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In this paper, heat transfer in flow between two horizontal parallel porous plates through a porous medium 
when the upper plate oscillates in its own plane has been analyzed taking into account the effect of viscous 
dissipation. An increment in the Prandtl number or Reynolds number results in an increment of the temperature 
profile. With an increase in viscous dissipative heat the temperature distribution decreases. 
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1. Introduction 
 
 The problem of Couette flow is applied in transpiration cooling. This technology is used in turbojet 
and rocket engines, exhaust nozzles and gas turbine blades. Gersten and Gross [1] studied a three dimensional 
flow and heat transfer past a porous plate by applying periodic suction. Singh [2] and Singh [3] studied a three 
dimensional flow and heat transfer along a porous plate. Singh et al. [4] studied a three dimensional free 
convection flow and heat transfer along a porous vertical plate. Guria and Jana [5] studied the unsteady three 
dimensional flow past a vertical porous plate subjected to time dependent periodic suction. The problem of 
transpiration cooling with the appication of transverse sinusoidal injection/suction velocity distribution was 
studied by Singh [6]. Sing and Sharma [7] also studied a three dimensional Couette flow in the presence of a 
magnetic field. Guria and Jana [8] studied a unsteady three dimensional flow and heat transfer between two 
horizontal plates subjected to periodic suction. Guria et al. [9] extended this problem by applying oscillation 
of the upper plate in its own plane.  
 Flows through porous media have many application in chemical engineering for filtration and 
purification processes. A viscous flow past a porous plate through a porous medium was studied by Varshney 
[10]. An unsteady flow past a vertical porous plate through a porous medium was studied by Raptis [11]. 
Raptis and Perdikis [12] studied an oscillatory flow past a vertical porous plate through a porous medium. 
Singh and Sharma [13] investigated a three dimensional Couette flow and heat transfer through porous 
media. Singh and Sharma [14] investigated a three dimensional free convection flow and heat transfer past 
a vertical porous plate by applying periodic permeability. Guria et al. [15] studied a free convection flow 
through a porous medium bounded by vertical porous plates. Guria et al. [16] also studied a three 
dimensional Couette flow through porous media with an upper plate in its plane. Guria et al. [17] studied 
the effect of radiation on a three dimensional flow past a vertical porous plate through a porous medium. 
Guria [18] also studied the radiation effect on a three dimensional flow through a vertical channel embedded 
in a porous medium. 
 The objective of this paper is to study the heat transfer taking the viscous dissipative effect into account 
on flow between two infinite horizontal parallel porous plates through a porous medium, when the upper plates 
oscillates in its own plane. The velocity distribution has already obtained by Guria et al. [16].  
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2. Basic equations  
 
 Consider an unsteady flow between two infinite parallel flat porous plates through a porous medium 
separared at a distance d . The upper plate oscillates in its own plane with  
 

  i tu U 1 e ω = +  

    (2.1) 

 
where ω  is the frequency of the oscillations, t  is the time and U  is the free stream velocity. The x  axis is 
taken in the direction of the flow. The upper plate is subjected to a constant suction 0V  and the lower plate to 
a transverse sinusoidal injection  
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 Denoting velocity components , ,u v w    in the directions of the ,x y− −  , and z −  axes 
respectively, the flow is governed by the following equations  
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where ν  is the kinematic coefficient of viscosity, ρ  is the density, p  is the fluid pressure, *K  is the 
permeability of the porous medium. 
 The boundary conditions of the problem are  
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Introducing the non-dimensional variables  
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Eqs (2.3)-(2.6) become  
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where /Re Ud= ν  is the Reynolds number, /0S V U=  is the suction parameter and /2dω = ω ν  is the 

frequency parameter, * / 2K K d=  is the permeability parameter. Using Eqs (2.8), the boundary conditions 
(2.7) become  
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   (2.13) 
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3. Solution 
 
 We assume the solution of the given form  
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When 0≠ , the solution is  
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We omit the other constants. When K → ∞  the solutions coincide with the solution of Guria et al. [9]. The 
solution also exists for the blowing at the plate. 
 
4. Heat transfer 
 
 We consider the energy equation  
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where Φ  is the viscous dissipation function given by  
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where pC  is the specific heat at constant pressure, μ  is the viscosity, α  is the thermal conductivity of the 
fluid.  
 The temperature boundary condions are  
 
        at        and         at    .0 1T T y 0 T T y d= = = =     (4.3) 
 
Introducing  
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Eq.(4.1) becomes  
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The temperature boundary conditions become 
 
  ( ) ( ), .0 0 1 1θ = θ =  (4.7) 
 
We assume the soluton of the temperature equation in the form  
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Substituting θ  in (4.5) and comparing the term free of  , we get  
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The zeroth order solution is given by  
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Comparing the coefficient of  , we get  
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Assuming  
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and substituting Eq.(4.14) in Eq.(4.13), we get  
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The first order solution is given by  
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where 
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2
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The other constants are not given here to save space. 
 
5. Results and discussion 
 
 Variations of θ  for several values of the Eckert number ,Prandtl number Ec Pr  and 
Reynolds number Re  are shown in Figs 1-3. It is found that with an increase in either Re , Pr  the temperature 
profile θ  increseases. With an increase in the viscous dissipative heat the temperature distribution decreases. 
It is observed that with an increase in the Prandtl number the temperature of the flow increases at all points. 
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Fig.1. Variation of θ  for , . , , , . , .ot 45 S 0 5 K 2 5 Ec 0 1 0 25ω = = = ω = = = . 
 

 
 

Fig.2. Variation of θ  for , . , , . , . , .ot 45 S 0 5 K 2 Ec 0 1 Pr 0 71 0 25ω = = = = = = . 
 

 
 

Fig.3. Variation of θ  for , . , , , , .ot 45 S 0 5 K 2 5 Re 5 0 25ω = = = ω = = =  
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The rate of heat transfer from the plate to the fluid may be calculated using the formula  
 

  
( )

*

*

*
w 0

y 0y 0

k T TTq k
d yy ==

−  ∂ ∂θ= − = −  ∂∂  

 
  
 

. (5.1) 

 
In a non-dimensional form the heat transfer coefficient at the plate y 0=  is given by  
 

  ( ) ( ) ( )' ' ,0 1
w 0 y 0

qdNu 0 0
k T T y =

 ∂θ= = − = −θ − θ − ∂ 
  

 
  ( ) ( ) ( )' ' 'cos ,i t

0 11 12Nu 0 0 z 0 e ω = −θ − θ π + θ   

 
  ( ) ( ) ( )' ' cos cos .0 11 1 1Nu 0 0 z H t = −θ − θ π + φ + ω   (5.2) 

 
 Variations of amplitude and tangent of phase shift in terms of the Nusselt number for several values 
of frequency parameter ω  and Reynolds number Re  is shown in Tab.1. It is seen that the amplitude and 
tangent of phase shift decreases with increase in either Re  or ω . It is observed that due to high frequency of 
oscillations of the plate, the magnitude of the rate of heat transfer reduces. The values of tan 1ϕ show that there 
is a phase lead for lower frequency in the rate of heat transfer coefficient. 
 
Table 1. The amplitude 1H  and phase shift tan 1ϕ  of the Nusselt number .S 0 5= , .Pr 0 71= , .0 25= , 

ot 45ω = . 
  

Re  1H  tan 1φ  
 2ω =  5ω =  10ω =  2ω =  5ω =  10ω =  

1 .1 76  .1 28  .0 59  33.01 36.21 11.08 
1.5 .1 46  .1 42  .0 64  12.58 17.62 8.19 
2 .0 94  .1 34  .0 62  5.87 9.94 5.63 

2.5 .0 41  .1 04  .0 49  2.11 5.63 3.36 
 
6. Conclusion 
 
 The temperature distribution in a flow between two horizontal parallel porous plates through a porous 
medium has been obtained in the presence of viscous dissipative heat. It is found that with an increase in either 
Reynolds or Prandtl number the temperature profile increases but it decreases with an increase in the Eckert 
number. The rate of heat transfer has also been obtained in terms of the Nusselt number. It is seen that the 
amplitude and tangent of phase shift decreases with an increase in either the Reynolds number or frequency 
parameter. With an increase in the viscous dissipative heat the temperature distribution decreases. It is observed 
that increasing the Prandtl number increases temperature of the flow at all points. It is observed that due to a 
high frequency of oscillations of the plate, the magnitude of the rate of heat transfer reduces. The values of 
tan 1ϕ show that there is a phase lead for lower frequency in the rate of heat transfer coefficient. 
 
Nomenclature 
 
 ..iA i = 1, 20  – constants 
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 , , ,A B C D  – constants 
 iC ,i = 1, 10  – constants 

 pC  – specific heat at constant pressure 

 id ,i = 1, 5  – constants 

 d  – channel width 
 Ec  – Eckert number 
 g  – gravitational acceleration 

 Gr  – Grashof number 

 K  – permeability parameter 
 1K , 2K  – constant 

 im ,i = 1, 6  – constants 

 Nu  – Nusselt number at the left plate 

 p∗  – pressure 
 p  – dimensionless pressure 

 Pr  – Prandtl number 
 q  – local heat transfer at the plate 
 ir ,i = 1, 4  – constants 

 Re  – Reynolds number 

 T ∗  – temperature of the fluid 

 wT  – plate temperature ( y = 0∗ ) 

 0T  – plate temperature ( y = d∗ ) 

 u∗ , v∗ , w∗  – velocity components in x,y,z axes  
 u,v,w  – dimensionless Velocity components in x,y,z axes respectively 
 0V  – constant suction velocity 

 x∗ , y∗ , z∗  – Cartesian coordinates system; 
 x,y,z  – dimensionless Cartesian coordinate system 
 μ  – viscosity 
 β  – coefficient of thermal expansion 

 θ  – non-dimensional temperature 
 ν  – kinematic viscosity 
 ε  – amplitude of the suction velocity 
 ρ  – density of the fluid 
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