem

névRs:fa R€(0)=r£(0), Rs(]):rs(l) (53)
and W, is the solution of the homogeneous problem
me We =0, W (0)=w(0), W,(1)=w,(]). (5.4)

Here 7, and w; are the regular and singular parts of continuous problem O, so that 6, =7, +w;.

The error may be written in the form ¥, =0, =R, —7, + W, —w;, it gives:
Y. =0, <R, — 1, + W, —w; . (5.5)

As a conclusion, the error estimation in the regular and singular parts of the solution can be separated. Now
we can evaluate the error for the regular part.

2

d d
me (Re =1 )(s;) =/ (5:) g 1 (1) =(1t£ —ﬂév)FEZE(—Z—AZ]rg +a(si)(__A)r£' (5.6)
ds ds
Let s; € [0,1]. Then for any o€ C7(0,1) using Lemma 4, we have:

2
)

also, we obtained

d 3
[3-£)os)-210,

2
=y
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Using these results in Eq.(5.6), we get

2
m (Re =1 )(s: )H S ﬁ?’"”a”s :

Using Lemma 5, for the estimation ) yields

m (Re—r)(s)| <o

Using inequality Lemma 1, to the grid function (R, —7,)(s;) gives

|(R =) (s 07" max [ (R = )(s)]

Using inequality Eq. (5.7) in inequality Eq.(5.8), we get

(R~ )| <N

(5.7)

(5.8)

(5.9)

Now by the same arguments as that for the regular part, the error estimate for the singular part of the solution

is given by:

2
n (W =we)(s,)] < el

Using Lemma 5 for the estimation wi¥) yields

m (W, —we)(s,)| s ce N,

But in this case € ' <C In(N), so the above inequality reduces to:

my (W, =) (s )| <OV (in V).
Using inequality Lemma 1 to the grid function (W, —w,)(s;) gives:

07, - s | < N (1Y

Combining the inequalities Eq.(5.5) to Eq.(5.10) gives the desired result Eq.(5.2).

6. Numerical illustrations

(5.10)

To verify the applicability of the method, model problems of the types Eqs (2.1)-(2.2) are considered.

The exact solution of the problem is 6(s)=c;e™* +c,e"** +%
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where
[—f+yC+e’"2 (f—fc)]
(eml —e™ )CI

C=b+c+d, ¢ =

b

[f—yC+em1 (—f+fC)} [—(p—c]5+vn)+\/(p—q5+vr])2 —4£C}
6= (em] oM )C > m; = 2¢ 5
[—(p—q8+m)—J(p—q8+vn)2—480}
m, = :

2¢e

Example 1. €0”(s)+6"+26(s—-8)-30=0 with 0(s)=1,-8<s<0,0(s)=1, ISs<I+n.

Example 2. €0"(s)+6'—30+26(s+n)=0 with 0(s)=1,-8<s<0,0(s)=1, ISs<I+n.

Example 3. €0”(s)+6 —20(s—8)—-50+6(s+m)=0 with 0(s)=1-8<s<0,60(s)=1, I<s<I+nm.
Example 4. €0”(s)—6"—20(s—8)+6=0 with 0(s)=1-8<s5<0,0(s)=—1,/<s<I+n.
Example 5. €0”(s)—6'+0-20(s+n)=0 with 0(s)=/,-8<s<0,0(s)=—1,1<s<I+n.

Example 6. €0”(s)—0"—20(s—8)+0—-20(s+m)=0 with 0(s)=1, -8<5<0,0(s)=-1, ISs<I+m.
7. Conclusion

The equation having a layer structure with small shifts is solved using a difference technique on a

nonuniform grid. Finite difference estimates are obtained for the first and second-order derivatives using the
nonuniform grid.

1 1
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Fig.1. Layer profile in Example 1 with €=0.1. Fig.2. Layer profile in Example 2 with €=0.1.
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Fig.5. Layer profile in Example 4 with €=0.1. Fig.6. Layer profile in Example 5 with €=0.1/.

Fig.7. Layer profile in Example 6 with Fig.8. Layer profile in Example 6 with €=0./,
€=0.1,0=0.5¢. n=0.5¢.
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Making use of these approximations, the given equation is discretized and solved using the tridiagonal
algorithm. Convergence of the scheme is established. Multiple numerical examples are illustrated to validate
the method. MATLAB software is used to design the codes for the solution of the examples. For Examples 1-
6, the maximum absolute errors (MAESs) in the solutions are listed in Tabs 1-6. The proposed method was
shown to be more accurate than the methods in [24] and [12] when comparing the computed errors. The rate
of convergence of the scheme for the examples is calculated and shown in Tab.7. Figures 1-8 show the layer
structure to the examples for a various value of the shift parameters. Using Figs 1-4, it is noticed that, when o
increased, the width of the left end boundary layer decreases and it is increased when M is increased. From

Figs 5-8, we noticed that when O increased the size of the right end boundary layer increases and it is decreased
when 1 is increased.

Table 1. MAEs in Example 1 with €=0.1.

N— 32 128 512

51  Suggested method

0.00 2.2648e-03 1.2536¢-04 5.9442¢-06

0.05 2.0935e-03 1.1586e-04 5.3476e-06

0.09 1.9443¢-03 1.0735e-04 4.8437e-06

51  Results in [9]

0.00 3.7007e-02 9.5467e-03 2.1450e-03

0.05 3.6405e-02 9.2466¢-03 2.0299¢-03

0.09 3.5566¢-02 8.9517e-03 1.9248e-03

61 Resultsin[1]

0.00 3.5537e-03 9.1770e-04 2.3113e-04

0.05 3.8619¢-03 9.9278e-04 2.4977e-04

0.09 4.1191e-03 1.0557e-03 2.6536e-04
Table 2. MAEs in Example 2 with €=0.1.

N— 32 128 512

nd  Suggested method

0.00  2.2648¢-03 1.2536¢-04 5.9442¢-06

0.05  2.4169¢-03 1.3371e-04 6.5072¢-06

0.09  2.5154e-03 1.3970e-04 6.9362¢-06

nd  Results in [9]

0.00  3.7007e-02 9.5467¢-03 2.1450e-03

0.05  3.7270e-02 9.7965¢-03 2.2447¢-03

0.09  3.7238e-02 9.9628¢-03 4.5869¢-03

n{  Resultsin [1]

0.00 2.8330e-03 7.4107e-04 1.8720e-04

0.05 2.6115e-03 6.8579¢-04 1.7341e-04

0.09 2.4443e-03 6.4520e-04 1.6328e-04
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Table 3. MAE for Example 3 with €=0.1.

N —> 32 128 512
54 N=0.05 Suggested method
0.00 3.1908e-03 1.7721e-04 8.1741e-06
0.05 3.5660e-03 1.9754e-04 9.4574¢-06
0.09 3.8696¢-03 2.1406¢-04 1.0534¢-05
nd 8=0.05
0.00 3.3775e-03 1.8734e-04 8.8067e-06
0.05 3.5660e-03 1.9754e-04 9.4574¢-06
0.09 3.7175e-03 2.0571e-04 9.9905e-06
Results in [1]
84 mn=005
0.00 1.7890e-02 4.5754e-03 1.1494¢-03
0.05 1.7272e-02 4.4321e-03 1.1147¢-03
0.09 1.6748e-02 4.3186¢-03 1.0870e-03
ni 3=0.05
0.00 1.7587e-02 4.5038e-03 1.1321e-03
0.05 1.7272e-02 4.4321e-03 1.1147e-03
0.09 1.7013e-02 4.3752¢-03 1.1008e-03
Results in [9]
8L m=00s5
0.00 3.4534¢-02 1.1643¢-02 3.0046¢-03
0.05 3.8231e-02 1.2958e-02 3.3513e-03
0.09 4.1108e-02 1.4001e-02 3.6292¢-03
nd 8=005
0.00 3.6404e-02 1.2294e-02 3.1778e-03
0.05 3.8231e-02 1.2958e-02 3.3513e-03
0.09 3.9658e-02 1.3483e-02 3.4905¢e-03
Table 4. MAEs for Example 4 for with € =0./
N — 32 128 512
6 | Suggested method
0.00  9.9096¢-03 5.5551e-04 2.3088e-05
0.05 7.2235e-03 4.0487¢-04 1.7063e-05
0.09 5.4742¢-03 3.0372¢-04 1.2923e-05
Results in [9]
0.00 4.6789¢-02 1.7279¢-02 4.4308e-03
0.05 3.8283e-02 1.4877e-02 3.8067¢-03
0.09 3.1492¢-02 1.2993e-02 3.3193e-03
Results in [1]
0.00 9.3435¢-03 2.4536e-03 6.2174¢-04
0.05 1.0039¢-02 2.6180e-03 6.6231e-04
0.09 1.0571e-02 2.7569¢-03 6.9686¢-04
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Table 5. MAEs in Example 5 with €=0.1.

N— 32 128 512

n! Suggested method

0.00  9.9096¢-03 5.5551e-04 2.3088¢-05

0.05 1.3384e-02 7.2751e-04 3.0086¢-05

0.09 1.6586e-02 8.8665¢-04 3.6388e-05

Results in [9]

0.00 4.6789¢-02 1.7279¢-02 4.4308¢-03

0.05 5.5164¢-02 1.9725¢-02 5.0676e-03

0.09 6.1682¢-02 2.1696¢-02 5.5845¢-03

Results in [1]

0.00 9.3435e-03 2.4536¢-03 6.2174e-04

0.05 8.7029¢-03 2.3021e-03 5.8424e-04

0.09 8.2900e-03 2.1895¢-03 5.5647¢-04
Table 6. MAE in Example 6 with €=0.1.

N— 32 128 512

54 n=0.05 Suggested method

0.00 9.2888e-03 4.9625e-04 2.0550e-05

0.05 6.7830e-03 3.6849¢-04 1.5464¢-05

0.09 5.0656e-03 2.8006¢-04 1.1897¢-05

nd 8=005

0.00 4.6748e-03 2.5982¢-04 1.1073e-05

0.05 6.7830e-03 3.6849¢-04 1.5464e-05

0.09 8.7549e-03 4.6934¢-04 1.9478e-05

Results in [9]

51 n=0.05

0.00 3.6850e-02 1.3316e-02 3.4288e-03

0.05 3.2184e-02 1.1671e-02 2.9957¢-03

0.09 2.8503e-02 1.0389¢-02 2.6637¢-03

nd 8=005

0.00 2.7595e-02 1.0078e-02 2.5829¢-03

0.05 3.2184e-02 1.1671e-02 2.9957¢-03

0.09 3.5914e-02 1.2973¢-02 3.3404¢-03

Results in [1]

5! n=0.05

0.00 1.6643e-02 4.3793¢-03 1.1118e-03

0.05 1.6949¢-02 4.4649¢-03 1.1320e-03

0.09 1.7233e-02 4.5266¢-03 1.1463e-03

nd 8=005

0.00 1.7317e-02 4.5402¢-03 1.1496¢-03

0.05 1.6949¢-02 4.4649¢-03 1.1320e-03

0.09 1.6711e-02 4.3982¢-03 1.1160e-03
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Table 7. Rate of Convergence with €=0.1.

N — 32 128 512

84  Example 1

0.00 2.0760 2.1668 1.8917
0.05 2.0739 2.1733 2.0103
0.09 2.0756 2.1789 2.1207
nl Example 2
0.00  2.0760 2.1668 1.8917
0.05 2.0768 2.1602 1.7892
0.09 2.0718 2.1552 1.7161
5l nN=0.05 Example 3
0.00 2.0674 2.1732 2.0209
0.05 2.0757 2.1643 1.8589
0.09 2.0772 2.1572 1.7543
nd 3=0.05
0.00 2.0715 2.1689 1.9348
0.05 2.0757 2.1643 1.8589
0.09 2.0767 2.1604 1.8043
5\ Example 4
0.00 2.0434 2.1994 2.6339
0.05 2.0417 2.1926 2.5513
0.09 2.0685 2.1933 2.4645
nd Example 5
0.00 2.0434 2.1994 2.6339
0.05 2.0899 2.1969 2.6977
0.09 2.1282 2.2022 2.7391
54 nN=0.05 Example 6
0.00 2.1307 2.0957 2.6577
0.05 2.1004 2.1958 2.5744
0.09 2.0675 2.1094 2.4845
nd 8=005
0.00 2.0596 2.1929 2.4576
0.05 2.1004 2.1958 2.5744
0.09 2.1292 2.2001 2.6432
Nomenclature

d; — grid difference

h.  — mesh size

;
N —number of sub intervals
s —independent variable

— mesh points

S
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& —delay parameter
¢ — perturbation parameter
n - advance parameter

0 —solution
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