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This paper analyses the transverse deflection in a homogeneous, isotropic, visco-thermoelastic beam when 
subjected to harmonic load. The ends of the beam are considered at different boundary conditions (both axial ends 
clamped, both axial ends simply supported and left end clamped and right end free). The deflection has been studied 
by using the Laplace transform. Numerical computation of analytical expression of deflection obtained after Inverse 
Laplace transform has been done using MATLAB software. The graphical observations have been discussed under 
various boundary conditions for different values of time and length. The above work has applications in design of 
resonators. 
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1. Introduction 
 
 Viscoelastic materials such as plastic materials and polymer science have received great interest due 
to numerous applications in modern engineering structures, in which materials are under high temperature. 
Lord and Shulman [1] formulated the theory of thermoelasticity which incorporated the coupling between 
temperature and strain rate. Christensen [2] discussed the stress-strain constitutive relations and described 
thermoviscoelastic stress. Drozdov [3] derived a model for thermoviscoelastic materials which takes into 
consideration the changes in elastic moduli and relaxation times. 
 Guo [4] studied the effect of a thermoelastic coupling on the wave characteristics such as the frequency 
ratio and non-dimensional frequency for micro-machined beam resonators. Sun [5] analysed the influence of 
a thermoelastic coupling on deflection amplitudes, thermal moment amplitudes for micro-scale beam 
resonators. Sun [6] studied the out of plane vibrations of a circular plate resonator under the effects of 
thermoelastic damping. Yanping and Yilong [7] applied the neural network method to study the static 
deflection in micro-cantilever elastic beam subjected to transverse loading. 
 Sharma and Grover [8] derived analytical expressions for the thermoelastic damping and frequency 
shift in transverse vibrations of a homogenous isotropic, thermoelastic thin beam with voids, based on the 
Euler–Bernoulli theory under clamped and simply supported boundary conditions. Grover [9] derived 
expressions for transverse vibrations of a homogenous, isotropic, thermally conducting Kelvin-Voigt type 
viscothermoelastic thin beam with variable thickness. 
 Guo et al. [10] analysed the thermoelastic damping using dual-phase-lagging model and studied the 
effects of the beam height and aspect ratio. Sharma et al. [11] analysed the wave characteristics under the 
effects of temperature, rotation, viscosity and thermal relaxation time in an elastic medium. Sharma and Kaur 
[12] analysed the transverse deflection and thermal moment of transverse vibrations in an isotropic, thermo-
elastic beam under the action of harmonic concentrated load. Sharma and Kaur [13] studied the dynamic 
response of a homogeneous, transversely isotropic, thermoelastic micro-beam resonator under the action of 
time varying load and clamped-clamped conditions at axial ends. Partap and Chugh [14] investigated the 
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flexural vibrations of homogeneous isotropic micropolar microstretch thermoelastic thin beam resonators 
under the influence of time harmonic load at different boundary conditions of clamped-clamped, simply 
supported-simply supported or clamped-free. Thakare et al. [15] analysed the effect of inhomogeneity on 
thermal and mechanical behaviour in the two dimensional nonhomogeneous thick hollow cylinder in the 
context of fractional order derivative. 
 In this paper, an attempt has been made to study the dynamic response of a homogeneous isotropic 
viscothermoelastic beam under the action of harmonic loading. The Laplace transform technique has been used 
twice with respect to time and space domain. The analytical solution for clamped-clamped, simply supported- 
simply supported and cantilever-free beams has been evaluated using the method of residues. MATLAB 
software has been used for representing the results graphically for comparison. 
 
2. Primary equations 
 
 In this paper, a homogeneous isotropic, viscothermoelastic beam has been considered which is initially 
at uniform temperature 𝜅 and is undeformed. The basic equation of motion has been considered in the 
Cartesian coordinate system and is given by 
 

  ,

2
i

ij j 2t
∂ ν

σ = ρ
∂

. (2.1) 

 
 In the context of Lord Shulman [1] model of generalised thermoelasticity, the equation of heat 
conduction along with the constitutive relations, in the absence of heat sources and body forces, which govern 
the displacement vector ( ), , 1 2 3ν = ν ν ν  and temperature change ( ), , , x y z tκ  at time t  are given as 
 
  Λij v ij kk v ij v ije 2 eσ = δ + μ − β κδ , (2.2)  
  .

2 2
2

e 0 v 0 02 2K C t t
t tt t

   ∂κ ∂ κ ∂ ∂∇ κ = ρ + + β κ + ∇ ν      ∂ ∂∂ ∂   
 (2.3) 

where 

  Λ Λ , , v 0 v 11 1
t t

∂ ∂   = + μ = μ +   ∂ ∂   
    

 

  ( )β , Λv 0 0 0 11 3 2
t

κ∂ = β + β β = + μ ∂ β 

  . (2.4) 

 
3. Modelling of beam structure 
 
 We consider a small flexural deflection of a homogeneous isotropic, viscothermoelastic beam of the 

following dimensions: length ( )  L 0 x L≤ ≤ , width  ,b bb y
2 2

 − ≤ ≤ 
 

 and thickness   h hh z
2 2

 − ≤ ≤ 
 

. In 

equilibrium, the beam is under zero stress, zero strain and also kept at stable temperature  0κ .  In accordance 
with Euler-Bernoulli assumptions, any plane cross-section, initially normal to the axis of the beam remains flat 
and normal after deformation. The displacement vector ν and temperature function  κ are given as 
 

  ( ) ( ) , ,  , , , , 1 2 3
Dz 0 D x t x z t
x

∂ν = − ν = ν = κ = κ
∂

. (3.1) 
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Now by substituting Eq.(3.1) in Eqs (2.2) and (2.3), we get the following set of equations. 
 

  ( ) ( )Λ Λ
2 3

ij 0 1 02 2
D D2 z 2 z

tx t x

   ∂ ∂ ∂κ σ = + μ − + + μ − − β κ + β         ∂∂ ∂ ∂     
  , (3.2) 

 

  
2 2 2 3 4

e 0 v 0 02 2 2 2 2 2
D DK C t z t

tx z t x t x t

     ∂ κ ∂ κ ∂κ ∂ κ ∂ ∂+ = ρ + − β κ +          ∂∂ ∂ ∂ ∂ ∂ ∂ ∂     
. (3.3) 

 
Also, the flexural moment of cross section ( ), M x t  is represented as 
 

  ( )
/

/

, 
h 2

xx
h 2

M x t b zdz
−

= σ . 

 
Using Eq.(3.2) we get 
 

  ( ) ( ) ( ), Λ Λ
2 3

0 1 02 2
MD DM x t 2 I 2 I M

tx t x
κ

κ
∂∂ ∂  = + μ + + μ + β + β ∂∂ ∂ ∂  

   (3.4) 

 

where 
3bhI

12
=  and 

h
2

h
2

M b zdzκ

−

= κ   represent the moments of inertia of the cross section and of the beam due 

to thermal effects, respectively. Now taking up the equation of transverse motion of the beam 
 

  ( ), 
2 2

2 2
M DA q x t
x t

∂ ∂+ ρ =
∂ ∂

 (3.5) 

 
where  A bh=   represents the area of the cross-section and ( ), q x t  represents harmonic loading on beam, so 
the equation of motion of the beam reduces to 
 

  ( ) ( ) ( )Λ Λ ,
2 34 5 2

0 1 04 4 2 2 2
M MD D D2 I 2 I A q x t

x t x x t x t
κ κ ∂ ∂∂ ∂ ∂+ μ + + μ + β + β + ρ =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  . (3.6) 

 
Considering non-dimensional quantities 
 

  ', , , , , '1 1
0 0

0

c cx D zx D z t t t t
L h h L L

κ= =′ ′ ′ ′= = = κ =
κ

, 

 
in Eqs (3.3) and (3.6), we get 
 

  
 

2 2 34 5 2
1 01 1

2 4 4 2 2 2
R

cc M M1 D D D q
L L12A x t x x t x t

κ κ   βδ ∂ ∂∂ ∂ ∂+ + β + + =      ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (3.7) 
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where  

  

1
2

1
2

M z dzκ

−

= κ , 

 

  
22 2 2 3 4

2 e 1 0 11
R 0 02 2 2 2 2 2

C c L czh c D DA t 1 t
K t LK L tx z t x t x t

     δ ββ∂ κ ∂ κ ∂κ ∂ κ ∂ ∂ ∂ + = + − + +           ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂      
 (3.8) 

 
where 
 

  

ΛΛ, , , ,

, , , ' .

2 2 2 0 1
R 1 2 3

22 2
2 2 3 02

12 2 2 2
1 1 1 1

2L 2A c c c
h

cc qLq
c c c Ah c

+ μ+ μ μ= = = =
ρ ρ ρ

βκ
δ = δ = β = =

ρ ρ

 

 (3.9) 

 
Ignoring the primes for the sake of convenience. 
 
4. Initial and boundary conditions 
 
 A beam whose edges are either CC, SS or CF, where CC, SS, CF stand for clamped-clamped, simply 
supported-simply supported, clamped-free respectively, has been considered and  the following conditions 
have been taken into account. 
 Initial conditions are as follows: 
 

  

( ) ( ) ( ) ( )

( ) ( )

, ,
, , . ,

, ,
, , .

2

2
t 0 t 0

t 0

D x t D x t
D x 0 0 k const

t t

x z t
x z 0 0

t

= =

=

  ∂  ∂
= = =    ∂ ∂   

 ∂κ 
κ = = ∂ 

 

 
Boundary conditions are considered as 
 
Case I: For CC beam 
 

  ( ) ( ) ( ) ( ), ,
, ,  ,

x 0 x 1

D x t D x t
D 0 t 0 D 1 t 0

x x= =

 ∂   ∂ 
= = = =   ∂ ∂   

. (4.1) 

 
Case II: For SS beam 
 

  ( ) ( ) ( ) ( ), ,
, ,  ,

2 2

2 2
x 0 x 1

D x t D x t
D 0 t 0 D 1 t 0

x x
= =

   ∂ ∂
= = = =      ∂ ∂   

. (4.2) 

 



D. Chopra and P. Singh  39 

Case III: For CF beam 
 

  ( ) ( ) ( ) ( ), , ,
, ,  

2 3

2 3
x 0 x 1 x 1

D x t D x t D x t
D 0 t 0 0

x x x= = =

    ∂  ∂ ∂
= = = =        ∂ ∂ ∂     

. (4.3) 

 
5. Laplace transform approach 
 
We apply the Laplace transform to Eqs (3.7) and (3.8) with respect to the time domain, defined as 
 

  ( ) ( ), , ,   st

0

W x s e D x t dt
∞

−=     and ( ) ( )       Θ , , , ,st

0

x z s e x z t dt
∞

−= κ ,  
  Θ

22 4
21 01 1

2 4 2
R

c s Mc s1 W1 1 s W Q
L L12A x x

  β ∂δ ∂  + + β + + =     ∂ ∂  
, (5.1) 

 

  Θ Θ Θ  
22 2 2

2 e 1 0 1 0 1
R2 2 2

C c Ls zh c s WA
K LKx z x

  ρ γ βγ γ∂ ∂ ∂+ = −  ∂ ∂ ∂ 
, (5.2) 

 

  
/

Θ
/

,  ,  Θ
h 2

1 0
0 0 1

h 2

sc1 st 1 M zdz
L

−

β
+ = γ + = γ =  , (5.3) 

 
( ),Q x s  is the Laplace transform of load ( ), q x t . 

Under the conditions that no heat flows through upper and lower surfaces of the beam 
 

  Θ      at   10 z
z 2

∂ = = ±
∂

. 

 
The solution of Eq.(5.2) is 
 

  ( ) sinΘ , ,    where   
cos

2 2
2 e 1 01

2 2 2
e R

C c Lsh pz Wx z s z p
pC L x KAp
2

 
  ρ γβγ ∂ = − = −

  ρ ∂
    

. (5.4) 

 
Using Eq.(5.3) to find ΘM  and differentiating twice with respect to x , we get 
 

  ( )( ) ( )Θ     where    tan
2 2 4

1
2 2 4 3

e

M h W 24 p p1 f p f p
2 2x 12C L x p

∂ βγ  ∂  = + = −  ∂ ρ ∂   
. (5.5) 

 
Using Eq.(5.5) in (5.1), we obtain 
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  ( )( )      where     
2 24

2 1 1 1
s s4 2

eR

c sW 1F s W Q F 1 1 f p
L Cx 12A

 δ ββγ∂ + = = + + +  ρ∂  
, 

 

        where   
4 2

4 4
4

s s

W Q sW
F Fx

∂ − ζ = ζ = −
∂

. (5.6) 

 
Considering harmonic loading on the beam ( ), sin0q x t q t= ω , we get 
 

  ( ), 0
2 2
qQ s t

s
ω

=
+ ω

. 

 

Applying the Laplace transform with respect to the space domain defined as ( ) ( ),  , x

0

W s e W x s dx
∞

−ξξ =   

Eq.(5.6) reduces to 
 

  ( ) ( ) ( ) ( ) ( ), , , ,4 3 2 3 4 0
2 2

s

qW W 0 s W 0 s W 0 s W 0 s W
F s

ω ξ − ξ − ξ − ξ −′ ′′ ′ − ζ =′  + ω
′

ξ
. (5.7) 

 
 Using the boundary conditions at x 0=  defined by Eqs (4.1)-(4.3) and applying the inverse Laplace 
transform with respect to the space domain. 
 
Case I 
 

  ( ) ( )
( )

( ) 1 2 0
2 3 42 2

s

a C x a S x C x 2qW
2 2 2F s

ζ ζ ζ −ω
= + +

ζ ζ ζ+ ω
. (5.8) 

 
Case II 
 

  ( ) ( )
( )

( ) 3 4 0
3 42 2

s

a S x a S x C x 2qW
2 2 2F s

ζ ζ ζ −ω
= + +

ζ ζ ζ+ ω
. (5.9) 

 
Case III 
 

  ( ) ( )
( )

( ) 5 6 0
2 3 42 2

s

a C x a S x C x 2qW
2 2 2F s

ζ ζ ζ −ω
= + +

ζ ζ ζ+ ω
 (5.10) 

 
where 
 
  ( ) ( ) ( ) ( ) ( ) ( )cosh cos ,    sinh sinC x x x S x x xζ = ζ − ζ ζ = ζ − ζ , 
 
  ( ) ( ) ( ) ( ) ( ) ( )cosh cos ,    sinh sinC x x x S x x xζ = ζ + ζ ζ = ζ + ζ . 
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 Using the boundary conditions at x 1=  defined by Eqs (4.1)-(4.3), a set of non-homogeneous linear 
equations is obtained and the condition for existence of an infinite solutions is 
 
Case I  cos cosh 1ζ ζ = , (5.11) 
 
Case II  sin sinh 0ζ ζ = , (5.12) 
 
Case III cos cosh 1ζ ζ = − . (5.13) 
 
The respective roots of the Eqs (5.11)-(5.13) are given by 
 

   : . , . , , 1 2 k
1Case I 4 730 7 8532 k k 3
2

 ζ = ζ = ζ = + π ≥ 
 

, 

 
   : . , . , , 1 2 kCase II 3 1416 6 2832 k k 3ζ = ζ = ζ = π ≥ , (5.14)  
   : . , . , ,1 2 k

1Case III 1 8751 4 6941 k k 3
2

 ζ = ζ = ζ = − π ≥ 
 

, 

 
and solutions for three cases of boundary conditions are given by 
 
Case I 
 

   ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )
1 1 10

4 2 2
1s

A C x B S x G C x 2qW
G2 F s

 ζ ζ + ζ ζ + ζ ζ −ω  =
 ζζ + ω  

, (5.15) 

 
Case II 
 

   ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )
2 2 20

4 2 2
2s

A S x B S x 2G C x 2qW
G4 F s

 ζ ζ + ζ ζ + ζ ζ −ω  =
 ζζ + ω  

, (5.16) 

 
Case III 
 

   ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )
3 3 30

4 2 2
3s

A C x B S x G C x 2qW
G2 F s

 ζ ζ + ζ ζ + ζ ζ −ω  =
 ζζ + ω  

 (5.17) 

 
where 
   ( ) ( ) ( ) ( )cosh cos sinh sin ,  sinh cos sin cosh ,  1 1A B 1 1ζ = ζ − ζ − ζ ζ ζ = ζ ζ − + ζ ζ −  
 
   ( ) ( ) ( )sinh cos sin cosh ,2A 1 1ζ = ζ − ζ + ζ − ζ  
 
   ( ) ( ) ( )sinh cos sin cosh2B 1 1ζ = ζ ζ − + ζ − ζ , 
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  ( ) ( ) ( )sinh sin , cosh sin sinh cos ,3 3A Bζ = ζ ζ ζ = − ζ ζ + ζ ζ  
 
  ( ) ( ) ( )cosh cos , sinh sin , cosh cos1 2 3G 1 G G 1ζ = − ζ ζ ζ = ζ ζ ζ = ζ ζ + . 
 
Taking the inverse Laplace transform with respect to the time domain using the method of residues defined as 
 
  ( ) ( ), Σ  of  ,stD x t Residues e W x s= , (5.18) 
 
we can write 
 

  ,  ,  tan2 2 1e
0

R 0

C Lc r1 1r 1 t R
A K t

−  ρ ω
= + ω = θ =  ω 

, 

 

  
( ) ( )

( ) ( )

cos sin cos sin sinh sin
cos , 

cos cos cosh sinR 2 3

3 3R R
12 24 2 2f

R RR R

 θ θ   θ + θ    θ     = −
θ + θ 

  

 

 

  
( ) ( )

( ) ( )

sin sin cos cos sinh sin
sin 

cos cos cosh sinI 2 3

3 3R R
12 24 2 2f

R RR R

 θ θ   θ − θ    θ     = −
θ + θ 

  

, 

 

  ( )  
2

4 0 0
R R R I

e

tc 2tc12 A 1 1 1 f f
4 C L L

   β βββ     ζ = ω − − + −   ρ     
, 

 

  ( )  
22

4 0 01
I R I R

e

tc 2tcct12 A t 1 f 1 f
4L 4 C L L

   β βδ ββ     ζ = − − − + +   ρ     
 

 
where , R If f  are the real and imaginary parts of ( )f p  and , R Iζ ζ  are the real and imaginary parts of ζ , 
respectively, at s = ±ιω . 
 
Case I 
 
s 0=  is removable singularity, residue=0. s = ±ιω  are simple poles and their residues are conjugates of each 
other, so the sum of residues is twice the real part of residue of ( ) ,  at ste W x s s = ιω . The sum of residues at 
s = ±ιω  is 
 

  ( ) ( ) ( )( ) ( ) ( ) ( )sin cos0
2 2 2 2 2

T P R U Q S T Q S U P Rq t V t Y
2 T U T U

  + + +  + − + 
 ω + + ω +     ω + +   

 (5.19) 
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where 
 

  

( ) ( ) ( )( )(
) ( ) ( )(

( ))(

cosh( )cos cos cosh cosh cos cos cosh

sinh cos sin cosh cosh sin cos sinh sinh sin

sin sinh sinh sin sin sinh sinh cos cos sinh

cosh sin sin

R I R I R I R I

R I R I R I R I R I

R I R I R I R I R I

R I R

P x x x x

x x

x x

= ζ ζ − ζ ζ ζ ζ − ζ ζ +
− ζ ζ ζ ζ + ζ ζ ζ ζ  ζ ζ + 

+ ζ ζ ζ ζ + ζ ζ − ζ ζ ζ ζ +

ζ

−

− ζ ζ )cosh ,Iζ 

 

 

  

( ) ( ) ( )( )(
) ( )(

( ) ( ))(

sinh( )sin sin sinh cosh cos cos cosh

sinh cos sin cosh cosh sin cos sinh cosh( )cos

cos cosh sinh sin sin sinh sinh cos cos sinh

cosh sin sin

R I R I R I R I

R I R I R I R I R I

R I R I R I R I R I

R I

Q x x x x

x x

x x

= ζ ζ + ζ ζ ζ ζ − ζ ζ
− ζ ζ ζ ζ + ζ ζ ζ ζ  + ζ ζ + 

− ζ ζ ζ ζ + ζ ζ − ζ ζ ζ ζ

ζ

+

+

− ζ )cosh ,R Iζ ζ 

 

 

  

( ) ( ) ( )( ) ( )(
( )

) ( ) ( ) ( )( )
( )( )

sinh( )cos sin cosh sinh cos cos cosh

cosh sin sin sinh sin cosh cosh cos

cos sinh sinh sin cosh( )sin cos sinh

cosh sin cos cosh sinh cos

R I R I R I R I

R I R I R I R I

R I R I R I R I

R I R I R

R x x x x 1

1

x x x x

1

= ζ ζ − ζ ζ ζ ζ ζ ζ − +
+ ζ ζ ζ ζ + ζ ζ ζ ζ − +

− ζ ζ ζ ζ  − ζ ζ − ζ ζ × 
× ζ ζ ζ ζ − − ζ( )(

( ) ( )( )
sin sinh

sin cosh sinh sin cos sinh cosh cos ,
I R I

R I R I R I R I 1

ζ ζ ζ +

+ ζ ζ ζ ζ + ζ ζ ζ ζ − 

 

 

  

( ) ( ) ( )( ) ( )(
( )

) ( ) ( ) ( )( )
( )( )(

cosh( )sin cos sinh sinh cos cos cosh

cosh sin sin sinh sin cosh cosh cos

cos sinh sinh sin sinh( )cos sin cosh

cosh sin cos cosh sinh cos

R I R I R I R I

R I R I R I R I

R I R I R I R I

R I R I R

S x x x x 1

1

x x x x

1

= ζ ζ − ζ ζ ζ ζ ζ ζ − +
+ ζ ζ ζ ζ + ζ ζ ζ ζ − +

− ζ ζ ζ ζ  + ζ ζ − ζ ζ × 
× ζ ζ ζ ζ − − ζ( )

( ) ( )( ))
sin sinh

sin cosh sinh sin cos sinh cosh cos ,
I R I

R I R I R I R I 1

ζ ζ ζ +

+ ζ ζ ζ ζ + ζ ζ ζ ζ − 

 

 
  cos cosh cosh cos sin sinh sinh sinR I R I R I R IT 1= − ζ ζ ζ ζ − ζ ζ ζ ζ , 
 
  sin sinh cosh cos cos cosh sinh sinR I R I R I R IU = ζ ζ ζ ζ − ζ ζ ζ ζ , 
 
  ( ) ( ) ( ) ( )cosh cos cos coshR I R IV x x x x 2= ζ ζ + ζ ζ − , 
 
  ( ) ( ) ( ) ( )sinh sin sin sinhR I R IY x x x x= ζ ζ − ζ ζ . 
 
Singularities corresponding to ( )1G 0ζ =  given by Eq.(5.14) are simple poles. Using Eq.(5.6), 
 

  ( ) , 
22

2 1 0 o 0
k s k k 0 p0

e

cs s cs F s s s 1 1 1 f
2L 2 C L

 δ βββ   = ±ιζ = ±ι = + + + +  ρ   
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where  

  
tanh

 ,  , 
2

2k e 0 0
0 p02 2 3

R R

P24
C cLs 12 2s P 1 f 1

2 3A KA P P

 
 ζ ρ γ  = = + = − + , 

 
the sum of the residues at ks s= ±ι  is equal 
 

  

( )
( )

( ) ( ) ( ) ( ) ( )( ) ( )
( )

( )( )

( )

cos
sin cosh cos sinh

(5.20)

1 k k 1 k k k 1 ks 0 k
2 2

k k k kk k

k 0 1
0 12

2 1 1
k s k

e

2
1k 0 1

1 k 0 R

A C x B S x C x 2 G4F q s t

s

s c2 c 1 1 f p
c L2s F s

L C L

s cc L 1 1 2s t K A
L

− −

  ζ ζ + ζ ζ + ζ − ζω   ×
  ζ ζ − ζ ζζ ω −   

 β ββ β + +   δ  × − + + +   ρ  


 β  +ββ + +    

sec tanh
.

1
2

2
4 5

p p12 1 36
2 2

p p

−
       +                 −     
         

 

Case II 
 
s 0=  is removable singularity, residue=0. s = ±ιω  are simple poles and their residues are conjugates of each 
other, so the sum of residues is twice the real part of residue of ( ) ,   ste W x s at s = ιω . The sum of residues at 
s = ±ιω  is equal 
 

  

( ) ( ) ( )( )

( ) ( ) ( )

sin

cos

0
2 2 2

2 2

T P R U Q Sq t 2V
4 T U

T Q S U P R
t 2Y

T U

  + + +
 ω + +  ω + 

 + − + 
+ ω +  + 

 (5.21) 

 
where 
 

  

( ) ( ) ( ) ( )( ) ( )(
( )

) ( ) ( ) ( ) ( )( )

sinh cos sin cosh sinh cos cos cosh

sin cosh cosh cos cosh sin sin sinh

cos sinh sinh sin cosh sin cos sinh

sinh cos sin sinh cosh sin co

R I R I R I R I

R I R I R I R I

R I R I R I R I

R I R I R I

P x x x x 1

1

x x x x

1

= ζ ζ + ζ ζ ζ ζ − ζ ζ +
+ ζ ζ − ζ ζ − ζ ζ ζ ζ

+ ζ ζ ζ ζ  − ζ ζ + ζ ζ × 
× ζ ζ ζ ζ + ζ ζ −

+

( )(
( ))

s cosh

sin cosh sinh sin cos sinh cosh cos ,
R I

R I R I R I R I1

ζ ζ +

− ζ ζ ζ ζ + ζ ζ − ζ ζ 
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  sinh cosh sin cos cosh sinh cos sinR I R I R I R IT = ζ ζ ζ ζ − ζ ζ ζ ζ , 
 
  sinh sinh cos cos cosh cosh sin sinR I R I R I R IU = ζ ζ ζ ζ + ζ ζ ζ ζ , 
 
  ( ) ( ) ( ) ( )cosh cos cos coshR I R IV x x x x 2= ζ ζ + ζ ζ − , 
 
  ( ) ( ) ( ) ( )sinh sin sin sinhR I R IY x x x x= ζ ζ − ζ ζ . 
 
Singularities corresponding to ( )2G 0ζ =  given by Eq.(5.14) are simple poles. Using Eq.(5.6),  
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the sum of the residues at ks s= ±ι  is equal 
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Case III 
 
s 0=  is removable singularity, Residue=0. s = ±ιω  are simple poles and their residues are conjugates of each 
other, so the sum of residues is twice the real part of residue of ( ) ,   ste W x s at s = ιω . The sum of residues at 
s = ±ιω  is equal  
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6. Numerical results and graphical explanations 
 
 Consider a viscothermoelastic solid like magnesium with the physical specifications as given below: 
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The frequency ω  is 0.1076Hz. Dimensions of the beam are taken as L 200 m= μ , b 35 m= μ  and h 30 m= μ .  

 

 
 

Fig.1. Deflection ( )D  in CC Viscothermoelastic beam with length ( )x  at different times for the first and 
second mode. 

 

 
 

Fig.2. Deflection ( )D  in SS Viscothermoelastic beam with length ( )x  at different times for the first and  
second mode. 
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 The non-dimensional value of relaxation time for CC, SS, CF beams are computed from relation 
1

0 0t s−= . So the values are given as . , . , .0t 1 0322 2 34 6 5683=  for the first mode and . , . , .0t 0 3744 0 585 1 0481=  
for the second mode for the CC, SS and CF beam, respectively. Non-dimensional deflection has been evaluated 
using Eqs (5.18)-(5.24). 
 

 
 

Fig.3. Deflection ( )D  in CF viscothermoelastic beam with length ( )x  at different times for the first and second 
mode. 

 

 
 

Fig.4. Deflection ( )D  in CC viscothermoelastic beam with time ( )t  at different lengths for the first mode. 
 
 Figures 1-3 represent the transition of deflection for a viscothermoelastic beam for different boundary 
conditions (CC, SS, CF) under the effect of harmonic load with respect to the length ( )x  at different time ( )t  
for the first and second mode. From Figs 1-3 it has been observed that the magnitude of deflection increases with 
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an increase of time except for a cantilever beam at t 21= . Also from Figs 1-2 it can be observed that the 
deflection curve is symmetrical about the middle point of the beam. Also, the deflections near the axial ends are 
more forceful for a clamped beam in comparison to a simple supported beam. 
  

 
 

Fig.5. Deflection ( )D  in SS viscothermoelastic beam with time ( )t  at different lengths for the first mode. 
 

 
 

Fig.6. Deflection ( )D  in CF viscothermoelastic beam with time ( )t  at different lengths for the first mode. 
 

 Figures 4-6 depict the transition of deflection for a viscothermoelastic beam for different boundary 
conditions (CC, SS, CF) under the effect of harmonic load with respect to time ( )t  at various values of length 

( )x  for the first mode. From Figs 4-5, it can be seen that maxima of deflection occur at middle spot of the 
beam. Whereas, with an increase in length, deflection also increases in the case of a cantilever beam (Fig.6). 
On analysing the magnitude of maximum value of deflection, it is observed that   CC CF SSD D D≥ ≥ . 



D. Chopra and P. Singh  51 

7. Conclusion 
 
 The dynamic response of a homogeneous isotropic viscothermoelastic beam under the action of 
harmonic loading has been studied. The Laplace transform technique has been used twice with respect to time 
and space domain. It is infered that  
• With an increase in time, the deflecion also increases in the case of CC, SS, CF beams except for the CF 

beam at relaxation time t 21= , 
• the deflection curve is symmetrical about the middle spot of the beam for the CC and SS beam, 
• maxima of deflection occur at the middle spot of the beam  
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Nomenclature 
 
 eC  – specific heat 

 K  – thermal conductivity 
 0t  – thermal relaxation time 

 ijδ  – Kronecker’s delta function 

 ,0 1   – viscoelastic relaxation times 

 κ  – linear thermal expansion coefficient 

 Λ,  μ  – Lames parameters 

 ρ  – density of medium 

 ijσ  – components of stress tensor 
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